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QUANTUM STATISTICAL MECHANICS,
L-SERIES AND ANABELIAN GEOMETRY

GUNTHER CORNELISSEN AND MATILDE MARCOLLI

Abstract. It is known that two number fields with the same Dedekind zeta function are not neces-
sarily isomorphic. The zeta function of a number field can be interpreted as the partition function of
an associated quantum statistical mechanical system, which is aC∗-algebra with a one parameter
group of automorphisms, built from Artin reciprocity. In the first part of this paper, we prove that
isomorphism of number fields is the same as isomorphism of these associated systems. Considering
the systems as noncommutative analogues of topological spaces, this result can be seen as another
version of Grothendieck’s “anabelian” program, much like the Neukirch-Uchida theorem character-
izes isomorphism of number fields by topological isomorphism of their associated absolute Galois
groups.

In the second part of the paper, we use these systems to prove the following. If there is a con-
tinuous bijectionψ : Ĝab

K

∼
→ Ĝab

L between the character groups (viz., Pontrjagin duals) of the
abelianizedGalois groups of the two number fields that induces an equality of all correspondingL-
seriesLK(χ, s) = LL(ψ(χ), s) (not just the zeta function), then the number fields are isomorphic.

This is also equivalent to the purely algebraic statement that there exists a topological group
isomorphismψ as a above and a norm-preserving group isomorphism between the ideals ofK and
L that is compatible with the Artin maps viaψ.

Contents

Introduction 2
Disambiguation of notations 7

Part A. QSM-ISOMORPHISM OF NUMBER FIELDS 8
1. Isomorphism of QSM systems 8
2. A QSM-system for number fields 11
3. Hilbert space representation, partition function, KMS-states 11
4. Hamiltonians and arithmetic equivalence 13
5. Crossed product structure and QSM-isomorphism 15
6. Application to the QSM-system of a number field 19
7. From QSM to field isomorphism: multiplicative structure 21
8. From QSM to field isomorphism: additive structure 25

Date: September 14, 2010 (version 1.0).
2010Mathematics Subject Classification.11M55, 11R37, 11R42, 11R56, 14H30, 46N55, 58B34, 82C10.
Key words and phrases.Arithmetic equivalence, quantum statistical mechanics, Bost-Connes system, anabelian

geometry, Neukirch-Uchida theorem, HeckeL-series.
We thank Florian Pop for pointing us to an inaccuracy in a previous version, and Jorge Plazas for his comments.

1

http://arxiv.org/abs/1009.0736v2


2 G. CORNELISSEN AND M. MARCOLLI

9. Addendum: recovering the multiplicative structure via cohomology 26

Part B. L-SERIES AND QSM-ISOMORPHISM 27
10. MatchingL-series via QSM-isomorphism 27
11. QSM-isomorphism from matchingL-series: isomorphism of character groups 28
12. QSM-isomorphism from matchingL-series: compatible isomorphism of ideals 29
13. QSM-isomorphism from matchingL-series: homeomorphism onXK 33
14. QSM-isomorphism from matchingL-series: end of proof 35
15. Proof of Theorem 3 36
16. Relaxing the conditions onL-series 36
References 37

Introduction

Can one describe isomorphism of two number fieldsK andL from associated analytic or topo-
logical objects? Here are some attempts (“no”-answers indexed byN; “yes”-answers byY):

(N1) An equality of their Dedekind zeta functions(so-calledarithmetic equivalence) does not
imply thatK andL are isomorphic, as was shown by Gaßmann ([21], cf. also Perlis[39],
or [26]). An example is provided by

K = Q(
8
√
3) and L = Q(

8
√
3 · 24)

([39], [27]). However, the implication is trueif K andL are Galois overQ (Theorem of
Bauer[3] [4] , nowadays a corollary of Chebotarev’s density theorem, see, e.g., Neukirch
[36] 13.9).

(N2) An isomorphism of their adele ringsAK andAL as topological rings (which implies in
particular an equality of the zeta functions ofK andL) does not imply thatK andL are
isomorphic, cf. Komatsu ([28]). An example is

K = Q(
8
√
2 · 17) and L = Q(

8
√
25 · 17, 8

√
2 · 3 · 11).

On the other hand, a global function fieldis determined up to isomorphism by its adele ring
(Turner[45]).

(N3) An isomorphism of the Galois groups of the maximal abelian extensionsGab
K andGab

L

as topological groups does not imply an isomorphism of the fieldsK andL. For example,

K = Q(
√
−2) and L = Q(

√
−3)

have isomorphic abelianized absolute Galois groups (see Onabe[38]).

However . . .

(Y1) An isomorphism of their absolute Galois groupsGK andGL as topological groups im-
plies isomorphism of the fieldsK andL: this is the celebrated theorem of Neukirch and
Uchida (In [35], Neukirch proved this for fields that are Galois overQ; in [46], Uchida
proved the general case, cf. also[37] 12.2, and work of Ikeda and Iwasawa). It can be
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considered the first manifestation (zero-dimensional case) of the so-called “anabelian” phi-
losophy of Grothendieck ([23], esp. footnote (3)): the neologism “anabelian” was coined
by Grothendieck by contrast with statement(N3) above.

(Y2) In an unpublished work, Richard Groenewegen[22] proves aTorelli theorem for num-
ber fields: if two number fields have “strongly monomially equivalent” h0-function in
Arakelov theory (in the sense of van der Geer and Schoof, cf.[49]), then they are isomor-
phic.

The starting point for this work is the observation that the zeta function of a number fieldK
can be realized as the partition function of a quantum statistical mechanical (QSM) system in the
style of Bost and Connes (cf.[6] for K = Q). The QSM-systems for general number fields that
we consider are those that were constructed by Ha and Paugam (see section 8 of[24], which is
a specialization of their more general class of QSM-systemsassociated to Shimura varieties), and
further studied by Laca, Larsen and Neshveyev in[31]. This quantum statistical mechanical system
consists of aC∗-algebraAK (the noncommutative analogue of a topological space) with atime
evolutionσK (i.e., a continuous group homomorphismR → AutAK) — for the exact definition,
see Section 2 below, but the structure of the algebra is

AK := C(Gab
K ×

Ô
∗
K

ÔK)⋊ J+
K ,

whereÔK is the ring of finite integral adeles andJ+
K is the semigroup of ideals, which acts on

Gab
K by Artin reciprocity. The time evolution is only non-trivial on elementsn of J+

K , where it
acts by multiplication with the normN(n)it. For now, it is important to notice that the structure
involves the abelianized Galois group and the adele ring, but not the absolute Galois group. In this
sense, it is “not anabelian”; but of course, it is “noncommutative” (in noncommutative topology, the
crossed product construction is an analog of taking quotients). In light of the previous discussion,
it is now natural to ask whether the QSM-system (which contains simultaneously the zeta function
from (N1), the adeles from(N2) and the abelianized Galois group from(N3)) does characterize the
number field.

We call two general QSM-systemsisomorphicif there is aC∗-algebra isomorphism between
the algebras that intertwines the time evolutions. Our mainresult is that the QSM-system seems to
cancel out the defects of(N1)—(N3) in exactly the right way:

Theorem 1. LetK andL denote arbitrary number fields. Then the following conditions are equiv-
alent:

(i) K andL are isomorphic as fields;
(ii) the QSM systems(AK, σK) and(AL, σL) are isomorphic.

One may now ask whether the “topological” isomorphism from (ii) can somehow be captured
by an analytic invariant, such as the Dedekind zeta function, which in itself doesn’t suffice. Our
second main theorem says that this is indeed the case:

Theorem 2. LetK andL denote arbitrary number fields. Then the following conditions are equiv-
alent:

(ii) the QSM systems(AK, σK) and(AL, σL) are isomorphic;
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(iii) there is a homeomorphism of (the Pontrjagin duals of) the abelianized Galois groups

ψ : Ĝab
K

∼→ Ĝab
L

such that for every characterχ ∈ Ĝab
K , we have an identification ofL-series for these

generalized Dirichlet characters

LK(s, χ) = LL(s, ψ(χ)).

Condition (iii) can be considered as the correct generalization of arithmetic equivalence (which
is (iii) for the trivial character only) to an analytic equivalence thatdoescapture isomorphism. It
should also be observed at this point that (Hecke)L-series occur naturally in the description of
generalized equilibrium states (KMS-states) of the QSM-system, and this is how we originally
discovered the statement of the theorem.

Finally, there is the following purely algebraic reformulation:

Theorem 3. LetK andL denote arbitrary number fields. Then the following conditions are equiv-
alent:

(i) the fieldsK andL are isomorphic;
(iv) there is a topological group isomorphism

ψ̂ : Gab
K

∼→ Gab
L

and an isomorphism
Ψ : J+

K

∼→ J+
L

of semigroups of ideals such that the following two compatibility conditions are satisfied:
(a) compatibility ofΨ with norms:NL(Ψ(n)) = NK(n) and
(b) compatibility with the Artin map:ϑL(Ψ(n)) = ψ̂(ϑK(n))
for all idealsn ∈ J+

K .

We first say a few words about the proofs. Of course, (i) implies the other conditions. To prove
that (ii) implies (i), we first prove that the fields are arithmetically equivalent (by interpreting the
zeta functions as partition functions and studying the relation between the Hamiltonians for the
two systems), and then we use some results on isomorphism of crossed product algebras to deduce
an identification of the semigroups of integral ideals ofK andL. By studying the endomorphism
structure of the QSM-systems, we deduce a homomorphism ofGab

K with Gab
L , then of unit ideles,

and finally, multiplicative groups of the rings of integers.We then deduce an isomorphism of all
residue fields (induced by the same map) from a computation inGalois cohomology of the maximal
abelian extension.

That (ii) implies (iii) follows from the interpretation ofL-series as KMS-states. Conversely, we
show that the matching ofL-series implies automatically thatψ is a continuousgroupisomorphism.
We then get a matching of semigroups of ideals, compatible with the Artin map, by doing some
Fourier analysis with theL-series of the number fields. We then extend these maps to the whole
algebra. At this point, it is maybe interesting to mention that such an isomorphism is by no means
uniquely determined by the matching ofL-series (indeed, for example, an automorphism of the
system might be applied). In this context, one may try to rewrite the main theorems in a functorial
way, as a bijection of certain Hom-sets. It would be interesting to understand the relation to the
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functor from number fields to QSM-systems in[32]. Finally, it is very easy to see that (iv) implies
(iii).

Remark. We make a few remarks about condition (iii) in the theorem. First of all, the equivalence
of (i) and (iii) (or (iv)) is a purely number theoretical statement, without reference to QSM-systems.
We do not know a direct proof that (iii) implies (i) without passing via (ii) and using basic theory
of QSM-systems; so we offer this as a number theoretical challenge (of course, one can clear the
current proof of QSM-lingo).

Secondly, one may wonder whether condition (iii) can be replaced by something weaker. As
we already observed, requiring (iii) for the trivial character only is not enough, but what about, for
example, this condition:

(iii) 2 All rational quadraticL-series ofK andL are equal, i.e. for all integersd
that are not squares inK andL, we haveLK(χd, s) = LL(χd, s).

By considering only rational characters, one does not need to introduce a bijection of abelianized
Galois groups, since there is an automatic matching of conductors. One can also consider a similar
statement (iii)n for all n-th order rationalL-series.

We can show that (iii)2 is not equivalent to (ii). We prove that as soon asK andL have the same
zeta functions, condition (iii)2 holds (the proof usesGaßmann-equivalence, and was discovered
independently by Lotte van der Zalm in her undergraduate thesis[50].) Another number theoretical
challenge is to give a purely analytical proof of this statement (i.e., not using group theory).

