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ON THE CLASSIFICATION OF
QUASIHOMOGENEOUS SINGULARITIES

CLAUS HERTLING AND RALF KURBEL

Abstract. The motivation for this paper are computer cal-
culations of complete lists of weight systems of quasihomoge-
neous polynomials with isolated singularity at 0 up to rather
large Milnor numbers. We review combinatorial characteri-
zations of such weight systems for any number of variables.
This leads to certain types and graphs of such weight systems.
Using them, we prove an upper bound for the common de-
nominator (and the order of the monodromy) by the Milnor
number, and we show surprising consequences if the Milnor
number is a prime number.
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1. Introduction

Several people have (re)discovered characterizations of those weight
systems which admit quasihomogeneous polynomials with isolated sin-
gularity at 0. Section 2 collects and compares these characterizations
and gives all references which we found. The results of this section are
not new. But the references are not well known and for several reasons,
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it is not so easy to extract the results from them. Also, we will need
part of the characterizations for a good control of such weight systems
in the later sections.
In section 3 a part of the conditions is used to associate after a

choice a type and a graph to a quasihomogeneous singularity. The
idea for this is contained in [Ar][AGV], and there it is carried out for
2 and 3 variables. The general case is carried out in [OR1], but that
part of [OR1] was never published. As we will need the graphs in the
sections 4 and 6, we rewrite the general case. Section 3 also makes the
classification in the case of 4 variables in [YS] more precise, showing
how necessary and sufficient conditions are obtained.
Section 4 gives an estimate d ≤ const(n) · µ for the weighted degree

d of a reduced weight system of a quasihomogeneous singularity from
above by the Milnor number µ. The calculations start with the well
known formula for µ in terms of the weights, but refine this formula
using a graph and a type of the singularity. The estimate is useful
for a computer calculation of all reduced weight systems of quasiho-
mogeneous singularities up to a given Milnor number. We carried out
such computer calculations for 2, 3 and 4 variables and µ ≤ 1500,
1000 and 500. The long tables will be available on a homepage. Some
observations from them are formulated in section 5.
Section 6 proves a surprising fact which we found looking at these

tables. If the Milnor number of a quasihomogeneous singularity is a
prime number, then the only type which one can associate to it is the
chain type (up to adding or removing squares from the singularity),
and furthermore, all eigenvalues of the monodromy have multiplicity
one. The proof further refines the formula for the Milnor number from
section 4.
We thank Sasha Aleksandrov for translating [Ko2] and for the refer-

ence [YS] and Wolfgang Ebeling and Atsushi Takahashi for discussions
related to lemma 3.5 and [ET]. This paper was written during a stay
at the Tokyo Metropolitan University. We thank the TMU and Martin
Guest for hospitality.

2. Combinatorial characterizations of weight systems of

quasihomogeneous singularities

We note N0 = {0, 1, 2, ...} ⊃ N = {1, 2, ...}. The support of a polyno-
mial

f =
∑

α∈Nn
0

aα · xα ∈ C[x1, ..., xn] where xα = xα1
1 ...xαn

n
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is supp f = {α ∈ Nn
0 | aα 6= 0}. The polynomial is called quasihomoge-

neous with weight system (w1, ..., wn, d) ∈ Rn+1
>0 if

n∑

i=1

αi · wi = d for any α ∈ supp f.

Here w1, ..., wn are the weights and d is the weighted degree. If a
polynomial is quasihomogeneous with some weight system it is also
quasihomogeneous with a weight system (w1, ..., wn, d) ∈ Qn+1

>0 . If a
quasihomogeneous polynomial has an isolated singularity at 0, that is,
if the ∂f

∂xi
vanish simultaneously precisely at 0, then wi < d for all i.

Therefore, from now on throughout the whole paper we consider only
weight systems with

(w1, ..., wn, d) ∈ Qn+1
>0 and wi < d for all i.

Furthermore, from now on we reserve the letters v1, ..., vn for weights
of weight systems (v1, ..., vn, d) ∈ Nn+1, and the letters w1, ..., wn for
weights of normalized weight systems (w1, ..., wn, 1) ∈ Qn+1

>0 , that is,
with weighted degree 1.
A weight system (v1, ..., vn, d) ∈ Nn+1 is called reduced if

gcd(v1, ..., vn, d) = 1. In later chapters, but not in this one, we will
also use a result in [Sa1] and restrict to weight systems with vi ≤

d
2

and wi ≤
1
2
.

Fix n ∈ N and denote N := {1, ..., n} and ei := (δij)j=1,...,n ∈ Nn
0 .

For J ⊂ N and a weight system (v1, ..., vn, d) ∈ Nn+1 (with vi < d) and
k ∈ N0 denote

NJ
0 := {α ∈ Nn

0 | αi = 0 for i /∈ J},

(Nn
0 )k := {α ∈ Nn

0 |
∑

i

αi · vi = k},

(NJ
0 )k := NJ

0 ∩ (Nn
0 )k.

The following combinatorial lemma will help to compare in theorem
2.2 several characterizations of weight systems which admit quasiho-
mogeneous polynomials with isolated singularities. A discussion of the
history and references will be given after theorem 2.2.

Lemma 2.1. Fix a weight system (v1, ..., vn, d) ∈ Nn+1 with vi < d and
a subset R ⊂ (Nn

0 )d. For any k ∈ N define

Rk := {α ∈ (Nn
0)d−vk | α+ ek ∈ R}.

The following five conditions (C1), (C1)’, (C2), (C2)’ and (C3) are
equivalent.
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(C1): ∀ J ⊂ N with J 6= ∅
∃ α ∈ R ∩ NJ

0

or ∃ K ⊂ N − J with |K| = |J |
and ∀ k ∈ K ∃ α ∈ Rk ∩ NJ

0 .

(C1)’: As (C1), but only J with |J | ≤ n+1
2
.

(C2): ∀ J ⊂ N with J 6= ∅
∃ K ⊂ N with |K| = |J |

and ∀ k ∈ K ∃ α ∈ Rk ∩ NJ
0 .

(C2)’: As (C2), but only J with |J | ≤ n+1
2
.

(C3): ∀ I, J ⊂ N with |I| < |J |
∃ k ∈ N − I and ∃ α ∈ Rk ∩ NJ

0 .

Proof: (C1)⇒(C1)’ and (C2)⇒(C2)’ are trivial.
(C1)’⇒(C1): Consider J ⊂ N with |J | > n+1

2
and I ⊂ J with

|I| =
[
n+1
2

]
. If there exists α ∈ R ∩ NI

0, then also α ∈ R ∩ NJ
0 . If not,

then there exists K ⊂ N−I with |K| = |I| and ∀ k ∈ K ∃ α ∈ Rk∩NI
0.

Then n is even and K = N − I, and K ∩J 6= ∅, and for k ∈ K ∩J and
α ∈ Rk ∩ NI

0 one finds α + ek ∈ R ∩ NJ
0 .

(C2)’⇒(C1)’: Consider J ⊂ N with 0 < |J | ≤ n+1
2

and K ⊂ N such
that J and K satisfy (C2)’.
1st case: K ⊂ N − J . Then J and K satisfy (C1)’.
2nd case: K ∩ J 6= ∅. Then for k ∈ K ∩ J and α ∈ Rk ∩ NJ

0 one
obtains α+ ek ∈ R ∩ NJ

0 , so J satisfies (C1)’.
(C3)⇒(C2): Consider J ⊂ N with J 6= ∅. Construct elements

k1, ..., k|J | ∈ N and subsets Ij = {k1, ..., kj} for 0 ≤ j ≤ |J | − 1 and
K := {k1, ..., k|J |} as follows. (C3) gives for J and Ij an element kj+1 ∈
N − Ij with Rkj+1

∩NJ
0 6= ∅. Obviously |K| = |J |, and J and K satisfy

(C2).
(C1)⇒(C3): Consider I, J ⊂ N with |I| < |J |. Then J 6= ∅.
1st case, J and some set K satisfy (C1): Because of |I| < |J | = |K|

there is a k ∈ (N − I) ∩K with Rk ∩ NJ
0 6= ∅.

2nd case, R ∩ NJ
0 6= ∅: If R ∩ NJ

0 6= R ∩ NJ∩I
0 then there exist an

α ∈ R∩NJ
0 −R∩NJ∩I

0 and a k ∈ J−J∩I with αk > 0. Then k ∈ N−I
and α− ek ∈ Rk ∩ NJ

0 .
So suppose R ∩ NJ

0 = R ∩ NJ∩I
0 . Then J1 := J − J ∩ I 6= ∅ because

of |I| < |J |, and R ∩ NJ1
0 = ∅, so there exists a K1 ⊂ N − J1 such

that J1 and K1 satisfy (C1). If K1 ∩ J 6= ∅ then for k ∈ K1 ∩ J and
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α ∈ Rk ∩ N
J1
0 one has α + ek ∈ R ∩ NJ

0 − R ∩ NJ∩I
0 , a contradiction.

