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ON THE CLASSIFICATION OF
QUASIHOMOGENEOUS SINGULARITIES

CLAUS HERTLING AND RALF KURBEL

ABSTRACT. The motivation for this paper are computer cal-
culations of complete lists of weight systems of quasihomoge-
neous polynomials with isolated singularity at 0 up to rather
large Milnor numbers. We review combinatorial characteri-
zations of such weight systems for any number of variables.
This leads to certain types and graphs of such weight systems.
Using them, we prove an upper bound for the common de-
nominator (and the order of the monodromy) by the Milnor
number, and we show surprising consequences if the Milnor
number is a prime number.
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1. INTRODUCTION

Several people have (re)discovered characterizations of those weight
systems which admit quasihomogeneous polynomials with isolated sin-
gularity at 0. Section [2] collects and compares these characterizations
and gives all references which we found. The results of this section are
not new. But the references are not well known and for several reasons,
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it is not so easy to extract the results from them. Also, we will need
part of the characterizations for a good control of such weight systems
in the later sections.

In section [3] a part of the conditions is used to associate after a
choice a type and a graph to a quasihomogeneous singularity. The
idea for this is contained in [Ar][AGV], and there it is carried out for
2 and 3 variables. The general case is carried out in [ORI], but that
part of [OR1] was never published. As we will need the graphs in the
sections [4] and 6] we rewrite the general case. Section [3] also makes the
classification in the case of 4 variables in [YS] more precise, showing
how necessary and sufficient conditions are obtained.

Section [ gives an estimate d < const(n) - u for the weighted degree
d of a reduced weight system of a quasihomogeneous singularity from
above by the Milnor number p. The calculations start with the well
known formula for g in terms of the weights, but refine this formula
using a graph and a type of the singularity. The estimate is useful
for a computer calculation of all reduced weight systems of quasiho-
mogeneous singularities up to a given Milnor number. We carried out
such computer calculations for 2, 3 and 4 variables and p < 1500,
1000 and 500. The long tables will be available on a homepage. Some
observations from them are formulated in section

Section [l proves a surprising fact which we found looking at these
tables. If the Milnor number of a quasihomogeneous singularity is a
prime number, then the only type which one can associate to it is the
chain type (up to adding or removing squares from the singularity),
and furthermore, all eigenvalues of the monodromy have multiplicity
one. The proof further refines the formula for the Milnor number from
section [l

We thank Sasha Aleksandrov for translating [Ko2| and for the refer-
ence [YS] and Wolfgang Ebeling and Atsushi Takahashi for discussions
related to lemma B35 and [ET]. This paper was written during a stay
at the Tokyo Metropolitan University. We thank the TMU and Martin
Guest for hospitality.

2. COMBINATORIAL CHARACTERIZATIONS OF WEIGHT SYSTEMS OF
QUASIHOMOGENEOUS SINGULARITIES

We note Ny = {0,1,2,...} D N ={1,2,...}. The support of a polyno-
mial

f= E ay - x* € Clzy,...,x,] where a%=z{'. 20"

n
aeNg
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is supp f = {a € N} | a, # 0}. The polynomial is called quasihomoge-

neous with weight system (wy, ..., w,, d) € R if

ZO"' ~w; =d  for any a € supp f.

i=1
Here wy,...,w, are the weights and d is the weighted degree. If a
polynomial is quasihomogeneous with some weight system it is also
quasihomogeneous with a weight system (wq, ..., w,,d) € Q%l. If a
quasihomogeneous polynomial has an isolated singularity at 0, that is,
if the g—i vanish simultaneously precisely at 0, then w; < d for all i.
Therefore, from now on throughout the whole paper we consider only
weight systems with

(w1, ..., wn, d) € QLE! and w; < d for all .

Furthermore, from now on we reserve the letters vy, ..., v, for weights
of weight systems (v1,...,v,,d) € N*"™1 and the letters wy, ..., w, for
weights of normalized weight systems (wi,...,w,,1) € Q%' that is,
with weighted degree 1.

A weight system (vq,...,v,,d) € Nl is called reduced if
ged(vy, ..., vy, d) = 1. In later chapters, but not in this one, we will
also use a result in [Sal] and restrict to weight systems with v; < g
and w; < %

Fix n € N and denote N := {1,....,n} and ¢; := (0;;);j=1,..» € N.
For J C N and a weight system (v, ..., v,,d) € N**! (with v; < d) and
k € Ny denote

N) = {aeNl|a;=0forig¢J},
(N = {aeNp|[ D o=k},

(NDe = Nj NNy

The following combinatorial lemma will help to compare in theorem
several characterizations of weight systems which admit quasiho-
mogeneous polynomials with isolated singularities. A discussion of the
history and references will be given after theorem 2.2

Lemma 2.1. Fiz a weight system (vy, ..., v,,d) € N with v; < d and
a subset R C (N})4. For any k € N define

Ry, = {Oé € (Ng)d—vk | o+ e € R}

The following five conditions (C1), (C1)’, (C2), (C2)’ and (C3) are
equivalent.
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(C1): ¥V JCN with J#0
3a€RNN]
or3 K C N — J with |K| = |J|
andVkeK Jae R, NN

(C1):  As (C1), but only J with |J] < 25

(C2): N JC N with J 0
J K C N with |K| = |J|
andVke K IJae R,NNJ.

(C2):  As (C2), but only J with |J| < L.

(C3): Y1, .JC N with |I| < |J|
JkeN-—Tand3Iae RyNN.

Proof: (C1)=-(C1)’ and (C2)=(C2)’ are trivial.

(C1)’=(C1): Consider J C N with |J| > 2 and I C J with
1] = [ZEL]. If there exists & € RN N}, then also a € RNNY. If not,
then there exists K C N—1I with |[K| =|I|andV k € K 3o € R,NN}.
Then n is even and K = N —1I, and KN.J # (), and for k € KNJ and
a € R, NN! one finds o + ¢, € RNNY.

(C2)’=(C1)": Consider J C N with 0 < [J| < 22 and K C N such
that J and K satisfy (C2)’.

Ist case: K C N — J. Then J and K satisfy (C1)’.

2nd case: K NJ # 0. Then for k € K NJ and o € Ry NN one
obtains a + e, € RNNY, so J satisfies (C1)’.

(C3)=(C2): Consider J C N with J # (). Construct elements
ki,....ky € N and subsets I; = {ky,...,k;} for 0 < j < |J| —1 and
K :={ki, ...,k } as follows. (C3) gives for J and I; an element k;;, €
N — I; with Ry, NNy # (). Obviously |K| = |J|, and J and K satisfy
(C2).

(C1)=(C3): Consider I,J C N with |I| < |J|. Then J # 0.

1st case, J and some set K satisfy (C1): Because of |I| < |J| = |K]|
there is a k € (N —I) N K with R, NNJ # 0.

2nd case, RNNJ # 0: If RNNY # RN NJ™ then there exist an
a € RONJ—RNNJ™ andak € J—JNI with ay > 0. Then k € N—1
and o« — e, € RkﬂNg

So suppose RNNJ = RNNJ™. Then J; :=J — J NI # 0 because
of |I] < |J|, and RNNJ' = ), so there exists a K, C N — J; such
that J; and K satisfy (C1). If K3 N J # 0 then for k € K; N J and

J+1
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o € R, NNJ" one has a + ¢, € RNNJ — RNNJ™ | a contradiction.
Thus K; N J = (.

