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QUANTUM STATISTICAL MECHANICS,
L-SERIES AND ANABELIAN GEOMETRY

GUNTHER CORNELISSEN AND MATILDE MARCOLLI

Abstract. Itis known that two number fields with the same Dedekind zetetion are not neces-
sarily isomorphic. The zeta function of a number field caniberpreted as the partition function of
an associated quantum statistical mechanical systemhvidiaC*-algebra with a one parameter
group of automorphisms, built from Artin reciprocity. Inetirst part of this paper, we prove that
isomorphism of number fields is the same as isomorphism séthesociated systems. Considering
the systems as honcommutative analogues of topologicaéspthis result can be seen as another
version of Grothendieck’s “anabelian” program, much like Neukirch-Uchida theorem character-
izes isomorphism of number fields by topological isomorphi their associated absolute Galois
groups.

In the second part of the paper, we use these systems to pm@vellowing. If there is a con-
tinuous bijectionyy : G2 = G2 between the character groups (viz., Pontrjagin duals) f th
abelianizedGalois groups of the two number fields that induces an equafiall corresponding.-
seriesLk(x, s) = Lr(9(x), s) (not just the zeta function), then the number fields are ispirio.

This is also equivalent to the purely algebraic statemeat ttere exists a topological group
isomorphismy as a above and a norm-preserving group isomorphism betwedddals ofK and
L that is compatible with the Artin maps via
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Introduction

Can one describe isomorphism of two number fiéddfdandIL from associated analytic or topo-
logical objects? Here are some attempts (“no”-answerscgaibyN; “yes’-answers byy):

(N1) An equality of their Dedekind zeta functions(so-calledarithmetic equivalendedoes not
imply that K andLL are isomorphic, as was shown by GaRmdad]( cf. also Perlif39],
or [26]). An example is provided by

K = Q(v/3)andL = Q(V3-2%)

([39], [27]). However, the implication is trué K andL are Galois ovef) (Theorem of
Bauer[3] [4], nowadays a corollary of Chebotarev’s density theorem, esge, Neukirch

[36] 13.9).

(N2) An isomorphism of their adele rings Ak and Ay, as topological rings (which implies in
particular an equality of the zeta functionsI§fandlL) does not imply thaK andIL are
isomorphic, cf. Komatsu28]). An example is

K=Q(V2-17)andL = Q(V/25-17,v/2-3-11).

On the other hand, a global function fieécdetermined up to isomorphism by its adele ring

(Turner[45]).

(N3) An isomorphism of the Galois groups of the maximal abelian extesions G2 and G3°
as topological groups does not imply an isomorphism of tHdsil& andIL. For example,
K=Q(v-2)andL = Q(v—-3)
have isomorphic abelianized absolute Galois groups (seb€}38]).
However ...

(Y1) Anisomorphism of their absolute Galois groupsGx andGy, as topological groups im-
plies isomorphism of the fieldK andL: this is the celebrated theorem of Neukirch and
Uchida (In[35], Neukirch proved this for fields that are Galois o@r in [46], Uchida
proved the general case, cf. al8Y] 12.2, and work of Ikeda and lwasawa). It can be
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considered the first manifestation (zero-dimensional)aaise so-called “anabelian” phi-
losophy of GrothendiecKZ3], esp. footnote (3)): the neologism “anabelian” was coined
by Grothendieck by contrast with stateméNnNB) above.

(Y2) In an unpublished work, Richard Groenewed28] proves aTorelli theorem for num-
ber fields: if two number fields have “strongly monomially aelent” h°-function in
Arakelov theory (in the sense of van der Geer and School4€J), then they are isomor-
phic.

The starting point for this work is the observation that tle¢azfunction of a number fieltk
can be realized as the partition function of a quantum sitzlsnechanical (QSM) system in the
style of Bost and Connes (d6] for K = Q). The QSM-systems for general number fields that
we consider are those that were constructed by Ha and Pawsgarséction 8 of24], which is
a specialization of their more general class of QSM-syst@sssciated to Shimura varieties), and
further studied by Laca, Larsen and Neshveyd@ir]. This quantum statistical mechanical system
consists of aC*-algebraAx (the noncommutative analogue of a topological space) wiima
evolutionoy (i.e., a continuous group homomorphign— Aut Ax) — for the exact definition,
see Sectioh]2 below, but the structure of the algebra is

Ag == C(G® X gt Ox) » JE

where 0k is the ring of finite integral adeles anlf]k+ is the semigroup of ideals, which acts on
G2 by Artin reciprocity. The time evolution is only non-triti@n elements of J¥, where it
acts by multiplication with the norn (n)*. For now, it is important to notice that the structure
involves the abelianized Galois group and the adele ringnbuthe absolute Galois group. In this
sense, itis “not anabelian”; but of course, itis “noncomativie” (in noncommutative topology, the
crossed product construction is an analog of taking quisfiein light of the previous discussion,
it is now natural to ask whether the QSM-system (which caistaimultaneously the zeta function
from (N1), the adeles froniN2) and the abelianized Galois group frgM3)) does characterize the
number field.

