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Abstract

Consider anm×N matrix Φ with the Restricted Isometry Property of order k and level δ, that is, the
norm of any k-sparse vector in RN is preserved to within a multiplicative factor of 1±δ under application
of Φ. We show that by randomizing the column signs of such a matrix Φ, the resulting map with high
probability embeds any fixed set of p = O(ek) points in RN into Rm without distorting the norm of any
point in the set by more than a factor of 1± 4δ. Consequently, matrices with the Restricted Isometry
Property and with randomized column signs provide optimal Johnson-Lindenstrauss embeddings up to
logarithmic factors in N . In particular, our results improve the best known bounds on the necessary
embedding dimension m for a wide class of structured random matrices; for partial Fourier and partial
Hadamard matrices, we improve the recent bound m & δ−4 log(p) log4(N) appearing in Ailon and
Liberty [1] to m & δ−2 log(p) log4(N), which is optimal up to the logarithmic factors in N . Our results
also have a direct application in the area of compressed sensing for redundant dictionaries.

1 Introduction

The Johnson-Lindenstrauss (JL) Lemma states that any set of p points in high dimensional Euclidean
space can be embedded into O(ε−2 log(p)) dimensions, without distorting the distance between any two
points by more than a factor between 1− ε and 1 + ε. In its original form, the Johnson-Lindenstrauss
Lemma reads as follows.

Theorem 1.1 (Johnson-Lindenstrauss Lemma [24]). Let ε ∈ (0, 1/2) and let x1, ..., xp ∈ RN be
arbitrary points. Let m = O(ε−2 log(p)) be a natural number. Then there exists a Lipschitz map
f : RN → Rm such that

(1− ε)‖xi − xj‖22 ≤ ‖f(xi)− f(xj)‖22 ≤ (1 + ε)‖xi − xj‖22 (1)

for all i, j ∈ {1, 2, ..., p}. Here ‖ · ‖2 stands for the Euclidean norm in RN or Rm, respectively.

As shown in [3], the bound for the size ofm is tight up to an O(log(1/ε)) factor. In the original paper
of Johnson and Lindenstrauss, it was shown that a random orthogonal projection, suitably normalized,
provides such an embedding with high probability [24]. Later, this property was also verified for
Gaussian random matrices, among other random matrix constructions [18, 13]. As a consequence, the
JL Lemma has become a valuable tool for dimensionality reduction in a myriad of applications ranging
from computer science [22], numerical linear algebra [32, 20, 16], manifold learning [4], and compressed
sensing [5], [38], [8]. In order to reduce storage space and implementation time of such embeddings,
the design of structured random JL embeddings has been an active area of research in recent years
[2, 35, 1, 26]; see [2] or [26] for a good overview of these efforts.

In most of these frameworks, the map f under consideration is a linear map represented by an
m × N matrix Φ. In this case, one can consider the set of differences E = {xi − xj}; to prove the
theorem, one then needs to show that

(1− ε)‖y‖22 ≤ ‖Φy‖22 ≤ (1 + ε)‖y‖22, for all y ∈ E. (2)
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When Φ is a random matrix, the proof that Φ satisfies the JL lemma with high probability boils down
to showing a concentration inequality of the type

P
(
(1− ε)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + ε)‖x‖22

)
≥ 1− 2 exp(−c0ε

2m), (3)

for an arbitrary fixed x ∈ RN , where c0 is an absolute constant in the optimal case, and in addition
possibly mildly dependent on N in almost-optimal scenarios as for example in [1]. Indeed it directly
follows by a union bound over E (as in the proof of Theorem 3.1 below) that (2) holds with high
probability.

