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FINITELY ADDITIVE PROBABILITIES AND THE FUNDAMENTAL

THEOREM OF ASSET PRICING

CONSTANTINOS KARDARAS

Dedicated to Prof. Eckhard Platen, on the occasion of his 60th birthday.

Abstract. This work aims at a deeper understanding of the mathematical implications of the

economically-sound condition of absence of arbitrages of the first kind in a financial market. In the

spirit of the Fundamental Theorem of Asset Pricing (FTAP), it is shown here that absence of arbi-

trages of the first kind in the market is equivalent to the existence of a finitely additive probability,

weakly equivalent to the original and only locally countably additive, under which the discounted

wealth processes become “local martingales”. The aforementioned result is then used to obtain an

independent proof of the classical FTAP, as it appears in [7]. Finally, an elementary and short

treatment of the previous discussion is presented for the case of continuous-path semimartingale

asset-price processes.

0. Introduction

In the Quantitative Finance literature, the most common normative assumption placed on fi-

nancial market models in the literature is the existence of an Equivalent Local Martingale Measure

(ELMM), i.e., a probability, equivalent to the original one, that makes discounted asset-price pro-

cesses local martingales. There is, of course, a very good reason for postulating the existence of

an ELMM in the market: the Fundamental Theorem of Asset Pricing (FTAP) establishes1 the

equivalence between a precise market viability condition, coined “No Free Lunch with Vanishing

Risk” (NFLVR) with the existence of an ELMM (see [7] and [9]).

The importance of condition NFLVR notwithstanding, there has lately been considerable interest

in researching models where an ELMM might fail to exist. Major examples include the benchmark

approach in financial modeling of [24], as well as the emergence of stochastic portfolio theory

([10]), a descriptive theory of financial markets. Even though the previous approaches allow for

the existence of some form of arbitrage, they still deal with viable models of financial markets. In

fact, the markets there satisfy a weaker version of the NFLVR condition; more precisely, there is
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2 CONSTANTINOS KARDARAS

absence of arbitrages of the first kind2 (see Definition 1.1 of the present paper), which we abbreviate

as condition NA1. In the recent work [19], it was shown that condition NA1 is equivalent to the

existence of a strictly positive local martingale deflator, i.e., a strictly positive process with the

property that every asset-price, when deflated by it, becomes a local martingale. The previous

mathematical counterpart of the economic NA1 condition is rather elegant; however, and in order

to provide a closer comparison with the FTAP of [7], it is still natural to wish to equivalently express

the NA1 condition in terms of the existence of some measure that makes discounted asset-prices

have some kind of martingale property.

In an effort to connect, expand, and simplify previous research, the purpose of this paper is

threefold; in particular, we aim at:

(1) presenting a weak version of the FTAP, stating the equivalence of the NA1 condition with

the existence of a “probability” that makes discounted nonnegative wealth processes “local

martingales”;

(2) using the previous result as an intermediate step to obtain the FTAP as it appears in [7];

(3) providing an elementary proof of the above weak version of the FTAP discussed in (1) above

when the asset-prices are continuous-path semimartingales.

In order to tackle (1), we introduce the concept of a Weakly Equivalent Local Martingale Mea-

sure (WELMM). A WELMM is a finitely additive probability3 that is locally countably additive and

makes discounted asset-price processes behave like local martingales. Of course, the last local mar-

tingale property has to be carefully and rigorously defined, as only finitely additive probabilities are

involved — see Definition 1.7 later on in the text. In Theorem 1.13, and in a general semimartingale

market model, we obtain the equivalence between condition NA1 and the existence of a WELMM.

Theorem 1.13 can be also seen as an intermediate step in proving the FTAP of [7]. Under the

validity of Theorem 1.13, and using the very important optional decomposition theorem, this task

becomes easier, as the proof of Theorem 2.1 of the present paper shows.

We now come to the issue raised at (3) above. In order to establish our weak version of the

FTAP, we need to invoke the main result from [19], which itself depends heavily upon results of

[16]. The immense level of technicality in the proofs of the previous results render their presentation

in graduate courses almost impossible. The same is true for the FTAP of [7]. Given the importance

of such type of results, this is really discouraging. We provide here a partial resolution to this

issue in the special case where the asset-prices are continuous-path semimartingales. As is shown

in Theorem 3.1, proving of our main Theorem 1.13 becomes significantly easier; in fact, the only

non-trivial result that is used in the course of the proof is the representation of a continuous-path

2The terminology “arbitrage of the first kind” was introduced in [14], although our definition is closer in spirit to

arbitrages of the first kind in the context of large financial markets, as appears in [15]. One should also mention [22],

where arbitrages of the first kind are called cheap thrills.
3Finitely additive measures have appeared quite often in in economic theory in a financial equilibrium setting in

cases of infinite horizon (see [13]) or even finite-time horizon with credit constraints on economic agents (see [22] and

[23]).
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local martingales as time-changed Brownian motion. Furthermore, in Theorem 3.1, condition NA1

is shown to be equivalent to the existence and square-integrability of a risk-premium process, which

has nice economic interpretation and can be easily checked once the model is specified.