Bart de Smit has asked what happens if (iii) is replaced by a matching of zeta functions of ray
class fields (under some matching of the conductors).

Finally, we note that condition (iii) is motivic: it gives anidentification ofL-series of rank one
motives over both number fields (in the sense of[20], §8).

Remark (Anabelian vs. noncommutative). The anabelian philosophy is, in the words of Grothen-
dieck (Esquisse d’un programme, [23], footnote (3)) “a construction which pretends to ignore
[. . . ] the algebraic equations which traditionally serve todescribe schemes, [. . . ] to be able to
hope to reconstitute a scheme [. . . ] from [. . . ] a purely topological invariant [. . . ]”. In the zero-
dimensional case, the fundamental group plays no rôle, onlythe absolute Galois group, and we
arrive at the theorem of Neukirch and Uchida (greatly generalized in recent years, notably by
Bogomolov-Tschinkel[5], Mochizuki [34] and Pop[40], compare[44]).

Our main result indicates that QSM-systems for number fieldscan be considered as some kind
of substitute for the absolute Galois group. The link to Grothendieck’s proposal arises via a philos-
ophy from noncommutative geometry that “topology =C∗-algebra” and “time evolution = Frobe-
nius”. This would become a genuine analogy if one could unearthen a “Galois theory” that de-
scribes a categorical equivalence between number fields on the one hand, and their QSM-systems
on the other hand. Anyhow, it seems Theorem 1 indicates that one may, in some sense, substitute
“noncommutative” for “anabelian”1 . . .

It would be interesting to study the analogue of our results for the case of function fields, and
higher dimensional schemes. Jacob[25] and Consani-Marcolli[15] have constructed function field

1Interestingly, the Wikipedia entry for “Anabelian geometry” starts with “Not to be confused with Noncommutative
geometry” (retrieved 16 Aug 2010).
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analogues of QSM systems that respectively have the Weil andthe Goss zeta function as partition
function. The paper[17] studies arithmetic equivalence of function fields using theGoss zeta
function.

Remark (Link with hyperring theory). Connes and Consani have studied the adele class space as
a hyperring in the sense of Krasner ([29]). They prove in[9] (Theorem 3.13) that

(v) the two adele class spacesAK/K
∗ ∼= AL/L

∗ are isomorphic as hyperrings
over the Krasner hyperfield;

is equivalent to (i) in our main theorem. The proof is very interesting: it uses classification results
from incidence geometry. One may try to prove that (ii) implies (v) directly (thus providing a new
proof of (ii) ⇒ (i); this is especially tempting, since Krasner developed his theory of hyperrings for
applications to class field theory, much of the kind which onesees in our proof of the implication
from (ii) to (i)).

Observe that the equivalence of (v) with (i) is rather far from the anabelian philosophy (which
would be to describe algebra by topology), since it uses (algebraic) isomorphism of hyperrings to
deduce isomorphism of fields. But it might be true that thetopology/geometryof the hyperring
can be used instead. As a hint, we refer to Theorem 7.12 in[9]: over a global function field, the
groupoid of prime elements of the hyperring of adele classesis the abelianized loop groupoid of
the curve, cf. also[8], Section 9.

Remark (Analogues in Riemannian geometry). There is a well-known (limited) analogy between
the theory ofL-series in number theory and the theory of spectral zeta functions in Riemannian
geometry. For example, the ideas of Gaßmann were used by Sunada to construct isospectral, non-
isometric manifolds (cf.[43]): the spectral zeta function does not determine a Riemannian manifold
up to isometry (actually, not even up to homeomorphism).

In [16], it was proven that the isometry type of a closed Riemannian manifold is determined by
a family of Dirichlet series associated to the Laplace-Beltrami operator on the manifold. In[18], it
was proven that one can reconstruct a compact hyperbolic Riemann surface from a suitablefamily
of Dirichlet series associated to a spectral triple. These can be considered as analogues in manifold
theory of the equivalence of (i) and (iii).

One might consider as another analogy of (iii) the matching of all L-series of Riemannian cov-
erings of two Riemannian manifolds, but this appears not to be entirely satisfactory; for example,
there exist simply connected isospectral, non-isometric Riemannian manifolds (cf. Schüth[42]).

At the other side of the spectrum, one may consider Mostow rigidity (a hyperbolic manifold of
dimension at least three is determined by its fundamental group) as an analogue of the anabelian
theorem. Again, this is veryanabelian, since the homology rarely determines a manifold.

There is a further occurence ofL-series in geometry (as was remarked to us by Atiyah): the
Riemann zeta function is the only Dedekind zeta function that occurs as spectral zeta function
of a manifold (namely, the circle); but more generalL-series can be found in the geometry of the
resolution of the cusps of a Hilbert modular variety ([2], compare[33]), a kind of “virtual manifold”
that also has a “quotient structure”, just like the QSM-system algebra is a noncommutative quotient
space.
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Disambiguation of notations

There will be one notational sloppiness throughout: we willdenote maps that are induced by a
given isomorphismϕ by the same letterϕ.

Since the number theory and QSM literature have conflicting standard notations, we include a
table of notations for the convenience of the reader:

R∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . invertible elements of a ringR
R× . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . non-zero elements of a ringR

Kac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . algebraic closure of a fieldK

Ĝ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pontrjagin dual: continuousHom(G,S1) of a compact abelian groupG
G0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . connected component of identity

K,L,M,N (blackboard bold capitals) . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .number fields
LK(−, χ) = LK(χ,−) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .L-series of fieldK for generalized Dirichlet characterχ ∈ Ĝab

K

OK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . ring of integers of a number fieldK

ÔK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . ring of finite integral adeles of a number fieldK

J+
K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .semigroup of integral ideals of a number fieldK

N = NK = NK
Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .the norm map on ideals of the number fieldK

n, p, q (fraktur letters) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . integral ideals of a number field

f(p |p) = f(p |K) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . inertia degree ofp overp, in K

fχ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . conductor of χ

Kp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . maximal extension ofK in whichp is unramified
Kab

p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. maximal abelian extension ofK in whichp is unramified

K̂p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . completion of a number fieldK at a prime idealp
ÔK,p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . integers inK̂p

Kp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . residue field of a number fieldK at a prime idealp
W (−), F, V, ℘ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Wittfunctor, Frobenius, Verschiebung,℘ = F − 1

GK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .absolute Galois group ofK

Gab
K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . Galois group of maximal abelian extension ofK

ϑK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . Artin reciprocity mapJ+
K → Gab

K (or A∗
K → Gab

K )
n ∗γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Action of idealn onγ ∈ Gab

K by the Artin map:n ∗γ = ϑK(n) · γ

AK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .adele ring of a number fieldK

AK,f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . finite (non-archimedean) part of the adele ring of a number fieldK

AK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. theC∗ algebra of the QSM-system of the number fieldK

β . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . positive real number representing “inverse temperature”
XK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . topological space underlying part of the algebraAK

σK = σt = σK,t . . . . . . . . . . . . . . . . . . . . . . . . . . . . the time evolution (in timet) of the QSM-system of the number fieldK
⋊ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .crossed product construction ofC∗-algebras (not semidirect product of groups)
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ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a state of aC∗-algebra
ωβ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . aKMSβ state of aC∗-algebra
πω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .GNS-representation corresponding toω

M ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .weak closure of algebra in GNS-representation

H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hamiltonian
H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Hilbert space
H(−,−) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . (group) cohomology

KMSβ(A, σ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the set ofKMSβ-states of the QSM-system(A, σ)
KMSβ(K) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .KMSβ(AK, σK)

µn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .element of theC∗-algebraAK corresponding to the idealn ∈ J+
K

µn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . group scheme ofn-th roots of unity (n integer)

Part A. QSM-ISOMORPHISM OF NUMBER FIELDS

1. Isomorphism of QSM systems

We recall some definitions and refer to[7], [11], and Chapter 3 of[12] for more information and
for some physics background. After that, we introduce isomorphism of QSM-systems, and prove
they preserveKMS-states (cf. infra).

1.1. Definition. A quantum statistical mechanical system(QSM-system)(A, σ) is a (unital)C∗-
algebraA together with a so-calledtime evolutionσ, which is a continuous group homomorphism

σ : R → AutA : t 7→ σt.

A stateonA is a continuous positive unital linear functionalω : A → C. We sayω is aKMSβ
statefor someβ ∈ R>0 if for all a, b ∈ A, there exists a functionFa,b, holomorphic in the strip
0 < Im z < β and bounded continuous on its boundary, such that

Fa,b(t) = ω(aσt(b)) andFa,b(t+ iβ) = ω(σt(b)a) (∀t ∈ R).

Equivalently,ω is aσ-invariant state withω(ab) = ω(bσiβ(a)) for a, b in a dense set ofσ-analytic
elements. The setKMSβ(A, σ) of KMSβ states is topologized as a subspace of the convex set of
states, a weak* closed subset of the unit ball in the operatornorm of bounded linear functionals on
the algebra. AKMSβ state is calledextremalif it is an extremal point in the (compact convex) set
of KMSβ states for the weak (i.e., pointwise convergence) topology.

1.2. Remark. This notion of QSM-system is one of the possible physical theories of quantum
statistical mechanics; one should think ofA as the algebra of observables, represented on some
Hilbert spaceH with orthonormal basis{Ψi}; the time evolution, in the given representation, is
generated by a HamiltonianH by

(1) σt(a) = eitHae−itH ,

and (mixed) states of the system are combinations

a 7→
∑

λi〈Ψi|aΨi〉
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which will mostly be of the form
a 7→ trace(ρa)

for some density matrixρ. A typical equilibrium state (here, this means stable by time evolution)
is a Gibbs state

a 7→ trace(ae−βH)/ trace(e−βH)

at temperature1/β, where we have normalized by the partition function

trace(e−βH).

The KMS-condition was introduced by Kubo, Martin and Schwinger in the 1950s as a correct
generalization of the notion of equilibrium state to the general case, where the trace class condition

trace(e−βH) <∞
needed to define Gibbs states no longer necessarily holds.

1.3. For convenience, we recall the construction of the(reduced) crossed product algebraA :=
C(X)⋊G, whereX is a topological space andG is a semigroup that acts “reasonably” onX. Let
H denote a Hilbert space on whichC(X) is represented; thenA is the algebra generated by the
images of the representationπ1 of C(X) andπ2 of G on H G := L2(G,H ) (square summable
functions onG with values inH ) given by

π1(f)(ξ)(g) := g−1(f)(ξ(g))

π2(g)(ξ)(h) := ξ(g−1h)

We now introduce the following equivalence relation for QSM-systems:

1.4. Definition. An isomorphismof two QSM-systems(A, σ) and(B, τ) is aC∗-algebra isomor-
phismϕ : A

∼→ B that intertwines time evolutions, i.e., such that the following diagram commutes:

A
ϕ

∼
//

σ

��

B

τ

��
A

ϕ

∼
// B

1.5. Lemma. Let ϕ : (A, σ)
∼→ (B, τ) denote an isomorphism of QSM systems. Then for any

β > 0,

(i) pullback
ϕ∗ : KMSβ(B, τ)

∼→ KMSβ(A, σ) : ω 7→ ω ◦ ϕ
is a homeomorphism between the spaces ofKMSβ states onB andA;

(ii) ϕ∗ induces a bijection between extremalKMSβ states onB andA.