The Johnson-Lindenstrauss Lemma in Compressed Sensing. One of the more recent
applications of the Johnson-Lindenstrauss Lemma is to the area of compressed sensing, which is centered
around the following phenomenon: For many underdetermined systems of linear equations Φx = y,
the solution of minimal ℓ1-norm is also the sparsest solution. To be precise, a vector x ∈ RN is k-
sparse if |{j : |xj | > 0}| ≤ k. A by now classical sufficient condition on the matrix Φ for guaranteeing
equivalence between the minimal ℓ1 norm solution and sparsest solution is the so-called Restricted
Isometry Property (RIP)[9, 11, 15].

Definition 1.2. A matrix Φ ∈ Rm×N is said to have the Restricted Isometry Property of order k and
level δ ∈ (0, 1) (equivalently, (k, δ)-RIP) if

(1− δ)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δ)‖x‖22 for all k-sparse x ∈ R
N . (4)

The restricted isometry constant δk is defined as the smallest value of δ for which (4) holds.

In particular, if Φ satisfies (2k, δ2k)-RIP with δ2k ≤ 2/(3 +
√

7
4 ) ≈ .4627, and if y = Φx admits a

k-sparse solution x#, then x# = argminΦz=y ‖z‖1 [17].
Gaussian and Bernoulli random matrices satisfy (k, δ)-RIP with high probability, if the embedding

dimension m & δ−2k log(N/k) [5]. Up to the constant, lower bounds for Gelfand widths of ℓ1-balls
[19, 33] show that this dependence on N and in k is optimal. The Restricted Isometry Property also
holds for a rich class of structured random matrices, where usually the best known bounds for m have
additional log factors in N . All known deterministic constructions of RIP matrices require that m & k2

or at least m & k2−µ for some small constant µ > 0 [7].
The similarity between the expressions in (2) and (4) suggests a connection between the JL lemma

and the Restricted Isometry Property. A first result in this direction was established in [5], wherein it
was shown that random matrices satisfying a concentration inequality of type (3) (and hence the JL
Lemma) satisfy the RIP of optimal order. More precisely, the authors prove the following theorem.

Theorem 1.3 (Theorem 5.2 in [5]). Suppose that m,N , and 0 < δ < 1 are given. If the probability
distribution generating the m×N matrices Φ satisfies the concentration inequality (3) with ε = δ and

absolute constant c0, then there exist absolute constants c1, c2 such that with probability ≥ 1−2e−c2δ
2m,

the RIP (4) holds for Φ with the prescribed δ and any k ≤ c1δ
2m/ log(N/k).

In this sense, the JL Lemma implies the Restricted Isometry Property.

Contribution of this work. We prove a converse result to Theorem 1.3: We show that RIP
matrices, with randomized column signs, provide Johnson-Lindenstrauss embeddings that are optimal
up to logarithmic factors in the ambient dimension. In particular, RIP matrices of optimal order
provide Johnson-Lindenstrauss embeddings of optimal order as such, up to a logarithmic factor in N
(see Proposition 3.2). Note that without randomization, such a converse is impossible as vectors in the
null space of the fixed parent matrix are always mapped to zero.

This observation has several consequences in the area of compressed sensing, and also allows us
to obtain improved JL embedding results for several matrix constructions with existing RIP bounds
[11, 31, 28, 36, 30]. Of particular interest is the random partial Fourier or the random partial
Hadamard matrix, which is formed by choosing a random subset of m rows from the N × N dis-
crete Fourier or Hadamard matrix respectively. For these matrices, the previous best-known embed-
ding dimension to ensure that (2) holds with probability 1 − η, given by Ailon and Liberty [1], is
m ≍ ε−4 log(p/η) log4(N). We can improve their result to have optimal dependence on the distortion,
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showing that m ≍ ε−2 log(p/η) log4(N) rows suffice for the embedding. Using results from [29], we can
also improve on the necessary embedding dimension for partial circulant matrices as given in [37].

This paper is structured as follows: Section 2 introduces necessary notation. In Section 3, we state
our main results, and Section 4 gives concrete examples of how these results improve on the best-known
JL bounds for several matrix constructions as well as applications of our findings in compressed sensing.
In Section 5 we give the relevant concentration inequalities and explicit RIP-based matrix inequalities
that are needed for the proofs, which are then carried out in Section 6.

