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On the Existence of Shadow Prices in
Finite Discrete Time

Jan Kallseh Johannes Muhle-Karbe

Abstract

A shadow pricés a procesg lying within the bid/ask price$, S of a market with
proportional transaction costs, such that maximizing etgmk utility from consump-
tion in the frictionless market with price proce§sleads to the same maximal utility
as in the original market with transaction costs. For fifitehis note provides an ele-
mentary proof for the existence of such a shadow price.
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1 Introduction

When considering problems in Mathematical Finance, orssidally works with driction-
lessmarket, i.e. one assumes that securities can be purchadesblahfor the same price
S. This is clearly a strong modeling assumption, since inityeahe usually has to pay a
higherask pricewhen purchasing securities, whereas one only receives er lma price
when selling them. In addition, the introduction of even isgunle transaction costs often
fundamentally changes the structure of the problem at hefn@.Q. [4,.7, 2]). Therefore
models with transaction costs have been extensively studithe literature.

Optimization problems involving transaction costs areallguackled by one of two
different approaches. Whereas the first method employsadstftom stochastic control
theory, the second reformulates the task at hand as a spnilalem in a frictionless market.
This second approach goes back to the pioneering paper.offf&dy showed that under
suitable conditions, a market with bid/ask pricgsS is arbitrage free if and only if there
exists ashadow price§ lying within the bid/ask bounds, such that the frictionlesarket
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with price processg is arbitrage free. The same idea has since been employatsaxiy
leading to various other versions of the fundamental theareasset pricing in the presence
of transaction costs (cf. e.g/[6,/16, 7] and the referenoeetn). It has also found its way
into other branches of Mathematical Finance. For exami, have shown that bid/ask
prices can be replaced by a shadow price in the context of fis&aminimization, whereas
[1,13,113,/11] prove that the same is true for portfolio opsation in certain It process
settings.

In this article we establish that in finite discrete timestigeneral principleholds true
literally for investment/consumption problems. We firdraaduce our finite market model
with proportional transaction costs in Sectidn 2. Subsetiyewe state our main result
concerning the existence of shadow prices and prove it sargentary convex analysis.

For avectorr = (z%,. .., 2%), we writez* = (max{z!,0},..., max{z? 0}) andz~ =
(max{—a',0},..., max{—x? 0}). Likewise, inequalities and equalities are understood to
be componentwise in a vector-valued context. Moreoverafyr stochastic process we
write AX; .= X, — X;_1.

2 Utility maximization with transaction costs in finite dis-
crete time

We study the problem of maximizing expected utility from samption in a finite mar-
ket model with proportional transaction costs. Our genfreahework is as follows. Let
(2, F,(Ft)ieqoa,.., 1y, P) be afiltered probability space, wheile= {w;,...,wk} and the
time set{0, 1,..., 7"} are finite. In order to avoid lengthy notation, we &t = (),
Fo = {9,Q}, and assume thdt({w:}) > Oforall k € {1,..., K}. However, one can
show that all following statements remain true without thesstrictions.

The financial market we consider consists of a risk-freetasgalso calledbank ac-
coun) with price process® normalized taS? = 1,¢ = 0,...,T, and risky assets, . .., d
whose prices are expressed in multiples®f More specifically, they are modelled by their
(discountedyid price processS = (S?,...,S%) and their (discountedisk price process
S=(5,... ,?d), where we naturally assume th&tS are adapted and satisfy> S > 0.
Their meaning should be obvious: if one wants to purchaserigc at timet, one must
pay the higher pric@i whereas one receives onfy for selling it.

Remark 2.1 This setup amounts to assuming that the risk-free assetecpnrshased and
sold without incurring any transaction costs. This assuwnps commonly made in the
literature dealing with optimal portfolios in the presermfdransaction costs (cf. e.d. [4]),
and seems reasonable when thinking of seclrag a bank account. For foreign exchange
markets where it appears less plausible, a numeraire frg@agh has been introduced by
[9]. This approach would, however, require the use of munttehsional utility functions as

in [5] in our context.