The structure of the paper is as follows. In Section 1, the market is introduced, arbitrages of the

first kind and the concept of a WELMM are defined, and Theorem 1.13, the weak version of the

FTAP, is stated. Section 2 deals with a proof of the FTAP as it appears in [7]. Finally, Section 3

contains the statement and elementary proof of Theorem 3.1, which is a special case of Theorem

1.13 when the asset-price processes are continuous-path semimartingales.

1. Arbitrages of the First Kind and Weakly Equivalent Local Martingale

Measures

1.1. General probabilistic remarks. All stochastic processes in the sequel are defined on a

filtered probability space
(
Ω, F , (Ft)t∈R+

, P
)
. Here, P is a probability on (Ω,F), where F is a σ-

algebra that will make all involved random variables measurable. The filtration (Ft)t∈R+
is assumed

to satisfy the usual hypotheses of right-continuity and saturation by P-null sets. A finite financial

planning horizon T will be assumed. Here, T is a P-a.s. finite stopping time and all processes will

be assumed to be constant, and equal to their value they have at T , after time T . It will be assumed

throughout that F0 is trivial modulo P and that FT = F .

1.2. The market and investing. Henceforth, S will be denoting the discounted, with respect to

some baseline security, price process of a financial asset, satisfying:

(S-MART) S is a nonnegative semimartingale.

Starting with capital x ∈ R+, and investing according to some predictable and S-integrable

strategy ϑ, an economic agent’s discounted wealth is given by the process

(1.1) Xx,ϑ := x +

∫ ·

0
ϑt dSt.

In frictionless, continuous-time trading, credit constraints have to be imposed on investment in

order to avoid doubling strategies. Define then X (x) to be the set of all wealth processes Xx,ϑ

in the notation of (1.1) such that Xx,ϑ ≥ 0. Also, let X :=
⋃

x∈R+
X (x) denote the set of all

nonnegative wealth processes.

1.3. Arbitrages of the first kind. The market viability notion that will be introduced now will

be of central importance in our discussion.

Definition 1.1. An FT -measurable random variable ξ will be called an arbitrage of the first kind

if P[ξ ≥ 0] = 1, P[ξ > 0] > 0, and for all x > 0 there exists X ∈ X (x), which may depend on x,

such that P[XT ≥ ξ] = 1.

If there are no arbitrages of the first kind in the market, we say that condition NA1 holds.
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In view of Proposition 3.6 from [7], condition NA1 is weaker than condition NFLVR. In fact, con-

dition NA1 is exactly the same as condition “No Unbounded Profit with Bounded Risk” (NUPBR)

of [16], as we now show.

Proposition 1.2. Condition NA1 is equivalent to the requirement that the set {XT |X ∈ X (1)} is

bounded in probability.

Proof. Using the fact that X (x) = xX (1) for all x > 0, it is straightforward to check that if an

arbitrage of the first kind exists, then {XT |X ∈ X (1)} is not bounded in probability. Conversely,

assume that {XT |X ∈ X (1)} is not bounded in probability. Since {XT |X ∈ X (1)} is further

convex, Lemma 2.3 of [4] implies the existence of Ωu ∈ FT with P[Ωu] > 0 such that, for all

n ∈ N, there exists X̃n ∈ X (1) with P[{X̃n
T ≤ n} ∩ Ωu] ≤ P[Ωu]/2n+1. For all n ∈ N, let

An = I{ eXn
T >n} ∩ Ωu ∈ FT . Then, set A :=

⋂
n∈N

An ∈ FT and ξ := IA. It is clear that ξ is

FT -measurable and that P[ξ ≥ 0] = 1. Furthermore, since A ⊆ Ωu and

P [Ωu \ A] = P

[
⋃

n∈N

(Ωu \ An)

]
≤

∑

n∈N

P [Ωu \ An] =
∑

n∈N

P

[
{X̃n

T ≤ n} ∩ Ωu

]
≤

∑

n∈N

P[Ωu]

2n+1
=

P[Ωu]

2
,

we obtain P[A] > 0, i.e., P[ξ > 0] > 0. For all n ∈ N set Xn := (1/n)X̃n, and observe that

Xn ∈ X (1/n) and ξ = IA ≤ IAn ≤ Xn
T hold for all n ∈ N. It follows that ξ is and arbitrage of the

first kind, which finishes the proof. �

1.4. Weakly Equivalent Local Martingale Measures. The mathematical counterpart of the

NA1 condition involves a weakening of the concept of an ELMM. The appropriate notion involves

measures that behave like probabilities, but are finitely additive and only locally countably additive.

In what follows, a localizing sequence will refer to a nondecreasing sequence (τn)n∈N of stopping

times such that ↑ limn→∞ P[τn ≥ T ] = 1.

1.4.1. Local probabilities weakly equivalent to P. The concept that will be introduced below in

Definition 1.3 is essentially a localization of countably additive probabilities.