2 Notation

Before continuing, let us fix some notation to be used in the remainder. For N ∈ N, we denote
[N ] = {1, . . . , N}. The ℓp-norm of a vector x = (x1, . . . , xN ) ∈ R

N is defined as

‖x‖p =
( N∑

j=1

|xj |p
)1/p

, 1 ≤ p < ∞,

and ‖x‖∞ = maxj=1,...,N |xj | as usual. For a matrix Φ = (Φj,ℓ) ∈ Rm×N , its operator norm is
‖Φ‖ := sup‖x‖2=1 ‖Φx‖2, and its Frobenius norm is defined by

‖Φ‖F :=
( m∑

j=1

N∑

ℓ=1

|Φj,ℓ|2
)1/2

.

For two functions f, g : S → R+, S an arbitrary set, we write f & g if there is a constant C > 0 such
that f(x) ≥ Cg(x) for all x ∈ S; we write f ≍ g if f & g and g & f . Let N and s ≪ N be given and
set R =

⌈
N
s

⌉
. For given x = (x1, . . . , xN ) ∈ RN , we say that x is in decreasing arrangement, if one has

|xi| ≥ |xj | for i < j. For vectors in decreasing arrangement, we decompose x = (x(1), . . . , x(J), . . . , x(R))
into blocks of size s = k/2, i.e. x(J) ∈ Rs; the last block x(R) is potentially of smaller size. We will
also consider the coarse decomposition x = (x(1), x(♭)), where x(♭) = (x(2), ..., x(R)) ∈ RN−s. Denote
by ]L[ the indices corresponding to the L-th block. For j, ℓ ∈ [N ] we write j ∼ l if the two indices are
associated to the same block, and we write j ≁ l otherwise. Given a matrix Φ ∈ Rm×N , write Φj to
denote the j-th column, Φ(J) ∈ Rm×s to denote the matrix that is the restriction of Φ to the k columns
indexed by J (again with the obvious modification for J = R), and Φ(♭) to denote the restriction of Φ
to all but the first k columns. Finally, for a vector x ∈ RN , we denote by Dx = (Di,j) ∈ RN×N the
diagonal matrix Dj,j = xj .

3 The main results

Theorem 3.1. Fix η > 0 and ε > 0, and consider a finite set E ⊂ RN of cardinality |E| = p. Set
k ≥ 40 log 4p

η , and suppose that Φ ∈ R
m×N satisfies the Restricted Isometry Property of order k and

level δ ≤ ε
4 . Let ξ ∈ RN be a Rademacher sequence, i.e., uniformly distributed on {−1, 1}N. Then with

probability exceeding 1− η,

(1− ε)‖x‖22 ≤ ‖ΦDξx‖22 ≤ (1 + ε)‖x‖22 (5)

uniformly for all x ∈ E.

Along the way, our method provides a direct converse to Theorem 1.3:

Proposition 3.2. Fix ε > 0, and suppose that there is a constant c3 such that for all pairs (k,m) with
k ≤ c3δ

2m/ log(N/k), Φ = Φ(m) ∈ Rm×N has the Restricted Isometry Property of order k and level
δ ≤ ε

4 . Fix x ∈ RN and let ξ ∈ RN be a Rademacher sequence, i.e., uniformly distributed on {−1, 1}N .
Then there exists a constant c4 such that for all m, ΦDξ satisfies the concentration inequality (3) for
c0 = c4 log

−1
(
N
k

)
.
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4 Concrete examples and applications

Using Theorem 3.1, we can improve on the best Johnson-Lindenstrauss bounds for several matrix
constructions that are known to have the Restricted Isometry Property:

