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Abstract
We show that the CPT groups of QED emerge naturally from thePT andP (orT )
subgroups of the Lorentz group. We also find relationships between these discrete
groups and continuous groups, like the connected Lorentz and Poincaré groups
and their universal coverings.
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1 Introduction

It was shown in [1] that the CPT group,Gθ̂(ψ̂) (θ̂ = Ĉ ∗ P̂ ∗ T̂ ), of the
Dirac quantum field is a non abelian group with sixteen elements isomorphic to
the direct product of the quaternion group,Q, and the cyclic group,Z2:

Gθ̂(ψ̂)
∼= Q× Z2. (1)

Unlike Gθ̂(ψ̂) [1, 2, 3], the CPT group,Gθ̂(Âµ), of the electromagnetic field
is an abelian group of eight elements with three generators [2]:

Gθ̂(Âµ)
∼= Z

3

2
. (2)

As the CPT transformation properties of the interactingψ̂ − Âµ fields are the
same as for the free fields [4], the complete CPT group for QED,G

Θ̂
(QED), is

the direct product of the above mentioned two groups,G
Θ̂
(ψ̂) andG

Θ̂
(Âµ), i.e.,

G
Θ̂
(QED) = G

Θ̂
(ψ̂)×G

Θ̂
(Âµ) ∼= (Q× Z2)× Z

3

2. (3)

2 C from PT

It was shown in [3] thatQ becomes isomorphic to a subgroupH of SU(2),
beingλ the isomorphism:

Q
λ
−→ H < SU(2),

1 7→ I, ι 7→ −iσ1, γ 7→ −iσ2, κ 7→ −iσ3, (4)

whereι, γ, κ are the three imaginary units of the quaternion group andσk (k =
1, 2, 3) are the Pauli matrices; and taking also into account thatZ2 is isomorphic
to the center ofSU(2): {I,−I}, then:

Gθ̂(ψ̂)
∼= H × (center of SU(2)). (5)

SinceSU(2) is the universal covering group ofSO(3):

SU(2)
Φ
−→ SO(3), (6)
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thenΦ(H) has 4 elements and, for that reason, the unique candidates are groups
isomorphic toC4 andD2

∼= Z2 × Z2, the Klein group. A simple application ofΦ
to the elements ofH led to:

Φ(H) = {I, Rx(π), Ry(π), Rz(π)}, (7)

with Rx(π), Ry(π), Rz(π) the rotations inπ around the axesx, y andz, respec-
tively, andI, the unit matrix inSO(3). It was then immediately verified that the
multiplication table ofΦ(H) < SO(3) is the same as forD2.

Then, we have:
Gθ̂(ψ̂)

∼= Φ−1(D2)× Z2. (8)

Within the Lorentz groupO(3, 1), the transformations of parityP and time
reversalT , together with their productPT and the 4×4 unit matrixE, lead to the
subgroup of the Lorentz group, called thePT -group, which is also isomorphic to
D2.

On the other hand,P or T separately, together with the unit 4×4 matrixE,
give rise to the groupZ2. Then, we obtain the desired result for the Dirac field:

Gθ̂(ψ̂)
∼= Φ−1(< {P, T } >)× < {P} > (9)

or
Gθ̂(ψ̂)

∼= Φ−1(< {P, T } >)× < {T } >; (10)

while, for the electromagnetic field, we have:

G
Θ̂
(Âµ) ∼=< {P, T } > × < {P} > (11)

or
G

Θ̂
(Âµ) ∼=< {P, T } > × < {T } > . (12)

The above result suggests that the Minkowskian space-time structure of spe-
cial relativity, in particular the unconnected component of its symmetry group, the
real Lorentz groupO(3, 1), implies the existence of the CPT group as a whole,
and therefore the existence of the charge conjugation transformation, and thus the
proper existence of antiparticles.
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3 Discrete and continuous groups

The relationships between the discrete groups:Q,GPT =< {P, T } >,Gθ̂(ψ̂)

andG
Θ̂
(Âµ) and continuous groups, like the Lorentz group and its universal cov-

ering group, can be summarized in the following diagram:

Z2 Z2 Z2 Z2 Z2

↓ ↓ ↓ ↓ ↓

Gθ̂(ψ̂)
∼= Q× Z2

α
← Q

µ
→ SU(2)

β
→ SL2(C)

γ
→ R4 ⋊ SL2(C)

↓ψ ↓ρ ↓Φ ↓
∼

Φ ↓
≈

Φ

Gθ̂(Âµ)
∼= Z3

2

ᾱ
← GPT

∼= Z2

2

µ̄
→ SO(3)

β̄
→ SOc(3, 1)

γ̄
→ R4 ⋊ SOc(3, 1).