We call two general QSM-systenisomorphicif there is aC*-algebra isomorphism between
the algebras that intertwines the time evolutions. Our mesnlt is that the QSM-system seems to
cancel out the defects @N1)—(N3)in exactly the right way:

Theorem 1. LetK andIL denote arbitrary number fields. Then the following condisi@re equiv-
alent:

() K andL are isomorphic as fields;
(i) the QSM system$Ak, ox) and (A, or,) are isomorphic.

One may now ask whether the “topological” isomorphism fraincgn somehow be captured
by an analytic invariant, such as the Dedekind zeta fungctidgrich in itself doesn't suffice. Our
second main theorem says that this is indeed the case:

Theorem 2. LetK andIL denote arbitrary number fields. Then the following condisi@re equiv-
alent:

(i) the QSM systemAk, o) and (A, or,) are isomorphic;
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(i) there is a homeomorphism of (the Pontrjagin duals of) thdiabeed Galois groups
P G%b = @]ib
such that for every charactey < @%b, we have an identification af-series for these
generalized Dirichlet characters

LK(Sv X) = L]L(Sv 7/J(X))

Condition (iii) can be considered as the correct genettidizaof arithmetic equivalence (which
is (iii) for the trivial character only) to an analytic eqalence thatloescapture isomorphism. It
should also be observed at this point that (Heckegeries occur naturally in the description of
generalized equilibrium states (KMS-states) of the QSKtay, and this is how we originally
discovered the statement of the theorem.

Finally, there is the following purely algebraic reformtiten:

Theorem 3. LetK andIL denote arbitrary number fields. Then the following condisi@re equiv-
alent:

(i) the fieldsK andIL are isomorphic;
(iv) there is a topological group isomorphism
1[1 : G%b = G]ib
and an isomorphism
v Jﬂz = JE‘
of semigroups of ideals such that the following two comdagittonditions are satisfied:
(a) compatibility ofU with norms: N, (¥(n)) = Nk (n) and
(b) compatibility with the Artin mapty, (¥ (n)) = ¢ (9 (n))
for all idealsn € Ji.

We first say a few words about the proofs. Of course, (i) ingplie other conditions. To prove
that (i) implies (i), we first prove that the fields are aritbtically equivalent (by interpreting the
zeta functions as partition functions and studying thetimiabetween the Hamiltonians for the
two systems), and then we use some results on isomorphisrosser! product algebras to deduce
an identification of the semigroups of integral idealdkodndIL. By studying the endomorphism
structure of the QSM-systems, we deduce a homomorphis@ffofvith G3°, then of unit ideles,
and finally, multiplicative groups of the rings of integei/e then deduce an isomorphism of all
residue fields (induced by the same map) from a computati@alais cohnomology of the maximal
abelian extension.

That (ii) implies (iii) follows from the interpretation af-series as KMS-states. Conversely, we
show that the matching di-series implies automatically thétis a continuougjroupisomorphism.
We then get a matching of semigroups of ideals, compatibte thie Artin map, by doing some
Fourier analysis with thd.-series of the number fields. We then extend these maps tottbkew
algebra. At this point, it is maybe interesting to mentioattbuch an isomorphism is by no means
uniquely determined by the matching bfseries (indeed, for example, an automorphism of the
system might be applied). In this context, one may try to itewthe main theorems in a functorial
way, as a bijection of certain Hom-sets. It would be inténgsto understand the relation to the
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functor from number fields to QSM-systemg[82]. Finally, it is very easy to see that (iv) implies
(iii).
Remark. We make a few remarks about condition (iii) in the theoremnstfef all, the equivalence
of (i) and (iii) (or (iv)) is a purely number theoretical statent, without reference to QSM-systems.
We do not know a direct proof that (iii) implies (i) without gging via (ii) and using basic theory
of QSM-systems; so we offer this as a number theoreticalaiged (of course, one can clear the
current proof of QSM-lingo).

Secondly, one may wonder whether condition (iii) can beaegdl by something weaker. As
we already observed, requiring (iii) for the trivial chaterconly is not enough, but what about, for
example, this condition:

(i) o All rational quadratic L-series ofK andIL are equal, i.e. for all integerd
that are not squares i andLL, we haveLxk (x4, s) = LL(x4, $)-

By considering only rational characters, one does not nedatrioduce a bijection of abelianized
Galois groups, since there is an automatic matching of adodsi One can also consider a similar
statement (iii), for all n-th order rationall.-series.

We can show that (iip) is not equivalent to (ii). We prove that as soonlasndlLL have the same
zeta functions, condition (i) holds (the proof use&alimann-equivalencand was discovered
independently by Lotte van der Zalm in her undergraduatsitfted].) Another number theoretical
challenge is to give a purely analytical proof of this statein(i.e., not using group theory).

Bart de Smit has asked what happens if (iii) is replaced by ey of zeta functions of ray
class fields (under some matching of the conductors).

Finally, we note that condition (iii) is motivic: it gives adentification of L-series of rank one
motives over both number fields (in the sens¢20], §8).