This and |K;| = || > |[I—(J—=1)| give K1 —I = K1 —(I—(J—1)) #
0. Any k € K| — I satisfies ) # R, N Nyj* C R, N NJ. O

Theorem 2.2. Let (vq, ..., v,,d) € N with v; < d be a weight system.
(a) Let f € Clxg,...,x,) be a quasihomogeneous polynomial. The
condition

(IS1): [ has an isolated singularity at 0,
implies that R := supp f C (Nj)q satisfies (C1) to (C3).

(b) Let R be a subset of (Ny)q. The following conditions are equiva-
lent.

(1S2):  There exists a quasihomogeneous polynomial f with
supp f C R and an isolated singularity at 0.

(1S2)’: A generic quasihomogeneous polynomial —with
supp f C R has an isolated singularity at 0.

(C1) to (C3): R satisfies (C1) to (C3).

(¢) In the case R = (N})4 obviously Ry, = (Nj)g—v,. The following
conditions are equivalent.

(IS3):  There exists a quasihomogeneous polynomial f with an
solated singularity at 0.

(IS3)’: A generic quasihomogeneous polynomial has an iso-
lated singularity at 0.

(C1) to (C3): R = (Nj)q satisfies (C1) to (C3).

Remarks 2.3. Several people (re)discovered parts of this theorem. We
will not reprove it here, but comment on the history and the references.

(i) Of course, (IS2) <= (IS2)’ and (IS3) <= (IS3)’ and (b)=(c)
and (a)= ((IS2) = (C1) to (C3)).

(ii) Part (a) is quite elementary, for example (IS1)=-(C1) is contained
in K. Saito’s paper [Sall, Lemma 1.5], and it can also be extracted from
[Shl, Remark 3].

(iii) (IS2) <= (C2) is part of an equivalence for more general func-
tions in [Koll Remarque 1.13 (ii)], but there Kouchnirenko did not
carry out the proof in detail. He gave a short proof of the refined ver-
sion (IS2) <= (C2)’ in [Ko2, Theorem 1]. This reference [Ko2| seems
to have been cited up to now only in [Sh], it seems to have been almost
completely ignored.

(iv) Around the same time as Kouchnirenko, Orlik and Randell
proved (IS3) <= (C3) in the preprint [OR1, Theorem 2.12], but the
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published part [OR2] of it does not contain this result. It seems that
they have not published this result.

(v) O.P. Shcherbak stated a more general result [Shi, Theorem 1]
from which one can extract (IS2) <= (C1), but he did not provide a
proof. That was done by Wall [Wal Ch. 5], who also stated explicitly
(IS2) <= (C1) and (IS3) <= (C1), they are Theorem 5-1 and Theo-
rem 5-3 in [Wa] for the hypersurface case (explicit in (5-7)). But as he
covers a much more general case, his proof is long.

(vi) A short proof of (IS3) <= (C1) is given by Kreuzer and Skarke
[KS, proof of Theorem 1], though it requires some work to see that the
condition stated in [KS| Theorem 1] is equivalent to (C1).

(vii) In theorem (c) conditions (Ny), # 0 for some k € Ny
arise. For k € Z denote Z7, (Z");, and (Z”);, analogously to NJ, (N7),
and (NJ)z. Then (Z7), # 0 is equivalent to ged(v;|j € J)|k. But
(NJ)x # 0 (for k& > 0) is more delicate. In the case J = {1, 2} sufficient
conditions are ged(vq, v9) | k and lem(vy, v9) — v — v9 + 1 < k, because
then

(50005 1) 1y oty (S0

U1 V2
is the largest integer missing in Ny - v; + N - vs.

For any weight system (vi,...,v,,d) € N"™! with v; < d define the
rational function
n

pa(t) = [ [ =)@ = 1)~

i=1

It is well known that p(, 4)(t) € Ny[t] if a quasihomogeneous polynomial
with isolated singularity at 0 exists.

The conditions pp,q)(t) € Z[t] and pwa)(t) € No[t] are in general
weaker than (C1) to (C3), but pu.q¢)(t) € Z[t] is equivalent to a sur-
prisingly similar statement. Denote by (C'1) and (C2) the conditions
obtained from (C1) and (C2) in lemma 21 with N{ replaced by Z7.

Lemma 2.4. Fir a weight system (vy,...,v,,d) € N1 with v; < d.
The following conditions are equivalent.

759 pualt) € 2l
(GCD): ¥ J C N the ged(v; | j € J) divides
at least |J| of the numbers d — vy.

(C2):  for R= (Ng)a.

(C1):  for R= (N})a.
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Proof: (I53) means that all zeros of [[;_,(t" — 1) are zeros of
[T, (t%¥ — 1) with at least the same multiplicity. This shows

(153) <= (GCD). The equivalence (GCD) <= (C2) is trivial. The

equivalence (C2) <= (C1) follows as (C2)’=(C1)” and (C1)=(C2)
in the proof of lemma 2,11 O

Lemma 2.5. Fiz a weight system (v, ..., v, d) € N with v; < d. If

n < 3 then (1S3) <= (1S53).

Proof: We restrict to the case n = 3. It is sufficient to show

(C1) =(C1) for R = (N§)s. The (|J| = 1)-parts of (C1) and (C1)
coincide.

Consider J = {1,2}, J; = {1}, Jo» = {2}. Then J satisfies (C1) if
and only if (NJ)q # 0. Now consider the different possibilities how .J;
and J, can satisfy (C1). The only case where (NJ); # () is not obvious
is the case when J1& K = {3} and Jo& Ky = {3} satisfy (C1), that is,
when v |(d—wv3) and ve|(d—wv3). Of course, then also lem(vy, v9)|(d—1vs3)
and lem(vq, v9) < d — vs.

(C1) for J gives (Z7)4 # 0, that is, ged(vy, v2)|d.

The conditions ged(vy, v2)|d and lem(vy, v9) < d—wvs imply (N{)g # 0
by remark 2.3 (vii), so J satisfies (C1).

The (|.J]| = 3)-part of (C1) follows from the (|J| = 2)-part. O

Remarks 2.6. (i) Lemma 2.5 is Theorem 3 in [Sa2|. It is also stated
in [Arl remark after cor. 4.13] and [AGV, 2nd remark in 12.3].

(ii) For n > 4 (153) is weaker than (IS3). [AGV] 12.3] contains the
example (vi, v, vs,v4,d) = (1,33,58,24,265) of Ivlev. Here p(,q)(t) €
Nylt], but (C1) fails for J = {2,4}.

(iif) The equivalence (IS3) <= (C1) in lemma 4 is (up to rewrit-
ing their condition as (C1)) Lemma 1 in [KS].

(iv) Chapter 3 in [Wa] contains results and short proofs for 0-

dimensional quasihomogeneous complete intersections which are very
close to theorem 2.2] (b)+(c), lemma 2.4l and lemma

3. TYPES AND GRAPHS OF QUASIHOMOGENEOUS SINGULARITIES

Here a classification of quasihomogeneous polynomials with isolated
singularity at 0 by certain types, which are encoded in certain graphs,
will be given. For n € {2,3} this is treated in [Ar[[AGV], the general
case is carried out in a part of [ORI] which is not published in [OR2].
The type will come from some choice. Often several choices are
possible, and they may lead to different types or the same type, so,
often there are several types for one quasihomogeneous polynomial.
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Now consider n € N, N = {1, ...,n}, a weight system (vy, ..., v,,d) €
N1 with v; < d and a quasihomogeneous polynomial f € Clxy, ..., x,)
with an isolated singularity at 0. Then supp f C (Nj), satisfies (C2)
by theorem 2.2 (a).