(13)

The homomorphismµ is defined byµ(q) = λ(q) (see (4)) and the homo-

morphismΦ was described in (6);
∼

Φ and
≈

Φ are the homomorphisms between the
conected Lorentz (SOc(3, 1)) and Poincaré (R4 ⋊ SOc(3, 1) ≡ Pc4) groups, re-
spectively, and their universal coverings (SL2(C) andR4⋊SL2(C) ≡ P̄

c
4
); while

ρ, ψ, µ̄, α, ᾱ, β, β̄, γ andγ̄ are given by:

Q
ρ
−→

Q

Z2

∼= GPT , q 7→ [q], (14)

Gθ̂(ψ̂)
ψ
−→

Q× Z2

Z2

∼= Gθ̂(Âµ), (q, 1) 7→ [(q, 1)], (q,−1) 7→ [(q, 1)], (15)

GPT
µ̄
−→ SO(3), [q] 7→ Φ(h), h = λ(q), (16)

Q
α
−→ Gθ̂(ψ̂), q 7→ (q, 1), (17)

GPT
ᾱ
−→ Gθ̂(Âµ), [q] 7→ [(q, 1)], (18)

SU(2)
β
−→ SL2(C), A 7→ A, (19)

SO(3)
β̄
−→ SOc(3, 1), R 7→

(

1 0
0 R

)

, (20)
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SL2(C)
γ
−→ R

4
⋊ SL2(C), B 7→ (0, B), (21)

SOc(3, 1)
γ̄
−→ R

4
⋊ SOc(3, 1), Λ 7→ (0,Λ). (22)

Let ν the function which goes fromQ× Z2 to SU(2):

Q× Z2

ν
−→ SU(2), (q, g) 7→ ν(q, g) := sg(g)λ(q), (23)

wheresg(g) = 1 if g = 1 andsg(g) = −1 if g = −1.
Then, it holds:

• ν is an homomorphism.
Proof:

ν((q′, g′)(q, g)) = ν(q′q, g′g) = sg(g′g)λ(q′q) = sg(g′)sg(g)λ(q′)λ(q)

= (sg(g′)λ(q′))(sg(g)λ(q)) = ν(q′, g′)ν(q, g). (24)

• ν is 2 to 1.
Proof:

ν(q,−1) = ν(−q, 1). (25)

ν̄ is determined byν due to the commutative diagram:

Gθ̂(ψ̂)
ν
→ SU(2)

↓ψ ↓Φ

Gθ̂(Âµ)
ν̄
→ SO(3)

(26)

and is also a 2 to 1 homomorphism. Ifx ∈ Z3

2
thenψ−1({x}) = {y1, y2} ⊂

Q× Z2. Hence:

ν̄(x) = ν̄(ψ(yk)) = ν̄ ◦ ψ(yk) = Φ ◦ ν(yk)

= Φ(ν(yk)) = Φ(ν(qk, gk)), (27)

with k = 1 or 2. Then:

• ν̄ is an homomorphism.
Proof:

ν̄(x′x) = Φ(ν((q′k, g
′

k)(ql, gl))) = Φ(ν(q′k, g
′

k))Φ(ν(ql, gl))

= Φ ◦ ν(q′k, g
′

k)Φ ◦ ν(ql, gl) = ν̄ ◦ ψ(q′k, g
′

k)ν̄ ◦ ψ(ql, gl)

= ν̄(x′)ν̄(x), (28)

with l = 1 or 2.
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• ν̄ is 2 to 1.
Proof: FromΦ ◦ ν = ν̄ ◦ψ and the fact thatΦ, ν andψ are 2 to 1, it follows
that ν̄ is also 2 to 1.

Taking into account diagrams (13) and (26), the group homomorphisms:

ϕ = γ ◦ β ◦ ν (29)

and
ϕ̄ = γ̄ ◦ β̄ ◦ ν̄, (30)

make commutative the following diagram:

Gθ̂(ψ̂)
ϕ
→ P̄c

4

↓ψ ↓
≈

Φ

Gθ̂(Âµ)
ϕ̄
→ Pc

4
;

(31)

making explicit the close and possibly deep relationship between these discrete
and continuous groups.

4 Discussion

In summary, we have thatGθ̂(ψ̂) andG
Θ̂
(Âµ), which are groups acting at

the quantum field level that include the charge conjugation operator, emerge in
a natural way from thePT -group and itsP (or T ) subgroups. That is, from
matrices acting on Minkowski classical space-time.

It is important to note thatGPT generatesG
Θ̂
(Âµ), the CPT group of the

electromagnetic field, without passing throughSU(2). That is, without the need
of using spinors; while the groupSU(2) is needed in order to generateGθ̂(ψ̂), the
CPT group of the Dirac field.

Finally, another important thing that we found is the relationship between dis-
crete groups, likeG

Θ̂
(Âµ) andGθ̂(ψ̂), and continuous groups, like the connected

Poincaré group (Pc4) and its universal covering (̄Pc4). This is shown in diagram
(31).
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