Remark (Anabelian vs. noncommutativeY he anabelian philosophy is, in the words of Grothen-
dieck Esquisse d'un programmg23], footnote (3)) “a construction which pretends to ignore
[...] the algebraic equations which traditionally servedescribe schemes, [...] to be able to
hope to reconstitute a scheme [...] from [...] a purely togaal invariant [...]". In the zero-
dimensional case, the fundamental group plays no réle, th@yabsolute Galois group, and we
arrive at the theorem of Neukirch and Uchida (greatly gdir@ in recent years, notably by
Bogomolov-Tschinke[5], Mochizuki [34] and Pod40], compard44]).

Our main result indicates that QSM-systems for number fiedatsbe considered as some kind
of substitute for the absolute Galois group. The link to Beodieck’s proposal arises via a philos-
ophy from noncommutative geometry that “topology %-algebra” and “time evolution = Frobe-
nius”. This would become a genuine analogy if one could wheara “Galois theory” that de-
scribes a categorical equivalence between number fieldseoarte hand, and their QSM-systems
on the other hand. Anyhow, it seems Theofdm 1 indicates ti@nhway, in some sense, substitute
“noncommutative” for “anabeliaff. ..

It would be interesting to study the analogue of our resudtgtie case of function fields, and
higher dimensional schemes. Ja@5] and Consani-Marcolli15] have constructed function field

lInterestingly, the Wikipedia entry for “Anabelian geomgtstarts with “Not to be confused with Noncommutative
geometry” (retrieved 16 Aug 2010).
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analogues of QSM systems that respectively have the Weillen@oss zeta function as partition
function. The papefil?] studies arithmetic equivalence of function fields using @w@ss zeta
function.

Remark (Link with hyperring theory) Connes and Consani have studied the adele class space as
a hyperring in the sense of Krasn¢29d]). They prove if9] (Theorem 3.13) that

(v) the two adele class spacesy /K* = Ay /L* are isomorphic as hyperrings
over the Krasner hyperfield;

is equivalent to (i) in our main theorem. The proof is verenaisting: it uses classification results
from incidence geometry. One may try to prove that (i) irapl{v) directly (thus providing a new
proof of (ii) = (i); this is especially tempting, since Krasner developsdireory of hyperrings for
applications to class field theory, much of the kind which sees in our proof of the implication
from (ii) to (i)).

Observe that the equivalence of (v) with (i) is rather fanirthe anabelian philosophy (which
would be to describe algebra by topology), since it usesfalgc) isomorphism of hyperrings to
deduce isomorphism of fields. But it might be true that tihygology/geometrypf the hyperring
can be used instead. As a hint, we refer to Theorem 7.]9]irover a global function field, the
groupoid of prime elements of the hyperring of adele clags#se abelianized loop groupoid of
the curve, cf. als{8], Section 9.

Remark (Analogues in Riemannian geometryjhere is a well-known (limited) analogy between
the theory ofL-series in number theory and the theory of spectral zetaifimein Riemannian
geometry. For example, the ideas of GalRmann were used byl&tmaonstruct isospectral, non-
isometric manifolds (cfl43]): the spectral zeta function does not determine a Riemamnénifold
up to isometry (actually, not even up to homeomorphism).

In [16], it was proven that the isometry type of a closed Riemannianifold is determined by
afamily of Dirichlet series associated to the Laplace-Beltramrajme on the manifold. 1f18], it
was proven that one can reconstruct a compact hyperbolindie surface from a suitablamily
of Dirichlet series associated to a spectral triple. Theselbe considered as analogues in manifold
theory of the equivalence of (i) and (iii).

One might consider as another analogy of (iii) the matchingllol.-series of Riemannian cov-
erings of two Riemannian manifolds, but this appears noetettirely satisfactory; for example,
there exist simply connected isospectral, non-isometigerannian manifolds (cf. Schifd2]).

At the other side of the spectrum, one may consider Mostoidityg(a hyperbolic manifold of
dimension at least three is determined by its fundamentalgras an analogue of the anabelian
theorem. Again, this is vergnabelian, since the homology rarely determines a manifold.

There is a further occurence @fseries in geometry (as was remarked to us by Atiyah): the
Riemann zeta function is the only Dedekind zeta functiort twzurs as spectral zeta function
of a manifold (namely, the circle); but more genetaseries can be found in the geometry of the
resolution of the cusps of a Hilbert modular varigg] ( compard33]), a kind of “virtual manifold”
that also has a “quotient structure”, just like the QSM-sgsalgebra is a noncommutative quotient
space.
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Disambiguation of notations

There will be one notational sloppiness throughout: we #ethote maps that are induced by a
given isomorphisnp by the same lettep.

