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DVORETZKY TYPE THEOREMS FOR MULTIVARIATE

POLYNOMIALS AND SECTIONS OF CONVEX BODIES

V.L. DOL’NIKOV AND R.N. KARASEV

Abstract. In this paper we prove the Gromov–Milman conjecture (the Dvoretzky type
theorem) for homogeneous polynomials on Rn, and improve bounds on the number n(d, k)
in the analogous conjecture for odd degrees d (this case is known as the Birch theorem)
and complex polynomials.

We also consider a stronger conjecture on the homogeneous polynomial fields in the
canonical bundle over real and complex Grassmannians. The latter conjecture is much
stronger and false in general, but it is proved in the cases of d = 2 (for k’s of certain type),
odd d, the complex Grassmannian (for odd and even d and any k). Corollaries for the
John ellipsoid of projections or sections of a convex body are deduced from the case d = 2
of the polynomial field conjecture.

1. Introduction

The following theorem was conjectured in [20] (see also [21]), it is known as the Gromov–
Milman conjecture. This theorem resembles the famous theorem of Dvoretzky [8] on near-
elliptical sections of convex bodies. It considers polynomials instead of convex bodies,
and unlike the Dvoretzky theorem, it gives strict “roundness” rather than approximate
“roundness”.

Theorem 1. For an even positive integer d and a positive integer k there exists n(d, k)
such that for any homogeneous polynomial f of degree d on Rn, where n ≥ n(d, k), there
exists a linear k-subspace V ⊆ Rn such that f |V is proportional to the d/2-th power of the
standard quadratic function

Q = x2
1 + x2

2 + · · ·+ x2
n.

Remark. Actually, the conjecture in [20] was stated in a bit different way: the restriction
f |V was required to be proportional to the d/2-th power of some quadratic form. But a
straightforward argument (using the diagonal form in an orthonormal basis) shows that
n(2, k) = 2k − 1, i.e. any quadratic form on R2k−1 is proportional to the standard form

2000 Mathematics Subject Classification. 46B20, 05D10, 26C10, 52A21, 52A23, 55M35.
Key words and phrases. Ramsey type theorems, Dvoretsky’s theorem, John’s ellipsoid.
The research of V.L. Dol’nikov is supported by the Russian Foundation for Basic Research grant 10-01-

00096.
The research of R.N. Karasev is supported by the Dynasty Foundation, the President’s of Russian

Federation grant MK-113.2010.1, the Russian Foundation for Basic Research grants 10-01-00096 and 10-
01-00139.

1

http://arxiv.org/abs/1009.0392v1


2 V.L. DOL’NIKOV AND R.N. KARASEV

on a subspace of dimension k. Hence these two versions are equivalent modulo the precise
values of n(d, k), and this equivalence is used in the proof below.

Remark. In [20] it was also conjectured that n(d, k) is of order kd. We do not have results
of this kind here because of using a topological Borsuk-Ulam type theorem without explicit
bound, see Section 3 and the remark at the end of Section 8.

Besides the trivial case d = 2, there were other partial results in this conjecture. Theo-
rem 1 was proved in [20, 18, 19] (the essential idea goes back to M. Gromov) for k = 2 by
topological methods (actually, the stronger Conjecture 1 was proved for k = 2), and with
good bounds for n(d, 2). In case of special polynomials of the form f = xd

1 + xd
2 + · · ·+ xd

n

this theorem was proved in [23], see also [20] for a short proof with the averaging trick. If
we let d be odd, this theorem is known as the Birch theorem and holds in a stronger form
with good estimates on n(d, k), see [5, 1] and Theorems 4 and 5 below.

In this paper we combine the topological technique with the averaging method of [20] to
prove Theorem 1. Let us state a more general conjecture, that would imply Theorem 1, if
it were true.

Definition 1. Denote Gk
n the Grassmannian of linear k-subspaces in Rn, denote by γk

n :
E(γk

n) → Gk
n its canonical bundle.

Definition 2. For a vector bundle ξ : E(ξ) → X denote Σd(ξ) its fiberwise symmetric
d-th power. We consider every vector bundle ξ along with some Riemannian metric on its
fibers, i.e. a nonzero section Q(ξ) of Σ2(ξ).

Conjecture 1. Suppose d and k are even positive integers. Then there exists n(d, k) such
that for every section of the bundle Σd(γk

n) over G
k
n with n ≥ n(d, k), there exists a subspace

V ∈ Gk
n such that this section is a multiple of (Q(γk

n))
d/2 over V .