Thus K1 ∩ J = ∅.
This and |K1| = |J1| > |I−(J−I)| give K1−I = K1−(I−(J−I)) 6=

∅. Any k ∈ K1 − I satisfies ∅ 6= Rk ∩ N
J1
0 ⊂ Rk ∩ NJ

0 . �

Theorem 2.2. Let (v1, ..., vn, d) ∈ Nn+1 with vi < d be a weight system.
(a) Let f ∈ C[x0, ..., xn] be a quasihomogeneous polynomial. The

condition

(IS1): f has an isolated singularity at 0,

implies that R := supp f ⊂ (Nn
0 )d satisfies (C1) to (C3).

(b) Let R be a subset of (Nn
0 )d. The following conditions are equiva-

lent.

(IS2): There exists a quasihomogeneous polynomial f with
supp f ⊂ R and an isolated singularity at 0.
(IS2)’: A generic quasihomogeneous polynomial with
supp f ⊂ R has an isolated singularity at 0.
(C1) to (C3): R satisfies (C1) to (C3).

(c) In the case R = (Nn
0 )d obviously Rk = (Nn

0 )d−vk . The following
conditions are equivalent.

(IS3): There exists a quasihomogeneous polynomial f with an
isolated singularity at 0.
(IS3)’: A generic quasihomogeneous polynomial has an iso-
lated singularity at 0.
(C1) to (C3): R = (Nn

0 )d satisfies (C1) to (C3).

Remarks 2.3. Several people (re)discovered parts of this theorem. We
will not reprove it here, but comment on the history and the references.
(i) Of course, (IS2) ⇐⇒ (IS2)’ and (IS3) ⇐⇒ (IS3)’ and (b)⇒(c)

and (a)⇒
(
(IS2) ⇒ (C1) to (C3)

)
.

(ii) Part (a) is quite elementary, for example (IS1)⇒(C1) is contained
in K. Saito’s paper [Sa1, Lemma 1.5], and it can also be extracted from
[Sh, Remark 3].
(iii) (IS2) ⇐⇒ (C2) is part of an equivalence for more general func-

tions in [Ko1, Remarque 1.13 (ii)], but there Kouchnirenko did not
carry out the proof in detail. He gave a short proof of the refined ver-
sion (IS2) ⇐⇒ (C2)’ in [Ko2, Theorem 1]. This reference [Ko2] seems
to have been cited up to now only in [Sh], it seems to have been almost
completely ignored.
(iv) Around the same time as Kouchnirenko, Orlik and Randell

proved (IS3) ⇐⇒ (C3) in the preprint [OR1, Theorem 2.12], but the
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published part [OR2] of it does not contain this result. It seems that
they have not published this result.
(v) O.P. Shcherbak stated a more general result [Sh, Theorem 1]

from which one can extract (IS2) ⇐⇒ (C1), but he did not provide a
proof. That was done by Wall [Wa, Ch. 5], who also stated explicitly
(IS2) ⇐⇒ (C1) and (IS3) ⇐⇒ (C1), they are Theorem 5-1 and Theo-
rem 5-3 in [Wa] for the hypersurface case (explicit in (5-7)). But as he
covers a much more general case, his proof is long.
(vi) A short proof of (IS3) ⇐⇒ (C1) is given by Kreuzer and Skarke

[KS, proof of Theorem 1], though it requires some work to see that the
condition stated in [KS, Theorem 1] is equivalent to (C1).
(vii) In theorem 2.2 (c) conditions (NJ

0 )k 6= ∅ for some k ∈ N0

arise. For k ∈ Z denote ZJ , (Zn)k and (ZJ)k analogously to NJ
0 , (N

n
0 )k

and (NJ
0 )k. Then (ZJ)k 6= ∅ is equivalent to gcd(vj | j ∈ J) | k. But

(NJ
0 )k 6= ∅ (for k ≥ 0) is more delicate. In the case J = {1, 2} sufficient

conditions are gcd(v1, v2) | k and lcm(v1, v2)− v1 − v2 + 1 ≤ k, because
then
(
lcm(v1, v2)

v1
− 1

)
· v1 + (−1) · v2 = (−1) · v1 +

(
lcm(v1, v2)

v2
− 1

)
· v2

is the largest integer missing in N0 · v1 + N0 · v2.

For any weight system (v1, ..., vn, d) ∈ Nn+1 with vi < d define the
rational function

ρ(v,d)(t) :=

n∏

i=1

(td − tvi)(tvi − 1)−1.

It is well known that ρ(v,d)(t) ∈ N0[t] if a quasihomogeneous polynomial
with isolated singularity at 0 exists.
The conditions ρ(v,d)(t) ∈ Z[t] and ρ(v,d)(t) ∈ N0[t] are in general

weaker than (C1) to (C3), but ρ(v,d)(t) ∈ Z[t] is equivalent to a sur-

prisingly similar statement. Denote by (C1) and (C2) the conditions
obtained from (C1) and (C2) in lemma 2.1 with NJ

0 replaced by ZJ .

Lemma 2.4. Fix a weight system (v1, ..., vn, d) ∈ Nn+1 with vi < d.
The following conditions are equivalent.

(IS3): ρ(v,d)(t) ∈ Z[t].
(GCD): ∀ J ⊂ N the gcd(vj | j ∈ J) divides

at least |J | of the numbers d− vk.

(C2): for R = (Nn
0 )d.

(C1): for R = (Nn
0 )d.
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Proof: (IS3) means that all zeros of
∏n

i=1(t
vi − 1) are zeros of∏n

i=1(t
d−vi − 1) with at least the same multiplicity. This shows

(IS3) ⇐⇒ (GCD). The equivalence (GCD) ⇐⇒ (C2) is trivial. The

equivalence (C2) ⇐⇒ (C1) follows as (C2)’⇒(C1)’ and (C1)⇒(C2)
in the proof of lemma 2.1. �

Lemma 2.5. Fix a weight system (v1, ..., vn, d) ∈ Nn+1 with vi < d. If

n ≤ 3 then (IS3) ⇐⇒ (IS3).

Proof: We restrict to the case n = 3. It is sufficient to show
(C1) ⇒(C1) for R = (Nn

0 )d. The (|J | = 1)-parts of (C1) and (C1)
coincide.
Consider J = {1, 2}, J1 = {1}, J2 = {2}. Then J satisfies (C1) if

and only if (NJ
0 )d 6= ∅. Now consider the different possibilities how J1

and J2 can satisfy (C1). The only case where (NJ
0 )d 6= ∅ is not obvious

is the case when J1&K1 = {3} and J2&K2 = {3} satisfy (C1), that is,
when v1|(d−v3) and v2|(d−v3). Of course, then also lcm(v1, v2)|(d−v3)
and lcm(v1, v2) ≤ d− v3.

(C1) for J gives (ZJ)d 6= ∅, that is, gcd(v1, v2)|d.
The conditions gcd(v1, v2)|d and lcm(v1, v2) ≤ d−v3 imply (NJ

0 )d 6= ∅
by remark 2.3 (vii), so J satisfies (C1).
The (|J | = 3)-part of (C1) follows from the (|J | = 2)-part. �

Remarks 2.6. (i) Lemma 2.5 is Theorem 3 in [Sa2]. It is also stated
in [Ar, remark after cor. 4.13] and [AGV, 2nd remark in 12.3].

(ii) For n ≥ 4 (IS3) is weaker than (IS3). [AGV, 12.3] contains the
example (v1, v2, v3, v4, d) = (1, 33, 58, 24, 265) of Ivlev. Here ρ(v,d)(t) ∈
N0[t], but (C1) fails for J = {2, 4}.

(iii) The equivalence (IS3) ⇐⇒ (C1) in lemma 2.4 is (up to rewrit-

ing their condition as (C1)) Lemma 1 in [KS].
(iv) Chapter 3 in [Wa] contains results and short proofs for 0-

dimensional quasihomogeneous complete intersections which are very
close to theorem 2.2 (b)+(c), lemma 2.4 and lemma 2.5.