Proof. The mapϕ obviously induces a bijection between states onB and states onA.
For (i), letFa,b be the holomorphic function that implements theKMSβ-condition for the state

ω on (B, τ) ata, b ∈ B, so

Fa,b(t) = ω(aτt(b)) andFa,b(t+ iβ) = ω(τt(b)a).
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The following direct computation then shows that the function Fϕ(c),ϕ(d) implements theKMSβ-
condition for the stateϕ∗ω on (A, σ) at c, d ∈ A:

(ω ◦ ϕ)(cσt(d)) = ω(ϕ(c)τt(ϕ(d)) = Fϕ(c),ϕ(d)(t),

and similarly att + iβ. Also, note that pullback is continuous, sinceC∗-algebra isomorphism is
compatible with the topology on the set ofKMS-states.

For (ii), if a KMSβ stateω onB is not extremal, then the GNS-representationπω of ω is not
factorial. As in Prop 3.8 of[11], there exists a positive linear functional, which is dominated byω,
namelyω1 ≤ ω, and which extends fromB to the von Neumann algebra given by the weak closure
M ω of B in the GNS representation. The functionalω1 is of the formω1(b) = ω(hb) for some
positive elementh in the center of the von Neumann algebraM ω. Consider then the pull back

ϕ∗(ω)(a) = ω(ϕ(a))

and

ϕ∗(ω1)(a) = ω1(ϕ(a)) = ω(hϕ(a))

for a ∈ A. The continuous linear functionalϕ∗(ω1) has norm‖ϕ∗(ω1)‖ ≤ 1. In fact, since we are
dealing with unital algebras,

‖ϕ∗(ω1)‖ = ϕ∗(ω1)(1) = ω(h).

The linear functionalω2(b) = ω((1− h)b) also satisfies the positivity propertyω2(b
∗b) ≥ 0, since

ω1 ≤ ω. The decomposition

ϕ∗(ω) = λη1 + (1− λ)η2,

with λ = ω(h),

η1 = ϕ∗(ω1)/ω(h) andη2 = ϕ∗(ω2)/ω(1 − h)

shows that the stateϕ∗(ω) is not extremal. Notice thatη1 andη2 are bothKMS states. To see this,
it suffices to check that the stateω1(b)/ω(h) is KMS. In fact, one has for all analytic elements
a, b ∈ B:

ω1(ab) = ω(hab) = ω(ahb) = ω(hbτiβ(a)).

�

1.6. Definition. An automorphismof a QSM-system(A, σ) is an isomorphism to itself. The group
of such automorphisms is denoted byAut((A, σ)).

An endomorphismof a QSM-system(A, σ) is a∗-homomorphismA → A that commutes with
σt for all t. We denote them byEnd((A, σ)).

An inner endomorphismis defined bya 7→ uxu∗ for some isometryu ∈ A which is an eigen-
vector of the time evolution, i.e.,u∗u = 1 and there exists an eigenvalueλ such thatσt(u) = λitu
for all t. We denote them byInn((A, σ)). (Inner endomorphisms act trivially onKMS-states, cf.
[12], Ch. 3, Section 2.3.)
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2. A QSM-system for number fields

Bost and Connes ([6]) introduced a QSM-system for the field of rational numbers, and [13], [14]
did so for imaginary quadratic fields. More general QSM-systems associated to arbitrary number
fields were constructed by Ha and Paugam in[24] as a special case of their more general class of
systems for Shimura varieties, which in turn generalize theGL(2)-system of[11]. We recall here
briefly the construction of the systems for number fields in the equivalent formulation given in[31].

2.1. We denote byJ+
K the semigroup of integral ideals, with the norm function

N : J+
K → Z : n 7→ N(n) = NK

Q (n) = NK(n).

Denote byGab
K the Galois group of the maximal abelian extension ofK. The semigroup of ideals

maps to the idelesA∗
K, and hence to the idele class group modulo its connected component of the

identity. The Artin reciprocity map is an isomorphism of this toGab
K. By abuse of terminology, we

refer to
ϑK : J+

K → Gab
K : n → ϑK(n)

as the Artin map. We also have an action onGab
K of the groupA∗

K,f of finite ideles ofK, hence one
can consider the fibered product

XK := Gab
K ×

Ô
∗
K

ÔK,

whereÔK is the ring of finite integral adeles, defined forγ ∈ Gab
K andi ∈ ÔK by

(γ, i) ≡ (ϑK(u
−1) · γ, ui) for all u ∈ Ô

∗

K.

2.2. Definition. TheQSM-system(AK, σK) associated to a number fieldK is defined by

(2) AK := C(XK)⋊ J+
K = C(Gab

K ×
Ô

∗
K

ÔK)⋊ J+
K ,

where the crossed product structure is given by the partially defined action of the group of fractional
ideals, seen asA∗

K,f /Ô
∗
K which is the restriction toGab

K ×
Ô

∗
K

ÔK of the action onGab
K ×

Ô
∗
K
AK,f ,

given byn ∈ J+
K acting as

(γ, i) 7→ (ϑK(n
−1) · γ, n ·i).

The time evolution is given by

(3) σK,t(f) = f, ∀f ∈ C(Gab
K ×

Ô
∗
K

ÔK), and σK,t(µn) = N(n)it µn, ∀ n ∈ J+
K .

whereµn are the isometries that implement the semigroup action ofJ+
K .

3. Hilbert space representation, partition function, KMS-states

3.1. A complete classification of theKMS states for the systems(AK, σK) was obtained in[31],
Thm. 2.1. In particular, in the low temperature rangeβ > 1, the extremalKMSβ states are param-
eterized by elementsγ ∈ Gab

K , and are in Gibbs form, given by normalizedL-series

(4) ωβ,γ(f) =
1

ζK(β)

∑

n∈J+
K

f(ϑK(n)γ)N(n)−β .
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In the particular case wheref = χ is a character ofGab
K (extended as usual by0 on ideals not

coprime to its conductor), we find

(5) ωβ,γ(χ) =
1

ζK(β)
· χ(γ) · LK(χ, s).

3.2. Associated to any elementγ ∈ GabK is a natural representation of the algebraAK on the Hilbert
spaceℓ2(J+

K ). Namely, letεm denote the canonical basis ofℓ2(J+
K ). Then the action onℓ2(J+

K ) of
an elementfnµn ∈ AK with n ∈ J+

K andfn ∈ C(XK) is given by

πγ(fnµn) ǫm = fn(nm ∗γ) ǫn m.
In this picture, the time evolution is implemented (in the sense of formula (1)) by a Hamiltonian

(6) HσKǫn = logN(n) ǫn,

3.3. In this representation,

trace(πγ(f)e
−βHσK ) =

∑

n∈J+
K

f(n ∗γ)
N(n)β

.

Settingf = 1, the Dedekind zeta function

ζK(β) =
∑

n∈J+
K

N(n)−β

appears as the partition function

ζK(β) = trace(e−βHσK )

of the system (convergent forβ > 1).

3.4. Remark (Formulation in terms ofK-lattices). As shown in[12], the original Bost–Connes
system admits a geometric reformulation in terms of commensurability classes of 1-dimensional
Q-lattices, which in Section 3 of[31] was generalized to number fields. More specifically, the
moduli space ofK-lattices up to scaling is the abelian partC(XK) of the algebra (a classical
quotient), and the moduli space up to scalingand commensurability exhibit the complete algebra
(a genuinely noncommutative space). We recall the definitions for convenience.

Denote byK∞ =
∏
v|∞ K̂v the product of the completions at the archimedean places, and

by (K∗
∞)0 the connected component of the identity inK∗

∞. An 1-dimensionalK-lattice is a pair
(Λ, φ), whereΛ ⊂ K∞ is a lattice withOK Λ = Λ andφ : K /OK → KΛ/Λ is anOK-module
homomorphism. The set of1-dimensionalK-lattices can be identified with

(7) MK,1 = K∗ \A∗
K×

Ô
∗
K
ÔK,

as in[13] and[15], cf. [31] Lemma 3.3. TwoK-lattices arecommensurable, denoted by

(Λ1, φ1) ∼ (Λ2, φ2),

if KΛ1 = KΛ2 andφ1 = φ2 moduloΛ1 +Λ2.
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Thescaling equivalencecorresponds to identifying 1-dimensionalK-lattices(Λ, φ) and(kΛ, kψ),
wherek ∈ (K∗

∞)0 andψ is a pointwise limit of elementsrφ with r ∈ O
∗
K ∩(K∗

∞)0. The result-
ing convolution algebra corresponds to the action ofA

∗
K,f /Ô

∗

K ≃ JK on themoduli space of
1-dimensionalK-lattices up to scaling

MK,1 = A
∗
K /K

∗(K∗
∞)0 ×

Ô
∗
K

ÔK ≃ GabK ×
Ô

∗
K

ÔK.

The algebraAK can be interpreted as the quotient of the groupoid of the commensurability
relation by the scaling action. The Hilbert space construction can be fit into the general framework
of groupoid algebra representations.

In the lattice picture, the low temperature KMS states are parameterized by theinvertible 1-
dimensionalK-lattices, namely those for which theOK-module homomorphismϕ is actually an
isomorphism, see[12], [13], [31], and Chapter 3 of[11].

4. Hamiltonians and arithmetic equivalence

We first show that the existence of an isomorphism of the quantum statistical mechanical systems
implies arithmetic equivalence; this is basically becausethe zeta functions ofK andL are the
partition functions of the respective systems. Some care has to be taken since the systems are not
represented on the same Hilbert space.

4.1. Proposition. Letϕ : (AK, σK) → (AL, σL) be an isomorphism of QSM-systems of number
fieldsK andL. ThenK andL are arithmetically equivalent, i.e., have the same Dedekind zeta
function.

Proof. The isomorphismϕ : (AK, σK) → (AL, σL) induces an identification of the sets of extremal
KMS-states of the two systems, via pullbackϕ∗ : KMSβ(L) → KMSβ(K).

Consider the GNS representations associated to regular lowtemperatureKMS statesω = ωβ
andϕ∗(ω). We denote the respective Hilbert spaces byHω andHϕ∗ω. As in Lemma 4.3 of[10],
we observe that the factorMω obtained as the weak closure ofAL in the GNS representation is
of type I∞, since we are only considering the low temperature KMS states that are of Gibbs form.
Thus, the spaceHω decomposes as

Hω = H (ω)⊗ H
′,

with an irreducible representationπω of AL onH (ω) and

Mω = {T ⊗ 1 |T ∈ B(H (ω))}
(B indicates the set of bounded operators). Moreover, we have

〈(T ⊗ 1)1ω , 1ω〉 = Tr(Tρ)

for a density matrixρ (positive, of trace class, of unit trace).
We know that the low temperature extremal KMS states for the system(AL, σL) are of Gibbs

form and given by the explicit expression

(8) ωγ,β(f) =
1

ζL(β)

∑

m∈J+
L

f(ϑL(m)γ)

NL(m)β
,
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for someγ ∈ Gab
L /ϑL(Ô

∗

L); and similarly for the system(AK, σK). Thus, we can identifyH (ω)

with ℓ2(J+
L ) and the densityρ correspondingly withe−βHσL/Tr(e−βHσL ). As in Lemma 4.3 of

[10], the evolution groupeitHω generated by the HamiltonianHω that implements the time evolu-
tion σL in the GNS representation onHω agrees witheitHσL on the factorMω. This gives

eitHωπω(f)e
−itHω = πω(σL(f)) = eitHσLπω(f)e

−itHσL .

As observed in §4.2 of[10], this gives us that the Hamiltonians differ by a constant,

Hω = HσL + log λ1,

for someλ1 ∈ R∗
+. The argument for the GNS representation forπϕ∗(ωβ) is similar and it gives an

identification of the Hamiltonians

Hϕ∗(ω) = HσK + log λ2

for some constantλ2 ∈ R∗
+.

The algebra isomorphismϕ induces a unitary equivalenceΦ of the Hilbert spaces of the GNS
representations of the corresponding states, and the Hamiltonians that implement the time evolution
in these representations are therefore related by

Hϕ∗(ω) = ΦHωΦ
∗.