The choice is a map k : N — N such that for any j € N the sets
J = {j} and K = {k(j)} satisfy (C2) with R = supp f, that is, f
contains a summand b - 7 - z(;) for some b € C*, a € N. The type is
the conjugacy class of this map s with respect to the symmetric group
S,. The graph which encodes the map k is the ordered graph with
n vertices with numbers 1,...,n and an arrow from j to x(j) for any
j € N with j # k(7). The ordered graph without the numbering of the
vertices obviously encodes the type.

In order to describe the graphs, an oriented tree is called globally
oriented if each vertex except one has exactly one outgoing arrow. Then
the exceptional vertex has only incoming arrows and is called root.
Starting at any vertex and following the arrows one arrives at the root.

An oriented cycle is called globally oriented if each vertex has one in-
coming and one outgoing arrow. Following the arrows one runs around
the cycle. The following lemma is obvious.

Lemma 3.1. Ezactly those graphs occur as graphs of maps kK : N — N
whose components either are globally oriented trees or consist of one
globally oriented cycle and finitely many globally oriented trees whose
roots are on the cycle.

Examples 3.2. (i) n = 2: [Ar][AGV] 3 types,

.1 .2 .1 — .2 .1 .2

I II ITI

(ii) n = 3: [Ar][AGV] 7 types. The sets J under the graphs III and
VI are explained in example

o3 o3 o3 o3
\ 3 )
o ( D) o L D) o < o o L D)
I 17 177 v
J ={2,3}
o3 o3 o3
\ v 2R\
o < 0 o LD} o — 0
1% VI VII

J=1{2,3}
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(iii) n = 4: |ORI] and [YS] 19 types. We follow the numbering in
[Y'S, Proposition 3.5]. The sets J under 9 of the 19 graphs are explained
in example

o, o3 e, > 03 o,y -~ o3 e, — 03 o,y o3
o LD} o LD} L3} [ D) o < 0 .1\}2
1 17 117 1V V

J = {3,4}
.4—>.3 .4<—.3 .4—>.3 .4—>.3 .4—>.3
o LD} .1\.2 L3} L D) L3} “ [ D) o < 0
VI VII VIII X X
J=1{2,4)

.4 .3 .4 .3 .4 .3 .4 -~ .3 .4 — .3
.1>;L2 .\Ll - .l/2 }1{.2 .\Ll — .2 .1};/>.2
XI XII XIII X1V XV
J={3,4} J=A{2,4 J={23}, J ={2,4}
{2,4},{3,4}

e, — 03 oy o3 o,y “ L2 o,y L2
L1 “ .l/2 .\Ll “ .l/2 L1 “ (D) }1402
XVI XVII XVIII XX
J=A{1,3} J=1{1,3}, J ={2,3},

{2,4} {2,4},{3,4}
(iv) n = 5: 47 types.
(v) n = 6: 128 types.

Remark 3.3. Fix a weight system (vy,...,v,,d) € N** with v; < d,
a quasihomogeneous polynomial f and a map x : N — N as above.
Then for any j € N the sets J = {j} and K = {k(j)} satisfy (C2)
with R = supp f in a unique way: There is a unique a; € N with
a = aje; € Ry NNJ, that is, there is a unique monomial 7’ z,;
with exponent aje; + e,(;) in the support of f.

Now we forget (vy, ..., v,,d) and f and start anew with such a tuple
of monomials. We fix n € N, N = {1,...,n}, amap k : N — N,
numbers ay, ..., a, € N and the set R := {aje; + e, | j € N} C Nj of
exponents of the monomials :)5;” Ty (j)-
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Always |R| < n, and most often |R| = n. The difference n — |R| is
the number of 2-cycles in the graph of x with vertices 7; and js and
numbers a;, = a;j, = 1.

Lemma 3.4. A weight system (v1,...,v,,d) € N1 with v; < d and
R C (N})g4 ezists if and only if any even cycle with vertices jy, ..., 7 (!
even) satisfies either

(EC1) neither aj, = aj, = ... =aj,_, =1
nor aj, = aj, = ... = a;, = 1,
or
(ECQ) ajl = CLj2 = ... = Cle =1

(here EC stands for Even Cycle). If such a weight system exists it is
unique up to rescaling if and only if all even cycles satisfy (EC1).

Proof: We work with a normalized weight system (wq, ..., w,, 1) €
(QN(0,1))™ x {1}. It is a solution of the system of linear equations
ajw; +wy;y = 1, j € N. We discuss in this order (1) roots of trees not
on a cycle, (2) vertices on a cycle, (3) vertices on trees different from
the roots.

(1) If j is the root of a tree and is not on a cycle then k(j) = j and
w; = L c Q N (O, 1)

aj-‘,-l

(2) The restriction of the equations a;w; + we;) = 1, 7 € N, to
the vertices ji,...,J; of a cycle with k(j;) = ji1 and k(j;) = ji1 for
1 <4 <1 —1 has a unique solution (wj,, ...,w;,) € Q' if and only if

Cle 1

gy l
0 # det . =aj, - ... a; — (—1),

1 Cl,jl

that is, if the cycle is odd or does not satisfy (EC2).
In that case one calculates easily that the solution is

p(ajwrw Qi ny ooy Ay Ay s ooy a’ji—l)

w;, = (3.1)
/ ]
where
Uzt - 1z, (3.2)
k=0
plxy, . xp) = X1..2p — To g + ... + (=D + (=1)F.(3.3)

If all z; > 1 then p(z1,...,x;) > 0, and then p(z1,...,x;) = 0 if and
only if £ is odd and 1 = 3 = ... = xp = 1. Therefore in the case
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aj, « ... ~aj, — (—1)" # 0 all w;, > 0 if and only if the cycle is odd or
is even and satisfies (EC1). In that case the inequalities w;, > 0 and
wj, ., > 0 and the equation ajw;, +w;,,, = 1 show also 0 < wj;, and
0< Wy gy -

In the case aj, - ... - aj, — (—1)! = 0 the cycle is even and satisfies
(EC2), and the equations ajw;, + wj,,, = 1 give only

W, =W, = ... =wj;,_, and wj =wj; =..=w,

Any choice wj, € QN (0, 1) works.

lzl_wjl‘

(3) The weights of vertices on the trees different from the roots are
successively determined by
1 —w.;
w; = ()
aj

and automatically satisfy 0 < w; < 1. U

The following lemma is related to the notion of invertible poly-
nomial [ET] and is known to some specialists. We keep the situation
after remark [3.3] We need some notations.

The map x : N — N is of Fermat type if kK = id, that is, if its graph
has no arrows. It is of cycle type if its graph is a cycle. It is of chain
type if it has the vertices ji, ..., j, and the n — 1 arrows from j; to 7,11
for 1 <i < n —1. The type of k is a sum of Fermat type, cycle types
and chain types if its graph is a union of the corresponding graphs.