1. Matrices arising from bounded orthonormal systems. Consider an orthonormal sys-
tem of real-valued functions ϕj , j ∈ [N ], on a measurable space S with respect to an orthogonalization
measure dν. Such systems are called bounded orthonormal systems if supj∈[N ] supx∈S |ϕj(x)| ≤ K
for some constant K ≥ 1. We may associate to such a system the m × N matrix Φ with entries
Φℓ,j = 1√

m
ϕj(xℓ), where xℓ, ℓ ∈ [m], are drawn independently according to the orthogonalization

measure dν. As shown in [11, 31, 28], matrices arising as such have (k, δ)-RIP with high probability if
m & δ−2k log4(N). 1 By Theorem 3.1, these embeddings with randomized column signs satisfy the JL
Lemma for m & ε−2 log(p) log4(N), which is optimal up to the log(N) factors.

For measures with discrete support, such constructions are equivalent to choosingm rows at random
from an N × N matrix with orthonormal rows and uniformly bounded entries. Examples include
the random partial Fourier matrix or random partial Hadamard matrix, formed from the discrete
Fourier matrix or discrete Hadamard matrix respectively. (In the Fourier case, we distribute the
resulting real and complex parts in different coordinates, inducing an additional factor of 2.) Note
that the structure of these matrices allows for fast matrix vector multiplication. Recently, Ailon
and Liberty [1] verified the JL Lemma for such constructions, with column signs randomized, when
m & ε−4 log(p) log3 (log(p)) log(N). Our result improves the factor of ε−4 in their result to the optimal
dependence ε−2. We note that while their proof also uses the RIP, it also requires arguments from [31]
that are specific to discrete bounded orthonormal systems.

Examples of bounded orthonormal systems connected to continuous measures include the trigono-
metric system and Chebyshev system, which are associated to the uniform and Chebyshev measures,
respectively. The Legendre system, while not uniformly bounded, can still be transformed via precon-
ditioning to a bounded orthonormal system with respect to the Chebyshev measure [30]. Note that all
of these constructions have an associated fast transform.

2. Partial circulant matrices. Other classes of structured random matrices known to have
the RIP include partial circulant matrices [25, 27, 29]. In one such set-up, the first row of the
m × N matrix is a Gaussian or Rademacher random vector, and each subsequent row is created
by rotating one element to the right relative to the preceding row vector. Using that convolution
corresponds to multiplication in the Fourier domain, these matrices have associated fast matrix-vector
multiplication routines. In [29], such matrices were shown to have the RIP with high probability for

m & max
(
δ−1k

3
2 log

3
2 (N), δ−2k log4(N)

)
.

On the other hand, such a matrix composed with a diagonal matrix of random signs was shown to
be a JL embedding with high probability as long as m & ε−2 log2(p) [37]. Through Theorem 3.1, the

same results also obtain if m & max
(
ε−1 log3/2

(
4p
η

)
log

3
2 (N), ε−2 log

(
4p
η

)
log4(N)

)
. For large p, this

is an improvement compared to [37].

3. Deterministic constructions. Several deterministic constructions of RIP matrices are
known, including a recent result in [7] that requires only m & k2−µ. We refer the reader to the exposi-
tion in [7] for a good overview in this direction; we highlight two such deterministic constructions here.
Using finite fields, DeVore [14] provides deterministic constructs of cyclic 0-1-valued matrices with
(k, δ)-RIP with m & δ−2k2 log2(N). Iwen [23] provides deterministic constructions of 0-1-valued ma-
trices whose number theoretic properties allow their products with Discrete Fourier Transform (DFT)
matrices to be well approximated using a few highly sparse matrix multiplications. Both the binary-
valued matrices and their products with the DFT yield (k, δ)-RIP matrices with m & δ−2k2 log2(N).
By Theorem 3.1, the class of matrices that results by randomizing the column signs of either of these
deterministic constructions satisfies the JL Lemma with m & ε−2 log2(p) log2(N).