3. Types and graphs of quasihomogeneous singularities

Here a classification of quasihomogeneous polynomials with isolated
singularity at 0 by certain types, which are encoded in certain graphs,
will be given. For n ∈ {2, 3} this is treated in [Ar][AGV], the general
case is carried out in a part of [OR1] which is not published in [OR2].
The type will come from some choice. Often several choices are

possible, and they may lead to different types or the same type, so,
often there are several types for one quasihomogeneous polynomial.
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Now consider n ∈ N, N = {1, ..., n}, a weight system (v1, ..., vn, d) ∈
Nn+1 with vi < d and a quasihomogeneous polynomial f ∈ C[x1, ..., xn]
with an isolated singularity at 0. Then supp f ⊂ (Nn

0 )d satisfies (C2)
by theorem 2.2 (a).
The choice is a map κ : N → N such that for any j ∈ N the sets

J = {j} and K = {κ(j)} satisfy (C2) with R = supp f , that is, f
contains a summand b · xa

j · xκ(j) for some b ∈ C∗, a ∈ N. The type is
the conjugacy class of this map κ with respect to the symmetric group
Sn. The graph which encodes the map κ is the ordered graph with
n vertices with numbers 1, ..., n and an arrow from j to κ(j) for any
j ∈ N with j 6= κ(j). The ordered graph without the numbering of the
vertices obviously encodes the type.
In order to describe the graphs, an oriented tree is called globally

oriented if each vertex except one has exactly one outgoing arrow. Then
the exceptional vertex has only incoming arrows and is called root.
Starting at any vertex and following the arrows one arrives at the root.
An oriented cycle is called globally oriented if each vertex has one in-

coming and one outgoing arrow. Following the arrows one runs around
the cycle. The following lemma is obvious.

Lemma 3.1. Exactly those graphs occur as graphs of maps κ : N → N
whose components either are globally oriented trees or consist of one
globally oriented cycle and finitely many globally oriented trees whose
roots are on the cycle.

Examples 3.2. (i) n = 2: [Ar][AGV] 3 types,

•1 •2 •1 •2// •1 •244
tt

I II III

(ii) n = 3: [Ar][AGV] 7 types. The sets J under the graphs III and
VI are explained in example 3.6.

•1 •2

•3

•1 •2

•3
��2

22

•1 •2

•3

oo
����
�

•1 •2

•3 aa

!!

I II III IV
J = {2, 3}

•1 •2

•3

oo
��2

22

•1 •2

•3

44
tt����
�

•1 •2

•3

//

XX222����
�

V V I V II
J = {2, 3}
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(iii) n = 4: [OR1] and [YS] 19 types. We follow the numbering in
[YS, Proposition 3.5]. The sets J under 9 of the 19 graphs are explained
in example 3.6.

•1 •2

•3•4

•1 •2

•3•4 //

•1 •2

•3•4
tt

44

•1 •2

•3•4

oo

//

•1 •2

•3•4

����?
??

??

I II III IV V
J = {3, 4}

•1 •2

•3•4

��

//

•1 •2

•3•4 OO
oo

��?
??

??

•1 •2

•3•4 VV

��

//

•1 •2

•3•4

44
tt

//

•1 •2

•3•4

oo
��

//

V I V II V III IX X
J = {2, 4}

•1 •2

•3•4

oo
����?

??
??

•1 •2

•3•4

oo
����

•1 •2

•3•4

oo
�����

��
��

•1 •2

•3•4

//

OO
oo

��
•1 •2

•3•4

//

OO

�����
��
//

XI XII XIII XIV XV
J = {3, 4} J = {2, 4} J = {2, 3}, J = {2, 4}

{2, 4}, {3, 4}

•1 •2

•3•4

44
tt ��

//

•1 •2

•3•4

44
tt ����

•1 •2

•3•4

44
tt

tt
44

•1 •2

•3•4

44
tt����
��

�
��

XV I XV II XV III XIX
J = {1, 3} J = {1, 3}, J = {2, 3},

{2, 4} {2, 4}, {3, 4}

(iv) n = 5: 47 types.
(v) n = 6: 128 types.

Remark 3.3. Fix a weight system (v1, ..., vn, d) ∈ Nn+1 with vi < d,
a quasihomogeneous polynomial f and a map κ : N → N as above.
Then for any j ∈ N the sets J = {j} and K = {κ(j)} satisfy (C2)
with R = supp f in a unique way: There is a unique aj ∈ N with
α := ajej ∈ Rκ(j) ∩ NJ

0 , that is, there is a unique monomial x
aj
j xκ(j)

with exponent ajej + eκ(j) in the support of f .

Now we forget (v1, ..., vn, d) and f and start anew with such a tuple
of monomials. We fix n ∈ N, N = {1, ..., n}, a map κ : N → N ,
numbers a1, ..., an ∈ N and the set R := {ajej + eκ(j) | j ∈ N} ⊂ Nn

0 of
exponents of the monomials x

aj
j xκ(j).
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Always |R| ≤ n, and most often |R| = n. The difference n − |R| is
the number of 2-cycles in the graph of κ with vertices j1 and j2 and
numbers aj1 = aj2 = 1.

Lemma 3.4. A weight system (v1, ..., vn, d) ∈ Nn+1 with vi < d and
R ⊂ (Nn

0 )d exists if and only if any even cycle with vertices j1, ..., jl (l
even) satisfies either

(EC1) neither aj1 = aj3 = ... = ajl−1
= 1

nor aj2 = aj4 = ... = ajl = 1,

or

(EC2) aj1 = aj2 = ... = ajl = 1

(here EC stands for Even Cycle). If such a weight system exists it is
unique up to rescaling if and only if all even cycles satisfy (EC1).

Proof: We work with a normalized weight system (w1, ..., wn, 1) ∈
(Q ∩ (0, 1))n × {1}. It is a solution of the system of linear equations
ajwj +wκ(j) = 1, j ∈ N . We discuss in this order (1) roots of trees not
on a cycle, (2) vertices on a cycle, (3) vertices on trees different from
the roots.

(1) If j is the root of a tree and is not on a cycle then κ(j) = j and
wj =

1
aj+1

∈ Q ∩ (0, 1).

(2) The restriction of the equations ajwj + wκ(j) = 1, j ∈ N , to
the vertices j1, ..., jl of a cycle with κ(jl) = j1 and κ(ji) = ji+1 for
1 ≤ i ≤ l − 1 has a unique solution (wj1, ..., wjl) ∈ Ql if and only if

0 6= det




aj1 1
aj2

. . . 1
1 ajl


 = aj1 · ... · ajl − (−1)l,

that is, if the cycle is odd or does not satisfy (EC2).
In that case one calculates easily that the solution is

wji =
ρ(aji+1

, aji+2
, ..., ajl, aj1, ..., aji−1

)

aj1 · ... · ajl − (−1)l
(3.1)

where

ρ :
∞⋃

k=0

Zk → Z, (3.2)

ρ(x1, ..., xk) = x1...xk − x2...xk + ...+ (−1)k−1xk + (−1)k.(3.3)

If all xi ≥ 1 then ρ(x1, ..., xk) ≥ 0, and then ρ(x1, ..., xk) = 0 if and
only if k is odd and x1 = x3 = ... = xk = 1. Therefore in the case
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aj1 · ... · ajl − (−1)l 6= 0 all wji > 0 if and only if the cycle is odd or
is even and satisfies (EC1). In that case the inequalities wji > 0 and
wji+1

> 0 and the equation ajiwji + wji+1
= 1 show also 0 < wji and

0 < wji+1
.

In the case aj1 · ... · ajl − (−1)l = 0 the cycle is even and satisfies
(EC2), and the equations ajiwji + wji+1

= 1 give only

wj1 = wj3 = ... = wjl−1
and wj2 = wj4 = ... = wjl = 1− wj1.

Any choice wj1 ∈ Q ∩ (0, 1) works.

(3) The weights of vertices on the trees different from the roots are
successively determined by

wj =
1− wκ(j)

aj

and automatically satisfy 0 < wj < 1. �

The following lemma 3.5 is related to the notion of invertible poly-
nomial [ET] and is known to some specialists. We keep the situation
after remark 3.3. We need some notations.
The map κ : N → N is of Fermat type if κ = id, that is, if its graph

has no arrows. It is of cycle type if its graph is a cycle. It is of chain
type if it has the vertices j1, ..., jn and the n− 1 arrows from ji to ji+1

for 1 ≤ i ≤ n − 1. The type of κ is a sum of Fermat type, cycle types
and chain types if its graph is a union of the corresponding graphs.

Lemma 3.5. Let n ∈ N, N = {1, ..., n}, κ : N → N , a1, ..., an ∈ N and
R = {ajej + eκ(j) | j ∈ N} be as above such that any even cycle in the
graph of κ satisfies (EC1) or (EC2) (in lemma 3.4). Let (v1, ..., vn, d) ∈
Nn+1 be a weight system with vi < d and R ⊂ (Nn

0 )d (it exists by lemma
3.4). Then the following 2 conditions are equivalent:

(IS4) A generic linear combination of the (at most n) monomi-
als x

aj
j xκ(j), j ∈ N , is a quasihomogeneous polynomial with an

isolated singularity at 0.
(FCC) The type of κ is a sum of Fermat type, cycle types and
chain types.