Lemma 3.5. Letn e N, N ={1,...,n},x: N = N, a1, ...,a, € N and
R = {ajej + e.;)|j € N} be as above such that any even cycle in the
graph of k satisfies (EC1) or (EC2) (in lemmal[3.4). Let (vy,...,v,,d) €
N1 be a weight system with v; < d and R C (N34 (it exists by lemma
[34). Then the following 2 conditions are equivalent:

(1S4) A generic linear combination of the (at most n) monomi-
als :B;j:)s,{(j), 7 € N, is a quasihomogeneous polynomial with an
1solated singularity at 0.

(FCC) The type of k is a sum of Fermat type, cycle types and
chain types.

Proof: By theorem (b), (IS4) is equivalent to (C2) for R as
above. The implication (FCC)=-(154) is well known, also a direct proof
of (FCC)=(C2) is easy.

The other implication (C2)=-(FCC) will be proved indirectly: Sup-
pose that (FCC) does not hold. Then there are two indices ji,jo € N
with j; # 72 and k(j1) = k(j2). The set J := {j1, j2} does not satisfy
(C2) for R as above. O
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Examples 3.6. We return to the examples 3.2

(i) For a fixed map « : N — N and numbers ay,...,a, € N, the
conditions (EC1) and (EC2) in lemma [B.4] are not empty if the graph
of k contains an even cycle, that is type III for n = 2, the types IV and
VI for n = 3 and the types III, VIII, IX, XIV, XVI, XVII, XVIII and
XIX for n = 4.

(ii)) n = 2: Type I is Fermat type, type II is chain type, type III is
cycle type. In type III one must avoid a; = 1, a; > 1l and a1 > 1, ay =
1. Apart from that (IS4) holds for arbitrary a,as € N.

(iii) » = 3 and n = 4: 5 of the 7 types with n = 3 and 10 of the 19
types with n = 4 are sums of Fermat type, cycle types and chain types.
There (IS4) and (IS3) (in theorem (c)) hold for almost arbitrary
ai, ..., a, € N, with the only constraints from (EC1) or (EC2) in lemma
3.4

For the other types, the sets J which fail to satisfy (C1)" for R =
{aje; + ex) | 7 € N} are indicated under the graphs in example
(ii) and (iii). For these types one needs more monomials than those
with exponents in R in order to satisfy (C1)’. This leads to further
constraints on the numbers aq, ..., a,.

(iv) n = 3: In both cases, III and VI, the failing set is J = {2,3}.
Suppose that a weight system (vy, ...,v,,d) as in lemma [3.4] is deter-
mined from ay, as, a3 € N (uniquely except for a; = as = 1 in type VI).
For (IS3) to hold one needs (Nj); # 0. By lemma 2.5 this is equivalent
to (Z”7)q # 0 and to ged(vy,vz) |d. This condition is made explicit in
[Ar][AGV], 13.2].

(v) n = 4: Suppose that a weight system (v, va, v3, v4, d) as in lemma
B.4lis determined from aq, as, as, ay € N. Consider in each of the 9 cases
which are not sums of Fermat type, cycle types and chain types a failing
set J = {j1,J2}, that is, with k(j;) = k(j2) = j3 and {1,2,3,4} =
{1, 2, 3, ja}. For (IS3) to hold one needs (Nf)q # 0 or (Ng)a—v,, # 0.
As in lemma[2F] the condition (NJ)4 # () is equivalent to (Z7)4 # 0 and
to ged(vj,,v),) |d. But the condition (Nf)4—,, # @ may be stronger
than (Z7)q_,,;, # 0 and ged(vj,,vj,) [ d — vj,.

(vi) We consider the case XII with n = 4 in detail. There one starts
with arbitrary ay, as, as,as € N and with the monomials z§* ™, 252z,
253wy, x3*x1. The weight system

(Uh V2, U3, Uy, d)

= (a2a3a4, a1azaaq, ((0,1 + 1)(0,2 — 1) + 1)&4, aiasas, (&1 + 1)&2&3&4)

is unique up to rescaling. The only failing set is J = {2,4}, and
k(2) = k(4) = 1,80 (NJ)g_o, # 0. One needs (N7)g # 0 or (NJ)g_o; # 0
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for (IS3) to hold. Now

(N)a# 0 = (Z7)a#0
<  ged(vg,vq) | d <= a1 | lem(ag, aq).

And

(Noj)d—vg 7é @ - (Zj)d—va 7& @
< ged(ve,vy) | d —v3

<~ aias | (((al + 1)(a2a3 —ag + 1) — 1).

ged(ag, ayg)

(vii) Ivlev’s example (remark 2.6 (ii), [AGV], 12.3]) (v1, va, v3,v4,d) =
(1,33, 58,24,265) is of type XII with the monomials 239, 28z, 25z,
zilzy, so (a1,as,a3,a4) = (264,8,4,11). Here (NJ); = 0 and
(ND)a—vs = 0, so (IS3) does not hold, but (Z7)s_,, # 0, so (IS3)
holds and py 4(t) € Z]t], even € Ny[t].

Two function germs f1, foa € Ocn are right equivalent if there is
a local coordinate change ¢ : (C",0) — (C",0) such that f; o ¢ =
f2. Often in one right equivalence class of functions with an isolated
singularity at 0, there are several quasihomogeneous functions with
different weight systems. For example x7"'xs + 25?23+ z321 with weight
system (vy, vg, vs,d) = (ag, 1, a1a3—az+1, ayas+1) and £ 4+ 22+ 23
with weight system (v}, v}, v4, v, d') = (2, a1a2 + 1, aras + 1, 2a1a9 + 2)
are in the same right equivalence class of A, 4,-singularities [ET]. The
ambiguity was analysed in [Sal].

Theorem 3.7. [Sal] Let f € Ocn o be a function germ with an isolated
singularity at 0.
(a) f is right equivalent to a quasihomogeneous polynomial if and
only if
of of
€ J = T C O n Q.
f ! (81’1 8%) €0

(b) If f is quasihomogeneous with normalized weight system
(w1, ooy Wy, 1) with 0 < wy; < ... < w, < 1 and if f € mﬁén’O, then
the weight system is unique and 0 < wy < ... < w, < %

(c) If f € Js then f is right equivalent to a quasihomogeneous polyno-
mial g(x1, ..., xk)+x2+1+...+xfl with g € m%k,O' Especially, its normal-

1

ized weight system satisfies 0 <w; < ... <wp < Wggy = ... = Wy, = 3.

(d) If f and fe Ocn o are right equivalent and quasithomogeneous
with normalized weight systems (wy, ..., wy, 1) and (W, ..., Wy, 1) with

w; < ... <w, < 5 and wy < ... < W, < 5 then w; = W;.
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Remarks 3.8. (i) Part (b) can be proved with the arguments in the
proof of lemma 3.4 The condition f € m%n,o is equivalent to all ay, > 2.

L is nontrivial only in case (2) in the proof of

The implication w; < 3

lemma [3.4]

(ii) Part (c) follows from (a) and the splitting lemma and (b).

(iii) An argument for part (d) different from the proof in [Sal]
is as follows. If f is quasihomogeneous with some weight system
(U1, ..o Un, d) € N"*1 then p(y a)(t) € Nolt], so

p(vd tl/d Ztaj

for certain numbers oy, ..., € éN. These numbers and p(‘,’d)(tl/d) are
invariants of the right equivalence class of f. This is well known and
follows essentially from calculations in [Br]. The numbers oy, ..., oy, are
the exponents of the right equivalence class of f. By part (c) there

exists a weight system (01, ...0,,d) with 7; < ¢ and

Ztaj _ tl/d)

It is easy to see that one can recover the normalized weight system
%('171, <oty Up,d) from the exponents and this equation. Therefore this
normalized weight system is unique.