This conjecture would imply Theorem 1, because every polynomial of degree d defines a
section of Σd(γk

n) tautologically.
Unfortunately, there already exist some negative results on Conjecture 1. It is shown

in [12, Ch. IV, § 1 (A)] (with reference to [11]) that this conjecture fails for odd k. The
counterexample is for d = 2 and the oriented Grassmannian (the space BSO(k)), but
it seems like the case of the Grassmannian Gk

∞ = BO(k) is handled in the same way.
The counterexamples for even d > 2 are obtained by taking the d/2-th power of the
counterexample for d = 2. In [6] a counterexample to Conjecture 1 is given for k = 4 and
d ≥ 4.

Of course, these counterexamples do not give a counterexample to the original Theo-
rem 1. Moreover, it would be sufficient to prove Conjecture 1 for some infinite sequence of
k’s in order to deduce Theorem 1 for all k’s.

As it was noted, Conjecture 1 is known for k = 2, see [20, 18, 19]. Here we prove another
its particular case.

Theorem 2. Conjecture 1 is true for d = 2 and k = 2pα for a prime p. In the first
nontrivial case we have a particular estimate

n(2, 4) ≤ 12.
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Note that this theorem does not add anything new to Theorem 1 (the quadratic forms
are not interesting there), but it has some applications to sections and projections of convex
bodies, given in Section 9. Theorem 2 has the following generalization for several sections.

Theorem 3. Suppose k = 2pα for a prime p, m is a positive integer. Then there exists
n(2, k,m) such that for every m sections s1, . . . , sm of the bundle Σd(γk

n) over Gk
n with

n ≥ n(2, k,m), there exists a subspace V ∈ Gk
n such that all the sections si are multiples

of (Q(γk
n))

d/2 over V .

The topological proof of Theorems 2 and 3 cannot be applied directly to the cases of
Conjecture 1 with d ≥ 4. But returning to Theorem 1 for multivariate polynomials, we shall
see that the similar topological technique is essentially used, along with some averaging
and combinatorics.

Now let us turn to the case of odd d in Theorem 1 and Conjecture 1. This version
of Theorem 1 was known even before the formulation of this conjecture for even-degree
polynomials in [20]. In [5] it was shown to be true in an (obviously) stronger from, i.e. f = 0
on a k-dimensional subspace. In [1] the bound on n(d, k) was improved. The following
theorem improves the bound in [1], at least by a factor of k!. The topological technique in
our proof was also used in [6] to study Dvoretzky type theorems over Grassmannians.

Theorem 4. Suppose d and k are positive integers, d being odd. Then there exists

n(d, k) = k +

(

d+ k − 1

d

)

such that every section of the bundle Σd(γk
n) over Gk

n (with n ≥ n(d, k)) has a zero.

Simple dimension considerations show that n(d, k) cannot be made less than

k +
1

k

(

d+ k − 1

d

)

in this theorem. We may conclude that the bound in Theorem 4 is quite satisfactory, but
still may be improved.

The topological approach with Grassmannians also allows to prove the following version
of Theorem 1 for odd polynomial maps. Of course, the corresponding version of Con-
jecture 1 is also true, but its statement would be too complicated, so we formulate the
statement without the Grassmannian and bundles here.

Theorem 5. Suppose d, k,m are positive integers, d being odd. Then there exists

n(d, k,m) = k +m
∑

1≤δ≤d, δ≡1 mod 2

(

δ + k − 1

δ

)

with the following property. Suppose f : Rn → Rm is an odd polynomial map, such that
n ≥ n(d, k,m), and the coordinate functions of f have degrees ≤ d. Then f maps some
k-dimensional linear subspace L ⊂ Rn to zero.



4 V.L. DOL’NIKOV AND R.N. KARASEV

Similar theorems are also true for complex polynomials, Grassmannians, and bundles.
In this case the degree does not have to be odd, it can be arbitrary. The following result
is the complex analogue of Conjecture 1.

Theorem 6. Suppose d and k are positive integers. Then there exists

n(d, k) = k +

(

d+ k − 1

d

)

such that every section of the bundle Σd(Cγk
n) over CGk

n (with n ≥ n(d, k)) has a zero.

The following result is the stronger complex analogue of Theorem 1.

Theorem 7. Suppose d, k,m are positive integers. Then there exists

n(d, k,m) = k +m

(

d+ k

d

)

with the following property. Suppose f : Cn → Cm is a polynomial map, such that n ≥
n(d, k,m), and the coordinate functions of f have degrees ≤ d. Then f maps some k-
dimensional linear subspace L ⊂ Cn to zero.

The authors thank Vitali Milman for useful discussion and comments, Ilya Bogdanov
and Dima Faifman, who read the paper to verify the reasoning.

2. Proof of theorems on odd and complex polynomials

We start with proofs of the theorems concerning odd and complex polynomials, because
their proofs are simple and give a good idea of the topological machinery. The reader
can find standard topological facts about characteristic classes of vector bundles in the
textbooks [10, 22, 17], if it is needed.