In particular the HamiltoniansHϕ∗(ω) andHω then have the same spectrum.
Thus, we know from the discussion above that

HK = ΦHLΦ
∗ + log λ,

for a unitary operatorΦ and aλ ∈ R∗
+. This gives at the level of zeta functions

(9) ζL(β) = λ−βζK(β).

This identity holds for allβ > 1, and hence by analytic continuation to allβ ∈ C. Now consider
the left hand side and right hand side as classical Dirichletseries of the form

∑

n≥1

an
nβ

and
∑

n≥1

bn
(λn)β

,

respectively. Sinceb(1) = 1 6= 0, the identity theorem for Dirichlet series first implies that λ is an
integer. Then, sincea(1) = 1 6= 0, we actually findλ = 1. Thus, we obtainζK(β) = ζL(β) which
gives arithmetic equivalence of the number fields. �

By expanding the zeta functions as Euler products, we deduce

4.2. Corollary. If the QSM-systems(AK, σK) and (AL, σL) of two number fieldsK and L are
isomorphic, then there is a bijection of the primesp of K abovep and the primesq of L abovep
that preserves the inertia degree:f(p |K) = f(q |L). �

Using some other known consequences of arithmetical equivalence, we get the following ([39],
Theorem 1) - which will not be used in the sequel:
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4.3. Corollary. If the QSM-systems(AK, σK) and (AL, σL) of two number fieldsK and L are
isomorphic, then the number fields have the same degree overQ, the same discriminant, normal
closure, isomorphic unit groups, and the same number of realand complex embeddings. �

However, it does not follow from arithmetical equivalence thatK andL have the same class
group (or even class number), cf.[19].

5. Crossed product structure and QSM-isomorphism

In this section, we study isomorphisms of general algebras obtained as crossed products by
endomorphisms, compatible with certain time evolutions. The argument we give here is a modifi-
cation of the argument of[41]. Basically, this setup shows that compatibility with time evolution
guarantees that the isomorphismϕ : AK

∼→ AL induces a separate homeomorphismXK
∼→ XL

and a family of semi-group isomorphismsJ+
K

∼→ J+
L . We first discuss the case of an action ofZ+

and then extend to the higher rank caseZN+ .

5.1. LetX be a compact Hausdorff topological space and letγ : X → X be a continuous injective
map such thatY = Range(γ) ⊂ X is a clopen set, so that the characteristic functionχ = χY ∈
C(X). We then have an endomorphismν : C(X) → C(X), given by

ν(f)(x) = f(γ(x)),

and another endomorphismρ : C(X) → C(X), given by

ρ(f)(x) = χ(x)f(γ−1(x)).

This is well defined, since, for an injectiveγ the inverseγ−1(x) is well defined forx ∈ Y ⊂ X.
One hasχ(γ(x)) = 1 for all x ∈ X, so thatν(χf) = ν(f) for all f ∈ C(X), andν(ρ(f)) = f for
all f ∈ C(X). Thus, the endomorphismν is surjective onC(X) but not injective. One also has
ρ(ν(f)) = χf .

5.2. The semigroup crossed product
C(X)⋊ρ Z+

is generated algebraically by elementsf ∈ C(X) and an isometryµ, with the relations

µ∗µ = 1, fµ = µν(f), µf = ρ(f)µ,

for all f ∈ C(X), with ν andρ as above. Under the∗-involution these give also relations of the
form µ∗f = ν(f)µ∗ andfµ∗ = µ∗ρ(f). The semigroup action in the crossed product is given by
the endomorphismρ, with ρ(f) = µfµ∗.

5.3. Proposition. LetX andX ′ be compact Hausdorff spaces, and let

A = C(X)⋊ρ Z+ and A
′ = C(X ′)⋊ρ′ Z+

be the semigroup crossed productC∗-algebras associated to fixed-point free injective continuous
mapsγ : X → X andγ′ : X ′ → X ′ as above. Suppose given time evolutions onA andA

′ such
that {

σt(f) = f for all f ∈ C(X),
σt(µ) = λitµ,
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for someλ ∈ R∗
+, and similarly forσ′ onA

′ with the sameλ. Let

ϕ : (A , σ)
∼→ (A ′, σ′)

be an isomorphism of QSM-systems. Thenϕ induces a homeomorphism

Φ : X
∼→ X ′,

with
Φγ = γ′Φ.

Proof. By the relations in the crossed product algebra, we can decompose elementsa ∈ A linearly
as

a = f0 +
∑

k>0

(µkfk + f−k(µ
∗)k).

One writesEk(a) = fk for the linear contractive map that gives the “Fourier coefficients" of this
decomposition. For a time evolution withσt(f) = f for f ∈ C(X) andσt(µ) = λitµ, theEk are
in fact the projections onto the eigenspace of the time evolution with eigenvalueλikt.

LetA 0 ⊂ A be the closed subalgebra (without involution) generated byC(X) and the isometry
µ, but without the adjointµ∗. Elements in the subalgebraA 0 haveEk(a) = 0 for all k ≤ 0. The
isomorphismϕ is compatible with the time evolution, hence it maps the eigenspaceE k in A

with eigenvalueλitk to the eigenspaceE ′
k with the same eigenvalue inA ′. Thus, in particular,ϕ

induces an isomorphismϕ : A 0
∼→ A 0, compatible with the restrictions of the time evolutions to

this subalgebra.
Let C 0 denote the closure of the commutator ideal ofA 0 andC

2
0 the closure of the span of

products of commutators, and letC
′
0 and(C ′

0)
2 be the same forA ′

0. TheC∗-isomorphismϕmaps
C 0 to C

′
0 andC

2
0 to (C ′

0)
2. Thus, it induces an isomorphism

ϕ : A 0 /C 0
∼→ A

′
0 /C

′
0,

which gives a bijection of the maximal ideals ofA 0 containingC 0 and the maximal ideals ofA ′
0

containingC
′
0.

Given a maximal idealIx of C(X), given by all functions vanishing at a pointx ∈ X, define

Ĩx,0 = {a ∈ A 0 : E0(a) ∈ Ix}.
This is a maximal ideal inA 0, containingC 0. Sinceγ : X → X has no fixed points, all the
maximal ideals ofA 0 containingC 0 are of this form.

The bijection between these maximal ideals induced by the isomorphism

ϕ : A 0 /C 0
∼→ A

′
0 /C

′
0

then gives a bijectionΦ between the points ofX and the points ofX ′, which induces an algebra
isomorphism ofC(X) andC(X ′), hence a homeomorphism

Φ : X
∼→ X ′.

One can write commutators

[f, µ] = fµ− µf = µ(ν(f)− f) = (f − ρ(f))µ.
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Similarly, one has

[f, µk] = µk(νk(f)− f) = (f − ρk(f))µk

[f, µ∗] = (f − ν(f))µ∗ = µ∗(ρ(f)− f),

[f, (µ∗)k] = (f − νk(f))(µ∗)k = (µ∗)k(ρk(f)− f).

Thus, elementsa ∈ C 0 have Fourier coefficientsE0(a) = 0 andEk(a) in the subspace ofE k

generated by the “coboundaries"µkh, with

h = (f − νk(f)).

Similarly, elements inC 2
0 haveE0(a) = E1(a) = 0 and theE k for k ≥ 2 in the subspace ofE k

spanned by the coboundaries.
Notice then that iff ∈ C(X) belongs to an idealIy, with y ∈ Y , thenν(f) belongs to the ideal

Ix, with y = γ(x). Similarly, if f ∈ Ix, thenρ(f) ∈ Iγ(x). Moreover, for

a = f0 +
∑

k>0

(µkfk + f−k(µ
∗)k)

as above, we have

ν(a) = ν(f0) +
∑

k>0

ν(ρk(fk))µ
k + (µ∗)kν(ρk(f))

= ν(f0) +
∑

k>0

µkνk+1(ρk(fk)) + νk+1(ρk(f))(µ∗)k

= ν(f0) +
∑

k>0

µkν(fk) + ν(f−k)(µ
∗)k,

and
ρ(a) = ρ(f0) +

∑

k>0

(µkρ(fk) + ρ(f−k)(µ
∗)k).

Thus, we also have that ifa ∈ Ĩy,0, for y ∈ Y ⊂ X, thenν(a) ∈ Ĩx,0, with y = γ(x) and if
a ∈ Ĩx,0 thenρ(a) ∈ Ĩγ(x),0. Moreover, fora ∈ Ĩy,0, we have

a [f, µ] = [f, µ] ν(a) and[f, µ] a = ρ(a) [f, µ].

This gives
Ĩy,0 C 0 +C

2
0 = C 0 Ĩx,0 + C

2
0 .

Under the isomorphismϕ we then have

ϕ(Ĩy,0 C 0+C
2
0) = ĨΦ(y),0 C

′
0 +(C ′

0)
2

and
ϕ(C 0 Ĩx,0 + C

2
0) = C

′
0 ĨΦ(x),0 + (C ′

0)
2,

with y = γ(x). The same relations applied to the algebraA
′
0 then giveΦ(γ(x)) = γ′(Φ(x)). �

5.4. Remark. The condition thatγ : X → X has no fixed points can be left out; the proof gets
technically more complicated since one has to include an additional class of maximal ideals ofA 0

containingC 0.
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We extend the result to the case of a crossed product by an abelian semigroup generated by
N commuting isometriesµi, each corresponding to a pair of endomorphismνi(f) = f ◦ γi and
ρi(f) = χif ◦ γ−1

i .

5.5. Proposition. Let

A = C(X)⋊ρ Z
N
+ and A

′ = C(X ′)⋊ρ′ Z
N
+ ,

with
ρi(f) = µifµ

∗
i andνi(f) = f ◦ γi = µ∗i fµi,

for fixed-point free mapsγi. Assume thatγi(x) 6= γj(x), for all x ∈ X and all i 6= j and similarly,
γ′i(x

′) 6= γ′j(x
′) for all x′ ∈ X ′ andi 6= j. Letσ andσ′ be time evolutions onA andA

′ with
{
σt(f) = f for all f ∈ C(X),
σt(µi) = λitµi,

for a λ ∈ R∗
+ and, similarly onA ′. Then a QSM-isomorphism

ϕ : (A , σ)
∼→ (A ′, σ′)

induces a homeomorphism

Φ : X
∼→ X ′

and a locally constant function
α : X → SN ,

with SN the group of permutations of the set{1, . . . , N}, such that

Φ(γαx(i)(x)) = γ′i(Φ(x)),

for all x ∈ X.

Proof. The argument proceeds as in the case of a single isometry. Oneuses the compatibility with
the time evolution to induce isomorphisms

ϕ : A 0
∼→ A

′
0

of the closed subalgebras without involution generated byC(X) (respectively,C(X ′)) and theµi
(respectivelyµ′i). The induced isomorphism

ϕ : A 0 /C 0
∼→ A

′
0 /C

′
0

again gives an identification between the maximal idealsĨx,0 in A 0 containingC 0 andĨx′,0 in A
′
0

containingC
′
0, hence a homeomorphism

Φ : X
∼→ X ′.