Since the number theory and QSM literature have conflicttagdard notations, we include a
table of notations for the convenience of the reader:

R o invertible elements of a riRg
R non-zero elements of a rivg
O algebraic closure of a fi&ld
G oo Pontrjagimadt continuoudiom (G, S*) of a compact abelian grou@
GO connected component of idgntit
K, L, M, N (blackboard bold capitalS) . ... ...t e i number fields
Li(—,X) = Lr(X; =) oo L-series of fieldK for generalized Dirichlet charactgre G%b
< ring of integers of a number fi&d
< ring of finite integral adeles of a number fi&ld
e semigroup of integral ideals of a number figld
N = Ng = N%f ................................................ the norm map on ideals of the number fi&d
n,p, g (fraktur letters) .. ... integral ideals of a number field
FOID) = DK oo inertia degree gfoverp, in K

e+ e e e e e e e e e e e conductdro
K et maximal extension & in which p is unramified
KO maximal abelian extension &f in which p is unramified
Kp ......................................................... completion of a number field at a prime ideap
7 U integersip
Ko oo residue field of a number fieldlat a prime ideap

W (=) BV 0 et Witinctor, Frobenius, Verschiebung,= F — 1
G v e et e absolute Galois groufKof
G%b ......................................................... Galois group of maximal abelian extensiorkof
S Artin reciprocity map; — G2 (or Af; — G2
LK et et e e e e e Actiohidealn ony € G%b by the Artin mapmn xy = Jg(n) - v

A K o e adele ring of a number fiEld
AR f e finite (ranchimedean) part of the adele ring of a number fi€ld
AR e theC™" algebra of the QSM-system of the number fi&ld
B e positive real number representing “inverse tempegatu
XK e topological space underlying part of the algelra
OK = Ot = TRt o« veeeenee et anne s the time evolution (in tirjeof the QSM-system of the number fiekl

D PP crossed productstarction ofC*-algebras (not semidirect product of groups)
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75 PP a state of'a-algebra
7 KMSg state of aC*-algebra
LR GNS-representation corresponding to
2 S weak closure of algebra in GNS-representation
H oo Hamiltan
/2 Hilbertzsye

H (= =) e (group) cohomology
KMSB(A, 0) et etbet ofKMSg-states of the QSM-syste(ul, o)

D LY 1S 10 PP KMSg(Ak, oK)

LUR e e e e e e elemhef theC*-algebradx corresponding to the ideale J;
Lo e e et e e group scheme afth roots of unity ¢ integer)

Part A. QSM-ISOMORPHISM OF NUMBER FIELDS
1. Isomorphism of QSM systems

We recall some definitions and refer|i, [11], and Chapter 3 dfL2] for more information and
for some physics background. After that, we introduce isqiism of QSM-systems, and prove
they preserv&KMS-states (cf. infra).

1.1. Definition. A quantum statistical mechanical syst¢@SM-system) A, o) is a (unital)C*-
algebraA together with a so-calletime evolutions, which is a continuous group homomorphism

c:R—AutA : t— oy

A stateon A is a continuous positive unital linear functional: A — C. We sayw is aKMS;
statefor somes € Ry if for all a,b € A, there exists a functiott,, ;, holomorphic in the strip
0 < Im z < g and bounded continuous on its boundary, such that

Flu(t) = w(aoy(b)) andF, (t + i8) = w(oy(b)a) (vt € R).

Equivalently,w is ac-invariant state withv(ab) = w(bo;g(a)) for a, b in a dense set af-analytic
elements. The sé{MSz(A, o) of KMSg states is topologized as a subspace of the convex set of
states, a weak* closed subset of the unit ball in the operation of bounded linear functionals on
the algebra. AKMSj state is calle@xtremalif it is an extremal point in the (compact convex) set
of KMSg states for the weak (i.e., pointwise convergence) topology

1.2. Remark. This notion of QSM-system is one of the possible physicabties of quantum
statistical mechanics; one should think 4fas the algebra of observables, represented on some
Hilbert spaces with orthonormal basi§ ¥, }; the time evolution, in the given representation, is
generated by a Hamiltonial by

(1) oila) = e ae= 1,

and (mixed) states of the system are combinations
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which will mostly be of the form
a — trace(pa)

for some density matriy. A typical equilibrium state (here, this means stable byetigmolution)
is a Gibbs state

a — trace(ae PH) / trace(e P
at temperaturé /3, where we have normalized by the partition function
trace(e PH).

The KMS-condition was introduced by Kubo, Martin and Schygnin the 1950s as a correct
generalization of the notion of equilibrium state to thegmhcase, where the trace class condition

trace(e 7)) < oo
needed to define Gibbs states no longer necessarily holds.

1.3. For convenience, we recall the construction of fezluced) crossed product algebra :=
C(X) x G, whereX is a topological space ar@ is a semigroup that acts “reasonably” &n Let
2 denote a Hilbert space on whi¢h(X) is represented; theA is the algebra generated by the
images of the representation of C(X) andm, of G on . # ¢ := L?*(G, ) (square summable
functions onGG with values ins7’) given by

™1 (f)(€)(9) g (£)E9)
m(9)€)(h) = &(g™'h)

We now introduce the following equivalence relation for QSkktems:

1.4. Definition. An isomorphisnof two QSM-systems$A, o) and (B, 7) is aC*-algebra isomor-
phismy : A 5 B that intertwines time evolutions, i.e., such that the felleg diagram commutes:

A—>B

Ll

AT>B

1.5. Lemma. Letp : (A,0) = (B,7) denote an isomorphism of QSM systems. Then for any
5 >0,
(i) pullback
¢* : KMSg(B,7) = KMSg(A,0) : w—rwop
is a homeomorphism between the spacdsifSs states on and 4,
(i) ¢* induces a bijection between extreniallS s states on3 and A.