First consider the infinite Grassmannian Gk
∞ and the canonical bundle γk

∞ over it. The
cohomology H∗(Gk

∞, Z2) is a subalgebra of Z2[t1, . . . , tk], consisting of symmetrical poly-
nomials, the Stiefel-Whitney class of γk

∞ is

w(γk
∞) =

k
∏

i=1

(1 + ti).

Hence, the Stiefel-Whitney class of Σd(γk
∞) is

w(Σd(γk
∞)) =

i1+···+ik=d
∏

i1,...,ik≥0

(1 + i1ti + . . . iktk).

Since d is odd, then none of the expressions i1ti + . . . iktk is zero mod 2, and we obtain
that the topmost Stiefel-Whitney class of Σd(γk

∞) of dimension
(

d+k−1
d

)

is nonzero. By the

standard reasoning it means that Σd(γk
∞) cannot have a section without zeros.
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Now we have to go back to finite Grassmannians. The kernel of the natural map
H∗(Gk

∞, Z2) → H∗(Gk
n, Z2) is generated by the dual Stiefel-Whitney classes of γk

∞ of di-
mensions > n− k. If n ≥ k+

(

d+k−1
d

)

the topmost Stiefel-Whitney class of γk
n turns out to

be nonzero from the dimension considerations.
The proof of Theorem 5 proceeds in the same way, considering the bundle

⊕

1≤δ≤d, δ≡1 mod 2

Σδ(γ),

and taking its m-fold Whitney power. Obviously, the topmost Stiefel-Whitney class of the
resulting bundle over Gk

∞ is nonzero and has dimension

n0 = m
∑

1≤δ≤d, δ≡1 mod 2

(

δ + k − 1

δ

)

.

Then we can pass to the finite Grassmannian Gk
n0+k as above.

The proof of Theorems 6 and 7 is the same with Chern classes in H∗(CGk
n,Z) instead

of Stiefel-Whitney classes. In this case the topmost Chern class of Σd(Cγk
∞) is always

nonzero. Besides, in Theorem 7 we use the well-known formula
d
∑

δ=0

(

δ + k − 1

k − 1

)

=

(

d+ k

k

)

.

3. Borsuk-Ulam property for p-toral groups

Before proving Theorems 1 and 2 we need to consider the following Borsuk-Ulam type
problem, see the books [12, 4] for needed facts and definitions, concerning the continuous
group actions. By EG we denote a homotopy trivial G-CW -complex with free action of
G.

Problem 1. Suppose G is a compact Lie group, V its representation. Determine whether
the vector bundle

EG× V → EG

has a G-equivariant nonzero section.
Equivalently, there exists a G-equivariant map f : EG → S(V ) to the sphere space of

the bundle.
Or equivalently, the vector bundle

(EG× V )/G → BG = EG/G

has a nonzero section.

In this section it is convenient to use the statement if this problem in the second version,
with equivariant map f : EG → S(V ). This version is obviously a generalization of the
Borsuk-Ulam theorem.

Of course, if the representation V has a nonzero fixed point set V G, the map f obviously
exists, we can map EG to any point in V G \ {0}. The following result from [2, 3, 4, 7]
gives an inverse statement for a special class of groups.
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Definition 3. Suppose

0 → T → G → F → 0

is an exact sequence of groups, where T is a torus, F is a p-group. In this case G is called
p-toral.

Lemma 1. Suppose G is a p-toral group and V its representation. Then the image of an
equivariant map f : EG → V intersects V G.

From the standard reasoning in obstruction theory the following also holds. There exists
n(G, V ) such that if a free G-space X is n− 1-connected (n ≥ n(G, V )) then the image of
an equivariant map f : X → V intersects V G.

4. The rational obstructions to nonzero sections of vector bundles

In order to give a particular bound in Theorem 2 for k = 4, we also need the following
expression of the rational obstruction to a nonzero section of some vector bundles ξ :
E(ξ) → X . Suppose that ξ is oriented. In case dim ξ is even the first obstruction is the
Euler class e(ξ). Consider the case dim ξ = 2m+ 1. In this case the rational Euler class is
zero, but if ξ has a nonzero section, then we have ξ = η ⊕ ε, where

ε : X × R → X

is the trivial bundle. The bundle η is naturally oriented, and we have (we index the
Pontryagin classes by their dimension)

p4m(η) = e(η)2.

Since p4m(ξ) = p4m(η) we see that the nonexistence of the square root
√

p4m(ξ) in H∗(X,Z)
is an obstruction to a nonzero section of ξ.

Considering the fiberwise Postnikov tower for the sphere bundle S(ξ) it can be shown
that this is the only rational obstruction for a nonzero section of ξ, but we do not need
this fact here.