Proof: By theorem 2.2 (b), (IS4) is equivalent to (C2) for R as
above. The implication (FCC)⇒(IS4) is well known, also a direct proof
of (FCC)⇒(C2) is easy.
The other implication (C2)⇒(FCC) will be proved indirectly: Sup-

pose that (FCC) does not hold. Then there are two indices j1, j2 ∈ N
with j1 6= j2 and κ(j1) = κ(j2). The set J := {j1, j2} does not satisfy
(C2) for R as above. �
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Examples 3.6. We return to the examples 3.2.
(i) For a fixed map κ : N → N and numbers a1, ..., an ∈ N, the

conditions (EC1) and (EC2) in lemma 3.4 are not empty if the graph
of κ contains an even cycle, that is type III for n = 2, the types IV and
VI for n = 3 and the types III, VIII, IX, XIV, XVI, XVII, XVIII and
XIX for n = 4.
(ii) n = 2: Type I is Fermat type, type II is chain type, type III is

cycle type. In type III one must avoid a1 = 1, a2 > 1 and a1 > 1, a2 =
1. Apart from that (IS4) holds for arbitrary a1, a2 ∈ N.
(iii) n = 3 and n = 4: 5 of the 7 types with n = 3 and 10 of the 19

types with n = 4 are sums of Fermat type, cycle types and chain types.
There (IS4) and (IS3) (in theorem 2.2 (c)) hold for almost arbitrary
a1, ..., an ∈ N, with the only constraints from (EC1) or (EC2) in lemma
3.4.
For the other types, the sets J which fail to satisfy (C1)’ for R =

{ajej + eκ(j) | j ∈ N} are indicated under the graphs in example 3.2
(ii) and (iii). For these types one needs more monomials than those
with exponents in R in order to satisfy (C1)’. This leads to further
constraints on the numbers a1, ..., an.
(iv) n = 3: In both cases, III and VI, the failing set is J = {2, 3}.

Suppose that a weight system (v1, ..., vn, d) as in lemma 3.4 is deter-
mined from a1, a2, a3 ∈ N (uniquely except for a1 = a2 = 1 in type VI).
For (IS3) to hold one needs (NJ

0 )d 6= ∅. By lemma 2.5 this is equivalent
to (ZJ)d 6= ∅ and to gcd(v1, v2) | d. This condition is made explicit in
[Ar][AGV, 13.2].
(v) n = 4: Suppose that a weight system (v1, v2, v3, v4, d) as in lemma

3.4 is determined from a1, a2, a3, a4 ∈ N. Consider in each of the 9 cases
which are not sums of Fermat type, cycle types and chain types a failing
set J = {j1, j2}, that is, with κ(j1) = κ(j2) = j3 and {1, 2, 3, 4} =
{j1, j2, j3, j4}. For (IS3) to hold one needs (NJ

0 )d 6= ∅ or (NJ
0 )d−vj4

6= ∅.

As in lemma 2.5, the condition (NJ
0 )d 6= ∅ is equivalent to (Zj)d 6= ∅ and

to gcd(vj1 , vj2) | d. But the condition (NJ
0 )d−vj4

6= ∅ may be stronger

than (ZJ )d−vj4
6= ∅ and gcd(vj1, vj2) | d− vj4.

(vi) We consider the case XII with n = 4 in detail. There one starts
with arbitrary a1, a2, a3, a4 ∈ N and with the monomials xa1+1

1 , xa2
2 x1,

xa3
3 x2, x

a4
4 x1. The weight system

(v1, v2, v3, v4, d)

= (a2a3a4, a1a3a4, ((a1 + 1)(a2 − 1) + 1)a4, a1a2a3, (a1 + 1)a2a3a4)

is unique up to rescaling. The only failing set is J = {2, 4}, and
κ(2) = κ(4) = 1, so (NJ

0 )d−v1 6= ∅. One needs (NJ
0 )d 6= ∅ or (NJ

0 )d−v3 6= ∅
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for (IS3) to hold. Now

(NJ
0 )d 6= ∅ ⇐⇒ (ZJ )d 6= ∅

⇐⇒ gcd(v2, v4) | d ⇐⇒ a1 | lcm(a2, a4).

And

(NJ
0 )d−v3 6= ∅ =⇒ (ZJ)d−v3 6= ∅

⇐⇒ gcd(v2, v4) | d− v3

⇐⇒ a1a3 |
a4

gcd(a2, a4)
(((a1 + 1)(a2a3 − a2 + 1)− 1).

(vii) Ivlev’s example (remark 2.6 (ii), [AGV, 12.3]) (v1, v2, v3, v4, d) =
(1, 33, 58, 24, 265) is of type XII with the monomials x265

1 , x8
2x1, x

4
3x2,

x11
4 x1, so (a1, a2, a3, a4) = (264, 8, 4, 11). Here (NJ

0 )d = ∅ and

(NJ
0 )d−v3 = ∅, so (IS3) does not hold, but (ZJ)d−v3 6= ∅, so (IS3)

holds and ρ
v,d(t) ∈ Z[t], even ∈ N0[t].

Two function germs f1, f2 ∈ OCn,0 are right equivalent if there is
a local coordinate change ϕ : (Cn, 0) → (Cn, 0) such that f1 ◦ ϕ =
f2. Often in one right equivalence class of functions with an isolated
singularity at 0, there are several quasihomogeneous functions with
different weight systems. For example xa1

1 x2+xa2
2 x3+x3x1 with weight

system (v1, v2, v3, d) = (a2, 1, a1a2−a2+1, a1a2+1) and xa1a2+1
1 +x2

2+x2
3

with weight system (v′1, v
′
2, v

′
3, v

′
3, d

′) = (2, a1a2 + 1, a1a2 + 1, 2a1a2 + 2)
are in the same right equivalence class of Aa1a2-singularities [ET]. The
ambiguity was analysed in [Sa1].

Theorem 3.7. [Sa1] Let f ∈ OCn,0 be a function germ with an isolated
singularity at 0.
(a) f is right equivalent to a quasihomogeneous polynomial if and

only if

f ∈ Jf :=

(
∂f

∂x1
, ...,

∂f

∂xn

)
⊂ OCn,0.

(b) If f is quasihomogeneous with normalized weight system
(w1, ..., wn, 1) with 0 < w1 ≤ ... ≤ wn < 1 and if f ∈ m3

Cn,0, then

the weight system is unique and 0 < w1 ≤ ... ≤ wn < 1
2
.

(c) If f ∈ Jf then f is right equivalent to a quasihomogeneous polyno-
mial g(x1, ..., xk)+x2

k+1+...+x2
n with g ∈ m3

Ck,0
. Especially, its normal-

ized weight system satisfies 0 < w1 ≤ ... ≤ wk < wk+1 = ... = wn = 1
2
.

(d) If f and f̃ ∈ OCn,0 are right equivalent and quasihomogeneous
with normalized weight systems (w1, ..., wn, 1) and (w̃1, ..., w̃n, 1) with
w1 ≤ ... ≤ wn ≤ 1

2
and w̃1 ≤ ... ≤ w̃n ≤ 1

2
then wi = w̃i.
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Remarks 3.8. (i) Part (b) can be proved with the arguments in the
proof of lemma 3.4. The condition f ∈ m3

Cn,0 is equivalent to all a2 ≥ 2.

The implication wj < 1
2
is nontrivial only in case (2) in the proof of

lemma 3.4.
(ii) Part (c) follows from (a) and the splitting lemma and (b).
(iii) An argument for part (d) different from the proof in [Sa1]

is as follows. If f is quasihomogeneous with some weight system
(v1, ..., vn, d) ∈ Nn+1 then ρ(v,d)(t) ∈ N0[t], so

ρ(v,d)(t
1/d) =

µ∑

j=1

tαj

for certain numbers α1, ..., αµ ∈ 1
d
N. These numbers and ρ(v,d)(t

1/d) are
invariants of the right equivalence class of f . This is well known and
follows essentially from calculations in [Br]. The numbers α1, ..., αµ are
the exponents of the right equivalence class of f . By part (c) there

exists a weight system (ṽ1, ...ṽn, d̃) with ṽi ≤
d̃
2
and

µ∑

j=1

tαj = ρ(ṽ,d̃)(t
1/d̃).

It is easy to see that one can recover the normalized weight system
1

d̃
(ṽ1, ..., ṽn, d̃) from the exponents and this equation. Therefore this

normalized weight system is unique.