Proof. The mapy obviously induces a bijection between statesand states onl.
For (i), let F, ; be the holomorphic function that implements #K&1Sz-condition for the state
won(B,T)ata,b € B, SO

Foy(t) = w(am(b)) andE, (¢ + i) = w(r(b)a).
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The following direct computation then shows that the fuoreth, . .4 implements theKMS -
condition for the state*w on (A4, o) ate,d € A:

(wo p)(cor(d)) = w(p(e)Te(p(d)) = Fye),pa) (t),

and similarly att + i3. Also, note that pullback is continuous, sinCé-algebra isomorphism is
compatible with the topology on the setléiMS-states.

For (ii), if a KMSg statew on B is not extremal, then the GNS-representatignof w is not
factorial. Asin Prop 3.8 ofL1], there exists a positive linear functional, which is dorénlbyw,
namelyw; < w, and which extends from® to the von Neumann algebra given by the weak closure
M, of B in the GNS representation. The functional is of the formw; (b) = w(hb) for some
positive element in the center of the von Neumann algebza,,. Consider then the pull back

¢*(w)(a) = w(p(a))
and
¢ (w1)(a) = wi(p(a)) = w(he(a))

for a € A. The continuous linear functional*(w; ) has norm|¢*(w1)|| < 1. In fact, since we are
dealing with unital algebras,

le* (@)l = " (w1)(1) = w(h).

The linear functionadvs(b) = w((1 — h)b) also satisfies the positivity property (b*b) > 0, since
w1 < w. The decomposition

" (w) = A1+ (1 = N)e,
with A = w(h),
m = ¢*(w1)/w(h) andny = p*(w2)/w(l — h)

shows that the state* (w) is not extremal. Notice that; andr, are bothKMS states. To see this,
it suffices to check that the statg (b)/w(h) is KMS. In fact, one has for all analytic elements
a,be B:

wi(ab) = w(hab) = w(ahb) = w(hbr;z(a)).
O

1.6. Definition. An automorphisnof a QSM-systeni A, o) is an isomorphism to itself. The group
of such automorphisms is denoted Ayit((A, 0)).

An endomorphisnof a QSM-systeniA, o) is ax-homomorphismd — A that commutes with
o for all t. We denote them biind((A4, 0)).

An inner endomorphisnis defined bya — uzu* for some isometry, € A which is an eigen-
vector of the time evolution, i.ey*u = 1 and there exists an eigenval¥esuch that (u) = \u
for all t. We denote them binn((A, o)). (Inner endomorphisms act trivially ddMS-states, cf.
[12], Ch. 3, Section 2.3.)
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2. A QSM-system for number fields

Bost and Conneg@]) introduced a QSM-system for the field of rational numbens,[&3], [14]
did so for imaginary quadratic fields. More general QSM-aiyst associated to arbitrary number
fields were constructed by Ha and Paugari4i as a special case of their more general class of
systems for Shimura varieties, which in turn generalize(thg2)-system off11]. We recall here
briefly the construction of the systems for number fields enehuivalent formulation given i81].

2.1. We denote bwﬂ‘(f the semigroup of integral ideals, with the norm function
N : J§f =7 :n— N(n) = N§(n) = Ng(n).

Denote byG% the Galois group of the maximal abelian extensioriKofThe semigroup of ideals
maps to the ideleA, and hence to the idele class group modulo its connected @moenp of the
identity. The Artin reciprocity map is an isomorphism ofsho G2°. By abuse of terminology, we
refer to

g - Jﬁg—)Gﬁg : n—>79K(n)
as the Artin map. We also have an actionG@f of the groupAy , of finite ideles ofK, hence one
can consider the fibered product

XK = Gﬂaé) X&H*( ﬁK,
whered is the ring of finite integral adeles, defined foe G2 andi € Ok by
(7,i) = (9x(u™Y) - v, ui) forall u € O.
2.2. Definition. TheQSM-systeniAx, ok ) associated to a number field is defined by
(2) Ax = O(X) x Jif = C(GP x4- Ok) % Ji,
where the crossed product structure is given by the parteflined action of the group of fractional
ideals, seen adj ; /Oy which is the restriction &/ x ;- Ok of the action orG x ;- Ak,
given byn € J;© acting as
(77 Z) = (ﬁK(n_l) s, n Z)
The time evolution is given by
()  ox«f)=f VfeCOGY X gt Ox), and ox (i) = N(n)" pn, Vne Ji.
wherey, are the isometries that implement the semigroup actiofﬁ‘gof

3. Hilbert space representation, partition function, KMS-states

3.1. A complete classification of thEMS states for the systen(sik, ox) was obtained if31],
Thm. 2.1. In particular, in the low temperature rame- 1, the extremakKMS; states are param-
eterized by elements € G%, and are in Gibbs form, given by normalizédseries

1 _
(4) wp(f) = 20 > FWx()y)N(@n) 7.

ne Jg
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In the particular case wherg =  is a character ot7% (extended as usual by on ideals not
coprime to its conductor), we find

1
(5) way(X) = == - X(7) - Lr(x; 9).