5. Proof of Theorems 2 and 3

First let us prove the existence of n(2, k,m) in Theorem 3 using Lemma 1. We can
consider Gk

∞, the existence of n(2, k,m) follows from the obstruction theory as in Lemma 1.
Considering the infinite Stiefel variety V k

∞, we have

Gk
∞ = V k

∞/O(k),

in other words V k
∞ is a realization of EO(k). Now let us decompose Rk into pα 2-dimensional

spaces L1 ⊕ · · ·⊕Lpα. Let the p
α-dimensional torus T act on Rk by independent rotations

of Li. Let the group F = (Zp)
α permute the spaces Li transitively. In this case we obtain

an action of the p-toral group G = T ⋊ F on Rk.
Now consider the section si of Σ

2(γk
∞) as an O(k)-equivariant map fi : V

k
∞ → Σ2(Rk).

Restricting the group action to G we see that the product map f = (f1, . . . , fm) is a G-
equivariant map to a linear representation space. Hence f should map some frame x ∈ V k

∞
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to an array of m quadratic forms on Rk, all being G-invariant. Now it remains to note
that T -invariant forms on Rk are those of the form

Q =

pα
∑

i=1

ai(x
2
2i−1 + x2

2i),

and if we require them to be F -invariant, then we obtain

a1 = a2 = · · · = apα,

such a quadratic form is proportional to the standard one. This completes the proof of
existence of n(2, 2pα, m).

Now consider the particular case k = 4 in Theorem 2, and suppose that the Grassman-
nians are oriented in the reasonings below, it is needed to apply the results of Section 4.
Consider a simpler case of the bundle Σ2(γ4

∞) instead of Σ2(γ4
12) first. The cohomology

H∗(G4
∞,Q) (see [17]) is a subalgebra of Q[a, b] (a and b are two-dimensional generators),

generated by ab (the Euler class) and a2 + b2 (the 4-dimensional Pontryagin class). Since
there exists an SO(4)-equivariant quadratic form, we can decompose the bundle of qua-
dratic forms

Σ2(γ4
∞) = ξ ⊕ ε.

Now we have to find an obstruction to a nonzero section of the 9-dimensional bundle ξ.
From the standard calculation it follows that

p16(ξ) = p16(Σ
2(γ4

∞)) = 16a2b2(a2 − b2).

Hence
√

p16(ξ) = 4ab(a2 − b2), which does not belong to H∗(G4
∞,Q). If we consider G4

12

instead of the infinite Grassmannian, we see that the kernel of the natural map

H∗(G4
∞,Q) → H∗(G4

12,Q)

is generated by the dual Pontryagin classes of γ4
∞ (i.e. the Pontryagin classes of its comple-

mentary bundle γ8
12) of dimension ≥ 20. Such relations do not affect taking a square root of

p16(ξ) by the dimension considerations. Besides the image of H∗(G4
∞,Q), the cohomology

H∗(G4
12,Q) has another generator: the Euler class of the complementary bundle e(γ8

12) of
dimension 8, along with the relation

e(γ4
12)e(γ

8
12) = 0.

It is easy to see that this does not help to take a square root of p16(ξ) either, and the proof
is complete.

Remark. Note that this way of reasoning may work for larger d if we find a p-toral subgroup
G ⊂ O(k) which is dense enough in O(k). Unfortunately, by the well-known theorem of
Jordan [14], for any finite subgroup G ⊂ O(k) the index of intersection with the maximal
torus [G : G∩ T ] is bounded by some constant J(k). Hence, for large enough d there exist
nontrivial polynomials of degree d in k variables that are invariant under G.
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6. Proof of Theorem 1 for d = 4. The topological part

Now we have all prerequisites to prove Theorem 1. For the reader’s convenience we first
outline the proof in the case d = 4, the final proof is given in Section 8. In this particular
case, as well as in the general case we combine the topological technique based on the
Borsuk-Ulam theorem for p-groups with the averaging argument [20].

First, we apply Lemma 1 and show that it suffices to prove the theorem for a very special
type of homogeneous polynomials of degree 4.

Let m = 2α. Consider the group G = (Z2)
m⋊Σ

(2)
m , acting on a m-dimensional space Rm

as follows. Let (Z2)
m act by changing signs of the coordinates, and let Σ

(2)
m (the 2-Sylow

subgroup of the symmetric group Σm) act by permuting the coordinates.

Denote [m] = {1, 2, . . . , m}. The group Σ
(2)
m is generated by permutations of two con-

secutive blocks in [m]: [a2l + 1, a2l + 2l−1] and [a2l + 2l−1 + 1, (a+ 1)2l], where 1 ≤ l ≤ α
and 0 ≤ a ≤ 2α−l − 1. This permutation can be also described as follows. Consider α-digit
binary numbers, possibly with leading zeros (call them strings), every index i ∈ [m] will
correspond to the binary representation of i− 1. Then we fix some start substring s, and
permute as follows (for every possible end substring e)

s0e 7→ s1e, s1e 7→ s0e,

such permutations generate Σ
(2)
m .