Definition 2.2 A trading strategys anR“*!-valued predictable stochastic procégs, ) =
(% (¢, ..., 91), wherept, t = 0,...,T + 1 denotes the number of shares held in secu-
rity 4 until time ¢ after rearranging the portfolio at time- 1. A (discountedonsumption
procesds anR-valued, adapted stochastic proceswherec;, t = 0, ..., T represents the
amount consumed at tinte A pair ((¢°, ¢), ¢) of a trading strategy,", ¢) and a consump-
tion process: is calledportfolio/consumption pair

To capture the notion of a self-financing strategy, we useéntugtion that no funds are
added or withdrawn. More specifically, this means that tlee@eds of selling stock must
be added to the bank account while the expenses from congumgstd the purchase of
stock have to be deducted from the bank account whenevepttfelm is readjusted from
¢ t0 11 and an amount, is consumed at time € {0,...,7}. Defining purchase and
sales processesy!, Ayl as

Apl = (Ap)t, Aph:=(Ap), (2.1)
this leads to the following

Definition 2.3 A portfolio/consumption paify, c) is calledself-financingor ¢ c-financing
if
=T
A‘P?—H = §:A@tl+1 -5 A‘PI-H ¢, t=0,...,T. (2.2)

Remark 2.4 Fori = 1,...,d, define the cumulated purchase€'sand saleg! as
ol = (po)T+ Y _Apl, o' i=(p0)" + > Apf.
t=1 t=1

Then the self-financing conditioh (2.2) implies tHat", ¢', —¢!), ¢) is self-financing in
the usual sense for a frictionless market viitht 1 securitieg 1, S, S). Moreover, note that
for S = S, we recover the usual self-financing condition for frictess markets.

We consider an investor who disposes ofritial endowmentr, ) € R4+, referring
to the initial number of securities of typei = 0, .. ., d, respectively.

Definition 2.5 A self-financing portfolio/consumption paifs®, ¢), c) is calledadmissible
if (¢5,00) = (m0,n) and (Y., er+1) = (0,0). An admissible portfolio/consumption pair
((¢°, ¢), ¢) is calledoptimalif it maximizes

ki E (Z ut(/-ct)> (2.3)

over all admissible portfolio/consumption paikg°, v), ), where theutility processu is a
mappingu : 2 x {0,..., 7} x R — [—00, 00), such tha{w, t) — u;(w, x) is predictable
foranyx € R andz — u,(w, z) is a proper, upper-semicontinuous, concave function for
any (w,t) € Q x {0,...,T}, which is strictly increasing on its effective domdin € R :
ug(w, ) > —o0}.



Consequently, we only deal with portfolio/consumptionrpavhere theentire liquida-
tion wealth of the portfolio is consumed at tirfie Note that this can be done without loss
of generality, because the utility process is strictly @aging in consumption.

Remark 2.6 Since we allow the utility process to be random, assuntiig= 1, t =
0,...,T also does not entail a loss of generality in the present setgre specifically,
let S° be an arbitrary strictly positive, predictable process.this undiscounted case a
portfolio/consumption paify, ¢) should be callegelf-financingf

—T
A‘P?HS? = ﬁtTASOtLH -5, A@I—i—l — G,

fort = 0,...,7. Admissibilityis defined as before. By direct calculations, one eas-
ily verifies that((¢", ), ) is self-financing resp. admissible if and only({f°, ), ¢) =
(%, @), c/SAO) is self-financing resp. admissible relative to the discedmirocesses’ :=
50/8°=1,5:=5/5%andS := 5/5°. In view of

E (Z Ut(Ct)> =E (Z ﬁt@t))

for the utility processi;(z) = u(S%), the problem of maximizing undiscounted utility
with respect ta: is equivalent to maximizing discounted expected utilityhwiespect tai.

3 Existence of shadow prices
We now introduce the central concept of this paper.

Definition 3.1 We call an adapted proce§sshadow price process

5<5<8

and if the maximal expected utilities in the market with isk-pricesS, S and in the market
with price process withouttransaction costs coincide.

The following theorem shows that in our finite market modehdow price processes
always exist, except in the trivial case where all admisgglairtfolio/consumption pairs lead
to expected utility—oo.

Theorem 3.2 Suppose an optimal portfolio/consumption péir, ¢) exists for trle market
with bid/ask pricesS, S. Then ifE(Y,_, ui(c;)) > —oo, a shadow price process exists.

PROOF Step 1 As the utility process in strictly increasing, allowingrfeales and pur-
chases at the same time does not increase the maximal expeiity. More precisely,

sincex — wu,(x) is strictly increasing for fixed, maximizing [2.8) over all admissible
portfolio/consumption pairs yields the same maximal exgeatility as maximizing[(2)3)
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process such thdﬂZ.Z) holds fior= 0, T and(z/;, ) instead Of((p, ¢). Moreover, if we
defineAy! andAy! as in [2.1) above and set

pli=nt+ ) Apl, =T+ Agy
=1 t=1
then((¢°, ', '), ) is an optimal strategy in this set.