3.2. Associated to any elemefite G%" is a natural representation of the algedraon the Hilbert
space’?(J; ). Namely, lets,, denote the canonical basis@f(J;f ). Then the action of?(.J;") of
an elementf, i, € Ax withn € Jif andf, € C(Xk) is given by
Wv(fnﬂn) €m = fn(nm*’}/) €nm-
In this picture, the time evolution is implemented (in thase of formula[(ll)) by a Hamiltonian
(6) H, ey =log N(n) €y,
3.3. In this representation,
_BH, f(nxy)
trace(m, (f)e PHox) = Z NP

nng

Settingf = 1, the Dedekind zeta function
(B = > Nwu™
neJH‘g

appears as the partition function

(x(B) = trace(e”Mex)
of the system (convergent fgr > 1).

3.4. Remark (Formulation in terms ofK-lattices) As shown in[12], the original Bost-Connes
system admits a geometric reformulation in terms of commnetslity classes of 1-dimensional
Q-lattices, which in Section 3 dB1] was generalized to number fields. More specifically, the
moduli space ofK-lattices up to scaling is the abelian p@rt Xx) of the algebra (a classical
quotient), and the moduli space up to scalamgl commensurability exhibit the complete algebra
(a genuinely noncommutative space). We recall the defirstfor convenience.

Denote byK,, = HU‘OO KK, the product of the completions at the archimedean place$, an
by (K%,)° the connected component of the identityij . An 1-dimensionalK-lattice is a pair
(A, ®), whereA C K is a lattice withOg A = Aand¢ : K/ Ox — KA/A is anOkx-module
homomorphism. The set afdimensionalK-lattices can be identified with

(7) Mgy =K\ Ag X&%ﬁk
as in[13] and[15], cf. [31] Lemma 3.3. TwdK-lattices arecommensurabledenoted by

(A1, ¢1) ~ (A2, ¢2),
if KA1 = KAy andgbl = (9 moduloA; + As.
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Thescaling equivalenceorresponds to identifying 1-dimensiori&lattices(A, ¢) and(kA, k1),
wherek € (K%,)? andv is a pointwise limit of elements¢ with r € 05 N(K%,)°. The result-
ing convolution algebra corresponds to the actionAgf , /&]}; ~ Jg on themoduli space of
1-dimensionalK-lattices up to scaling

My = A [K (KL)% 52 Ok = G % gz Ox.
The algebradx can be interpreted as the quotient of the groupoid of the cemsorability
relation by the scaling action. The Hilbert space consimnatan be fit into the general framework
of groupoid algebra representations.

In the lattice picture, the low temperature KMS states amapaterized by thénvertible 1-
dimensionalK-lattices, namely those for which th@x-module homomorphisny is actually an

isomorphism, sefl2], [13], [31], and Chapter 3 dfL1].

4. Hamiltonians and arithmetic equivalence

We first show that the existence of an isomorphism of the gumaistatistical mechanical systems
implies arithmetic equivalence; this is basically becatse zeta functions oK andIL are the
partition functions of the respective systems. Some casddbe taken since the systems are not
represented on the same Hilbert space.

4.1. Proposition. Let ¢ : (Ak,ox) — (AL,or) be an isomorphism of QSM-systems of number
fieldsK andL. ThenK andL are arithmetically equivalent, i.e., have the same Dedtkieta
function.

Proof. The isomorphisny : (Ak, ox) — (AL, or) induces an identification of the sets of extremal
KMS-states of the two systems, via pullbagk : KMSg(L) — KMS3(K).

Consider the GNS representations associated to regulatelmperaturéd<MS statesw = wg
andy*(w). We denote the respective Hilbert spacesMy and.’Z,-,,. As in Lemma 4.3 ofl10],
we observe that the factoyz,, obtained as the weak closure 4f, in the GNS representation is
of type L, since we are only considering the low temperature KMS stiat are of Gibbs form.
Thus, the space?;, decomposes as

I, = (W) @ H,
with an irreducible representation, of Ay, on . (w) and
My ={TR1|T € B(AH(w))}
(% indicates the set of bounded operators). Moreover, we have
(T ® 1)1y, 1) = Te(Tp)

for a density matrixp (positive, of trace class, of unit trace).
We know that the low temperature extremal KMS states for yls¢esn( Ay, op,) are of Gibbs
form and given by the explicit expression

_ FOL(m)y)
© )= 55 2 Nomy

me Jf
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for somey € Gﬁb/ﬂL(&i); and similarly for the systeriAk, o). Thus, we can identify?’ (w)
with ¢2(J;) and the density correspondingly withe =% /Tr(e=#Ho1). As in Lemma 4.3 of
[10], the evolution groug®«~ generated by the Hamiltoniak,, that implements the time evolu-
tion o in the GNS representation off’, agrees withe?*/o.. on the factor.#,,. This gives

eitHw Ww(f)e_itH“’ _ ﬂ'w(o']L(f)) — ez'tHg]L Ww(f)e_itHg]L ]
As observed in 84.2 dHL0], this gives us that the Hamiltonians differ by a constant,
H, = H, +log)\p,

for some\; € R.. The argument for the GNS representationﬁgr(wﬁ) is similar and it gives an
identification of the Hamiltonians

Hcp*(w) = H,, +log A2

for some constank; € R’ .