Another description of Σ
(2)
m is as follows: represent the numbers 1, 2, . . . , m as leafs of

a full ordered binary tree of depth α. Then Σ
(2)
m is generated by the permutations that

transpose two children of some tree node, keeping all other children orders.
Lemma 1 tells that if n is large enough, than every homogeneous polynomial of degree 4

becomes G-invariant after restricting to some m-dimensional subspace. Now let us describe
G-invariant polynomials f on Rm. The invariance w.r.t. (Z2)

m is equivalent to the fact
that

f =
∑

1≤i,j≤m

aijy
2
i y

2
j ,

where aij is a symmetric m×m matrix, yi are the coordinates in Rm. The Σ
(2)
m -invariance

implies more relations on aij , which can be described as follows. If we write i−1 and j−1
as α-digit binary numbers with leading zeros, then aij depends only on the first from the
left digit position where i−1 and j−1 differ. In this case there are at most α+1 different
values of aij.

7. Proof of Theorem 1 for d = 4. The geometrical part

Now we are going to use an averaging argument, similar to what is given in [20]. Using the
remark after the statement of Theorem 1, the proof of its particular case for f =

∑n
i=1 x

d
i

in [20], and the result of the above section, we note the following. In order to prove the
theorem, we have to find large enough m = 2α for every given k such that

(1) (x2
1 + x2

2 + . . .+ x2
k)

2 ∼
∑

1≤i,j≤m

aijli(x)
2lj(x)

2,
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where aij is a given Σ
(2)
m -symmetrical matrix, and

li(x) = li(x1, . . . , xk)

are some linear forms that we have to find. These forms would give a map Rk → Rm such
that its image V is the required subspace, because the form

∑

aijl
2
i l

2
j becomes a square

after restriction to V . Note that these forms have to span (Rk)∗ to give a map with zero
kernel.

We are going to find the forms li(x) using the following procedure. Let s be the
least power of two that is greater or equal to k, let m = m′s. Choose s linear forms
λ1(x), . . . , λs(x), with the only restriction that

(2) x2
1 + . . .+ x2

k ∼ λ1(x)
2 + . . .+ λs(x)

2.

In this case these s forms already span (Rk)∗. Let us partition all the forms li (i =
1, . . . , m′s) into consecutive s-tuples, and let the s-tuple number t = 1, . . . , m′ be ob-
tained from the (λ1, . . . , λs) by a transform σt ∈ SO(k)× R+ (a rotation with a positive
homothety), i.e.

lst−i(x) = λs−i(σtx),

where i = 0, . . . , s− 1. Every σt multiplies the quadratic form x2
1 + . . .+ x2

k by a positive
number, hence Equation 2 holds for every considered s-tuple of li’s.

Note that the right hand part of Equation 1 can be rewritten using Equation 2 (and the
symmetry of aij) as follows

(x2
1 + x2

2 + . . .+ x2
k)

2 ∼

(

m′

∑

t=1

∑

1≤i,j≤s

aijλi(σtx)
2λj(σtx)

2

)

+B(x2
1 + . . .+ x2

k)
2.

The first summand is formed by s×s cells on the diagonal of aij . Each of the non-diagonal

s×s cells of aij consists of a single constant (from the Σ
(2)
m -symmetry condition). Hence, the

non-diagonal s×s cells give a summand proportional to (x2
1+ . . .+x2

k)
2 (from Equation 2).

Now denote

g(x) =
∑

1≤i,j≤s

aijλi(x)
2λj(x)

2,

we have to prove that for some σ1, . . . , σm′ ∈ SO(k)× R+

(3) (x2
1 + x2

2 + . . .+ x2
k)

2 ∼

m′

∑

t=1

g(σtx).

The rest of the proof is similar to the proof in [20]. If we substitute the right hand part
of Equation 3 by an integral over every possible rotation ρ ∈ SO(k), we surely obtain an
SO(k)-invariant 4-from, which has to be proportional to (x2

1+ . . .+ x2
k)

2. Then we use the
Carathéodory theorem to show that if

m′ ≥

(

k + 3

4

)

,
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then some m′ rotations give a symmetric convex combination

m′

∑

t=1

wtg(ρtx) ∼ (x2
1 + x2

2 + . . .+ x2
k)

2,

now it suffices to denote σt = ρt
4
√

wt and use the fact that g(x) is 4-homogeneous.