Step 2 Denote byF}, ... F/™ the partition of(2 that generates?;, t € {0,...,T}.
Since a mapping i?;-measurable if and only if it is constant on the s&tsj = 1, cey My,
we can identify the set of all process@ﬂ)0 Pl wi) ) Where(zpt)t ~0

.....
..........

=U,...,

(2.2) holds fort =0, ..., T with
R2m 5 R™ := (R70 x ... x RT™) x (R™4 x ... x RT™) x (R™ x ... x R™),
and vice versa, namely with
(A¢T7 A¢l7 C) = (AQ/)]T71’17 A,l?b;mT d A¢l 1717 ttt A,l?b%—:;an7d7 Cé? ctt C'Jn}T)7

where we use the notatiofy,”" = Apl(w)fori = 1,....d,t = 0,...,T, j =
1,...,m; andw € F/ (and analogously foA!, ¢, S, S). Using this identification, we can
define mappingg : R2%" x R® — RU{oo}, A} : R2" x R" — R andh? : R%" x R* — R?
(forj=1,...,my) by

f(AlpT A¢l =—F (Z Uy Ct > )

) T
(AT, Ayt c) :=no+2(<§{_1>TAwi’j—<_i1TAw ) > d,
t=1 t=0

T+1

WA, A ) =+ (mp}f - A@b}’j) .
t=1

With this notion, (A¢', Apt, ¢) is optimal if and only if it minimizesf over R2%" x R"
subject to the constraintg, = 0 andh? = 0 for j = 1,...,my. Since all mappings are
actually convex functions dR?¢+1)" this is equivalent toAp!, Ap!, c) minimizingf over
R4+ sybject to the constraintg = 0, 7 = 0 (for j = 1,...,my) andg)”, g/’ < 0 (for
t=0,...,Tandj = 1,...,m,), where the convex mapplngéj, gr? R _ Re gre
given by

(A@N A?/)l ) = —A¢t+1a (A@N A?/)l ) = _A¢t+1



In view of [14, Theorems 28.2 and 28.3J\p', Ap', ¢) is therefore optimal if and only
if there exists d_agrange multiplier i.e. real numbers’, ;¢ (fori = 1,...,d andj =
1,...,my)and\ " A (fort =0,...,T,i=1,...,dandj = 1,...,m,) such that the
following holds.

1. Fort =0,...,T,j=1,...,myandi = 1,....d, we have\]”" \"' > 0 as well as
T“(Ang A(p c), g’ (Ang At e) < Oand)\“’ g (A, Apt, ) = 0 as well
as gl (Al At c) = 0.

2. W (A", Apt, c) = 0andhi(Ap!, Apt,c) =0forj=1,...,myp.

3.

mr d mrT
0 €0f(Ap!, Apt e) + ) 7 Om) (AT, At c) + > ) " i on (Ap!, Agt, c)
j=1 i=1 j=1
N7 0gl7 (AT, At o)+ A agr T (AT, Agt ).

t=0 =1 j=1 t=0 =1 j=1

Here,0 denotes the subdifferential of a convex mapping (cf. [14hore details).

Step 3 By [15, Proposition 10.5] we can split Statement 3 into mainyilar statements
where the subdifferentials on the right-hand side are ogplavith partial subdifferentials
relative toAp] ™, .. AR Aprt L AT el L Rt respectively. In par-
ticular, forcl,, j € {1, ...,mr}, we obtain

Oeacéf(AQOT,AgOl,C)—Vj, (31)

where 0, denotes the partial subdifferential of a convex functiolatiree to a vectorz.
Hencer’ < 0,5 = 1,...,my, becausd is strictly decreasing m{F Furthermore, since the
mappings, ', g/ (fort =0,...,7,j =1,...,myandi = 1,...,d) andh?, hi (for j =
1,...,mrandi = 0,...,d) are differentiable, their partial subdifferentials caote with
the respective partial derivatives hy [14, Theorem 25.1¢n¢¢€, taking partial derivatives
with respect toAp] /i resp. AplYi, t € {0,...,T}, 5 € {1,....,m}, i € {0,...,d},
Statement 3 above implies that

Z luj,i o ( Z u’“)?ﬁ”' _ )\tT,j,z'

k:WkEth k:wketh
3.2
Z [ — Z L 14— 2 5
, , DY ok
k:wkEFt] k:wkeFtJ t k;wngtJ
and likewise
p— J’Z ‘]7Z
k:kath k:wkEth =t k:wkeFtJ