The algebra isomorphism induces a unitary equivalence of the Hilbert spaces of the GNS
representations of the corresponding states, and the téaimihs that implement the time evolution
in these representations are therefore related by

H, () = PH,®".

In particular the Hamiltoniang/ -,y and H,, then have the same spectrum.
Thus, we know from the discussion above that

Hyg = PHpL®* + log \,
for a unitary operato® and a\ € R’.. This gives at the level of zeta functions

9) CL(B) = APk (B).

This identity holds for all3 > 1, and hence by analytic continuation to alle C. Now consider
the left hand side and right hand side as classical Diriggaes of the form

an, by,
Zﬁ and ; SOk

n>1

respectively. Sincé(1) = 1 # 0, the identity theorem for Dirichlet series first impliestthas an
integer. Then, since(1) = 1 # 0, we actually find\ = 1. Thus, we obtaik (5) = (.(8) which
gives arithmetic equivalence of the number fields. O

By expanding the zeta functions as Euler products, we deduce

4.2. Corollary. If the QSM-systemgAxk, ox) and (Ar, or,) of two number field&K and L are
isomorphic, then there is a bijection of the primesf K abovep and the primes; of L. abovep
that preserves the inertia degre¢(p |K) = f(q|L). O

Using some other known consequences of arithmetical eenise, we get the following/9],
Theorem 1) - which will not be used in the sequel:
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4.3. Corollary. If the QSM-systemgAxk, ox) and (Ar, or,) of two number field&K and L are
isomorphic, then the number fields have the same degree@wre same discriminant, normal
closure, isomorphic unit groups, and the same number ofaedlcomplex embeddings. O

However, it does not follow from arithmetical equivalentattk andL have the same class
group (or even class number), {£9].

5. Crossed product structure and QSM-isomorphism

In this section, we study isomorphisms of general algebldaimed as crossed products by
endomorphisms, compatible with certain time evolutionise &argument we give here is a modifi-
cation of the argument d#1]. Basically, this setup shows that compatibility with timeleition
guarantees that the isomorphism: Ax = A induces a separate homeomorphi& — X7,
and a family of semi-group isomorphisnig = .J;". We first discuss the case of an actiorZaf
and then extend to the higher rank case.

5.1. Let X be a compact Hausdorff topological space and lefX — X be a continuous injective
map such that” = Range(y) C X is a clopen set, so that the characteristic funcijos xy €
C(X). We then have an endomorphism C(X) — C(X), given by

v(f)(z) = f(v(x)),

and another endomorphisp: C(X) — C(X), given by
p(f)(@) = x(@)f (7 (x)).

This is well defined, since, for an injectivethe inversey~!(z) is well defined forz € Y C X.

One hasy(v(z)) = 1forallx € X, sothatv(xf) = v(f)forall f € C(X), andv(p(f)) = f for
all f € C(X). Thus, the endomorphismis surjective onC'(X) but not injective. One also has

p(w(f)) = x/.
5.2. The semigroup crossed product
C(X) %, Zy
is generated algebraically by elemeyits C'(X) and an isometry:, with the relations
prp=1, fu=pw(f), nf = p(f)n,
forall f € C(X), with v andp as above. Under the-involution these give also relations of the

form p*f = v(f)p* and fu* = p*p(f). The semigroup action in the crossed product is given by
the endomorphism, with p(f) = ufp*.

5.3. Proposition. Let X and X’ be compact Hausdorff spaces, and let

of = C(X) Np Z+ and JZ{/ = C(X/) ><1p/ Z+
be the semigroup crossed product-algebras associated to fixed-point free injective cordiral
mapsy : X — X andy’ : X’ — X’ as above. Suppose given time evolutionszvand.c7’ such

that
{ a(f)=1f forall f € C(X),
O-t(lu’) = >\Zt:u‘7
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for some) € RY, and similarly foro’ on .7’ with the same\. Let
o: (o, 0) > (' 0)
be an isomorphism of QSM-systems. Thenduces a homeomorphism
o: X5 X,
with
by = +'®.

Proof. By the relations in the crossed product algebra, we can deaserelements € o7 linearly
as
a=fo+ Z(Nkfk + for()b).
k>0
One writesEy(a) = fi for the linear contractive map that gives the “Fourier caoedfits" of this
decomposition. For a time evolution with(f) = f for f € C(X) ando(u) = Ay, the Ey, are
in fact the projections onto the eigenspace of the time éeslwith eigenvalue\’t.

Let«/y C < be the closed subalgebra (without involution) generated @y ) and the isometry
u, but without the adjoint*. Elements in the subalgebr#y haveEy(a) = 0 for all K < 0. The
isomorphismy is compatible with the time evolution, hence it maps the mspaces’;, in </
with eigenvalue\** to the eigenspacé), with the same eigenvalue i’. Thus, in particulary
induces an isomorphism : <7y — o7y, compatible with the restrictions of the time evolutions to
this subalgebra.