4. MILNOR NUMBER VERSUS WEIGHTED DEGREE

Let p;, i € N, be the i-th prime number, so (p;, ps) = (2,3). Define

n

pi
I(n) = ,
P — 1
so (1(1),1(2),1(3),1(4),1(5)) = (2,3,%, 3 I1) The prime number theo-

rem in the form p,, = nlogn-(1+40(1)) [HW], Theorem 8] and Mertens’
theorem

H ]%:e“’-log:c-(l-i-o(l))

prime numbers p<x

with v = Euler’s constant [HW], Theorem 429] imply
I(n) =¢"-logn-(1+o0(1)).

Theorem 4.1. (a) Let f € Clzy,...,z,] be a quasihomogeneous poly-
nomial with an isolated singularity at 0 and reduced weight system
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(V1 .oy Up, d) € NP with v; < g for all i (reduced: ged (v, ..., v, d) =
1). Then
d<I(n)- p.
(b) If v; < ¢ for all i and n > 2 then
d<ln—1)-pu.

These estimates rely only on the conditions for J with |J| = 1 in
(C1)-(C3) for R = (Ny)4, the conditions for |J| > 2 are not needed.
Theorem formulates this more general case. Both theorems are
proved after stating theorem .3l

Remarks 4.2. (i) These estimates are useful for a classification of
such weight systems using computer, for a fixed number of variables
and with Milnor numbers up to a chosen bound. See section

(ii) Calculations in [Bi] show that for a quasihomogeneous poly-
nomial f as in theorem [A.1I] the monodromy on the Milnor lattice is
semisimple with eigenvalues e 2™ . e~ where ay,..., o, are the
exponents considered in remark B8 (iii). For f € mg, , the procedure
mentioned in remark B.§ (iii), which recovers the normalized weights
(w1, ..., w,) from the exponents, shows that the tuples (wy, ..., w,) and
(aq, ..., a) have the same common denominator d. Therefore in the
case f € mém the order of the monodromy is d. Adding squares
x2,, + ..x2,,, changes the eigenvalues by the factor (—1)™ and re-
places d by d with d = 2d for odd d and d = d for even d. Then the

order of the monodromy is d or g.
Theorem 4.3. Fizrn € N, N ={1,...,n}, amap k: N — N, numbers
ai,...,a, € N and the set R = {aje; + ey |j € N} of exponents of
the monomials x?jx,i(j). Suppose that a; > 2 for all j € N which lie in
components C of the graph of k with |C| > 2.

(a) By lemma there 1is a wunique reduced weight system
(V1, .oy Un, d) € N with R C (N§)g. It satisfies v; < & for a; > 2 and

_d o
vj =35 fora; =1

(b)
d<lI(n)-p.
(c¢) If all a; > 2 and n > 2 then
d<ln—1)-pu.
(d) If n=1thend=a,+ 1 and pp = a;.

Proof of theorem [4.1: Suppose v; < ... < v < Vpy1 = ... =V = %

for some k with 0 < k& < n. By theorem B.7 f is right equivalent
to a quasihomogeneous polynomial g(z1, ..., z) + 234, + ... + 22 with
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g e m%k,o with an isolated singularity at 0 and the same weight system
(’Ul, vy Uny,y d)

Choose a map k£ : N — N for g+ 23, + ... + 22 as in section Bl By
remark [3.3 there are unique numbers ay, ..., a, € N such that aje;+e,)
are in supp(g + @7,; + ... + x7). The hypotheses in theorem are
satisfied. Theorem 3] (b) and (c) give theorem .1l (a) and (b). O

Proof of theorem [4.3t (a) The first part follows from lemma 3.4l
If a; = 1 then j is itself a component of the graph of &, so (a;+1)v; = d,
SO v; = g. If a; > 2 then j lies in a component C of the graph of &
with a; > 2 for all i € C'. Then a; > 2 follows as in remark (i) with
the arguments in the proof of lemma [B.4]

(b) and (c) Write 4 = w; = i—j with w; € QN (0,3] and s;,¢; € N,

ged(s;,t;) = 1. An elementary, but important observation is
J # k(j) = tj =ty - B; for some 3; € N with f3; | a;. (4.1)

This follows from

Sj 1 —wﬁ(j) tj — Sj
— = W; = = and Cdt‘,t'—S‘ =1.
t, J ; t - a; ged(t;, ¢ i)

For any subset C' C N define
1 .
p(©) = TI( 1), especially u(0) = 1, u(N) = p
5 w;
jecC J
d(C) := lem(tj|j € C), especially d(@) =1, d(N) =d.
Let Crermat be the union of all components C' of the graph of k with

|C| = 1. For j € Crermar wj = aj—l+1’ SO
,U(CFermat) = H aj, (42)

jECFermat
d(CFermat) = lcm(aj + 1 |] € CFermat)- (43)

Now we will study p(C') and d(C) for a component C' of the graph
of k with |C] > 2. By hypothesis a; > 2 for j € C.

Case 1, C is a cycle: Suppose C = {1,...,m} with x(j) = j — 1 for

2 <j<mand k(1) =m. (LI) gives immediately t; =t, = ... = ¢, =
d(C). (BJ) shows (with p as in (3.2]))
1
dC) = ty=..=t, = S (ay...apm — (—1)™) (4.4)

where v = ged(ay...am — (—1)™, paj_1, ..., a1, Gy .oy aj11) )(4.5)

for any j € {1,...,m}. Define here d(C) :=~v-d(C) = a;...a,, — (—1)™.



CLASSIFICATION OF QUASIHOMOGENEOUS SINGULARITIES 17

One calculates

e — (—1)™ = pla;_q, ..
M(C) — Hd U] :Hal Am ( ) p(a] 1 y A1, Qmy,s a]-i-l)

p(aj—lu vy @15 Ay eeey aj-i—l)

m
H @jsq - p(a'ja ey A1 Qi ...,aj+2) — ay - . a (4 6)
— e m- N

Case 2, C is not a cycle: Then C'is either a tree or a cycle with one
or several attached trees. If C' is a tree suppose C; = {1} C C' is the
root, and define m := 1. If C is a cycle with attached trees suppose
Cy ={1,...,m} is the cycle, and k(j) = j—1 for 2 < j < m, k(1) = m.
In both cases the set of leaves is the subset Cy C C' — C; of vertices
with no incoming arrows. For any leaf j € Cy denote by C(j) the set
of vertices on the path from j to (', excluding the vertex in C, so

C(G) = {3, 5(5), - KV (G)} € € = Oy with £D(5) € Cy.
Then with v :=1if m =1 and ~ as in ([@3]) if m > 2 one has

dCy) = %-(al...am—(—l)m).