Note that the amount of randomness needed to construct such embeddings is still comparable to
the first two examples, requiring N random bits. Under the model assumption that the entries of each

1Actually, the bound is stated slightly differently in [28], namely as m

log(m)
& δ

−2
k log2(k) log2(N). However, it is easily

seen that the stated bound implies this condition with possibly a different constant.
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vector x ∈ E to be embedded has random signs, however, the required randomness in the matrix is
removed completely.

In addition to their fast multiplication properties, these examples have the advantage in that the
construction of the matrix embedding only uses N + m, 2N + m, and N independent random bits,
respectively, compared to mN bits for matrices with independent entries. We note that stronger
embedding results are known with fewer bits, if one imposes restrictions on the ℓ∞ norm of the vectors
x ∈ E to be embedded – see [26] and [12].

For each of the aforementioned examples, we summarize the number of dimensionsm that are known
to be sufficient (k, δ)-RIP to hold. We also list the previously best known bound for JL embedding
dimension (if there is one) along with the JL bounds obtained from Theorem 3.1. Where Theorem 3.1
yields a better bound than previously known, at least for some range of parameters, we highlight the
result in bold face. In each of the bounds, we list only the dependence on δ, k, and N , or ε, k, and N ,
omitting absolute constants.

RIP bounds Previous JL Bound JL Bound from Theorem 3.1

Partial Fourier δ−2k log4(N) ε−4 log( p
η
) log4(N) ε−2 log(p

η
) log4(N)

Partial Circulant max
(
δ−1k

3
2 log

3
2 (N), ε−2 log2 ( p

η
) max

(
ε−1log

3

2 (p
η
) log

3

2 (N),

δ−2k log4(N)
)

ε−2 log(p
η
) log4(N)

)

Deterministic δ−2k2 log2(N) ε−2 log2 (p
η
) log2(N)

(DeVore, Iwen)

Subgaussian δ−2k log (N
k
) ε−2 log ( p

η
) ε−2 log ( p

η
) log(N)

4. Compressed sensing in redundant dictionaries As shown recently in [8], concentration
inequalities of type (3) allow for the extension of the compressed sensing methodology to redundant
dictionaries – in particular, tight frames – as opposed to orthonormal bases only. Since signals with
sparse representations in redundant dictionaries comprise a much more realistic model of nature, this
extension of compressed sensing is fundamental. Our results show that basically all random matrix
constructions arising in the standard theory of compressed sensing (i.e., based on RIP estimates) also
yield compressed sensing matrices for the redundant framework.

5. Compressed sensing with cross validation Compressed sensing algorithms are designed
to recover approximately sparse signals; if this assumption is violated, they may yield solutions far from
the input signal. In [38], a method of cross validation is introduced to detect such situations, and to
obtain tight bounds on the error incurred by compressed sensing reconstruction algorithms in general.
There, a subset y1 = Φ1x of themmeasurements y = Φx are held out from the reconstruction algorithm
and only the remaining measurements y2 = Φ2x are used to produce a candidate approximation x̂ to the
unknown x. If the hold-out matrix Φ1 satisfies the Johnson-Lindenstrauss Lemma, then the observable
quantity ‖Φ1(x− x̂)‖2 can be used as a reliable proxy for the unknown error ‖x− x̂‖2. Our work shows
that any RIP matrix as in the standard compressed sensing framework can be used for cross validation
up to a randomization of its column signs.
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6. Optimal asymptotics in δ for RIP to hold As mentioned above, it can be shown using a
Gelfand width argument that m ≍ k log(Nk ) is the optimal asymptotics (in N and k) of the embedding
dimension for a matrix with the restricted isometry property (4). Our results – combined with the
known optimality of the asymptotics m = ε−2 log(p) for the embedding dimension in the Johnson-
Lindenstrauss Lemma (1.1) – imply that up to a factor of log

(
1
δ

)
, m ≍ δ−2 is the optimal asymptotics

in the restricted isometry constant δ for fixed N and k as δ → 0. Recall that this rate is realized by
many of the above examples, such as Gaussian random matrices.