Definition 1.3. A mapping Q : F 7→ [0, 1] is a local probability weakly equivalent to P if:

(1) Q[∅] = 0, Q[Ω] = 1, and Q is (finitely) additive: Q[A ∪ B] = Q[A] + Q[B] whenever A ∈ F
and B ∈ F satisfy A ∩ B = ∅;

(2) for A ∈ F , P[A] = 0 implies Q[A] = 0;

(3) there exists a localizing sequence (τn)n∈N such that, when restricted on Fτn , Q is countably

additive and equivalent to P, for all n ∈ N. (Such sequence of stopping times will be called

a localizing sequence for Q.)

Conditions (1) and (2) above imply that Q is a positive element of the dual of L∞, the space

of (equivalence classes modulo P of) F-measurable random variable that are bounded modulo P

equipped with the essential-sup norm. The theory of finitely additive measures is developed in

great detail in [3]; for our purposes here, mostly results from the Appendix of [6], as well as some

material from [18], will be needed.
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To facilitate the understanding, finitely additive positive measures that are not necessarily count-

ably additive will be denoted using sans-serif typeface (like “Q”), while for countably additive prob-

abilities the blackboard bold typeface (like “Q”) will be used. As Q will be in the dual of L∞, 〈Q, ξ〉
will denote the action of Q on ξ ∈ L∞. The fact that Q is a positive functional enables to extend

the definition of 〈Q, ξ〉 for ξ ∈ L0 with P[ξ ≥ 0] = 1, via 〈Q, ξ〉 := limn→∞

〈
Q, ξI{ξ≤n}

〉
∈ [0,∞].

(L0 denotes the set of all P-a.s. finitely-valued random variables modulo P-equivalence equipped

with the topology of convergence in probability.)

Remark 1.4. In general, a finitely additive probability Q : F 7→ [0, 1] is called weakly absolutely

continuous with respect to P if for each A ∈ F with P[A] = 0 we have Q[A] = 0. Furthermore, Q

is called strongly absolutely continuous with respect to P if for any ǫ > 0 there exists δ = δ(ǫ) > 0

such that E ∈ F and P[E] < δ implies Q[E] < ǫ. It is clear that strong absolute continuity of Q

with respect to P is a stronger requirement than weak absolutely continuity of Q with respect to

P. Actually, the two notions coincide when Q is countable additive. Of course, similar definitions

can be made with the roles of P and Q reversed. Then, P and Q are called weakly (respectively,

strongly) equivalent if Q is weakly (respectively, strongly) absolutely continuous with respect to P

and P is weakly (respectively, strongly) absolutely continuous with respect to Q.

In Definition 1.3, Q was called a local probability “weakly equivalent to P”; however, condition

(2) only implies that Q is weakly absolutely continuous with respect to P. We claim that P is also

weakly absolutely continuous with respect to Q. Indeed, let Q satisfy (1) and (3) of Definition 1.3.

Pick any A ∈ F with Q[A] = 0. Since A ∩ {τn ≥ T} ∈ Fτn for all n ∈ N, Q[A ∩ {τn ≥ T}] = 0

implies that P[A ∩ {τn ≥ T}] = 0 by (3). Then, P[A] = ↑ limn→∞ P[A ∩ {τn ≥ T}] = 0.

Let Q be a local probability weakly equivalent to P. When Q is only finitely, but not countably,

additive, P and Q are not strongly equivalent, as we now explain. Write Q = Qr +Qs for the unique

decomposition of Q into its regular and singular part. (The regular part Qr is countably additive,

while the singular part Qs is purely finitely additive, meaning that there is no nonzero countably

additive measure that is dominated by Qs. One can check [3] for more information.) According

to Lemma A.1 in [6], for all ǫ > 0 one can find a set Aǫ ∈ F with P[Aǫ] < ǫ and Qs[Aǫ] = Qs[Ω];

therefore Q[Aǫ] ≥ Qs[Ω]. In other words, if Qs is nontrivial, then Q is not strongly absolutely

continuous with respect to P. Note, however, that P is strongly absolutely continuous with respect

to Q in view of condition (3) of Definition 1.3.

We briefly digress from our main topic to give a simple criterion that connects the countable

additivity of Q, a local probability weakly equivalent to P, with the strong equivalence between Q

and P, as the latter notion was introduced in Remark 1.4 above.

Proposition 1.5. Let Q be a local probability weakly equivalent to P. The following are equivalent:

(1) Q is countably additive, i.e., a true probability.

(2) Q is strongly absolutely continuous with respect to P.

(3) ↑ limn→∞ Q[τn ≥ T ] = 1 holds for any localizing sequence (τn)n∈N for Q.

(4) ↑ limn→∞ Q[τn ≥ T ] = 1 holds for some localizing sequence (τn)n∈N for Q.
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Proof. The implications (1) ⇒ (2) ⇒ (3) ⇒ (4) are straightforward, so we only focus on the

implication (4) ⇒ (1). Let (Ek)k∈N be a decreasing sequence of F-measurable sets such that
⋂

k∈N
Ek = ∅. We need show that ↓ limk→∞ Q[Ek] = 0. Consider the Q-localizing sequence (τn)n∈N

of statement (4). For each n ∈ N and k ∈ N we have Ek ∩ {τn ≥ T} ∈ Fτn . (Here, remember

that F = FT ). This means that lim supk→∞ Q[Ek] ≤ Q[τn < T ] + lim supk→∞ Q[Ek ∩ {τn ≥ T}] =

Q[τn < T ], the last equality holding because Q is countably additive on Fτn , for all n ∈ N. Sending

n to infinity and using (4), we obtain the result. �

1.4.2. Density processes. For a local probability weakly equivalent to P as in Definition 1.3, one

can associate a strictly positive local P-martingale Y Q, as will be now described. For all n ∈ N,

consider the P-martingale Y Q, n defined by setting

Y Q, n
∞ ≡ Y Q, n

T :=
d

(
Q|Fτn

)

d
(
P|Fτn

) .