Here one can again describe as before the elements inC 0 andC
2
0 in terms of their projectionsEk

on the eigenspaces of the time evolution and one sees thatC 0 /C
2
0 is a bimodule forC(X) of the

form
C(X)µ1 + · · · + C(X)µN ,
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corresponding to the projection onto the eigenspaceE 1. As in [41], one then sees that, for a point
x ∈ X, the set of points{γi(x)}i=1,...,N , which are distinct by the assumption, is the set of those
y ∈ X such that the space

Ĩx,0 C 0 +C 0 Ĩy,0 + C
2
0

has codimension one inC 0. One obtains in this way, for eachx ∈ X, an identification between the
sets{Φ(γi(x))}i=1,...,N and{γ′i(Φ(x))}i=1,...,N . This gives for eachx a permutationαx of the set
{1, . . . , N}. By continuity, this gives a locally constant functionα : X → SN . �

5.6. Remark. Thus, in the case ofN commuting isometries, we find that aC∗-algebra isomor-
phismϕ : A

∼→ A
′ compatible with the time evolution maps isomorphically

ϕ : C(X)
∼→ C(X ′),

through a homeomorphismΦ : X
∼→ X ′, and it maps

ϕ(µi) =
N∑

j=1

hijµ
′
j,

wherehij ∈ C(X ′) are given byhij = ϕ(fij), with fij ∈ C(X) locally constant functions
satisfying

fij(x) = δj,αx(i).

These satisfy
∑

j fij(x) ≡ 1, which is compatible with the relationϕ(µ∗iµi) = 1.

6. Application to the QSM-system of a number field

We now return from the general situation to our specific QSM-systems, so

AK = C(XK)⋊ J+
K .

We also use the notationn ∗x for the action ofn ∈ J+
K on XK. This action corresponds to the

endomorphisms that give the crossed product action inAK, and is clearly fixed-point free. If we
factor the algebra into finite pieces as in the following proof, we can deduce from the previous
section the following result:

6.1. Proposition.Letϕ : (AK, σK)
∼→ (AL, σL) be an isomorphism of the QSM-systems associated

to number fieldsK andL. Then the isomorphismϕ induces a homeomorphism

ϕ : XK
∼→ XL

and a family of semigroup isomorphisms

αx : J+
K

∼→ J+
L ,

locally constant inx ∈ XK, with the compatibility condition

ϕ(n ∗x) = αx(n) ∗ ϕ(x).
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Proof. The previous proposition does not apply directly, sinceJ+
K has infinite rank. However, we

can view it as a product over finite rank semigroups, corresponding to sub-semigroups generated
by prime ideals of a given norm. The fact that everything is compatible with this splitting follows
from the compatibility ofϕ with the time evolutions: it implies thatϕ maps the eigenspace of the
time evolutionσK with eigenvaluepit to the eigenspace of the time evolutionσL with the same
eigenvalue. Thus,ϕ induces, for each rational primep, an isomorphism

ϕp : AK,p
∼→ AL,p

of the subalgebrasAK,p ⊂ AK andAL,p ⊂ AL, given by

AK,p = C(XK)⋊ J+
K,p,

with J+
K,p ⊂ J+

K the sub-semigroup generated by the isometriesµp with p a prime ofK with

NK(p) = p, and similarly forAL,p = C(XL) ⋊ J+
L,p. To each of these subalgebras we can apply

the result of the previous proposition and obtain an inducedhomeomorphism

ϕ : XK
∼→ XL

and a locally constant bijection

αx : {p ∈ K : NK(p) = p} ∼→ {q ∈ L : NL(q) = p}.
Notice that we know a priori thatK andL have the same number of primes over the same rational
prime p, because of arithmetic equivalence. Assembling together these identifications for each
primep, one obtains the isomorphism

αx : J+
K

∼→ J+
L .

�

6.2. Proposition. In the previous proposition 6.1, forx ∈ Gab
K , the map

αx : J+
K

∼→ J+
L ,

is independent ofx. If we denote it byϕ, the compatibility condition becomes

ϕ(n ∗x) = ϕ(n) ∗ ϕ(x)
for x ∈ Gab

K andn ∈ J+
K .

Proof. The groupGab
K operates faithfully by endomorphisms on the QSM-system(AK, σK), cf.

[31], Remark 2.2(i). We then have a commutative diagram

XK

ϕ

∼
//

γ∈Gab
K

��

XL

ϕ(γ)∈Gab
L

��
XK

ϕ

∼
// XL

Thus,
ϕ(γ)ϕ(x) = ϕ(γx).
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We now compute that forx ∈ Gab
K ,

ϕ(n ∗γ · x) = ϕ(n ∗(γx)) = αγx(n) ∗ ϕ(γx).
and on the other hand

ϕ(n ∗γ · x) = ϕ(γ)ϕ(n ∗x) = ϕ(γ)αx(n) ∗ ϕ(x) = αx(n) ∗ ϕ(γ)ϕ(x) = αx(n) ∗ ϕ(γx).
So that finally for allγ ∈ Gab

K ,

αγx = αx.

SinceGab
K acts transitively on itself, we do find thatαx for x ∈ Gab

K is independent ofx ∈ Gab
K ;

hence equal toα1, which we denote byϕ. �

6.3. Remark. We cannot conclude thatαx is constant on elements of̂OK at this point (but of
course it is on the subspacêO

∗

K).

7. From QSM to field isomorphism: multiplicative structure

7.1. We now come to the proof of Theorem 1. Of course, (i) implies (ii). We now show that (ii)
implies (i), i.e., that isomorphism of QSM-systems leads toisomorphic fields.

7.2. Remark. The start of the proof of the Neukirch-Uchida theorem is roughly based on the
observation that a prime is characterized by its decomposition group in the algebraic closure (a fact
apparently going back to F.K. Schmidt), a fact that is totally false in the abelian closure. Hence
only based on the correspondence of abelianized Galois groups, we cannot get started with the
proof in this way. In our proof, however, by what we have already deduced in previous sections,
the isomorphism of QSM-systems induces automatically a bijection between the (prime) ideals of
the field.

We first recall the following facts on the symmetries of the QSM-systems of number fields. The
statement is analogous to Proposition 2.14 of[13] and Proposition 3.124 of[12], where it was
formulated for the case of imaginary quadratic fields, and toTheorem 2.14 of[15], formulated in
the function field case.

7.3. Lemma. LetK denote any number field. The semigroupÔK ∩AK,f acts by endomorphisms

of (AK, σK), with kernelO∗
K. The subset̂O

∗

K acts by automorphisms of the system, and the subset
O

×
K = OK−{0} of non-zero elements of the ring of integers acts by inner endomorphisms. This is

summarized by following commutative diagram:

Inn(AK, σK)
� � // End(AK, σK) Aut(AK, σK)? _oo

O
×
K

� � //

OO

ÔK ∩A
∗
K,f

OO

Ô
∗
K

? _oo

OO

O
∗
K

?�

OO

O
∗
K

?�

OO

O
∗
K

?�

OO

.
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Proof. Consider a givens ∈ ÔK ∩A
∗
K,f , and the associated idealn given by

n = sÔK ∩K .

An element(γ, ρ) ∈ XK is divisible byn if s−1ρ ∈ ÔK. One obtains in this way an action by
endomorphisms of(AK, σK) by

εs(f)(γ, ρ) = f(γ, s−1ρ)

when(γ, ρ) is divisible byn andεs(f)(γ, ρ) = 0 otherwise. These are compatible by construction
with the time evolution,

εsσt = σtεs, ∀s ∈ Ô ∩A
∗
K,f , ∀t ∈ R .

It is clear from this definition that elements ofÔ
∗

K act by automorphisms.
Now consider then the case wheres ∈ O

×
K. In this case,n is the principal ideal generated bys,

and the non-zero values of the functionεs(f) can be identified as follows:

εs(f)(γ, ρ) = f(γ, s−1ρ) = f(ϑK(n) · γ, ρ) = (µnfµ
∗
n) (γ, ρ),

which is an inner endormorphism, sinceµn is an eigenvector of time evolution.
�

7.4. Remark. More generally, as we have already observed in the proof of Proposition 6.2,Gab
K

(which contains an image of̂OK ∩A
∗
K,f ) acts by endomorphisms of the system, cf.[31], Remark

2.2(i). Also note that automorphisms of the field induce automorphisms of the associated QSM-
systems.

7.5. Remark (K-lattices). In terms ofK-lattices (Λ, φ), the divisibility condition above corre-
sponds to the condition that the homomorphismφ factors through

φ : K /OK → KΛ/ nΛ → KΛ/Λ.

The action of the endomorphisms is then given by

εs(f)((Λ, φ), (Λ
′, φ′)) = f((Λ, s−1φ), (Λ′, s−1φ′))

when both(Λ, φ) and(Λ′, φ′) are divisible bys and zero otherwise.
Whens ∈ O

×
K, we can consider the function

µs((Λ, φ), (Λ
′, φ′)) =

{
1 Λ = s−1Λ′ and φ′ = φ;
0 otherwise.

These are eigenvectors of the time evolution, withσt(µs) = NK(n)
itµs, andεs(f) = µs ⋆ f ⋆ µ

∗
s,

for the convolution product of the algebraAK.

7.6. Proposition. An isomorphismϕ : (AK, σK) → (AL, σL) of the QSM-systems of two number
fieldsK andL, induces an isomorphism of topological groups between the Galois groups of their
maximal abelian extensions:

ϕ : Gab
K

∼→ Gab
L .
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Proof. For β > 1, the set of extremalKMSβ states ofAK is homeomorphic toGab
K ([31], Thm.

2.1(iii)). Hence from the matching ofKMS-states from Lemma 1.5, we find thatϕ induces a
homeomorphism

ϕ : Gab
K

∼→ Gab
L .

We now need to prove that this is actually agroup isomorphism. Again, we use thatGab
K is also

naturally a faithful symmetry group of the system(AK, σK), so there is a group homomorphism

Gab
K →֒ End(AK, σK)

(which even factors modulo inner endomorphisms). Now we also see that the mapϕ automatically
induces (by pullback) an isomorphism

ϕ : End(AK, σK)
∼→ End(AL, σL).

Although we do not know the complete structure of the endomorphism algebra, by Lemma 1.5, we
do know thatϕ sends the image ofGab

K to the image ofGab
L . Thus, from the commutative diagram

Gab
K

� � grp
//

ϕ (top)≃

��

End(AK, σK)

ϕ (grp)≃

��
Gab

L
� � grp // End(AL, σL)

we find thatϕ is indeed a topological group isomorphismGab
K

∼→ Gab
L . �

7.7. Remark. All the groupsGab
K are homeomorphic to each other (and to the Cantor set). The

main point of using the set ofKMS-states at the start of the proof is to show thatthe mapϕ induces
such a homeomorphism.

7.8. Remark. The isomorphism type of the infinite abelian groupGab
K is determined by its so-

calledUlm invariants. ForGab
K, those were computed abstractly by Kubota ([30]), and Onabe ([38])

computed them explicitly for quadratic imaginary fields. For example,Gab
Q(i) is never isomorphic to

any other group for such a field, butQ(
√
−2) andQ(

√
−3) have isomorphic abelianized absolute

Galois groups (and they are not isomorphic as fields).

7.9. Proposition. Let K and L denote two number fields admitting an isomorphismϕ of their
QSM-systems(AK, σK) and(AL, σL). Thenϕ induces a group isomorphism of unit ideles

ϕ : Ô
∗

K

∼→ Ô
∗

L.

Proof. We have already seen thatϕ induces a homeomorphism

ϕ : XK
∼→ XL,

whereXK = Gab
K ×

Ô
∗
K

ÔK; the product is balanced over the unit ideles, meaning thatXK =

Gab
K × ÔK/ ∼ where fori ∈ Gab

K andm ∈ Ô, we let(i,m) ∼ (u−1i, um) for anyu ∈ Ô
∗

K. Also,
onGab

K, ϕ is already a group isomorphism. Hence all we need to do is prove thatϕmaps unit ideles
to unit ideles, as subsets ofGab

K .
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Sinceϕ is already a group isomorphism when restricted to the groupGabK , we haveϕ(1) = 1.
We findÔK as a subspace ofXK by taking a (non-canonical) section

ÔK →֒ XK : m 7→ (1,m);

indeed,(1,m) ∼ (1, n) only form. We denote equivalence classes for∼ by square brackets. Now

ϕ : ÔK → ÔL

satisfiesϕ(m) = m′ if and only if

ϕ([(1,m)]) = [(1,m′)].