5 Proof Ingredients

The proof of Theorem 3.1 relies on concentration inequalities for Rademacher sequences and explicit
RIP-based norm estimates. The first concentration result is a classical inequality by Hoeffding [21].

Proposition 5.1 (Hoeffding’s Inequality). Let x ∈ RN , and let ξ = (ξj)
N
j=1 be a Rademacher sequence.

Then, for any t > 0,

P

(
|
∑

j

ξjxj | > t
)
≤ 2 exp

(
− t2

2‖x‖22

)
. (6)

The second concentration of measure result is a deviation bound for Rademacher chaos. There are
many such bounds in the literature; the following inequality dates back to [34], but appeared with
explicit constants and with a much simplified proof as Theorem 17 in [6].

Proposition 5.2. Let X be the N×N matrix with entries xi,j and assume that xi,i = 0 for all i ∈ [N ].
Let ξ = (ξj)

N
j=1 be a Rademacher sequence. Then, for any t > 0,

P

(
|
∑

i,j

ξiξjxi,j | > t
)
≤ 2 exp

(
− 1

64
min

( 96
65 t

‖X‖ ,
t2

‖X‖2F

))
. (7)

We also need the following basic estimate for RIP matrices (see for instance Proposition 2.5 in [28]).

Proposition 5.3. Suppose that Φ ∈ Rm×N has the Restricted Isometry Property of order 2s and level
δ. Then for any two disjoint subsets J, L ⊂ [N ] of size |J | ≤ s, |L| ≤ s,

‖Φ∗
(J)Φ(L)‖ ≤ δ.

The proof of our norm estimate for RIP-matrices uses Proposition 5.3, and relies on the observation
commonly used in the theory of compressed sensing (see for example [10]) that for z in decreasing
arrangement and ‖z‖2 = 1, for J ≥ 2 one has ‖z(J)‖∞ ≤ 1√

s
‖z(J−1)‖2 and thus ‖z(♭)‖∞ ≤ 1/

√
s.

Proposition 5.4. Let R = ⌈N/s⌉. Let Φ = (Φj) = (Φ(1),Φ(2), ...,Φ(R)) = (Φ(1),Φ(♭)) ∈ Rm×N have
the (2s, δ)-Restricted Isometry Property, let x = (xj) = (x(1), x(2), ..., x(R)) = (x(1), x(♭)) ∈ R

N be in
decreasing arrangement with ‖x‖2 ≤ 1, and consider the symmetric matrix

C ∈ R
N×N , Cj,ℓ =

{
xjΦ

∗
jΦℓxℓ, j ≁ ℓ, j, ℓ > s,

0, else.

and, for b ∈ {−1, 1}s, the vector

v ∈ R
N , v = Dx(♭)

Φ∗
(♭)Φ(1)Dx(1)

b.

The following bounds hold: ‖C‖ ≤ δ
s , ‖C‖F ≤ δ√

s
, and ‖v‖2 ≤ δ√

s
.
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Proof.

‖C‖ = sup
‖y‖2=1

|〈y, Cy〉|

≤ sup
‖y‖2=1

R∑

J,L=2
J 6=L

∣∣∣
〈
y(J), Dx(J)

Φ∗
(J)Φ(L)Dx(L)

y(L)

〉∣∣∣

≤ sup
‖y‖2=1

R∑

J,L=2
J 6=L

‖y(J)‖2‖y(L)‖2‖Dx(J)
Φ∗

(J)Φ(L)Dx(L)
‖

≤ sup
‖y‖2=1

R∑

J,L=2
J 6=L

‖y(J)‖2‖y(L)‖2‖x(J)‖∞‖x(L)‖∞δ (8)

≤ sup
‖y‖2=1

R∑

J,L=2

‖y(J)‖2‖y(L)‖2
1√
s
‖x(J−1)‖2

1√
s
‖x(L−1)‖2δ

≤ sup
‖y‖2=1

δ

s

R∑

J,L=2

(
1

2
‖x(J−1)‖22 +

1

2
‖y(J)‖22

)(
1

2
‖x(L−1)‖22 +

1

2
‖y(L)‖22

)

≤δ

s
.