Remark. The total estimate on n(4, k) in this proof is not very good. The averaging argu-
ment gives m ∼ k5, after that n is determined by m using the Borsuk-Ulam property. The
latter estimate is not known directly, because it uses asymptotic facts on the equivariant
cohomotopy of classifying spaces. From a detailed analysis of the proof it is clear that the

group Σ
(2)
m can be replaced by a smaller subgroup, but anyway, the group depends on k

and the estimate on n(m) is not known. See also the discussion at the end of Ch. 3 in [4],
the results conjectured there would imply a polynomial bound for n(m).

8. Proof of Theorem 1 for arbitrary d

First, let us apply the Borsuk-Ulam theorem for 2-groups to the group G = (Z2)
m⋊Σ

(2)
m ,

m is to be defined later. If the initial dimension n is large enough, then the restriction of
f to some m-dimensional subspace equals (put d/2 = δ)

(4) f =
∑

1≤i1,i2,...,iδ≤m

ai1,...,iδy
2
i1y

2
i2 . . . y

2
iδ
,

where the numbers ai1,...,iδ are invariant under the component-wise action of Σ
(2)
m on the

indexes i1, . . . , iδ.
We are going to use the averaging argument from [20] several times and for several

polynomials simultaneously, so we describe the averaging procedure in the following lemma.
Denote the group of rotations composed with a homothety by S(k) = SO(k)×R+, call its
elements similarity transforms. Sometimes we consider the zero transform as a similarity
transform too, denote S0(k) = S(k) ∪ {0}.

Lemma 2. Suppose f1, . . . , fl are even homogeneous polynomials of degree ≤ d in k vari-
ables,

n ≥ l

(

k + d− 1

d

)

.

We can find n similarity transforms σ1, . . . , σ∈S0(k) (not all zero) such that all the poly-
nomials

f j(x) =

n
∑

i=1

fj(σix)

are proportional to Qdeg fj/2 = (x2
1 + . . .+ x2

k)
deg fj/2.

Proof. Note that if a polynomial fj(x) has degree d′ < d, we can multiply it by Q
d−d′

2 and
assume that all fj(x) has the same degree d.
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As in [20], the polynomials

f j(x) =

∫

ρ∈SO(k)

fj(ρx)dρ

are SO(k)-invariant, and therefore proportional to Qd/2. Note that the linear space of
l-tuples of polynomials of degree d in k variables has dimension l

(

k+d−1
d

)

, and by the

Carathéodory theorem the vector (f1, . . . , f l) is proportional to a convex combination

(f1(x), . . . , f l(x)) =

n
∑

i=1

wi(f1(ρix), . . . , f l(ρix))

for some ρ1, . . . , ρn ∈ SO(k). Putting σi = w
1/d
i ρi ∈ S0(k), we obtain the required formula.

�

Remark. Note that the averaging procedure is linear in the polynomials fj . We can take

l =
(

k+d−1
d

)

and average all the even polynomials of degree ≤ d by the same sequence

σ1, . . . , σn ∈ S0(k) for n =
(

k+d−1
d

)2
.

Let us describe the structure if theG-invariant polynomial f in Equation 4 in more detail.

Denote H = Σ
(2)
m for brevity. Let us describe the H-orbits of the multisets (i1, . . . , iδ), the

coefficients ai1,...,iδ of f , corresponding to the orbit, should be equal. Let us identify the
set [m] with the leafs of the full binary tree T of height h = log2m. The group H is the
group of automorphisms of T preserving the grading. We choose the grading so that the
leafs are of grading zero, what is above them is of grading 1, and so on.

For every multiset S = (i1, . . . , iδ) consider the subtree TS, consisting of all ancestors of
any ij ∈ S. Let us describe distinct orbits of such TS ⊆ T under the action of H . The orbit
of S is fully characterized by the corresponding orbit of TS and assignment of multiplicities
(of the multiset S) to the leafs of TS. Consider the nodes of TS that have ≥ 2 childs, call
then the branching nodes. The number of such nodes ≤ δ− 1, and TS is fully described by
gradings of these nodes, and the parent-child relation between them. In this description
the only value that depends on h is the gradings, therefore the number of H-orbits of trees
TS (and the number of H-orbits of index multisets S) is

≤ C(δ)hδ−1.

In the sequel we will use the above tree description for different heights h, so denote

Hh = Σ
(2)

2h
the 2-Sylow permutation group, and the corresponding full binary tree Th.

Suppose U is a multiset of cardinality δ′ ≤ δ in [2h] (the leafs of Th), denote by

gU(y1, . . . , y2h) =
∑

σ∈Hh

σ(U)=(i1 ,...,iδ′)

y2i1 . . . y
2
i′
δ

the Hh-invariant polynomials. The number of such distinct polynomials gU is ≤ C(δ)hδ,
and the considered polynomial f is a linear combination of such polynomials in m variables
for |U | = δ.
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We are going to findm linear forms lt(x) on Rk such that every polynomial gU(l1(x), . . . , lm(x))
(after substituting yt = lt(x)) is proportional to Qδ, this will imply the same claim about
f(l1(x), . . . , lm(x)) by linearity.