It is clear that, P-a.s., Y Q, n
0 = 1 and Y Q, n

T > 0. Furthermore, for all n ∈ N \ {0}, Y Q, n = Y Q, n−1

on the stochastic interval [[0, τn−1]]. Therefore, patching the processes (Y Q, n)n∈N together, one can

define a local P-martingale Y Q such that, P-a.s., Y Q
0 = 1 and Y Q

T > 0.

Remark 1.6. A general result in [18] shows that a supermartingale Y Q can be associated to a

finitely additive measure Q that satisfies (1) and (2) of Definition 1.3, but not necessarily (3). The

construction of Y Q in [18] is messier than the one provided above, exactly because condition (3)

of Definition 1.3 is not assumed to hold. In the special case described here, the two constructions

coincide.

A partial converse of the above construction is also possible. To wit, start with some local P-

martingale Y such that, P-a.s., Y0 = 1 and YT > 0. If (τn)n∈N is a localizing sequence for Y , one

can define for each n ∈ N a probability Qn, equivalent to P on F , via the recipe dQn := Yτn dP.

By Alaoglu’s Theorem (see, for example, Theorem 6.25, page 250 of [1]), the sequence (Qn)n∈N has

some cluster point Q for the weak* topology on the dual of L∞, which will be a finitely-additive

probability. Proposition A.1 of [6] gives that dQr/dP = YT . It is easy to see that Q is a local

probability weakly equivalent to P, as well as that Y Q = Y . (Note that, again by Proposition A.1

of [6], the sequence (Qn)n∈N might have several cluster points, but all will have the same regular

part. Therefore, Q is not uniquely defined, but it is always the case that Y Q = Y .)

1.4.3. Local martingales. When Q is a local probability weakly equivalent to P and fails to be

countably additive, the concept of a Q-martingale, and therefore also of a local Q-martingale, is

tricky to state. The reason is that existence of conditional expectations requires Q to be countably

additive in order to invoke the Radon-Nikodým Theorem. To overcome this difficulty, we follow

an alternative route. Let Q be a probability measure, equivalent to P. According to the optional

sampling theorem (see, for example, §1.3.C in [17]), a càdlàg process X is a local Q-martingale if

and only if there exists a localizing sequence (τn)n∈N such that 〈Q, Xτn∧τ 〉 = X0 for all n ∈ N and

all stopping times τ . This characterization makes the following Definition 1.7 plausible.
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Definition 1.7. Let Q be a local probability weakly equivalent to P. A nonnegative càdlàg pro-

cess X will be called a local Q-martingale if there exists a localizing sequence (τn)n∈N such that

〈Q, Xτn∧τ 〉 = X0 for all n ∈ N and all stopping times τ .

Now, a characterization of local Q-martingales in terms of density processes will be given. This

extends the analogous result in the case where Q is countably additive.

Proposition 1.8. Let Q be a local probability weakly equivalent to P and let Y Q be defined as in

§1.4.2. A nonnegative process X is a local Q-martingale if and only if Y QX is a local P-martingale.

Proof. Start by assuming that X is a local Q-martingale. Since 〈Q, Xτn∧τ 〉 = X0 for all n ∈ N

and all stopping times τ , where (τn)n∈N is a localizing sequence, (τn)n∈N can be assumed to also

localize Q. Then, since Xτn∧τ ∈ Fτn for all n ∈ N and all stopping times τ , and since Qn := Q|Fτn

is countably additive with dQn/( dP|Fτn ) = Y Q
τn , it follows that

Y Q
0 X0 = X0 = 〈Q, Xτn∧τ 〉 = E[Y Q

τnXτn∧τ ] = E[E[Y Q
τn | Fτn∧τ ]Xτn∧τ ] = E[Y Q

τn∧τXτn∧τ ]

for all n ∈ N and all stopping times τ . This means that Y QX is a local P-martingale.

Conversely, suppose that Y QX is a local P-martingale. Let (τn)n∈N be a localizing sequence for

both Y QX and Q. Then, for all n ∈ N and all stopping times τ ,

X0 = Y Q
0 X0 = E[Y Q

τn∧τXτn∧τ ] = E[E[Y Q
τn | Fτn∧τ ]Xτn∧τ ] = E[Y Q

τnXτn∧τ ] = 〈Q, Xτn∧τ 〉 .

Therefore, X is a local Q-martingale. �

1.4.4. Weakly equivalent local martingale measures. As will be shown in Theorem 1.13, the following

definition gives the mathematical counterpart of the market viability condition NA1.