Let us now check that this map induced byϕ maps unit ideles to unit ideles. For this, we
takem ∈ Ô

∗
K to be a unit idele, and we compute the image ofm. First of all, by definition,

ϕ([(1,m)] = [1, ϕ(m)]. On the other hand, sincem is a unit itself, we have[(1,m)] = [(m, 1)].
This is mapped by definition to[(ϕ(m), 1)]. Hence we find an equivalence

(1, ϕ(m)) ∼ (ϕ(m), 1),

i.e., the existence of a unitu ∈ ÔL with

1 = uϕ(m).

This proves the claim thatϕ(m) is also a unit idele. �

7.10. Proposition. Let K andL denote two number fields admitting an isomorphismϕ of their
QSM-systems(AK, σK) and(AL, σL). Thenϕ induces a semigroup isomorphism:

ϕ : A∗
K,f ∩ÔK

∼→ A
∗
L,f ∩ÔL.

Proof. We have an exact sequence

(10) 0 → Ô
∗

K → A
∗
K,f ∩ÔK → J+

K ,

which is (non-canonically) split by choosing a uniformizerπp at every placep of the field. Hence

as a semigroup,A∗
K,f ∩ÔK = J+

K × Ô
∗

K. Nowϕ induces a bijection

J+
K × Ô

∗

K

∼→ J+
L × Ô

∗

L

given by
(n, i) 7→ (αi(n), ϕ(i)).

This is a group isomorphism precisely if

αij(mn) = αi(m)αj(n),

which happens exactly ifαi(n) is independent ofi for i ∈ Ô
∗

K. Now Ô
∗

K ⊆ Gab
K, and we have seen

in Proposition 6.2 that for such elements, indeed,αi = α1. �

7.11. Remark. One may prove in a similar way thatϕ induces a group isomorphism of the finite
ideles ofK andL.
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7.12. Proposition. Let K andL denote two number fields admitting an isomorphismϕ of their
QSM-systems(AK, σK) and (AL, σL). Thenϕ induces a semigroup isomorphism between the
multiplicative semigroups of non-zero elements of the rings of integers ofK andL:

ϕ : (O×
K,×)

∼→ (O×
L ,×).

Proof. The previous proposition says thatϕ induces an isomorphism

ϕ : A∗
K,f ∩ÔK

∼→ A
∗
L,f ∩ÔL.

From Lemma 7.3, we have a natural map

ΘK : A∗
K,f ∩ÔK → End(AK, σK),

andϕ induces a map
End(AK, σK)

∼→ End(AL, σL).

Nowϕ, as an isomorphism of QSM-systems, also preserves theinner endomorphisms:

ϕ : Inn(AK, σK)
∼→ Inn(AL, σL),

but we know that
Θ−1

K (Inn(AK, σK)) ∩
(
A

∗
K,f ∩ÔK

)
= O

×
K

(whereO
×
K = OK−{0}), so we also get thatϕ induces an isomorphism

ϕ : O
×
K

∼→ O
×
L .

�

8. From QSM to field isomorphism: additive structure

We have already shown that isomorphism of QSM-systems of twonumber fieldsK andL im-
plies that the number fields are arithmetically equivalent.It then follows that it gives aresidual
equivalence, i.e., it also induces a bijection of prime ideals that givesan isomorphism between
residue fields ([26], Chapter VI, (2.1)). However, this argument is only based onthe fact that the
cardinalities of these (finite) fields are the same. We now show, using Galois cohomology, that all
such residual isomorphisms are in fact naturally induced from the given mapϕ.

8.1. Proposition.LetK andL denote two number fields whose QSM-systems(AK, σK) and(AL, σL)

are isomorphic. Letϕ : J+
K

∼→ J+
L denote the induced isomorphism of semigroups of ideals. Letp

denote a prime ideal ofK. Setp′ := ϕ(p). The mapϕ induces an isomorphism of additive groups
of the corresponding residue fields

ϕ : (Kp,+)
∼→ (Lp′ ,+).

Proof. Let Nab
p denote the maximal abelian extension ofK in which p is unramified, and pick any

primeP abovep in Nab
p . Observe thatϕ(Nab

p ) is the maximal abelian extension ofL in whichϕ(p)
is unramified. Also,ϕ induces a natural isomorphism of the decomposition group ofP and any
primeP′ abovep′ in ϕ(Nab

p ). SinceNab
p /K andϕ(Nab

p )/L are abelian, these decomposition groups
are independent of the choice ofP andP′ and will be denoted byDab

p andDab
p′ , respectively. Now

also observe that sinceK has abelian extensions of arbitrary high residue field indexatp, we have
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isomorphismsDab
p
∼= Gal(K

ac
p /Kp) whereKp is the residue field ofp in K andK

ac
p is an algebraic

closure. As such, we let the groupsDab
p andDab

p′ act trivially on the moduleZ /pn. After taking
Galois cohomology, we find thatϕ induces an isomorphism

ϕ : H1(Dab
p ,Z /p

n)
∼→ H1(Dab

p′ ,Z /p
n).

However,
H1(Dab

p ,Z /p
n) =

(
W (Kp)/〈V nW (Kp), ℘W (Kp)〉,+

)

as abelian groups, whereW is the Witt vectors,V is Verschiebung, and as usual,℘ = F − 1 where
F is Frobenius. Taking limits over alln, we hence find thatϕ induces an isomorphism of abelian
groups

ϕ :
(
W (Kp)/℘W (Kp),+

) ∼→
(
W (Lp′)/℘W (L

′
p),+

)
.

We observe that℘W ⊆ (p), and by taking the above isomorphism modulop, we find

ϕ :
(
Kp,+

) ∼→
(
Lp′ ,+

)
.

�

8.2. Theorem.LetK andL denote two number fields whose QSM-systems(AK, σK) and(AL, σL)
are isomorphic. ThenK andL are isomorphic as fields.

Proof. Follows immediately from the fact that the mapϕ induces an isomorphism of multiplica-
tive semigroups of non-zero integers (Proposition 7.12), so it can be extended to a multiplicative
isomorphism of(K∗,×) with (L∗,×). Then, by definingϕ(0) = 0, the result follows, since we
have shown that the same mapϕ induces an isomorphism of additive groups of all residue fields
(Proposition 8.1). �

9. Addendum: recovering the multiplicative structure via cohomology

We give an independent cohomological proof of the fact thatϕ is residually multiplicative,
which is not needed in the main argument, and anyhow follows from Proposition 7.12, but which
we include since it provides a nice parallel to the additive theory from the previous section. We do
remark that, given a “good” matching of ideals, a combination of Propositions 8.1 and 9.2 (below)
with a statement thatϕ induces a natural bijection between thesetsK andL would suffice to prove
the main theorem. However, it does not seem to be so easy to findsuch a bijection (this is essentially
done in Proposition 7.12, but immediately in combination with a multiplicative structure).

9.1. Proposition.LetK andL denote two number fields whose QSM-systems(AK, σK) and(AL, σL)

are isomorphic. Letϕ : J+
K

∼→ J+
L denote the induced isomorphism of semigroups of ideals. Letp

denote a prime ideal ofK above the rational primep, with ramification indexf = f(p |p) in K /Q.
Setp′ := ϕ(p). The mapϕ induces an isomorphism of the following quotients of the multiplicative
groups of the corresponding completions

ϕ :

(
K̂

×
p /
(
K̂

×
p

)pf−1
,×
)

∼→
(
L̂
×
p′/
(
L̂
×
p′

)pf−1
,×
)
.
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Proof. Let Dp denote the decomposition group of a prime abovep in Np /K, whereNp is the
maximal (not necessarily abelian) extension in whichp is unramified. ThenDp = Gal(K̂

ac

p /K̂p) is
the absolute Galois group of thep-adic completion ofK. Recall Kummer theory: for any integer,
let µn denote then-th roots of unity, then

H1(Dp,µn) = K̂
×
p /
(
K̂

×
p

)n
,

where we letDp act onµn like the absolute Galois group of̂Kp. Recall that iff = f(p |p) is the
ramification index ofp in K, then the(pf − 1)-th roots of unity belong tôKp. Hence the action of
Dp onµpf−1 is trivial, so we find

H1(Dp,µpf−1) = Hom(Dp,µpf−1) = Hom(Dab
p ,µpf−1).

(The crucial point for us is the last equality, which is obvious sinceµn is abelian, since it allows
us to switch from the absolute local Galois group, about which we have no information, to the
abelianized group, which is encoded in our system. But observe that if the action ofDp onµn is
not trivial, then the group cohomology does not need to factor over the abelianization.) Hence for
n = pf − 1, the canonical isomorphismϕ : Dab

p
∼→ Dab

p′ induces the desired isomorphism. �

9.2. Proposition.LetK andL denote two number fields whose QSM-systems(AK, σK) and(AL, σL)

are isomorphic. Letϕ : J+
K

∼→ J+
L denote the induced isomorphism of semigroups of ideals. Let

p denote a prime ideal ofK. Setp′ := ϕ(p). The mapϕ induces an isomorphism of multiplicative
groups of the corresponding residue fields

ϕ : (K
×
p ,×)

∼→ (L
×
p′ ,×).

Proof. We only have to observe that ifx ∈ L̂
×

is a(pf−1)-th power, thenx = 1 mod p. Hence the
maps from the previous proposition indeed reduces modulop to an isomorphism of multiplicative
groups. �

Part B. L-SERIES AND QSM-ISOMORPHISM

Let χ denote a character in the Pontrjagin dual ofGab
K. We set

LK(χ, s) :=
∑

n∈J+
K

χ(θK(n))

NK(n)s
,

where it is always understood that we setχ(θK(n)) = 0 if n is not coprime to the conductorfχ of
χ. This is also the ArtinL-series forχ considered as a representation of the Galois group of the
finite extensionKχ /K through whichχ factors injectively ([36], VII.10.6).

10. MatchingL-series via QSM-isomorphism

We start by proving that (ii) implies (iii) in Theorem 2.

10.1. Proposition.An isomorphismϕ : (AK, σK) → (AL, σL) induces an identification ofL-series
with characters fromĜab

K.
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Proof. By Proposition 7.6, we have an isomorphismGab
K

∼→ Gab
L , hence by Pontrjagin duality, a

identification of characters
ψ : Ĝab

K

∼→ Ĝab
L .

Also, the isomorphism of QSM-systems implies the compatibility of this isomorphism with the
action of ideals by the respective Artin maps, which translates in the dual group to

χ(ϑK(n)) = ψ(χ)(ϑL(ϕ(n))

for all χ ∈ Ĝab
K, n ∈ J+

K . In particular, the conductors ofχ andψ(χ) match. By the intertwining of
time evolution, we have compatibility with norms

NK(n) = NL(ϕ(n))

for all n ∈ J+
K . Hence we can compute

LK(χ, s) =
∑

n∈J+
K

χ(ϑK(n))

NK(n)s
=

∑

ϕ(n)∈J+
L

ψ(χ)(ϑL(ϕ(n))

NL(ϕ(n))s
= LL(ψ(χ), s).