4. Milnor number versus weighted degree

Let pi, i ∈ N, be the i-th prime number, so (p1, p2) = (2, 3). Define

l(n) :=
n∏

i=1

pi
pi − 1

,

so (l(1), l(2), l(3), l(4), l(5)) = (2, 3, 15
4
, 35

8
, 77
16
). The prime number theo-

rem in the form pn = n log n · (1+o(1)) [HW, Theorem 8] and Mertens’
theorem ∏

prime numbers p≤x

p

p− 1
= eγ · log x · (1 + o(1))

with γ = Euler’s constant [HW, Theorem 429] imply

l(n) = eγ · log n · (1 + o(1)).

Theorem 4.1. (a) Let f ∈ C[x1, ..., xn] be a quasihomogeneous poly-
nomial with an isolated singularity at 0 and reduced weight system
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(v1, ..., vn, d) ∈ Nn+1 with vi ≤
d
2
for all i (reduced: gcd(v1, ..., vn, d) =

1). Then
d ≤ l(n) · µ.

(b) If vi <
d
2
for all i and n ≥ 2 then

d ≤ l(n− 1) · µ.

These estimates rely only on the conditions for J with |J | = 1 in
(C1)-(C3) for R = (Nn

0)d, the conditions for |J | ≥ 2 are not needed.
Theorem 4.3 formulates this more general case. Both theorems are
proved after stating theorem 4.3.

Remarks 4.2. (i) These estimates are useful for a classification of
such weight systems using computer, for a fixed number of variables
and with Milnor numbers up to a chosen bound. See section 5.
(ii) Calculations in [Br] show that for a quasihomogeneous poly-

nomial f as in theorem 4.1 the monodromy on the Milnor lattice is
semisimple with eigenvalues e−2πiα1 , ..., e−2πiαµ , where α1,..., αµ are the
exponents considered in remark 3.8 (iii). For f ∈ m3

Cn,0 the procedure
mentioned in remark 3.8 (iii), which recovers the normalized weights
(w1, ..., wn) from the exponents, shows that the tuples (w1, ..., wn) and
(α1, ..., αµ) have the same common denominator d. Therefore in the
case f ∈ m3

Cn,0 the order of the monodromy is d. Adding squares

x2
n+1 + ...x2

n+m changes the eigenvalues by the factor (−1)m and re-

places d by d̃ with d̃ = 2d for odd d and d̃ = d for even d. Then the

order of the monodromy is d̃ or d̃
2
.

Theorem 4.3. Fix n ∈ N, N = {1, ..., n}, a map κ : N → N , numbers
a1, ..., an ∈ N and the set R = {ajej + eκ(j) | j ∈ N} of exponents of
the monomials x

aj
j xκ(j). Suppose that aj ≥ 2 for all j ∈ N which lie in

components C of the graph of κ with |C| ≥ 2.
(a) By lemma 3.4 there is a unique reduced weight system

(v1, ..., vn, d) ∈ Nn+1 with R ⊂ (Nn
0 )d. It satisfies vj <

d
2
for aj ≥ 2 and

vj =
d
2
for aj = 1.

(b)
d ≤ l(n) · µ.

(c) If all aj ≥ 2 and n ≥ 2 then

d ≤ l(n− 1) · µ.

(d) If n = 1 then d = a1 + 1 and µ = a1.

Proof of theorem 4.1: Suppose v1 ≤ ... ≤ vk < vk+1 = ... = vn = 1
2

for some k with 0 ≤ k ≤ n. By theorem 3.7 f is right equivalent
to a quasihomogeneous polynomial g(x1, ..., xk) + x2

k+1 + ... + x2
n with
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g ∈ m3
Ck,0 with an isolated singularity at 0 and the same weight system

(v1, ..., vn, d).
Choose a map κ : N → N for g + x2

k+1 + ...+ x2
n as in section 3. By

remark 3.3 there are unique numbers a1, ..., an ∈ N such that ajej+eκ(j)
are in supp(g + x2

k+1 + ... + x2
n). The hypotheses in theorem 4.3 are

satisfied. Theorem 4.3 (b) and (c) give theorem 4.1 (a) and (b). �

Proof of theorem 4.3: (a) The first part follows from lemma 3.4.
If aj = 1 then j is itself a component of the graph of κ, so (aj+1)vj = d,
so vj = d

2
. If aj ≥ 2 then j lies in a component C of the graph of κ

with ai ≥ 2 for all i ∈ C. Then aj ≥ 2 follows as in remark 3.8 (i) with
the arguments in the proof of lemma 3.4.

(b) and (c) Write
vj
d
= wj =

sj
tj

with wj ∈ Q ∩ (0, 1
2
] and sj , tj ∈ N,

gcd(sj, tj) = 1. An elementary, but important observation is

j 6= κ(j) =⇒ tj = tκ(j) · βj for some βj ∈ N with βj | aj. (4.1)

This follows from
sj
tj

= wj =
1− wκ(j)

aj
=

tj − sj
tj · aj

and gcd(tj, tj − sj) = 1.

For any subset C ⊂ N define

µ(C) :=
∏

j∈C

(
1

wj

− 1), especially µ(∅) = 1, µ(N) = µ,

d(C) := lcm(tj | j ∈ C), especially d(∅) = 1, d(N) = d.

Let CFermat be the union of all components C of the graph of κ with
|C| = 1. For j ∈ CFermat wj =

1
aj+1

, so

µ(CFermat) =
∏

j∈CFermat

aj , (4.2)

d(CFermat) = lcm(aj + 1 | j ∈ CFermat). (4.3)

Now we will study µ(C) and d(C) for a component C of the graph
of κ with |C| ≥ 2. By hypothesis aj ≥ 2 for j ∈ C.

Case 1, C is a cycle: Suppose C = {1, ..., m} with κ(j) = j − 1 for
2 ≤ j ≤ m and κ(1) = m. (4.1) gives immediately t1 = t2 = ... = tm =
d(C). (3.1) shows (with ρ as in (3.2))

d(C) = t1 = ... = tm =
1

γ
· (a1...am − (−1)m) (4.4)

where γ = gcd(a1...am − (−1)m, ρ(aj−1, ..., a1, am, ..., aj+1))(4.5)

for any j ∈ {1, ..., m}. Define here d̃(C) := γ · d(C) = a1...am − (−1)m.
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One calculates

µ(C) =

m∏

j=1

d− vj
vj

=

m∏

j=1

a1...am − (−1)m − ρ(aj−1, ..., a1, am, ...aj+1)

ρ(aj−1, ..., a1, am, ..., aj+1)

=

m∏

j=1

aj+1 · ρ(aj , ..., a1, am, ..., aj+2)

ρ(aj−1, ..., a1, am, ..., aj+1)
= a1 · ... · am. (4.6)

Case 2, C is not a cycle: Then C is either a tree or a cycle with one
or several attached trees. If C is a tree suppose C1 = {1} ⊂ C is the
root, and define m := 1. If C is a cycle with attached trees suppose
C1 = {1, ..., m} is the cycle, and κ(j) = j−1 for 2 ≤ j ≤ m, κ(1) = m.
In both cases the set of leaves is the subset C2 ⊂ C − C1 of vertices
with no incoming arrows. For any leaf j ∈ C2 denote by C(j) the set
of vertices on the path from j to C1, excluding the vertex in C1, so

C(j) = {j, κ(j), ..., κl(j)(j)} ⊂ C − C1 with κl(j)+1(j) ∈ C1.

Then with γ := 1 if m = 1 and γ as in (4.5) if m ≥ 2 one has

d(C1) =
1

γ
· (a1...am − (−1)m).