With (41 and f; as defined in (4.1]) one finds

t; = dC)- [[ B forje Gy, (4.7)
i€C(j)
d(C) = lcm(tj|tj€C'2)
= d(Cy)-lem( [] Bilj€C). (4.8)
i€C(j)

We will estimate d(C') by d(C) with d(C') |d(C') and

d(C) = (ay...am — (=1)™) - [T @) lem(a;]je Co). (4.9)

jeEC—(C1UC%)

In order to estimate u(C') from above, we choose a decomposition of
C — (Y into a disjoint union

c-ci=J 20
JjeCs

with C(j) C C(j) being a suitable sub-chain of C(j),

C(j) = {4, 6(j), ..., 6’9 (5)}  for some I(j) < I(5).
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To simplify notations suppose for a moment that one such sub-chain
C(j) takes the form C(j) = {j.j — 1,....k} with x(i) = i — 1 for
k<i<j. Usingw, = 1_1:—1“(” repeatedly one finds by an easy induction
for k<i<j

G—1y +-- _1 ek —
w0y — pai-1, s A, ax) + (1) We—1 (4.10)

ApQp41---Ai—105

Therefore
/’L(’Cv’(j)) = H ﬂ — p(afj,...’a,k+l’ak) + (_1)i_kwk_1
) - - G—14 e- -1 i—1—k B
i€C(j) Wi i€B0) plai_1, ..., apt1, a) + (—1) Wt
plaj, ..., api1, ap) + (1) "Fwy_y

(4.11)

1 —wr—
Because all a; > 2 for 7 € C, one can estimate
p(aj, .y aprr, a) + (=1 Fwy_y > ag...a; - (a; — 1),
W) > ag...aj_q - (a; — 1)
The following additional estimate is relevant only for odd m. But

it holds for all m, and it will be smoother to treat even and odd m
simultaneously. For £ — 1 € C}

1(Ch) - !

1 —wi—

1 Wt > ag...Qj—1 ° (aj — 1) (412)

aj...am, — (=1)™
ay...am — (=1)™ — p(ag_z, ..., a1, G, ..., Qg
> ay..a, —(—1)™. (4.13)

Now we put together the pieces and estimate 1(C) from above. There
is (at least) one leaf jo € Cy with C(jy) = C(jo), so k—1 := x!GoI+1(5) €
(. For this leaf jo we use the finer estimate in (£.12)

~ 1
W) > a1 [
— Wk—-1 ) ) .
i€C(jo)—{Jjo}

Together with (12) for all other leaves j € Cy and (AI3) we obtain
w(C) = () T n(CG))

JEC?

> (ay...a4m — (—1)™) - H aj | - <H (a; — 1)) (4.14)

jGC—(C1UCz) Jj€Cs

= a1...Qy
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Now case 2 is finished. We can estimate d and p and their quotient.
Creaf C N — Crermat denotes the union of the leaves of all components
C with |C| > 2. For any such C the notations of case 2 are preserved,
(1 is the root or the cycle in it, and Cs is the set of leaves in it. If C'
is a cycle then C' = (.

d = lem (d(Crermat); d(C) for all components C' with |C| > 2)
< lem (d(C’Fermat); d(C) for C with |C] > 2)

11 (H aj - <—1>'01> M«

C with |C|>2,C not an odd cycle jeCh —(C1UC?)

IA

lem (Clj + 1 for ] S CFermat;

H a; + 1 for C' an odd cycle ; a; for j € CLeaf). (4.15)

jec

no= CFermat H lu H H (C)

C a cycle C not a cycle,|C|>2
S I e I (H) 10
J€CFermat C acycle \jeC

11 (H a; — (—1)Cl> - I o [Iw-1

C not a cycle,|C|>2 jeCr JjeC—(C1UC3) jels

lem (HjeC a; + 1 for C' an odd cycle; a; for j € Creqy
{
HjECFermat a; - HC an odd cycle (H]EC' a’j) ’ HjECLeaf (a'j - 1)

In lemma 4 (a) two numbers l;(n) and l3(n) € Qs are defined.
Obviously % < li(n), and if all a; > 2 and n > 2 then i <
max(ly(n),li(n — 1)). The parts (b) and (c) of theorem 1.3 follow
now with lemma [.4l Part (d) is trivial. O

a; +1 fOI'j € CFermat; )
< (4.17)

Tl

Lemma 4.4. Forn € N define

lem(by, ..., by)
li(n) = max<(bl_1)‘m B —1) | by, .. ,bneN—{l}),

B lem(by, ..., by)
la(n) = max<(bl_1)‘m b, 1) | by, .. ,bneN—{l,Q}).
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Then

n

L(n) = l(n) == H pip_" - > by(n+ 1),

here p; is the i-th prime number.

Proof: First, [1(n) = l(n) will be proved. Choose by,...,b, €
arbitrarily. Write lem(by, ...,b,) = [[;c;p;* with I C N finite, r; >
for i € I. For any ¢ € I choose (i) € N with p;* | bg(;). Define

Zj = H JA

i with B(i)=j

N
1

For any j with Zj > 1 let i(j) be the minimal ¢ with §(i) = j. Then
lcm(bl, >bn) = 1cm(gj |’5] > ].) = H bj,

§ with b;>1

lcm(bl, ey bn) bj
oo = 1 3

jwithbj>1 7

| | et

=1
§ with b;>1 Pz i=1 P

This proves [1(n) < I(n). The choice b; = p; proves l1(n) > l(n).
Analogously one shows for n > 2

n

3 4 Pi

lo(n) = - : .
2(n) =377 17 T

l5(2) =2 =1(1). For n > 2 the estimate ly(n + 1) < [(n) follows from
4 Pn+1 < % p3 5 2

: : =-< .
4—1 po—17"3 ps—1 3 2-1

5. COMPUTER CALCULATIONS

Theorem (c) gives combinatorial characterizations (C1)-(C3) of
those reduced weight systems (v1, ..., v,,d) € N*™! for which quasiho-
mogeneous polynomials with an isolated singularity at 0 exist. These
characterizations can be used in computer programs to find all such
weight systems with Milnor number up to some chosen bound. Be-
cause of theorem [3.7] for most purposes it is sufficient to restrict to
weight systems with v; < 4. Theorem E.l (b) gives then the bound
d<ln—1) -pfordifn>2.
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The second author carried out such computer calculations for n =
2,3,4. The following table lists for n = 2, 3,4 the number of reduced
weight systems (vy, ..., v, d) (up to reordering of vy, ..., v,) with v; < g
which satisfy (C1)-(C3) for R = (Nj)q and whose Milnor number is
less or equal than the number p in the left column.

pln=1ln=2n=3|n=4

50 50 187 217 100
100 100 | 493 806 270
150 150 847 | 1627 | 1442
200 | 200 | 1242 2623 | 2678
300 300| 2083| 5027 | 6059
400 | 400 | 2998 | 7832 | 10459
500 | 500 | 3957 | 10931 | 15634
1000 | 1000 | 9246 | 30241 ?
1500 | 1500 | 15058 ? ?

On a homepage tables with all these weight systems and the char-
acteristic polynomials of the monodromy will be made available. Of
course for n = 1 one has just the A,-singularities 2} with (v;,d) =
(I, p+ 1) for ¢ > 1. The A;-singularity is taken into account in the
column for n = 1 despite v; = g in that case.

For example, the total number of reduced weight systems for n = 4
with v; < %l and (C1)-(C3) and p < 50 is 50 + 187 4 217 + 100.

The weight system (%, %, % %) with % < 1 and the largest d within
p < 500 s (&5, 1,3, O%) with g = 473, d = 1740, I(3) - p = 1773, 75.
This indicates that the estimate in theorem [4.1] (b) cannot be improved
much.