To obtain (8), we used Proposition 5.3.
Similarly,

‖v‖2 ≤ sup
‖y‖2=1

R∑

L=2

〈
y(L), D

∗
x(L)

Φ∗
(L)Φ(1)D(b)x(1)

〉

≤ sup
‖y‖2=1

R∑

L=2

‖y(L)‖2‖x(L)‖∞‖Φ∗
(L)Φ(1)‖‖b‖∞‖x(1)‖2

≤ sup
‖y‖2=1

R∑

L=2

‖y(L)‖2
1√
s
‖x(L−1)‖2‖Φ∗

(L)Φ(1)‖‖b‖∞

≤ δ√
s

sup
‖y‖2=1

R∑

L=2

(
1

2
‖y(L)‖22 +

1

2
‖x(L−1)‖22

)

≤ δ√
s
.

Let x̂(L) ∈ RN results from x by setting all indices except those in the Lth block to 0. Similarly,

let Φ̂(L) extend Φ(L) by setting all columns with indices outside L to 0. Let eℓ ∈ RN denote the ℓth
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canonical basis vector. We have

‖C‖2F =

N∑

j,l=s+1
j≁ℓ

(xjΦ
∗
jΦℓxℓ)

2

=

R∑

L=2

∑

j /∈]L[

x2
jΦ

∗
j Φ̂(L)Dx̂(L)


∑

ℓ∈]L[

eℓe
∗
ℓ


Dx̂(L)

Φ̂∗
(L)Φj

=

R∑

L=2

∑

j /∈]L[

x2
j‖Dx(L)

Φ∗
(L)Φj‖2

≤
R∑

L=2

∑

j /∈]L[

x2
j‖x(L)‖2∞‖Φ∗

(L)Φj‖2

≤
R∑

L=2

δ2

s
‖x(L−1)‖22

N∑

j=1

x2
j

≤δ2

s
.

For the second equality, we used that
∑

ℓ∈]L[ eℓe
∗
ℓ is the identity on the L-th block.

6 Proof of the main results

Proof of Theorem 3.1. Without loss of generality, we assume that all x ∈ E are normalized so
that ‖x‖2 = 1. Furthermore, assume that k = 2s is even.

We first consider a fixed x ∈ E, eventually taking a union bound over all x. We further assume that
x is in decreasing arrangement. To achieve this, we reorder the entries of x, and permute the columns
of Φ accordingly. This has no impact on the following estimates, as the Restricted Isometry Property
of the matrix Φ is invariant under permutations of its columns. We need to estimate

‖ΦDξx‖22 = ‖ΦDxξ‖22

=

R∑

J=1

‖Φ(J)Dx(J)
ξ(J)‖22 + 2ξ∗(1)Dx(1)

Φ∗
(1)Φ(♭)Dx(♭)

ξ(♭) +

R∑

J,L=2
J 6=L

〈
Φ(J)Dx(J)

ξ(J),Φ(L)Dx(L)
ξ(L)

〉
. (9)

We will bound the terms separately.

1. As Φ has the Restricted Isometry Property of order k ≥ s and level δ, it also has the RIP of
order s and level δ, and each Φ(J) is almost an isometry. Hence, noting that ‖Dx(J)

ξ(J)‖2 =
‖Dξ(J)

x(J)‖2 = ‖x(J)‖2, the first term can be estimated as follows.

(1− δ)‖x‖22 ≤
R∑

J=1

‖Φ(J)Dx(J)
ξ(J)‖22 ≤ (1 + δ)‖x‖22.

Thus, using that δ ≤ ε/4,

(
1− ε

4

)
‖x‖22 ≤

R∑

J=1

‖Φ(J)Dx(J)
ξ(J)‖22 ≤

(
1 +

ε

4

)
‖x‖22.