�

10.2. Remark. The above result can also be seen as a manifestation of the matching ofKMSβ
states. Namely, our isomorphism of QSM-systems givesζK(s) = ζL(s) (Proposition 4.1), and an
isomorphism of character groupsψ as in the previous proof. Now Lemma 1.5 implies that pullback
is an isomorphism ofKMSβ-states. Now forβ > 1, such a stateωL

γ,β onAL (corresponding to
γ ∈ Gab

L ) is pulled back to a similar state

ωL
γ,β(ϕ(f)) = ωK

γ̃,β(f),

for someγ̃ ∈ Gab
K and everyf ∈ AK. We can choose in particularf = χ ∈ Ĝab

K (extended to zero
ideals not coprime to the conductor ofχ) and then the above identity becomes

1

ζL(s)
· ψ(χ)(γ) · LL(ψ(χ), s) =

1

ζK(s)
· χ(γ̃) · LK(χ, s).

If we now compare the constant coefficients and use arithmetic equivalence, we findψ(χ)(γ) =
χ(γ̃), and so finally the identity of these particularKMS-states indeed reads

LL(ψ(χ), s) = LK(χ, s).

11. QSM-isomorphism from matchingL-series: isomorphism of character groups

Conversely, we now show that (iii)⇒ (ii) in Theorem 2, namely the identity of theL-functions
implies the existence of an isomorphism of the quantum statistical mechanical systems.

We start by proving that if we have a bijection of characters,the matching ofL-series automati-
cally implies that this bijection is an isomorphism of groups.

11.1. Proposition. LetK andL denote two number fields. Supposeψ is a set-theoretic bijection

ψ : Ĝab
K

∼→ Ĝab
L
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that induces an identity of the respectiveL-functions

LK(χ, β) = LL(ψ(χ), β).

Thenψ is agroupisomorphism.

Proof. If
∑ an

nβ
and

∑ bn
nβ

are twoL-series, we mean by theirfusiontheL-series
∑ anbn

nβ
.

The first ingredient of our proof is the trivial observation that if twoL-series are equal, so are their
fusions. The second ingredient is that the onlyL-series with a pole atβ = 1 is the one with trivial
character, i.e., the zeta function ([36], VII.8.5).

If we use the trivial characterχ = 1 in the hypothesis, we find that

LL(ψ(1), β) = ζK(β),

which has a pole atβ = 1. Henceψ(1) = 1.
Next, letχ be a character. The fusion of theL-seriesLL(ψ(χ), β) andLL(ψ(χ

−1), β) is by
hypothesis equal to

LK(χ · χ−1, β) = ζK(β).

Since this has a pole atβ = 1, we find thatψ(χ) · ψ(χ−1) is the trivial character, i.e.,

ψ(χ−1) = ψ(χ)−1.

Now letχ andχ′ be two characters. We consider theL-series

LL(ψ(χχ
′)ψ(χ)−1ψ(χ′)−1, β),

which is the fusion of theL-series corresponding to the three characters

ψ(χχ′), ψ(χ)−1 = ψ(χ−1) andψ(χ′)−1 = ψ(χ′−1
).

Hence it is equal to theLK(1, β) = ζK(β). Since this has a pole ats = 1, we conclude that

ψ(χχ′) = ψ(χ)ψ(χ′).

We conclude from this thatψ is a group isomorphism. �

12. QSM-isomorphism from matchingL-series: compatible isomorphism of ideals

12.1. Proposition. LetK andL denote two number fields. Supposeψ is acontinuousbijection

ψ : Ĝab
K

∼→ Ĝab
L

that induces an identity of the respectiveL-functions

LK(χ, β) = LL(ψ(χ), β).
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Then there exists a semigroup isomorphismΨ : J+
K → J+

L , which is compatible with the Artin
reciprocity map underψ in the sense that

ϑL ◦Ψ = (ψ−1)∗ ◦ ϑK.

Proof. The previous proposition shows thatψ is a group isomorphism, soψ(1) = 1, which means
that the zeta functions (L-series for the trivial character) match on both sides:

ζK(s) = ζL(s).

This is arithmetic equivalence, and it shows in particular that there is a bijection between the sets
of primes ofK andL above a given rational primep and with a given inertia degreef . We need to
match these primes in such a way that they are compatible withArtin reciprocity. The naive way
is to map a primep of K to a primeq above the samep, with the same inertia degree, and such that

(11) ϑL(q) = (ψ−1)∗ϑK(p)

The main point is to show that it is always possible to find suchq, and to show that one may
perform this in a bijective way between primes. We prove thisby using a combination ofL-series
as counting function for the number of such idealsq. Observe that the identity (11) is equivalent to
the dual statement that

χ(ϑK(p)) = ψ(χ)(ϑL(q))

for all charactersχ ∈ Ĝab
K, and this provides the link toL-series.

The identification ofL-series means that for any characterχ, we have

(12)
∑

n∈J+
K

χ(ϑK(n))

NK(n)s
=
∑

m∈J+
L

ψ(χ)(ϑL(m))

NL(m)s
.

We fix an integern and consider the norm-n part of this identity:

(13)
∑

n∈J
+
K

NK(n)=n

χ(ϑK(n)) =
∑

m∈J
+
L

NL(m)=n

ψ(χ)(ϑL(m)).

In this notation, remember that we have setχ equal to zero on ideals not coprime to its conductor.
Recall that the character group̂Gab

K is a compact topological group, and thus carries a (normal-
ized) Haar measuredχ. We consider the subgroup̂Gab

K,n of characters whose conductor is coprime
to a given integern (that this is a subgroup follows fromfχχ′ = fχ+ fχ′). We integrate the identity
(13) against this measure, times the functionχ(γ−1) for a fixed elementγ ∈ Gab

K — interchanging
the order of integration and summation by absolute convergence, we find

(14)
∑

n∈J
+
K

NK(n)=n

(∫

Ĝab
K,n

χ(γ−1)χ(ϑK(n))dχ

)
=

∑

m∈J
+
L

NL(m)=n

(∫

Ĝab
K,n

χ(γ−1)ψ(χ)(ϑL(m))dχ

)
.

Recall the following fact:
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12.2. Lemma. On any compact topological groupG with normalized Haar measuredµ, and nor-
malized Haar measuredα on its dualĜ, it holds true for anyg ∈ G that

∫

Ĝ

α(g−1)αdα = δ(−, g)

is the characteristic function ofg. �

Let us introduce the following set of ideals forn ∈ Z≥1 andγ ∈ Gab
K :

Bn(γ) = {n ∈ J+
K : NK(n) = n and ϑK(n) = γ}

and denote the cardinality of this set by

bn(γ) := #Bn(γ),

(or bK,n(γ) if we want to indicate the dependence on the ground fieldK). By the Lemma, the value
of the left hand side of Equation (14) is

LHS(14) =
vol(Gab

K,n)

vol(Gab
K)

· bK,n(γ).

We now perform a base change in the bracketed integral on the right hand side of (14), using the
homeomorphism

ψ : Ĝab
K → Ĝab

L ,

which we can do sinceψ preserves the subgroups indexed byn:

ψ(Gab
K,n) = Gab

L,n.

Indeed, iffχ is not coprime ton, LK(χ, s) has a missing Euler factor at a prime numberp dividing
n. Hence, by the equality ofL-series, alsoLL(ψ(χ), s) has such a missing Euler factor, sofψ(χ)
is not coprime top (hencen).

Also recall that a continuous group homomorphism of compacttopological groups is automati-
cally an isometry for normalized Haar measure (this followsfrom the uniqueness of Haar measure
up to scaling). This applies in our case, since from Proposition 11.1 above, we know thatψ is a
group isomorphism. Observe thatψ is also an isometry when restricted to then-th level group
Gab

K,n.
Hence the integral at the right hand side of (14) becomes

(15)
∫

Ĝab
L,n

ψ−1(η)(γ−1)η(ϑL(m))dη

We now use Lemma 12.2, but on the dual groupĜab
L,n. For this, we observe that for fixedm coprime

to fη,

Ξm : η 7→ ψ−1(η)(γ−1)η(ϑL(m))

is a character on̂Gab
L,n. The lemma implies that

∫

Ĝab
L,n

ψ−1(η)(γ−1)η(b)dη =

{
vol(Gab

L,n)/vol(G
ab
L ) if Ξm ≡ 1;

0 otherwise.
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NowΞm ≡ 1 means that

η(ϑL(m)) = ψ−1(η)(γ) for all η ∈ Gab
L,n.

Plugging everything back in, we find that the right hand side of Equation (14) becomes

RHS(14) =
vol(Gab

L,n)

vol(Gab
L )

·#{m ∈ J+
L with NL(m) = n andϑL(m) = (ψ−1)∗(γ)}

=
vol(Gab

L,n)

vol(Gab
L )

· bL,n((ψ−1)∗(γ)).

Sinceψ is an isometry, it preserves volume, so we conclude that for all γ ∈ Gab
K and for all

integersn,

(16) bK,n(γ) = bL,n((ψ
−1)∗(γ)).

We now switch to the subsets consisting of prime ideals. For this purpose, we introduce the
subsetCn(γ) of Bn(γ):

Cn(γ) = {n ∈ J+
K : n prime ideal,NK(n) = n and ϑK(n) = γ},

and denote the cardinality of this set bycn(γ) = #Cn(γ).
Then we have a decomposition

Bn(γ) = Cn(γ)
∐

n1|n
n1 6=1,n

∐

n1
N(n1)=n1

B n
n1

(
γ

ϑK(n1)

)
/S2.

Let us explain this notation. The setBn(γ) is the disjoint union ofCn(γ) together with all “old”
sets that correspond to choosing a non-trivial factorisationn = n1 · n2, choosingn1 with normn1
(a non-trivial divisor ofn) and such thatn1 n2 has image by reciprocityγ — or, what is the same,
n2 has normn/n1 and image by reciprocityγ/ϑK(n1). Now all these choices are disjoint, up to
permuting the factors in the factorisationn = n1 ·n2, which we indicate in the notation by dividing
by the symmetric groupS2. The upshot is that the functionscn(γ) are a univeral expression in
terms ofbn(γ) and an enumeration of ideals of given norm.

Hence we conclude also that

cK,n(γ) = cL,n((ψ
−1)∗(γ)).

This says exactly that the number of prime ideals with a givenimage under reciprocity and given
norm inK is the same as the number of prime ideals ofL with the same norm and compatible Artin
action. We define a map of semigroups of ideals

Ψ : J+
K → J+

L

on generators, by sending a prime idealp of K to any prime idealq of L with the same norm
NK(q) = NK(p) = pf(p |K) and withϑL(q) = (ψ−1)∗ϑK(p). The above count shows exactly that
the ambiguity in choosing suchq is the same as the ambiguity in choosing a prime idealp′ of K
with the same norm (recall that by arithmetic equivalence, the inertia degrees match) and the same
image by the Artin map asp. This shows that the map can be made bijective on prime ideals, hence
on all ideals, and compatible with norms (inertia degrees) and the Artin map. �
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12.3. Remark. It seems there are many possible choices for the mapΨ to be compatible with Artin
reciprocity and the given isomorphism of character groups.This is not so strange in the light of the
fact that we cannot expect to construct auniqueisomorphism of QSM-systems from the matching
of L-series; for example, there are automorphisms of the QSM-system that induce the identity on
L-series, just like there are automorphisms of a number field that induce equalities ofL-series, cf.
the discussion already in Artin ([1], afterSatz 5) about relations betweenL-series on number fields
different fromQ.

13. QSM-isomorphism from matchingL-series: homeomorphism onXK

We now proceed to show thatψ also induced a natural map from the whole abelian partC(XK),
not just on the partψ : C(GabK )

∼→ C(GabL ) where it is automatically defined (by continuity ofψ).
We check this on “finite” parts of these algebras that exhaustthe whole algebra, cf. also[31], proof
of Thm. 2.1 (or section 3 of[13] for a description in terms ofK-lattices).