Take some nonzero linear function l1(x1, . . . , k) in k variables. Then build the other
forms li(x) by the following procedure. Define the sequence of the powers of two s0 =
1, s1 = 2h1, . . . , sδ = 2hδ that satisfies the following inequality

si+1 ≥ C(δ)hi
δ

(

k + d− 1

d

)

si.

Then suppose we have already chosen the linear functions l1(x), . . . , lsi(x). Consider all
the polynomials gU(y1, . . . , ysi), corresponding to multisets U in [si] of cardinality ≤ δ, the
number of distinct such polynomials is at most C(δ)hi

δ. Put

φU(x) = gU(l1(x), . . . , lsi(x))

and apply Lemma 2 to the polynomials φU(x) to obtain n ≤ C(δ)hi
δ
(

k+d−1
d

)

similarity
transforms σ1, . . . , σn ∈ S0(k) (not all zero) such that all the expressions

n
∑

j=1

gU(l1(σjx), . . . , lsi(σjx))

are proportional to Q|U |. Denote for t = si(j − 1) + r (1 ≤ j ≤ n, 1 ≤ r ≤ si)

lt(x) = lr(σjx).

Now we have si+1 = nsi linear functions, consisting of n similar copies of the previous set
of si linear functions.

Finally we definem = sδ, note that herem is roughly of order C(d)(k log k)d
2/2. We could

also take n ≤ 2k
(

k+d−1
d

)d
using the remark after Lemma 2, this bound is worse but does

not contain unknown functions of d. Note again that the explicit bound in this theorem
depends on the (unknown) explicit bound on n in terms of m and k in the Borsuk-Ulam
theorem for 2-groups.

Consider a polynomial gS, corresponding to a multiset S in [m] of cardinality δ. Denote
for brevity for a multiset S = (i1, . . . , iδ)

y2S = (y1, . . . , ym)
2S = y2i1y

2
i2
. . . y2iδ .

The corresponding tree TS has no branching with gradings in (hi, hi+1] for some i by the
pigeonhole principle (it has ≤ δ − 1 branching nodes). If we fix the part T0 of this tree
with gradings > hi+1, and cut it off, then we obtain several subtrees T1, . . . , Tr of height
hi+1, with branching nodes no higher than hi, denote their corresponding leaf multisets
S1, . . . , Sr. If we decompose [m] into segments I1, . . . , Im/si+1

of length si+1 each, then we
see that the leaf multisets Sj are intersections of S with the corresponding segments Ij .
Consider the orbit of S under the group

F1 × · · · × Fm/si+1
⊆ Hh,
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where Fj = Σ
(2)
si+1

is the group of 2-Sylow permutations in every Ij . Denote r = m/si+1

The sum of the corresponding monomials
∑

γ1×···×γr∈F1×···×Fr

y2γ1×···×γr(S)

can be rewritten as the product
∏

1≤j≤r
S∩Ij 6=∅

∑

γj∈Fj

y2γj(S∩Ij).

Every expression
∑

γj∈Fj
y2γj(Sj) (we denote Sj = Ij ∩ S), corresponding to a particular Ij ,

is a homogeneous polynomial of the form gSj
in si+1 variables yt (t ∈ Ij). Consider the

subgroup Gj ∈ Fj, consisting of elements of the form α × · · · × α, where α ∈ Σ
(2)
si is a

permutation of size [si], i.e. Gj permutes all the si-blocks of Ij in the same way. Consider
also the subgroup K ⊂ Fj (isomorhic to (Z2)

hi+1/hi) that permutes the whole si-blocks in
Ij transitively, this is the group, generated by applying the same transposition of childs at
a particular binary tree level. Note that these two groups generate a Cartesian product
subgroup Gj ×K ∈ Fj .

Note that the corresponding to Sj tree Tj has no branching higher than hi. The sum

(5)
∑

γ×κ∈Gj×K

y2γ×κ(Sj)

can be rewritten as summation over γ ∈ Gj , and then on κ ∈ K. The first summation gives
a polynomial of type gSj

in si variables yt, corresponding to the si-block of Ij, where all
elements Sj are contained (because Tj has no branching higher than hi and Sj is contained
in a single si-block).