With (4.1) and βi as defined in (4.1) one finds

tj = d(C1) ·
∏

i∈C(j)

βi for j ∈ C2, (4.7)

d(C) = lcm(tj | tj ∈ C2)

= d(C1) · lcm(
∏

i∈C(j)

βi | j ∈ C2). (4.8)

We will estimate d(C) by d̃(C) with d(C) | d̃(C) and

d̃(C) := (a1...am − (−1)m) ·


 ∏

j∈C−(C1∪C2)

aj


 · lcm(aj | j ∈ C2). (4.9)

In order to estimate µ(C) from above, we choose a decomposition of
C − C1 into a disjoint union

C − C1 =

.⋃

j∈C2

C̃(j)

with C̃(j) ⊂ C(j) being a suitable sub-chain of C(j),

C̃(j) = {j, κ(j), ..., κl̃(j)(j)} for some l̃(j) ≤ l(j).
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To simplify notations suppose for a moment that one such sub-chain

C̃(j) takes the form C̃(j) = {j, j − 1, ..., k} with κ(i) = i − 1 for

k ≤ i ≤ j. Using wl =
1−wκ(l)

al
repeatedly one finds by an easy induction

for k ≤ i ≤ j

wi =
ρ(ai−1, ..., ak+1, ak) + (−1)i−1−kwk−1

akak+1...ai−1ai
. (4.10)

Therefore

µ(C̃(j)) =
∏

i∈C̃(j)

1− wj

wj

=
∏

i∈C̃(j)

ρ(ai, ..., ak+1, ak) + (−1)i−kwk−1

ρ(ai−1, ..., ak+1, ak) + (−1)i−1−kwk−1

=
ρ(aj , ..., ak+1, ak) + (−1)j−kwk−1

1− wk−1
. (4.11)

Because all ai ≥ 2 for i ∈ C, one can estimate

ρ(aj , ..., ak+1, ak) + (−1)j−kwk−1 > ak...aj−1 · (aj − 1),

µ(C̃(j)) >
ak...aj−1 · (aj − 1)

1− wk−1
> ak...aj−1 · (aj − 1). (4.12)

The following additional estimate is relevant only for odd m. But
it holds for all m, and it will be smoother to treat even and odd m
simultaneously. For k − 1 ∈ C1

µ(C1) ·
1

1− wk−1

= a1...am ·
a1...am − (−1)m

a1...am − (−1)m − ρ(ak−2, ..., a1, am, ..., ak)

≥ a1...am − (−1)m. (4.13)

Now we put together the pieces and estimate µ(C) from above. There

is (at least) one leaf j0 ∈ C2 with C̃(j0) = C(j0), so k−1 := κl̃(j0)+1(j) ∈
C1. For this leaf j0 we use the finer estimate in (4.12)

µ(C̃(j0)) >
1

1− wk−1
· (aj0 − 1) ·

∏

i∈C(j0)−{j0}

ai.

Together with (4.12) for all other leaves j ∈ C2 and (4.13) we obtain

µ(C) = µ(C1) ·
∏

j∈C2

µ(C̃(j))

≥ (a1...am − (−1)m) ·


 ∏

j∈C−(C1∪C2)

aj


 ·

(
∏

j∈C2

(aj − 1)

)
.(4.14)
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Now case 2 is finished. We can estimate d and µ and their quotient.
CLeaf ⊂ N −CFermat denotes the union of the leaves of all components
C with |C| ≥ 2. For any such C the notations of case 2 are preserved,
C1 is the root or the cycle in it, and C2 is the set of leaves in it. If C
is a cycle then C = C1.

d = lcm (d(CFermat); d(C) for all components C with |C| ≥ 2)

≤ lcm
(
d(CFermat); d̃(C) for C with |C| ≥ 2

)

≤
∏

C with |C|≥2, C not an odd cycle



(
∏

j∈C1

aj − (−1)|C1|

)
·

∏

j∈C−(C1∪C2)

aj


 ·

lcm
(
aj + 1 for j ∈ CFermat;

∏

j∈C

aj + 1 for C an odd cycle ; aj for j ∈ CLeaf

)
. (4.15)

µ = µ(CFermat) ·
∏

C a cycle

µ(C) ·
∏

C not a cycle,|C|≥2

µ(C)

≥
∏

j∈CFermat

aj ·
∏

C a cycle

(
∏

j∈C

aj

)
· (4.16)

∏

C not a cycle,|C|≥2



(
∏

j∈C1

aj − (−1)|C1|

)
·

∏

j∈C−(C1∪C2)

aj ·
∏

j∈C2

(aj − 1)


 .

d

µ
≤

lcm

(
aj + 1 for j ∈ CFermat;∏

j∈C aj + 1 for C an odd cycle; aj for j ∈ CLeaf

)

∏
j∈CFermat

aj ·
∏

C an odd cycle

(∏
j∈C aj

)
·
∏

j∈CLeaf
(aj − 1).

(4.17)

In lemma 4.4 (a) two numbers l1(n) and l2(n) ∈ Q>0 are defined.
Obviously d

µ
≤ l1(n), and if all aj ≥ 2 and n ≥ 2 then d

µ
≤

max(l2(n), l1(n − 1)). The parts (b) and (c) of theorem 4.3 follow
now with lemma 4.4. Part (d) is trivial. �

Lemma 4.4. For n ∈ N define

l1(n) = max

(
lcm(b1, ..., bn)

(b1 − 1) · ... · (bn − 1)
| b1, ..., bn ∈ N− {1}

)
,

l2(n) = max

(
lcm(b1, ..., bn)

(b1 − 1) · ... · (bn − 1)
| b1, ..., bn ∈ N− {1, 2}

)
.
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Then

l1(n) = l(n) :=

n∏

i=1

pi
pi − 1

≥ l2(n+ 1),

here pi is the i-th prime number.

Proof: First, l1(n) = l(n) will be proved. Choose b1, ..., bn ∈ N

arbitrarily. Write lcm(b1, ..., bn) =
∏

i∈I p
ri
i with I ⊂ N finite, ri ≥ 1

for i ∈ I. For any i ∈ I choose β(i) ∈ N with prii | bβ(i). Define

b̃j :=
∏

i with β(i)=j

prii .

For any j with b̃j > 1 let i(j) be the minimal i with β(i) = j. Then

lcm(b1, ..., bn) = lcm(̃bj | b̃j > 1) =
∏

j with b̃j>1

b̃j ,

lcm(b1, ..., bn)

(b1 − 1) · ... · (bn − 1)
≤

∏

j with b̃j>1

b̃j

b̃j − 1

≤
∏

j with b̃j>1

pi(j)
pi(j) − 1

≤
n∏

i=1

pi
pi − 1

.

This proves l1(n) ≤ l(n). The choice bi = pi proves l1(n) ≥ l(n).
Analogously one shows for n ≥ 2

l2(n) =
3

3− 1
·

4

4− 1
·

n∏

i=3

pi
pi − 1

.

l2(2) = 2 = l(1). For n ≥ 2 the estimate l2(n+ 1) ≤ l(n) follows from

4

4− 1
·

pn+1

pn+1 − 1
≤

4

3
·

p3
p3 − 1

=
5

3
<

2

2− 1
.

�

5. Computer calculations

Theorem 2.2 (c) gives combinatorial characterizations (C1)-(C3) of
those reduced weight systems (v1, ..., vn, d) ∈ Nn+1 for which quasiho-
mogeneous polynomials with an isolated singularity at 0 exist. These
characterizations can be used in computer programs to find all such
weight systems with Milnor number up to some chosen bound. Be-
cause of theorem 3.7 for most purposes it is sufficient to restrict to
weight systems with vi <

d
2
. Theorem 4.1 (b) gives then the bound

d ≤ l(n− 1) · µ for d if n ≥ 2.
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The second author carried out such computer calculations for n =
2, 3, 4. The following table lists for n = 2, 3, 4 the number of reduced
weight systems (v1, ..., vn, d) (up to reordering of v1, ..., vn) with vi <

d
2

which satisfy (C1)-(C3) for R = (Nn
0)d and whose Milnor number is

less or equal than the number µ in the left column.

µ n = 1 n = 2 n = 3 n = 4
50 50 187 217 100
100 100 493 806 570
150 150 847 1627 1442
200 200 1242 2623 2678
300 300 2083 5027 6059
400 400 2998 7832 10459
500 500 3957 10931 15634
1000 1000 9246 30241 ?
1500 1500 15058 ? ?

On a homepage tables with all these weight systems and the char-
acteristic polynomials of the monodromy will be made available. Of
course for n = 1 one has just the Aµ-singularities xµ+1

1 with (v1, d) =
(1, µ + 1) for µ ≥ 1. The A1-singularity is taken into account in the
column for n = 1 despite v1 =

d
2
in that case.

For example, the total number of reduced weight systems for n = 4
with vi ≤

d
2
and (C1)-(C3) and µ ≤ 50 is 50 + 187 + 217 + 100.

The weight system (v1
d
, v2

d
, v3

d
, v4

d
) with vi

d
< 1

2
and the largest d within

µ ≤ 500 is ( 1
58
, 1
5
, 1
3
, 57
116

) with µ = 473, d = 1740, l(3) · µ = 1773, 75.
This indicates that the estimate in theorem 4.1 (b) cannot be improved
much.
For any n the weight system with vi <

d
2
with the smallest Milnor

number is (1, ..., 1, 3) with d = 3 and µ = 2n. This follows from [KS,
Lemma 2]. This lemma says that there is an injective map

ν : {i | vi >
1

3
} → {i | vi <

1

3
} with vν(i) = d− 2vi.

Then

(
d

vi
− 1)(

d

vν(i)
− 1) > 4.