Definition 1.9. A weakly equivalent local martingale measure (WELMM) Q is a local probability

weakly equivalent to P such that S is a local Q-martingale.

Remark 1.10 (On the semimartingale property of S). Under the assumption that S is nonneg-

ative, the existence of a WELMM enforces the semimartingale property on S. Indeed, write

S = (1/Y Q)(Y QS), where Q is a WELMM and Y Q is the density defined in §1.4.2. Since Y Q

is a local P-martingale with Y Q
T > 0, P-a.s., and Y QS is also a local P-martingale, both 1/Y Q and

Y QS are semimartingales, which gives that S is a semimartingale.

Semimartingales are essential in frictionless financial modeling. This has been made clear in

Theorem 7.1 of [7], where it was shown that if S is locally bounded and not a semimartingale,

condition NFLVR using only simple trading strategies fails. Furthermore, from the treatment in

[20] it follows that, if S is nonnegative and not a semimartingale, one can construct an arbitrage

of the first kind, even if one uses only no-short-sale and simple strategies.

If S satisfies (S-MART), it is straightforward to check that a probability Q equivalent to P is an

ELMM if and only if each X ∈ X is a local Q-martingale. The following result extends the last

equivalence in the case of a WELMM.
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Proposition 1.11. Let Q be a local probability weakly equivalent to P. If S satisfies (S-MART),

then S is a local Q-martingale if and only if every process X ∈ X is a local Q-martingale.

Proof. Start by assuming that S is a local Q-martingale. For x ∈ R+, let Xx,ϑ in the notation of

(1.1) be a wealth process in X (x). A use of the integration-by-parts formula gives

Y QXx,ϑ = x +

∫ ·

0

(
Xx,ϑ

t− − ϑtSt−

)
dY Q

t +

∫ ·

0
ϑt d(Y QS)t

It follows that Y QXx,ϑ is a positive martingale transform under P, and therefore a local P-martingale

by the Ansel-Stricker Theorem (see [2]).

Now, assume that every process in X is a local Q-martingale. Since S ∈ X , S is a local Q-

martingale. �

Remark 1.12. Let Q be a local probability weakly equivalent to P. Proposition 1.8 combined with

Proposition 1.11 imply that Q is a WELMM if and only if Y QX is a local P-martingale for all

X ∈ X . In other words, the process Y Q is a strict martingale density in the terminology of [25]

(see also [26]).

1.5. The main result. After the preparation of the previous sections, it is possible to state The-

orem 1.13 below, which can be seen as a weak version of the FTAP in [7].

Theorem 1.13. Suppose that S satisfies (S-MART). Then, there are no arbitrages of the first kind

in the market if and only if a weakly equivalent local martingale measure exists.

Proof. By Theorem 1.1 in [19], condition NA1 is equivalent to the existence of a nonnegative càdlàg

process Y with Y0 = 1, YT > 0, and such that Y X is a local P-martingale for all X ∈ X . Then,

using also the discussion in §1.4.2 and Proposition 1.8, NA1 holds if and only if there exists a

local probability Q, weakly equivalent to P, such that X is a local Q-martingale for all X ∈ X .

Proposition 1.11 gives that Q is a WELMM, which completes the proof. �

Remark 1.14. If the statement of the FTAP of [9] is assumed, one can provide a proof of Theorem

1.13 using the “change of numéraire” technique of [8]; a similar approach has been taken up in [5].

We opt here to prove Theorem 1.13 directly, using the result of [19] that is not relying on previous

heavy results. Then, the classical FTAP itself becomes a corollary, as we shall see in Section 2

below. There is no claim that the path followed here is shorter or less arduous than the one taken

up in [9], but certainly it has different focus.

Remark 1.15. As can be seen from its proof, Theorem 1.13 still holds if the nonnegativity assumption

on S is removed, as long as we agree to reformulate the notion of a WELMM Q, asking that each

X ∈ X is a local Q-martingale.

Furthermore, Theorem 1.13 also holds without the assumption that S is one-dimensional. Indeed,

in Remark 1.14 above it was discussed that Theorem 1.13 can be seen as a consequence of the FTAP

in [9], which does not require S to be one-dimensional. Unfortunately, in [19] the assumption that
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S is one-dimensional is being made, mostly in order to avoid immense technical difficulties in the

proof of Theorem 1.1 there, which is used to prove Theorem 1.13 above.

Remark 1.16. Undoubtedly, the notion of a WELMM is more complicated than that of an ELMM.

However, checking the existence of a WELMM is fundamentally easier than checking whether an

ELMM exists for the market. Indeed, in view of Theorem 1.13, existence of a WELMM is equivalent

to the existence of the numéraire portfolio in the market. For checking the existence of the latter,

there exists a necessary and sufficient criterion in terms of the predictable characteristics of the

discounted asset-price process, as was shown in [16]. The details are rather technical, but if the

asset-price process has continuous paths the situation is very simple — see Section 3 later.