For any n the weight system with v; < g with the smallest Milnor
number is (1,...,1,3) with d = 3 and g = 2". This follows from [KS,

Lemma 2]. This lemma says that there is an injective map
_ 1 _ 1 .
1/:{@|vi>§}—>{z|vi<§} with v, = d — 2v;.

Then

d d
(—=D(—
() Vu(4)

—1)>4.

d
2
of the D,-singularities 2 + 22z, But for n = 3 and n = 4 there
are some gaps, some numbers > 2" which are not Milnor numbers of

any quasihomogeneous singularities f € m%n,o- We list all gaps up to

For n = 2 weight systems with v; < £ exist for any u > 4, because
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1= 1000 for n = 3 and up to p = 500 for n = 4.

n=3: p= 9,13,37,61,73,157,193,277,313, 397, 421,
457,541, 613, 661, 673, 733, 757, 877, 997.

n=4: p= 17,18,19,23,27,47,59,74,83,107, 167, 179,
219,227,263, 314, 347, 359, 383, 467, 479.

Corollary will give an explanation of the majority of these gaps in
terms of Sophie Germain prime numbers and similar prime numbers.

Yonemura [Yo] had classified all reduced weight systems
(v1,v9,v3,v4,d) with > v; = d and (C1)-(C3) for R = (Nj)4. Using
our lists, we recovered his 95 weight systems. 48 are in our list for n = 3
with 327 v; = ¢ with Milnor numbers ranging between 125 ((1,1,1, 6)
and 492 ((1,6,14,42)). 47 are in our list for n = 4, with Milnor num-
bers ranging between 81 ((1,1,1,1,4)) and 264 ((1,3,7,10,21)).

6. THE CASE MILNOR NUMBER = PRIME NUMBER

The computer calculations mentioned in section Bl led us to expect the
following result. This section is devoted to its proof.

Theorem 6.1. Let f € Clzy,...,x,] be a quasihomogeneous polyno-
mial with an isolated singularity at 0 and normalized weight system
(w1, ...y wn, 1) € (QN (0, 3))™ x {1} such that its Milnor number i is a
prime number.

(a) There are numbers ay,...,a, € N—{1} and cy,...,c, € C* such
that

a1+1 a
f=axi'" +crdr + ... ey Ty

Therefore f is of chain type by the map k : N — N with k(1) = 1,
k(j) =Jj—1 for2 < j <n. And this is the only possible map k as
in section[3. Also, by rescaling of x4, ..., x, one can arrange ¢; = ... =
cn = 1. So, f is unique up to right equivalence.

(b) Write w; = 2 with s;,t; € N, ged(s;,t;) = 1. Then

ti
ti = aj..ay- (a1 +1), d=t,,
si = plaji_1,...,a9,a1 +1) (with p as in (3.2])),
s1 = 1, spp=ti—si=t;i—ti1+tio— ..+ (=1),
o= plan,...,as,a; +1).

(¢) The characteristic polynomial of the monodromy on the Milnor
lattice of f is Hm:(m ®,,, here @, is the cyclotomic polynomial of the
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m-th primitive unit roots, and (6.1)) is the condition
m|ay...as(a; + 1), min(i | m|a;...as(a; +1)) =n mod 2. (6.1)
Especially, all eigenvalues have multiplicity 1.

Examples 6.2. For n = 2,3 all tuples (ay,...,a,) as in theorem
with p < 23 are listed below, for n = 4 all tuples with p < 31.

pwo|n=2 n=3 n=4

5 1(3,2) -

7 1(5,2), (2,3) - -

11 ((9,2), (4,3) (3,2,2), (2,3,2) -

13 | (11,2), (5,3), (3,4), (2,5) | - -

17 | (15,2), (7,3), (3,5) (5,2,2), (2,5,2) -

19 (17>2)> (873)> (574)> (2>7) (4 3 2) (3a4a2)’ (3a2a3) -

23| (21,2), (10,3) (7,2,2), (5,3,2), (3,5,2), (2,7,2) | -

29 | 4 types 6 types (3,2,3,2)
31| 6 types 2 types (5,2,2,2)

Proof of theorem Let k : N — N be a map as in section [3]
so for any j € N the sets J = {j} and K = {k(j)} satisfy (C2) for
R =supp f.

The proof proceeds in 4 steps: Step 1 extends some notations and
formulas from the proof of theorem [4.3] Step 2 shows that & is of chain
type. Step 3 shows all remaining statements in (a) and (b). Step 4
proves part (c).

Step 1. We consider the graph of x. The union of components C
with |C| = 1 is called Cpepmar- For a component C' let C; C C' be the
root of C'if C'is a tree, the cycle in C' if C' contains a cycle, and C; = C
if |C|=1.

For a component C with |C| > 2 1et Cy C C'—C} be the set of leaves,
that is, the vertices without incoming arrows, and let Cs C C' — (5 be
the set of branch points, that is, the vertices with > 2 incoming arrows.
The multiplicity r(j) € N of a branch point j € Cj is the number of
incoming arrows minus 1. If C' is not a cycle then C3 # (), C3NCy # ()
and ) ¢, 7(c) = |Col.

The union of all leaves is called Crc.f, the union of all branch points
is called Cgranch-

For a component C with |C| > 2 and for j € C let

C() = (G k@), - V()
be the longest tuple witout repetition: If C is a tree then /() (7) is the
root and £')71(5) is not the root. If C' contains a cycle, C(j) hits the
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cycle and runs around it almost once, so it hits the cycle in KO (). If
ke C(5) let C(j, k) be the tuple from j to k, C(j, k) = (j, k(j), ..., k).
The definition of C(j) in the proof of theorem F3]is slightly changed
here: For j € C'— Cy (not only j € Cy), let C(5) = (4, k(5), ..., "9 (5))
be the sub-tuple of C () which stops just before reaching Ci, so
k!0 (5) ¢ Cy, K'DTL(5) € Cy. For j € C, define C(5) := 0.
For any C(j, k) define with p as in (3.2)

ﬁ(C(jv k)) = p(.jv K(.ﬁv Ly k)
and define p(0) := 1.

Now formula ([B]) for the weight w; of a vertex j € C} on a cycle
can be rephrased as

v — _PCG) ~ {5}
| AT ey
And formula (4I1]) generalizes to
SO( 7 _1)CGRIy,
Gk = I (i B 1) _ plCGR) +(=1) <) (6.9)

iec(im W L — wew

(6.2)

For j,k € C —Cy and k € C(j) the tuple C(j) contains the tuple
C(k(k)), they hit the cycle or root C} at the same vertex l; € C} and
end at the same vertex Iy € C;, with x(ly) = [;. For such j and k one

calculates with (6.2]) and (63))
ClLE) = ,UA(a(j))
MO = )

PCG) + (1),
AC(R(K)) + (—1)'6(“(’“))‘“%01
(e, @ = () HOG)) + () DHFEWL) — ()
(Iiec, ai = (=191 B(C(x ( ))) (=DICEEH(C (L) = {I1})
(ILiec, @ )A ACH)) + (=) (TTiee, @) PIC())
(Iicc, @) AIC(K(K)) + (=) (T]ieq, @) A(C(5(K)))
| _ACH) + (C)OHRC) o
p(C(K(K))) + (1) p(C (ki (k)
A component C with |C| > 2 which is not a cycle is a tree or a

cycle with attached trees. One can choose a map § : Cy — (5 from
the leaves to the branch points such that k& € Cj is the image of (k)
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leaves and ((j) € C (7) for any leaf j. Then C'—(C} is the disjoint union
Ujec,(C(J) — C(B(j))), here the sets underlying the tuples are meant.
Therefore

w(@ = [l a-T]n@i)- I ncu)—

jeC jeCs JjeCs

= [To- 11 (ﬁ(éu)) + (—1)‘01'“ﬁ(0(j)))

Jj€CL JEC?