For n = 2 weight systems with vi <
d
2
exist for any µ ≥ 4, because

of the Dµ-singularities xµ−1
1 + x2

2x1. But for n = 3 and n = 4 there
are some gaps, some numbers > 2n which are not Milnor numbers of
any quasihomogeneous singularities f ∈ m3

Cn,0. We list all gaps up to
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µ = 1000 for n = 3 and up to µ = 500 for n = 4.

n = 3 : µ = 9, 13, 37, 61, 73, 157, 193, 277, 313, 397, 421,

457, 541, 613, 661, 673, 733, 757, 877, 997.

n = 4 : µ = 17, 18, 19, 23, 27, 47, 59, 74, 83, 107, 167, 179,

219, 227, 263, 314, 347, 359, 383, 467, 479.

Corollary 6.3 will give an explanation of the majority of these gaps in
terms of Sophie Germain prime numbers and similar prime numbers.
Yonemura [Yo] had classified all reduced weight systems

(v1, v2, v3, v4, d) with
∑

i vi = d and (C1)-(C3) for R = (Nn
0 )d. Using

our lists, we recovered his 95 weight systems. 48 are in our list for n = 3
with

∑3
i=1 vi =

d
2
, with Milnor numbers ranging between 125 ((1, 1, 1, 6)

and 492 ((1, 6, 14, 42)). 47 are in our list for n = 4, with Milnor num-
bers ranging between 81 ((1, 1, 1, 1, 4)) and 264 ((1, 3, 7, 10, 21)).

6. The case Milnor number = prime number

The computer calculations mentioned in section 5 led us to expect the
following result. This section is devoted to its proof.

Theorem 6.1. Let f ∈ C[x1, ..., xn] be a quasihomogeneous polyno-
mial with an isolated singularity at 0 and normalized weight system
(w1, ..., wn, 1) ∈ (Q ∩ (0, 1

2
))n × {1} such that its Milnor number µ is a

prime number.
(a) There are numbers a1, ..., an ∈ N − {1} and c1, ..., cn ∈ C∗ such

that

f = c1x
a1+1
1 + c2x

a2
2 x1 + ...+ cnx

an
n xn−1.

Therefore f is of chain type by the map κ : N → N with κ(1) = 1,
κ(j) = j − 1 for 2 ≤ j ≤ n. And this is the only possible map κ as
in section 3. Also, by rescaling of x1, ..., xn one can arrange c1 = ... =
cn = 1. So, f is unique up to right equivalence.

(b) Write wi =
si
ti

with si, ti ∈ N, gcd(si, ti) = 1. Then

ti = ai...a2 · (a1 + 1), d = tn,

si = ρ(ai−1, ..., a2, a1 + 1) (with ρ as in (3.2)),

s1 = 1, si+1 = ti − si = ti − ti−1 + ti−2 − ... + (−1)i,

µ = ρ(an, ..., a2, a1 + 1).

(c) The characteristic polynomial of the monodromy on the Milnor
lattice of f is

∏
m:(6.1)Φm, here Φm is the cyclotomic polynomial of the
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m-th primitive unit roots, and (6.1) is the condition

m | an...a2(a1 + 1), min(i | m | ai...a2(a1 + 1)) ≡ n mod 2. (6.1)

Especially, all eigenvalues have multiplicity 1.

Examples 6.2. For n = 2, 3 all tuples (a1, ..., an) as in theorem 6.1
with µ ≤ 23 are listed below, for n = 4 all tuples with µ ≤ 31.

µ n = 2 n = 3 n = 4
5 (3,2) - -
7 (5,2), (2,3) - -
11 (9,2), (4,3) (3,2,2), (2,3,2) -
13 (11,2), (5,3), (3,4), (2,5) - -
17 (15,2), (7,3), (3,5) (5,2,2), (2,5,2) -
19 (17,2), (8,3), (5,4), (2,7) (4,3,2), (3,4,2), (3,2,3) -
23 (21,2), (10,3) (7,2,2), (5,3,2), (3,5,2), (2,7,2) -
29 4 types 6 types (3,2,3,2)
31 6 types 2 types (5,2,2,2)

Proof of theorem 6.1: Let κ : N → N be a map as in section 3,
so for any j ∈ N the sets J = {j} and K = {κ(j)} satisfy (C2) for
R = supp f .
The proof proceeds in 4 steps: Step 1 extends some notations and

formulas from the proof of theorem 4.3. Step 2 shows that κ is of chain
type. Step 3 shows all remaining statements in (a) and (b). Step 4
proves part (c).

Step 1. We consider the graph of κ. The union of components C
with |C| = 1 is called CFermat. For a component C let C1 ⊂ C be the
root of C if C is a tree, the cycle in C if C contains a cycle, and C1 = C
if |C| = 1.
For a component C with |C| ≥ 2 let C2 ⊂ C−C1 be the set of leaves,

that is, the vertices without incoming arrows, and let C3 ⊂ C − C2 be
the set of branch points, that is, the vertices with ≥ 2 incoming arrows.
The multiplicity r(j) ∈ N of a branch point j ∈ C3 is the number of
incoming arrows minus 1. If C is not a cycle then C3 6= ∅, C3 ∩C1 6= ∅
and

∑
c∈C3

r(c) = |C2|.
The union of all leaves is called CLeaf , the union of all branch points

is called CBranch.
For a component C with |C| ≥ 2 and for j ∈ C let

Ĉ(j) = (j, κ(j), ..., κl̂(j)(j))

be the longest tuple witout repetition: If C is a tree then κl̂(j)(j) is the

root and κl̂(j)−1(j) is not the root. If C contains a cycle, Ĉ(j) hits the
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cycle and runs around it almost once, so it hits the cycle in κl̂(j)+1(j). If

k ∈ Ĉ(j) let C(j, k) be the tuple from j to k, C(j, k) = (j, κ(j), ..., k).
The definition of C(j) in the proof of theorem 4.3 is slightly changed

here: For j ∈ C −C1 (not only j ∈ C2), let C(j) = (j, κ(j), ..., κl(j)(j))

be the sub-tuple of Ĉ(j) which stops just before reaching C1, so
κl(j)(j) /∈ C1, κ

l(j)+1(j) ∈ C1. For j ∈ C1 define C(j) := ∅.
For any C(j, k) define with ρ as in (3.2)

ρ̂(C(j, k)) := ρ(j, κ(j), ..., k)

and define ρ̂(∅) := 1.
Now formula (3.1) for the weight wj of a vertex j ∈ C1 on a cycle

can be rephrased as

wj =
ρ̂(Ĉ(j)− {j})∏
k∈C1

ak − (−1)|C1|
. (6.2)

And formula (4.11) generalizes to

µ(C(j, k)) =
∏

i∈C(j,k)

(
1

wi

− 1

)
=

ρ̂(C(j, k)) + (−1)|C(j,k)|+1wκ(k)

1− wκ(k)

.(6.3)

For j, k ∈ C − C1 and k ∈ C(j) the tuple Ĉ(j) contains the tuple

Ĉ(κ(k)), they hit the cycle or root C1 at the same vertex l1 ∈ C1 and
end at the same vertex l2 ∈ C1, with κ(l2) = l1. For such j and k one
calculates with (6.2) and (6.3)

µ(C(j, k) =
µ(Ĉ(j))

µ(Ĉ(κ(k)))

=
ρ̂(Ĉ(j)) + (−1)|Ĉ(j)|+1wl1

ρ̂(Ĉ(κ(k))) + (−1)|Ĉ(κ(k))|+1wl1

=

(∏
l∈C1

al − (−1)|C1|
)
ρ̂(Ĉ(j)) + (−1)|Ĉ(j)|+1ρ̂(Ĉ(l1)− {l1})(∏

l∈C1
al − (−1)|C1|

)
ρ̂(Ĉ(κ(k))) + (−1)|Ĉ(κ(k))|+1ρ̂(Ĉ(l1)− {l1})

=

(∏
l∈C1

al
)
ρ̂(Ĉ(j)) + (−1)|C1|+1

(∏
l∈C1

al
)
ρ̂(C(j))

(∏
l∈C1

al
)
ρ̂(Ĉ(κ(k))) + (−1)|C1|+1

(∏
l∈C1

al
)
ρ̂(C(κ(k)))

=
ρ̂(Ĉ(j)) + (−1)|C1|+1ρ̂(C(j))

ρ̂(Ĉ(κ(k))) + (−1)|C1|+1ρ̂(C(κ(k))
(6.4)

A component C with |C| ≥ 2 which is not a cycle is a tree or a
cycle with attached trees. One can choose a map β : C2 → C3 from
the leaves to the branch points such that k ∈ C3 is the image of r(k)



CLASSIFICATION OF QUASIHOMOGENEOUS SINGULARITIES 25

leaves and β(j) ∈ Ĉ(j) for any leaf j. Then C−C1 is the disjoint union⋃
j∈C2

(C(j)−C(β(j))), here the sets underlying the tuples are meant.
Therefore

µ(C) =
∏

j∈C1

aj ·
∏

j∈C2

µ(C(j)) ·
∏

j∈C3

µ(C(j))−r(j)

=
∏

j∈C1

aj ·
∏

j∈C2

(
ρ̂(Ĉ(j)) + (−1)|C1|+1ρ̂(C(j))

)

·
∏

j∈C3

(
ρ̂(Ĉ(j)) + (−1)|C1|+1ρ̂(C(j))

)−r(j)

(6.5)

Step 2. If CLeaf = ∅ then the graph of κ is a union of points and
cycles, and

µ =
∏

j∈CFermat

(aj + 1) ·
∏

C cycle

∏

j∈C

aj .