2. To estimate the second term, fix ξ(1) =: b and consider the random variable

X = b∗Dx(1)
Φ∗

(1)Φ(♭)Dx(♭)
ξ(♭) =

〈
v, ξ(♭)

〉

8



with v as in Proposition 5.4. By Hoeffding’s inequality (Proposition 5.1) combined with Propo-
sition 5.4,

P(|X | ≥ γε) ≤ 2 exp
(
− sγ2ε2

2δ2

)
. (10)

Taking a union bound, one obtains:

P (∃x ∈ E : |X | ≥ γε) ≤ exp

(
log p+ log 2− γ2sε2

2δ2

)
.

In order for this probability to be less than η/2, we need:

log 2p− sγ2ε2

2δ2
≤ log

η

2
,

that is,

δ ≤ ε/4

√
8γ2s

log (4p/η)
. (11)

3. We can rewrite the third term as

R∑

J,L=2
J 6=L

〈
Φ(J)Dx(J)

ξ(J),Φ(L)Dx(L)
ξ(L)

〉
= 〈ξ, Cξ〉 =

N∑

j,ℓ=s+1

ξjξℓCjℓ,

where C ∈ R
N×N is the matrix as in Proposition 5.4. By Proposition 5.4, we have ‖C‖ ≤ δ

s and

‖C‖F ≤ δ√
s
, hence by Proposition 5.2

P



∣∣∣∣∣∣

N∑

j,ℓ=s+1

ξjξℓCjℓ

∣∣∣∣∣∣
≥ τε


 ≤ 2 exp

(
− 1

64
min

(
sτ2ε2

δ2
,
96τsε

65δ

))
. (12)

Using a union bound, one obtains:

P


∃x ∈ E :

∣∣∣∣∣∣

N∑

j,ℓ=s+1

ξjξℓCjl

∣∣∣∣∣∣
≥ τε


 ≤ 2 exp

(
log p− 1

64
smin

(
τ2ε2

δ2
,
96τε

65δ

))
.

In order for this probability to be less than η/2, we need:

log 2p− 1

64
smin

(
τ2ε2

δ2
,
96τε

65δ

)
≤ log (η/2),

that is,

δ ≤ ε

4
min



√√√√ τ2s

4 log
(

4p
η

) ,
96
65τs

16 log
(

4p
η

)


 . (13)

By assumption, δ ≤ ε
4 , so conditions (11) and (13) are satisfied by setting τ = .55, γ = .1, and

s ≥ 20 log (4p/η) (that is, k = 2s ≥ 40 log (4p/η)). Then the second term is bounded by .2δ in absolute
value, and the last term is bounded by .55δ. Together with the deterministic RIP-based estimate for
the first term, this implies the Theorem.

Sketch of the proof of Proposition 3.2. By (12) and (10), the probability that each of second
and third term in (9) is O(δ) are ≥ 1 − exp(−c5k), as long as Φ has RIP of order k. By assumption,
this condition is satisfied for k (approximately) satisfying k = c3ε

2m/ log(N/k). Hence, Inequality (2)
holds with probability ≥ 1− exp(c0δ

2m), where c0 & log−1
(
N
k

)
, as desired.

9



Remarks: Although we have stated the main result for the setting x ∈ RN and Φ ∈ Rm×N , all of
the analysis holds also in the complex setting, x ∈ CN and Φ ∈ Cm×N .

As shown in [5], a random matrix Φ whose entries follow a subgaussian distribution is known to
with high probability have the Restricted Isometry Property of best possible order, that is, one can

choose m ≍ δ−2k log
(
N
k

)
. When k ≥ 40 log

(
4p
η

)
, Φ is a JL embedding by Theorem 3.1, and our

resulting bound for m is optimal up to a single logarithmic factor in N . This shows that Theorem 3.1
must also be optimal up to a single logarithmic factor in N .
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