11 (€6n + nememn) ™ ©s)

J€Cs

Step 2. If Cpeqr = 0 then the graph of  is a union of points and
cycles, and

= H (a; +1)- H Haj

J€CFermat C cycle jeC

Then p = prime number and all a; > 2 imply n = 1.

So suppose Creqr # 0. Then there is a leaf jo € ClLeqs such that com-
pared to all leaves j € Cpeqy the number H(C(5)) + (—=1)ICH5(C(5))
is maximal for 7 = j,. Here and later by a slight abuse of notation we
denote for any j € C' — Crermar the cycle or root in the component of j
by Cy. Now choose a map 5 : Crear — Ciranch @s at the end of step 1
and with the additional property 8(jo) € C1, so C(jo) hits Cy in B(jo).
This is possible. Define the following natural numbers

Ao = B(CGo) + (=1)MHB(C o)),

Aj = ay +1 fOl"j S CFermata
Aj = a4 fOI'j S U C,
cycles C
Bj, = u(C)=]]a;  (Cifor o),
JeCh
B; = p(C(H))+ (~1)CTHC()  for j € Crear — {io},
D; = pCBG)) + (D) HCBG))  for j € Creay.

SIS
=
S

<

po= Ao 11 A 1

jecFer'matU(all CyClOS) jeCLeaf
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and
all A] Z 2,
AO > Bj fOI'j S C'Leaf - {jO}a
B 4 . . 4 ~
ﬁ_ = u(C(5,80()) —{BU)}) >1  forj € CrLeas — {jo}-

J

For j = jo the map § was chosen with £(jy) € C1, so C(5(jo)) = 0,
p(C(Bp)) =1, and

Bj, _ [Lcc, a5 {: Lif |Cy] =1
Dis BC(BG0))) + (~1)IHA(C(B(jo))) \> LIICH >
And
Ay = (B — (=1 B(CGo)) + (=1 BB o) — {80}
L < p(C(BG) —{Bo)}) < By,
1 < p(C(j)) and
3 < p(C)) i [Cjo)| = 2
so always
Ay > Bj,.
Summarizing, we obtain
Aj<pforj#0, B <A, A<y, (6.7)
Ao =uU <= CFermat U (cycles) = (Z), CLeaf = {jg}, ‘Cl| =1
<= Kk is of chain type with the chain @(jo). (6.8)

4 is a prime number by assumption. It must divide one of the factors
A; or B; in (6.6). Because of (6.7) this forces Ay = p. Because of (G.8])

k is of chain type with the chain C(jo).

Step 3. After renumbering of the vertices of its graph, k : N — N
is the map with (1) =1, k(i) =i — 1 for 2 <7 < n. Then f contains

the monomials 29 ™ 231, ..., 2% 2,_;. The Milnor number is

p= Ay =p(Cn))+p(C(n) = play, ... az, ar + 1).
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The weights w; and the numbers s;,t; € N with ged(s;, t;) =1, w; = 2

are determined recursively by w;, = rlﬂ, s1=1,t1 =a1 + 1,
Sit1 1—w t; — 8
i1 Qi1 i - i1
ti — S;
Sit1 = —— liy1 = Bit,
where aiv1 = Bivi, Vi = ng(aH—la t; — Sz’)-
Thus
- 1 “ tz — S;
i=1 ¢ i=1 ¢

1 being a prime number forces v; = 1, 5; = a;41, ;01 = t; — s; and
ti = aiti_l = a;...as - (a1 + 1),
S; = p(ai_l,...,ag,al—l—l) :ti—l —t,’_g—}—...—l—(—l)

Finally we show that the only monomials of weighted degree d are
st g%y a%x, ;. Then f is as claimed in (a). Let Yo die; €

ooy n

(NG)a- Let j be maximal with §; > 0. Then

S5 S;
0. -2 =1-— 5; - —.
J t Z t;

1<j

i—1

The denominator of the rational number on the right hand side is a
divisor of t;_y, and t; = a;t;—1. Therefore 0; = a;c for some ¢ € N.
But

a;w; +w;—1 =1, so2ajw; >1, soe=1, so E diw; = wj_.

Then 5]'_1 = 1, 52 =0fori< j — 1, SO Zz 5Z-el- = a;e; + €j—1-
Step 4. Following [MO], we define the divisor div p(¢) of a unitary

polynomial p(t) = [T, (t — ;) with zeros \; € S" as the element
k
divp(t) := Z<>\j> € Q[S"]
i=1

in the group ring Q(S'). Denote Ay := div(t* —1). Then 1 = A, is a
unit element and A, - Ay = ged(a, b) - Ajem(a,p)-

By [MO), Theorem 4] the divisor of the characteristic polynomial
A(t) of the monodromy of f is

()

=1



28 CLAUS HERTLING AND RALF KURBEL

Using siy1 = t; —ti1 4+ ...+ (=1)" and Ay, - Ay, = t; - Ay, for i < j, we
calculate

divA(l) = (A, —1)(SiAt2 1)

t1 —1
= (13 At2—At1+1):(A2—A1+1)
2
= .. = Atn - Atn,1 + ...+ (—1)n_1At1 —+ (_1)n
This shows part (c) of theorem O

For a fixed n € N a natural number p > 2" is called an n-gap if
there does not exist a quasihomogeneous polynomial f € m%n,o with
an isolated singularity at 0 and Milnor number pu.

Corollary 6.3. For n > 3 the set of n-gaps contains the set
{2p+ (—=1)"|p and 2p + (—1)" are prime numbers, 2p + (—1)" > 2"}.

Proof: Consider a p € N such that g = 2p+ (—1)" is bigger than 2"
and is a prime number, but not an n-gap. Then by theorem there
exist ay, ...,a, € N— {1} with

20+ (=1)" = plap,...,as,a; + 1)
thus  2p = (a1 + 1)(p(an,...,a2) + (_1)n_1)-

But a; +1 > 3 and p(ay, ...,az) + (—1)""t > 3 if n > 3, thus p cannot
be a prime number. O

Remarks 6.4. (i) [Ri] A natural number p such that p and 2p+ 1 are
prime numbers is called a Sophie Germain prime number. There are
conjectures of Dickson (1904) (and a generalization called hypothesis H
of Schinzel (1956)) and of Hardy and Littlewood (1923) which would
imply that the set of Sophie Germain prime numbers as well as the set
{p|p and 2p — 1 are prime numbers} are infinite. But the infinity of
both sets seems to be unknown.

(ii) It is also interesting to ask how many other n-gaps exist for
n > 3. There are 20 3-gaps with 8 < p < 1000, 19 of them are of the
type 2p — 1 with p and 2p — 1 being prime numbers, 9 is the only other
gap. There are 21 4-gaps with 16 < p < 500, 14 of them are of the
type 2p+ 1 with p a Sophie Germain prime number, the other ones are
17,18, 19, 27, 74, 219, 314.
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