If we substitute yt = lt(x) and sum such polynomials gSj
over K, we obtain an expression

in x1, . . . , xk proportional to Q
|Sj | by the construction of the linear functions lt(x). Suppose

Ij is the segment I1 of the first si+1 variables yt, the first si functions lt(x) of this segment
were transformed into si+1 functions lt(σu(x)) by the construction, so that the summation
over u = 1, . . . , si+1/si of the expressions

gSj
(l1(σux), . . . , lsi(σux))

makes them proportional to Q|Sj |. The same holds for every (not only the first) si+1-
segment Ij , because all the corresponding linear functions {lt(x) : t ∈ Ij} are obtained
from the linear functions {lt(x) : t ∈ I1} by substituting lt(τx) with the same similarity
transform τ , which appears in the construction of si+2, . . . , sδ. In this case we make the
summation of

gSj
(l1(σuτx), . . . , lsi(σuτx))

over u = 1, . . . , si+1/si (i.e. over the group K), and by the construction we obtain a poly-
nomial proportional to Q(τx)|Sj |, which is proportional to Q(x)|Sj |, since τ is a similarity
transform.
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If we pass to summation in Equation 5 over a larger group Fj ⊇ Gj ×K, then we again
obtain a sum similar to Q|Sj | after substituting yt = lt(x). The same argument is valid for
summation of the monomials y2S over the entire group Hh ⊇ F1 × · · · × Fr, so every such
sum will be proportional to Qδ after substituting yt = lt(x), as required.

Note that the case i+ 1 = 1 is done in the same manner assuming s0 = 1.

Remark. Note that if we use the “universal averaging”, according to the remark after
Lemma 2, then the only needed averaging in the proofs is averaging over the groups Ki

(denoted simply K in the proof). These groups are 2-tori of size 2hi+1/hi, and the total
required group is the wreath product K1 ≀K2 ≀ · · · ≀Kδ. This observation may help if some
explicit bounds in the Borsuk-Ulam theorem for wreath products of 2-tori are found.

9. Sections and projections of convex bodies

Now we return to the case of quadratic forms, and deduce some corollaries for sections
or projections of convex bodies from Theorems 2 and 3. We use the standard approach
(e.g. see [25]) of taking geometric consequences of the results over Grassmanians.

Corollary 8. Suppose k is an integer of the form 2pα, m ≥ 1, n ≥ n(2, k,m) from
Theorem 3 or 2. Let K1, . . . , Km be convex bodies in Rn. Then there exists a k-dimensional
linear subspace L ⊆ Rn such that the orthogonal projections of any Ki onto L has a
Euclidean ball as its John ellipsoid.

Proof. Consider all possible choices of L, they form the Grassmannian Gk
n. The John ellip-

soid [13] of the projection πL(Ki) depends continuously on L, its homogeneous component
of degree 2 is a quadratic form on L, hence it gives a section si of Σ

2(γk
n). By Theorem 3

these quadratic forms are simultaneously proportional to the standard quadratic form over
some L. �

The following corollary is proved in the same way.

Corollary 9. Suppose k is an integer of the form 2pα, m ≥ 1, n ≥ n(2, k,m) from
Theorem 3 or 2. Let K1, . . . , Km be convex bodies in Rn, and x be a point inside

⋂m
i=1Ki.

Then there exists a k-dimensional affine subspace x ∈ L ⊆ Rn such that for any i the
section Ki ∩ L has a Euclidean ball as its John ellipsoid.

It is easy to see that instead of the John ellipsoid we can consider the second moment
matrix of the projection (or the section), or some other quadratic form, depending con-
tinuously on the convex body. Note that some “approximate” version of these theorems
follows form the original Dvoretzky theorem, e.g. we can state that the John ellipsoid is
ε-close to a ball.

10. The weak form of the Knaster conjecture

Let us state the weak form of the Knaster conjecture [16].
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Conjecture 2. There exists n = n(l) such that for any l points X = {x1, . . . , xl} on
the unit sphere Sn−1 and any continuous function f : Sn−1 → R there exists a rotation
ρ ∈ O(n) such that

f(ρx1) = f(ρx2) = · · · = f(ρxl).

Originally Knaster conjectured that n(l) = l, but counterexamples to his conjecture
were found in [15]. In [9] it was proved that n(3) = 3, but already the value n(4) is not
known and not shown to be finite. Known results in this conjecture either consider sets X ,
distributed along a two-dimensional vector subspace of Rn (see [20, 18]), or require very
specific symmetry conditions, e.g. require X to be an (almost) orthogonal frame (see [24]).

In [20] it was shown that the original Knaster conjecture would imply the Dvoretzky
theorem with good estimates on n(k, ε), it would also imply Theorem 1. The weak form
of the Knaster conjecture would also give some bounds in the Dvoretzky theorem, as well
as explicit bounds in Theorem 1. In order to prove Dvoretzky type results we have to
consider sets X distributed densely enough in a sphere Sk−1.
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