In particular we have, for=0,.... 7,7 =1,...,my,i =1,...,d,

)\T7j7i —i )\l7j7i
14—t Si’:<1— . k)S“ . 5.

j?l . k
Sy Ek;wkezrg v

t

SinceS := (S%,...,59) is constant or¥} by definition, this defines an adapted process.
Furthermore, we have < S < S, by Statement 1 above and becaw$e< 0 for k =
1,...,mr. Moreover, Statement 1 above also implies that

S =S on{Ag!" >0}, S =S on{Agh > 0}. (3.4)

Setp/' = /'t (for j = 1,....mp, i = 1,...,d), 77 := v (for j = 1,...,my) and
MNP =0 (fort =0,...,T,j=1,...,myandi = 1,...,d). Statements, 2 and3
above, Equations$ (3.2), (3.3), (B.4) and the definitiol ¢tfien yield the following.

1. Fort =0,...,T,i=1,...,dandj = 1,...,m, we have\]", X}’ > 0 as well as
FART, At ), ’gvtl“(AgoT,Agol ¢) <0 and)\“’ g7 (AeT, Apt, ) = 0 as well
as G (AT, Apt,e) =0

2. %é(Ang,Aapl,c) =0 andﬁj(AapT,Agol,c) =0forj=1,...,myp,

mr d mr
0 €0f(Ap!, Apt )+ Y TR (A", Apt c) + > R (Ap!, Agt )
j=1 i=1 j=1

T d T d
=2 D NTIGT AR At =3 3D A5 (Mg At e),

t=0 i=1 j=1 t=0 i=1 j=1

where the mapping$, /2, h hﬂ Eit“, G are defined by setting = S = S in the definition
of the mappingy, 17, #7, g/, g/’ above. In view of|[14, Theorem 28.3] and Steps 1 and
2 above,(p, ¢) is therefore not onIy optimal in the market with bid/ask pg¢, S, but in
the market with bid-ask prlceS S (i.e. in the frictionless market with price proceS}?as
well. HencesS is a shadow price process and we are done. O

Remark 3.3 An analogue of Theoref 3.2 for utility from terminal wealténcbe obtained
by considering the objective functigi{ (Ap, AP), c)) := —E(ur(cr)) subject to the addi-
tional constraints; = ... = cy_; = 0.

Corollary 3.4 (Fundamental Theorem of Utility Maximizatio n with transaction costs)
Let (y, c) be an admissible portfolio consumption pair for the markghwid/ask prices
S, S satisfyingE(ZtT:0 u(¢)) > —oo. Then we have equivalence between:

1. (y,c) is optimal in the market with bid/ask pricés S.



2. There exists an adapted procéwitﬁ S < 5§ < 'S, anumbery € (0,00) and a
probability measur&) ~ P such thatS is a -martingale and

( ‘yt) 3ut(ct) tIO,,T

PROOF 1 = 2: This follows from Theorerh 312 combined with [10, Theorer, Remark
3 after Theorem 3.7 and Definition 2.3].

2 = 1: By [10, Theorem 3.5], Statemeftabove is equivalent t@p, c¢) being opti-
mal in the frictionless market with price procegs Let (¢, ) be any admissible portfolio
consumption pair in the market with bid/ask pricgsS. Fort = 1,...,T + 1, define
AYl = (AT, Ay} = (Ay,)~, as above and let

R(t) = r(t) + (AY]) T (S, — §t) + (A%l)T(gt —S,).

Then% > r sinceS < S < S and (v, ) ig a self-financing portfolig/cgnsumption pair in
the frictionless market with price procesSs i.e. with bid/ask-prices, S. Since(y, ¢) is
optimal in this market, we have

T T
E (Zut Ky ) <F <Zut Ry ) <FE (ZW(Q)) )
t=0 t=0
Therefore(yp, c) is optimal in the market with bid/ask prices S as well. O

Remarks.

. If, for fixed (w,t) € Q x Ry, 2 — w(w, z) is differentiable on its effective domain
with derivativeu’, E(92|.7,) € 10u,(c;) reduces tab(%2|.%,) = Lul(c,).

2. The pair(S, Q) consisting of the shadow price procéand the corresponding dual
martingale measur@ is called aconsistent price systehy [€]. Using this terminol-
ogy, Corollary 3.4 can be rephrased as follows: An admiegibttfolio/consumption
pair is optimal in the market with bid/ask pric&s S if and only if there exists a
consistent price systefiy, ) such thatE(§|%) € L0u(c;) for somea € (0, 00).
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