2. The FTAP of Delbaen and Schachermayer

In this subsection, a proof of the FTAP as appears in [7] is given using the already-developed

tools. Also, the Q-supermartingale property of wealth processes in X when Q is a WELMM is

examined, and it is shown that the latter property holds only under the existence of an ELMM.

2.1. Proving the FTAP. In the notation of the present paper, the main technical difficulty for

proving the FTAP in [7] is showing that the set
{
g ∈ L0 | 0 ≤ g ≤ XT for some X ∈ X (1)

}
is closed

in probability under the NFLVR condition. This implies the weak* closedness of the set of bounded

superhedgeable claims starting from zero capital and therefore allows for the use of the Kreps-Yan

separation theorem (see [21] and [27]) in order to conclude the existence of a separating measure.

There is a way to establish the aforementioned closedness in probability using Theorem 1.13 and

some additional well-known results. In fact, a seemingly stronger statement than the one in [7] will

now be stated and proved.

Theorem 2.1. Under the assumption that no arbitrages of the first kind are present in the market,

the set
{
g ∈ L0 | 0 ≤ g ≤ XT for some X ∈ X (1)

}
is closed in probability.

Proof. Define V↓(1) to be the class of nonnegative, adapted, càdlàg, nonincreasing processes with

V0 ≤ 1. Then, set4 X××(1) := X (1)V↓(1) = {XV |X ∈ X (1) and V ∈ V↓(1)}. The statement

of the Theorem can be reformulated to say that the convex set {ξT | ξ ∈ X××(1)} is closed in L0.

Consider therefore a sequence (ξn)n∈N such that L0- limn→∞ ξn
T = ζ. It will be shown below that

there exists ξ∞ ∈ X××(1) such that ξ∞T = ζ.

In what follows in the proof, the concept of Fatou-convergence is used, which will now be recalled.

Define D := {k/2m | k ∈ N, m ∈ N} to be the set of dyadic rational numbers in R+. A sequence

(Zn)n∈N of nonnegative càdlàg processes Fatou-converges to Z∞ if

Z∞
t = lim sup

D∋s↓t

(
lim sup

n→∞
Zn

s

)
= lim inf

D∋s↓t

(
lim inf
n→∞

Zn
s

)

4The notation “X××(1)” is borrowed from [28] since it is suggestive of the fact that X××(1) is the process-bipolar

of X (1), as is defined in [28]. Note, however, that it actually remains to show that X (1) is closed in probability to

actually have that bipolar relationship.
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holds P-a.s. for all t ∈ R+. Note that, since all processes are assumed to be constant after time T ,

for any t ≥ T the above relationship simply reads Z∞
T = limn→∞ Zn

T , P-a.s.

From Theorem 1.13 and Proposition 1.8, under absence of arbitrages of the first kind in the

market, there exists some nonnegative process Y with Y 0 = 1 and Y T > 0, P-a.s., such that Y X

is a local P-martingale for all X ∈ X (1). Then, Y ξ is a nonnegative P-supermartingale for all

ξ ∈ X××(1). Since (Y ξn)n∈N is a sequence of nonnegative P-supermartingales with Y 0ξ
n
0 ≤ 1,

Lemma 5.2(1) of [12] gives the existence of a sequence (ξ
n
)n∈N such that ξ

n
is a convex combination

of ξn, ξn+1, . . . for each n ∈ N (and therefore ξ
n ∈ X××(1) for all n ∈ N, since X××(1) is convex),

and such that (Y ξ
n
)n∈N Fatou-converges to some nonnegative P-supermartingale Z. Obviously,

Z0 ≤ 1. Also, since L0- limn→∞(Y T ξn
T ) = Y T ζ, one gets ZT = Y T ζ. Define ξ∞ := Z/Y . Then,

(ξ
n
)n∈N Fatou-converges to ξ∞ and ξ∞T = ζ. The last line of business is to show that ξ∞ ∈ X××(1).

First of all, ξ∞0 ≤ 1 and ξ∞ is nonnegative. Let Y(1) be the class of all nonnegative process

Y with Y0 = 1, P-a.s., such that Y X is a P-supermartingale for all X ∈ X (1). Of course, for all

Y ∈ Y(1) and all ξ ∈ X××(1), Y ξ is a P-supermartingale. It follows that Y ξ
n

is a nonnegative

P-supermartingale for all n ∈ N. Since, for any Y ∈ Y(1), (Y ξ
n
)n∈N Fatou-converges to Y ξ∞, using

Fatou’s lemma one gets that Y ξ∞ is also a P-supermartingale for all Y ∈ Y(1). Since there exists a

local P-martingale in Y ∈ Y(1) with Y T > 0, P-a.s., the optional decomposition theorem as appears

in [11] implies that ξ∞ ∈ X××(1). �

2.2. NFLVR and the supermartingale property of wealth processes under a WELMM.

We now move to another characterization of the NFLVR condition using the concept of WELMMs.

We start with a simple observation. If Q is a probability measure equivalent to P, it is straightfor-

ward to check that all X ∈ X are Q-supermartingales if and only if 〈Q, XT 〉 ≤ X0 for all X ∈ X .