Then µ = prime number and all aj ≥ 2 imply n = 1.
So suppose CLeaf 6= ∅. Then there is a leaf j0 ∈ CLeaf such that com-

pared to all leaves j ∈ CLeaf the number ρ̂(Ĉ(j)) + (−1)|C1|+1ρ̂(C(j))
is maximal for j = j0. Here and later by a slight abuse of notation we
denote for any j ∈ C −CFermat the cycle or root in the component of j
by C1. Now choose a map β : CLeaf → CBranch as at the end of step 1

and with the additional property β(j0) ∈ C1, so Ĉ(j0) hits C1 in β(j0).
This is possible. Define the following natural numbers

A0 := ρ̂(Ĉ(j0)) + (−1)|C1|+1ρ̂(C(j0)),

Aj := aj + 1 for j ∈ CFermat,

Aj := aj for j ∈
⋃

cycles C

C,

Bj0 := µ(C1) =
∏

j∈C1

aj (C1 for j0),

Bj := ρ̂(Ĉ(j)) + (−1)|C1|+1ρ̂(C(j)) for j ∈ CLeaf − {j0},

Dj := ρ̂(Ĉ(β(j))) + (−1)|C1|+1ρ̂(C(β(j))) for j ∈ CLeaf .

Then

µ = A0 ·
∏

j∈CFermat∪(all cycles)

Aj ·
∏

j∈CLeaf

Bj

Dj
, (6.6)
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and

all Aj ≥ 2,

A0 ≥ Bj for j ∈ CLeaf − {j0},

Bj

Dj
= µ(C(j, β(j))− {β(j)}) > 1 for j ∈ CLeaf − {j0}.

For j = j0 the map β was chosen with β(j0) ∈ C1, so C(β(j0)) = ∅,
ρ̂(C(β0)) = 1, and

Bj0

Dj0

=

∏
j∈C1

aj

ρ̂(Ĉ(β(j0))) + (−1)|C1|+1ρ̂(C(β(j0)))

{
= 1 if |C1| = 1
> 1 if |C1| > 1

And

A0 =
(
Bj0 − (−1)|C1|

)
ρ̂(C(j0)) + (−1)|C(j0)|+1ρ̂(Ĉ(β(j0)− {β(j0)})),

1 ≤ ρ̂(Ĉ(β(j0))− {β(j0)}) < Bj0,

1 ≤ ρ̂(C(j0)) and

3 ≤ ρ̂(C(j0)) if |C(j0)| ≥ 2,

so always

A0 ≥ Bj0 .

Summarizing, we obtain

Aj < µ for j 6= 0, Bj ≤ A0, A0 ≤ µ, (6.7)

A0 = µ ⇐⇒ CFermat ∪ (cycles) = ∅, CLeaf = {j0}, |C1| = 1

⇐⇒ κ is of chain type with the chain Ĉ(j0). (6.8)

µ is a prime number by assumption. It must divide one of the factors
Aj or Bj in (6.6). Because of (6.7) this forces A0 = µ. Because of (6.8)

κ is of chain type with the chain Ĉ(j0).

Step 3. After renumbering of the vertices of its graph, κ : N → N
is the map with κ(1) = 1, κ(i) = i− 1 for 2 ≤ i ≤ n. Then f contains
the monomials xa1+1

1 , xa2
2 x1, ..., x

an
n xn−1. The Milnor number is

µ = A0 = ρ̂(Ĉ(n)) + ρ̂(C(n)) = ρ(an, ..., a2, a1 + 1).
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The weights wi and the numbers si, ti ∈ N with gcd(si, ti) = 1, wi =
si
ti

are determined recursively by w1 =
1

a1+1
, s1 = 1, t1 = a1 + 1,

si+1

ti+1

= wi+1 =
1− wi

ai+1

=
ti − si
ti · ai+1

,

si+1 =
ti − si
γi

, ti+1 = βiti,

where ai+1 = βiγi, γi = gcd(ai+1, ti − si).

Thus

µ =

n∏

i=1

(
1

wi
− 1

)
=

n∏

i=1

ti − si
si

= γ1 · ... · γn−1 · (tn − sn).

µ being a prime number forces γi = 1, βi = ai+1, si+1 = ti − si and

ti = aiti−1 = ai...a2 · (a1 + 1),

si = ρ(ai−1, ..., a2, a1 + 1) = ti−1 − ti−2 + ...+ (−1)i−1.

Finally we show that the only monomials of weighted degree d are
xa1+1
1 , xa2

2 x1, ..., x
an
n xn−1. Then f is as claimed in (a). Let

∑n
i=1 δiei ∈

(Nn
0)d. Let j be maximal with δj > 0. Then

δj ·
sj
tj

= 1−
∑

i<j

δi ·
si
ti
.

The denominator of the rational number on the right hand side is a
divisor of tj−1, and tj = ajtj−1. Therefore δj = ajε for some ε ∈ N.
But

ajwj + wj−1 = 1, so 2ajwj > 1, so ε = 1, so
∑

i<j

δiwi = wj−1.

Then δj−1 = 1, δi = 0 for i < j − 1, so
∑

i δiei = ajej + ej−1.

Step 4. Following [MO], we define the divisor div p(t) of a unitary

polynomial p(t) =
∏k

i=1(t− λi) with zeros λi ∈ S1 as the element

div p(t) :=

k∑

i=1

〈λj〉 ∈ Q[S1]

in the group ring Q(S1). Denote Λk := div(tk − 1). Then 1 = Λ1 is a
unit element and Λa · Λb = gcd(a, b) · Λlcm(a,b).
By [MO, Theorem 4] the divisor of the characteristic polynomial

∆(t) of the monodromy of f is

div∆(t) =

n∏

i=1

(
1

si
Λti − 1

)
.
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Using si+1 = ti − ti−1 + ... + (−1)i and Λti · Λtj = ti · Λtj for i ≤ j, we
calculate

div∆(t) = (Λt1 − 1)(
1

s2
Λt2 − 1) · ...

= (
t1 − 1

s2
Λt2 − Λt1 + 1) · ... = (Λ2 − Λ1 + 1) · ...

= ... = Λtn − Λtn−1 + ...+ (−1)n−1Λt1 + (−1)n.

This shows part (c) of theorem 6.1 �

For a fixed n ∈ N a natural number µ > 2n is called an n-gap if
there does not exist a quasihomogeneous polynomial f ∈ m3

Cn,0 with
an isolated singularity at 0 and Milnor number µ.

Corollary 6.3. For n ≥ 3 the set of n-gaps contains the set

{2p+ (−1)n | p and 2p+ (−1)n are prime numbers, 2p+ (−1)n > 2n}.

Proof: Consider a p ∈ N such that µ = 2p+(−1)n is bigger than 2n

and is a prime number, but not an n-gap. Then by theorem 6.1 there
exist a1, ..., an ∈ N− {1} with

2p+ (−1)n = ρ(an, ..., a2, a1 + 1)

thus 2p = (a1 + 1)(ρ(an, ..., a2) + (−1)n−1).

But a1 + 1 ≥ 3 and ρ(an, ..., a2) + (−1)n−1 ≥ 3 if n ≥ 3, thus p cannot
be a prime number. �

Remarks 6.4. (i) [Ri] A natural number p such that p and 2p+1 are
prime numbers is called a Sophie Germain prime number. There are
conjectures of Dickson (1904) (and a generalization called hypothesis H
of Schinzel (1956)) and of Hardy and Littlewood (1923) which would
imply that the set of Sophie Germain prime numbers as well as the set
{p | p and 2p − 1 are prime numbers} are infinite. But the infinity of
both sets seems to be unknown.
(ii) It is also interesting to ask how many other n-gaps exist for

n ≥ 3. There are 20 3-gaps with 8 < µ ≤ 1000, 19 of them are of the
type 2p−1 with p and 2p−1 being prime numbers, 9 is the only other
gap. There are 21 4-gaps with 16 < µ ≤ 500, 14 of them are of the
type 2p+1 with p a Sophie Germain prime number, the other ones are
17, 18, 19, 27, 74, 219, 314.
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