13.1. Lemma. The mapψ extends to an algebra isomorphism

ψ : C(GabK ×
Ô

∗
K

ÔK) → C(GabL ×
Ô

∗
L

ÔL).

Proof. Recall that the mapψ : Ĝab
K

∼→ Ĝab
L induces by duality a group isomorphism

(ψ−1)∗ : Gab
K

∼→ Gab
L ,

and letΨ : J+
K

∼→ J+
L denote the compatible isomorphism of semigroups of ideals introduced in

the previous section.
We use the terminology from[31]. LetµK denote the measure on

XK = Gab
K ×

Ô
∗
K

ÔK

given as the products of normalized Haar measures onGab
K and on every factor̂OK,p of ÔK (so that

Ô
∗

K,p has measure1− 1/NK(p)). Take afinite set of primesB ⊆ J+
K and consider the space

XK,B := Gab
K ×

Ô
∗
K

ÔK,B,

whereÔK,B =
∏

p∈B ÔK,p. Then
XK = lim

−→
B

XK,B.

Let J+
K,B denote the subsemigroup ofJ+

K generated byB. Let us also introduce the non-standard
notation

X∗
K,B := Gab

K ×
Ô

∗
K

Ô
∗
K,B.

As a group, it is isomorphic to
X∗

K,B
∼→ Gab

K/ϑK(Ô
∗

K,Bc),

whereϑK : A
∗
K → Gab

K is the Artin map at the level of ideles, andBc is the complement ofB in
the set of prime ideals ofK.

We can decompose
XK,B = X1

K,B

∐
X2

K,B
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with
X1

K,B :=
⋃

n∈J+
K,B

n ∗X∗
K,B andX2

K,B :=
⋃

p∈B

YK,p,

where
YK,p = {(γ, ρ) ∈ XK,B : ρp = 0}.

As usual,n ∗− is the action by Artin reciprocity. Observe thatX2
K,B is a set ofµK-measure zero.

By total disconnectedness, the algebraC(XK,B) is generated by the characteristic functions of
clopen sets. NowXK,B has no open sets of Haar measure zero. Indeed, ap-adic ring of integers
Ôp does not have non-empty open setsU of measure zero, sinceU contains a ball of sufficiently
small radius around any point in it, and this will have Haar measure thep-adic absolute value of
the radius; the same argument applies toGab

K , by considering it as the idele class group modulo
connected component of the identity and using the idele norm. It follows thatX1

K,B is dense in
XK,B, as the complement cannot contain any open set. Define the functionsfn,χ by

fn,χ : XK,B → C : x 7→
{
χ(ϑK(n)

−1x) if x ∈ n ∗X∗
K,B;

0 otherwise,

for χ running through the characters of conductorfχ ∈ J+
K,B , andn any ideal. In Section 2 of[31],

it is proven that the span of the functionsfn,χ contains the characteristic functions of the clopen
subsets ofX1

K,B, hence by density they spanC(XK,B).
We can then define a map

ψB : C(XK,B) → C(XL,Ψ(B))

as the closure of the map given by
fn,χ 7→ fΨ(n),ψ(χ).

The map is a vector space isomorphism by construction, sincebothψ andΨ are bijective.
To see that the map is well-defined, we need to check that the conductors match, i.e., thatfψ(χ)

andΨ(fχ) have the same prime divisors; but the prime divisorsq = Ψ(p) of fψ(χ) are exactly those
q for whichψ(χ)(ϑL(q)) = 0. Since we have by construction thatψ(χ)(ϑL(Ψ(p))) = χ(ϑK(p)),
this set ofq is the image underΨ of thep with χ(ϑK(p)) = 0, viz., dividing the conductor ofχ.

By taking direct limits, we arrive at a topological vector space isomorphism

ψ = lim
−→
B

ψB : C(XK)
∼→ C(XL).

To see that the mapψ is an algebra homomorphism, we need to check it is compatiblewith mul-
tiplication. For this, we observe that where the functionfn,χ is nonzero, it is given by a pullback.
Indeed, fory ∈ Ψ(n) ∗X∗

L,Ψ(B) we can seey as an element ofGab
L , so we can findx ∈ n ∗X∗

L,B

with y = (ψ)∗x, and we have that

ψB(fn,χ)(y) = fΨ(n),ψ(χ)(y) = ψ(χ)(ϑL(Ψ(n))−1y) = χ(ϑK(n)
−1x) = (ψ−1)∗fn,χ(y).

By compatibility with conductors, the map is also a pullbackon elements where the function is
zero. Hence ifχ andχ′ are two characters in̂Gab

K, andn, n′ are two ideals inJ+
K,B forB sufficiently
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large, we find

ψ(fn,χ · fn′,χ′) = (ψ−1)∗
(
fn,χ · fn′,χ′

)
= (ψ−1)∗ (fn,χ) · (ψ−1)∗

(
fn′,χ′

)
= ψ(fn,χ) · ψ(fn′,χ′),

which, after taking linear combinations and closures, implies thatψ is multiplicative.
�

13.2. Remark. Note that we have proven thatXK andXL are homeomorphic; we didn’t prove a
this point that the rings of integral adelesÔK andÔL are isomorphic (as rings).

13.3. Remark(K-lattices). Let MK,1 denote the space of 1-dimensionalK-lattices up to scaling;
recall thatC(XK) = C(MK,1). The preceding proof organizes this space into an inductivesystem
of the spacesC(MK,1,B) of functions that depend on the datumφ of aK-lattice(Λ, φ) only through
its projection toÔB .

14. QSM-isomorphism from matchingL-series: end of proof

14.1. Theorem.LetK andL denote two number fields. Supposeψ is a homeomorphism

ψ : Ĝab
K

∼→ Ĝab
L

that induces an identity of the respectiveL-functions

LK(χ, β) = LL(ψ(χ), β).

Then there is an isomorphism of QSM-systemsϕ : (AK, σK) → (AL, σL).

Proof. We assemble all our maps into theC∗-algebra isomorphism

ϕ : AK = C(XK)⋊ J+
K → AL = C(XL)⋊ J+

L : (f, n) 7→ (ψ(f),Ψ(n)).

Looking at the construction of the reduced crossed product,we indeed get aC∗-algebra isomor-
phism, since by construction, the map is compatible with theaction of the semigroup on the abelian
part.

It remains to verify that this map is indeed a QSM-isomorphism, i.e., that it commutes with time
evolution. On the abelian part, there is nothing to verify, since it is stable by time evolution. On the
semigroup part, it is a simple consequence of the fact thatΨ preserves norms:

NL(Ψ(n)) = NK(n).

This only needs to be verified on prime idealsn = p, where it is equivalent to

f(p |K) = f(Ψ(p)|L),
which holds true by the construction ofΨ. So finally, on the one hand

σL,t(ϕ(µn)) = NL(Ψ(n))itµΨ(n),

and on the other hand,

ϕ(σK,t(µn)) = ϕ(NK(n)
itµn) = NK(n)

itµΨ(n).

This finishes the proof thatσL,t ◦ ϕ = ϕ ◦ σK,t. �
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14.2. Remark. In the particular case of QSM-systems of number fields, we findthat an equality
of KMSβ states at all inverse temperaturesβ > 1 (manifesting themselves here asL-series with
characters) implies that the systems are isomorphic. One may wonder in how far a QSM-system is
characterized by its generalized equilibrium states in some sense.

14.3. Remark. As quoted in the introduction, in[16], it was shown that an equality of infinitely
many Dirichlet series associated to a map between closed Riemannian manifolds is equivalent to
this map being an isometry. In the same reference, it is then shown how to use this theorem to
define a distance between closed Riemannian manifolds, as infimum over a usual distance between
complex functions. With number fields, we are now in a very analogous situation, in that we
characterize number fields by an equality of Dirichlet series. One might use this to define a distance
on the set of all number fields up to isomorphism. It then remains to investigate whether this
(forcedly discrete) distance on a countable set has an interesting completion (much like passing
from Q toR): are there interesting ‘limits’ of number fields?

15. Proof of Theorem 3

It suffices to show that (iv) implies (iii). Letχ ∈ Ĝab
K, then, by performing a change in summation

m = Ψ(n) in theL-series as follows (using that norms are preserved, and Artin maps intertwined):

LK(χ, s) =
∑

n∈J+
K

χ(ϑK(n))

NK(n)s
=
∑

m∈J+
L

(ψ̂−1)∗(χ)(ϑL(m))

NL(m)s
= LL((ψ̂

−1)∗(χ), s). �

15.1. Remark. In Uchida’s proof of the function field case of the Neukirch-Uchida theorem ([48]),
the construction of a multiplicative map of global functionfields(K∗,×)

∼→ (L∗,×) is based on the
existence of topological group isomorphisms of the idelesΨ : A

∗
K

∼→ A
∗
L and of the abelianized

Galois groupsψ̂ : Gab
K

∼→ Gab
L which are compatible with the Artin maps, using that in a function

field K, the groupK∗ is the kernel of the Artin map (which is not surjective in thiscase). The
conditions that go into this proof are a bit similar to the ones in Theorem 3. Our theorem shows
that similar conditions imply the same result for number fields as for function fields, albeit with a
rather different proof.

16. Relaxing the conditions onL-series

16.1. One may now wonder whether condition (iii) of the main Theorem 2, can be weakened. For
example, is it possible to restrict to characters of fixed type? At least for rational characters of order
two (i.e., arising from quadratic extensions by the square root of a rational number), this is not the
case, as the following proposition shows.

16.2. Proposition.SupposeK andL are number fields with the same Dedekind zeta function. Then
for any quadratic characterχ whose conductor is a rational non-square inK nor L, we have an
equality ofL-seriesLK(χ, s) = LL(χ, s).

Proof. We have

(17) ζK(s) = ζL(s)



QSM AND ANABELIAN GEOMETRY 37

This says thatK andL are arithmetically equivalent, which we can express in group theoretical
terms by Gaßmann’s criterion ([39]) as follows: letN be Galois overQ containingK andL; then
Gal(N /K) andGal(N /L) intersect all conjugacy classes inGal(N /Q) in the same number of
elements.

Let M = Q(
√
d) for a rational non-squared. It is easy to see from Gaßmann’s criterion for

arithmetic equivalence that then, the compositaKM andLM are also arithmetically equivalent
(cf. e.g. Uchida[47], Lemma 1): chooseN so it also containsM, and verify thatGal(N /KM) and
Gal(N /LM) intersect all conjugacy classes inGal(N /Q) in the same number of elements. We
conclude that the zeta functions ofKM = K(

√
d) andL = L(

√
d) are equal:

(18) ζKM(s) = ζLM(s)

Let χ be the quadratic character that belongs tod. By Artin factorization, we can write

(19) ζKM(s) = ζK(s) · LK(χ, s) andζLM(s) = ζL(s) · LL(χ, s).

We find the conclusion by combining (17), (18) and (19). �

16.3. Remark. We do not know a direct “analytic” proof that equality of zetafunctions implies
equality of all quadratic twistL-series. As a matter of fact, looked at in a purely analytic way, the
result does not appear to be so obvious at all.

16.4. A matching of allL-series implies in particular a matching of all zeta functions of ray class
fields. Bart de Smit suggests to investigate whether condition (iii) can be weakened to

(iii)’ There is a bijection of idealsΨ : J+
K → J+

L such that

ζK(n)(s) = ζL(Ψ(n))(s)

for all idealsn ∈ J+
K .

Here,K(n) is the ray class field corresponding ton (the maximal abelian extension ofK of conduc-
tor n). The connection arises from the fact that the zeta functionof the ray class field is (by Artin
factorisation) the product of theL-series corresponding to the characters of the ray class group
modulon.
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