Consider now an ELMM Q. Since nonnegative local Q-martingales are Q-supermartingales, every

X ∈ X is a Q-supermartingale; therefore, 〈Q, XT 〉 ≤ X0 for all X ∈ X . One wonders, does the last

property hold when Q is replaced by a WELMM Q?

Before we state and prove a result along the lines of the above discussion, some terminology

will be introduced. A mapping Q : F 7→ [0, 1] will be called a weakly equivalent finitely additive

probability if (1) and (2) of Definition 1.3 hold, as well as, P-a.s., dQr/dP > 0. Obviously, a local

probability weakly equivalent to P is a weakly equivalent finitely additive probability. A separating

weakly equivalent finitely additive probability is a weakly equivalent finitely additive probability Q

such that 〈Q, XT 〉 ≤ X0 for all X ∈ X . We can then think of the processes X ∈ X as being Q-

supermartingales. In accordance to the discussion above, the natural question that comes into mind

is: when can we find a separating WELMM separating? In loose terms: can we find a WELMM Q

such that all elements of X Q-supermartingales? The answer, given in Theorem 2.2 below, is that

this only happens under the NFLVR condition.

Theorem 2.2. The following are equivalent:

(1) The market satisfies the NFLVR condition.

(2) There exists an ELMM Q.
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(3) There exists a separating weakly equivalent finitely additive probability.

Proof. We prove (1) ⇒ (3), (3) ⇒ (2), and (2) ⇒ (1) below.

(1) ⇒ (2). This is a consequence of [9] and the fact that nonnegative σ-martingales are local mar-

tingales — see [2].

(2) ⇒ (3). An ELMM is a separating weakly equivalent finitely additive probability.

(3) ⇒ (1). In view of Proposition 3.6 of [7] and Proposition 1.3 proved previously in the present pa-

per, condition NFLVR is equivalent to showing that (a) {XT |X ∈ X (1)} is bounded in probability,

and (b) If P[XT ≥ X0] = 1 for some X ∈ X , then P[XT > X0] = 0. For (a), observe that

sup
X∈X (1)

E

[(
dQr

dP

)
XT

]
= sup

X∈X (1)
〈Qr, XT 〉 ≤ sup

X∈X (1)
〈Q, XT 〉 ≤ 1;

in particular, {( dQr/dP)XT |X ∈ X (1)} is bounded in probability and, since P[( dQr/dP) > 0] = 1,

{XT |X ∈ X (1)} is bounded in probability as well. To show (b), note that, for any ǫ > 0 and X ∈ X
with P[XT ≥ X0] = 1, we have

X0 ≥ 〈Q, XT 〉 ≥
〈
Q, X0IΩ + ǫI{XT >X0+ǫ}

〉
= X0 + ǫQ[XT > X0 + ǫ] ≥ X0 + ǫQr[XT > 1 + ǫ].

It follows that Qr[XT > X0 + ǫ] = 0; since P[( dQr/dP) > 0] = 1, this is equivalent to P[XT >

X0 + ǫ] = 0. The latter holds for all ǫ > 0, so we get P[XT > X0] = 0, which completes the

argument. �

3. The Case of Continuous-Path Semimartingales

In this section, we shall state and prove a result that implies Theorem 1.13 in the case where S

is a d-dimensional continuous-path semimartingale. Note that Assumption (S-MART) will not be

in force here; in particular, there can be more than one traded security and the prices of securities

do not have to be nonnegative. In fact, Theorem 3.1 that is presented below actually sharpens the

conclusion of Theorem 1.13 by providing a further equivalence in terms of the local rates of return

and local covariances of the discounted prices S = (Si)i=1,...,d.

We first introduce some notation. Since S is a continuous-path semimartingale, one has the

decomposition S = A + M , where A = (A1, . . . , Ad) has continuous paths and is of finite variation,

and M = (M1, . . . ,Md) is a continuous-path local martingale. Denote by [M i,Mk] the quadratic

(co)variation of M i and Mk. Also, let [M,M ] be the d× d nonnegative-definite symmetric matrix-

valued process whose (i, k)-component is [M i,Mk]. Call now G := trace[M,M ], where trace is the

operator returning the trace of a matrix. Observe that G is an increasing, adapted, continuous

process and that there exists a d × d nonnegative-definite symmetric matrix-valued process c such

that [M i,Mk] =
∫ ·
0 ci,k

t dGt; [M,M ] =
∫ ·
0 ct dGt in short.

Theorem 3.1. In the above-described market, the following statements are equivalent:

(1) There are no arbitrages of the first kind in the market.

(2) There exists a strictly positive local P-martingale Y with Y0 = 1 such that Y Si is a local

P-martingale for all i ∈ {1, . . . , d}.
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(3) There exists a d-dimensional, predictable process ρ such that A =
∫ ·
0(ctρt) dGt, as well as

∫ T
0 〈ρt, ctρt〉 dGt < ∞.

Proof. We prove (1) ⇒ (3), (3) ⇒ (2), and (2) ⇒ (1) below.

(1) ⇒ (3). We shall show that if statement (3) of Theorem 3.1 is not valid, then {XT |X ∈ X (1)}
is not bounded in probability. In view of Proposition 1.2, (1) ⇒ (3) will be established.

Suppose that one cannot find a predictable d-dimensional process ρ such that A =
∫ ·
0(ctρt) dGt.

In that case, linear algebra combined with a measurable selection argument gives the existence of

some bounded predictable process θ such that (a)
∫ T
0 θt dGt = 0, (b)

∫ ·
0 〈θt, dAt〉 is a nondecreasing

process, and (c) P[
∫ T
0 〈θt, dAt〉 > 0] > 0. This of course means that X1,θ ∈ X (1), in the notation

of (1.1), satisfies X1,θ ≥ 1, P[X1,θ
T > 1] > 0. Then, X1,kθ ∈ X (1) for all k ∈ N and (X1,kθ)k∈N is

not bounded in probability.

Now, suppose that A =
∫ ·
0(ctρt) dGt for some predictable d-dimensional process ρ, but that

P

[∫ T
0 〈ρt, ctρt〉 dGt = ∞

]
> 0. Consider the sequence πk := ρI{|ρ|≤k} and let Xk be defined via

Xk
0 = 1 and satisfying dXk

t = Xk
t πk

t dSt. Then, Itô’s formula implies that

log Xk
T = −Ek

T

2
+

∫ T

0

(
ρtI{|ρt|≤k}

)
dMt,

holds for all k ∈ N, where Ek
T :=

∫ T
0 〈ρt, ctρt〉 I{|ρt|≤k} dGt coincides with the total quadratic

variation of the local martingale
∫ ·
0

(
ρtI{|ρt|≤k}

)
dMt. It follows that, for every k ∈ N, one can find

a one-dimensional standard Brownian motion βk such that

log Xk
T = −Ek

T

2
+ βk

Ek
T
.

The strong law of large numbers for Brownian motion will imply that

lim
k→∞

P




∣∣∣∣∣∣

βk
Ek

T

Ek
T

∣∣∣∣∣∣
> ǫ,

∫ T

0
〈ρt, ctρt〉 dGt = ∞


 = 0, for all ǫ > 0,

so that

lim
k→∞

P

[
log Xk

T

Ek
T

>
1

2
− ǫ

∣∣∣
∫ T

0
〈ρt, ctρt〉 dGt = ∞

]
= 1, for all ǫ > 0.

Choosing ǫ = 1/4, it follows that if P

[∫ T
0 〈ρt, ctρt〉 dGt = ∞

]
> 0, the sequence (Xk

T )k∈N is not

bounded in probability.

(3) ⇒ (2). With the data of condition (3) there, define the process

Y := exp

(
−

∫ ·

0
〈ρt, dSt〉 +

1

2

∫ ·

0
〈ρt, ctρt〉 dGt

)
.

Condition (3) ensures that Y is well-defined (meaning that the two integrals above make sense).

Itô’s formula easily shows that Y is a local P-martingale. Then, a simple use of integration-by-parts

gives that Y Si is a local martingale for all i ∈ {1, . . . , d}.
(2) ⇒ (1). The proof of this implication is somewhat classic, but will be presented anyhow for

completeness. Start with a sequence (Xk)k∈N of wealth processes such that limk→∞ Xk
0 = 0 as well
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as P-limk→∞ Xk
T = ξ for some [0,∞]-valued random variable ξ. Since Y Si is a local P-martingale

for all i ∈ {1, . . . , d}, a straightforward multidimensional generalization of the proof of Proposition

1.8 shows that, for all k ∈ N, Y Xk is a local P-martingale. As nonnegative local P-martingales

are P-supermartingales, we have E[YT Xk
T ] ≤ Xk

0 holding for all k ∈ N. Fatou’s lemma implies now

that E[YT ξ] ≤ lim infk→∞ E[YTXk
T ] ≤ lim infk→∞ Xk

0 = 0. Since YT > 0 and ξ ≥ 0, P-a.s, the last

inequality holds if only if P[ξ = 0] = 1. Therefore, (Xk)k∈N is not an arbitrage of the first kind. �

Remark 3.2 (Market price of risk and the numéraire portfolio). Condition (3) of Theorem 3.1 has

some economic consequences. Assume for simplicity that G is absolutely continuous with respect to

Lebesgue measure, i.e., that G :=
∫ ·
0 gt dt for some predictable process g. Under condition NA1, we

also have A :=
∫ ·
0 at dt for some predictable process g, and that there exists a predictable process

ρ such that cρ = a. (In fact, the latter process ρ can be taken to be equal to c†a, where c† is

the Moore-Penrose pseudo-inverse of c.) Now, take c1/2 to be any root of the nonnegative-definite

matrix c (that can be chosen in a predictable way) and define σ := c1/2√g. Then, we can write

dSt = σt

(
λt dt + dWt

)
, where W is a standard d-dimensional Brownian motion5 and λ := σ⊤ρ is

a risk premium process (in the one-dimensional case also commonly known as the Sharpe ratio),

that has to satisfy
∫ T
0 |λt|2 dt < ∞ for all T ∈ R+. We conclude that condition NA1 is valid if and

only if a risk-premium process exists and is locally square-integrable in a pathwise sense.
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