Let ¥y denote the closure of the commutator ideal«df, and %3 the closure of the span of
products of commutators, and léf, and(¢7,)? be the same fae7|). TheC*-isomorphismy maps
€0 10 €} and%: to (€)%, Thus, it induces an isomorphism

@:@70/%0%%6/%/,

which gives a bijection of the maximal ideals.af, containingé’y and the maximal ideals of/{,
containing®%’,.
Given a maximal ideal,, of C'(X), given by all functions vanishing at a pointc X, define

z{;70 = {CL ey : EO(CL) S Ix}

This is a maximal ideal inzZ, containing?¢’y. Sincey : X — X has no fixed points, all the
maximal ideals ofe7 containing@’ are of this form.
The bijection between these maximal ideals induced by thraasphism

Py Co> Ay

then gives a bijectio® between the points ok and the points ofX’, which induces an algebra
isomorphism of”'(X') andC'(X’), hence a homeomorphism

. X5 X
One can write commutators

(fou] = fu—pf=puw(f)—f)=(—pf)u
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Similarly, one has

fo i = d* WA () = ) = (f = ()

[fow] = (f =v(P)e™ = u*(p(f) = f),

F, ()] = (f =P (D))" = W) R () = /).
Thus, elements € % have Fourier coefficient&)(a) = 0 and Ej(a) in the subspace of’j,
generated by the “coboundaries®h, with

h=(f = v*(f)).

Similarly, elements ir6’? have Ey(a) = E1(a) = 0 and the&’, for k > 2 in the subspace aof
spanned by the coboundaries.

Notice then that iff € C(X) belongs to an ideal,, with y € Y, thenv( f) belongs to the ideal
I, with y = ~(z). Similarly, if f € I, thenp(f) € L,,). Moreover, for

a=fo+ > (W fr+ for(p)b)
k>0
as above, we have

v(@) = v(fo) + S v (FHE + () (o ()

k>0
= w(fo) + > u VO () + TR () ()
k>0
= v(fo)+ > u v(fi) + v(f-) (),
k>0
and
pa) = p(fo) + > (1Fp(fr) + p(f-r) (1)F).
k>0
Thus, we also have that if ¢ I, fory € Y C X, thenv(a) € I, with y = ~(z) and if
a € Ix o thenp(a) € L ~+(x),0- Moreover, fora € vao, we have
alf,u] = [f,wlv(a) and[f, u]a = p(a) [f, u]-
This gives

Z%Q Co+ %g =% ZnO + %(2) .
Under the isomorphisrp we then have
oIy 0Co+C2) = f@(y),O €0 +(€0)°
and B B
90((50 Im,O + (53) = (56 I@(w),O + ((56)27
with y = ~(z). The same relations applied to the algebrg then give®(v(z)) = +'(®(z)). O

5.4. Remark. The condition thaty : X — X has no fixed points can be left out; the proof gets
technically more complicated since one has to include aitiaddl class of maximal ideals a¥/
containings.
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We extend the result to the case of a crossed product by ammtsgmigroup generated by
N commuting isometrieg;, each corresponding to a pair of endomorphisity) = f o ~; and

pi(f) =xif o "
5.5. Proposition. Let
o =C(X)x,Z% and &' = C(X') xy ZY,
with
pi(f) = wifp; andv;(f) = f o~y = p; f i,

for fixed-point free maps;. Assume that;(x) # v;(x), forall z € X and alli # j and similarly,
vi(@") # ~i(2') for all 2" € X" andi # j. Leto ando’ be time evolutions on/ and.«7’ with

{ o(f)=1f forall f € C(X),
or (i) = XN pg,
fora\ € R and, similarly oneZ’. Then a QSM-isomorphism
o: (o, 0) > (o)

induces a homeomorphism

o: X5 X
and a locally constant function

a: X — Sy,

with S the group of permutations of the st . .., N}, such that
D (Yo, (i) () = % (2(2)),
forall z € X.

Proof. The argument proceeds as in the case of a single isometryus&sehe compatibility with
the time evolution to induce isomorphisms

oAy A
of the closed subalgebras without involution generated’by ) (respectivelyC(X’)) and they;
(respectivelyy}). The induced isomorphism
0o/ Co— Ay Cy
again gives an identification between the maximal idéﬁlﬁin o o containing®’ andZE,,O in <,
containing%’,, hence a homeomorphism
P: X S X,

Here one can again describe as before the elemefag imd%% in terms of their projectiong’y,
on the eigenspaces of the time evolution and one see$that’z is a bimodule forC'(X) of the
form

C(X)p + -+ C(X)un,
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corresponding to the projection onto the eigenspégceAs in [41], one then sees that, for a point
z € X, the set of point{~;(x)}i=1,...~, which are distinct by the assumption, is the set of those
y € X such that the space

INI,O Co+ %o fy,o + %(2)

has codimension one i#y. One obtains in this way, for eache X, an identification between the
sets{®(v;(z)) }i=1,..~ and{~}(®(z))}i=1,...~. This gives for each: a permutationy, of the set
{1,..., N'}. By continuity, this gives a locally constant function: X — Sy g

5.6. Remark. Thus, in the case oV commuting isometries, we find that@*-algebra isomor-
phismey : &7 = o/’ compatible with the time evolution maps isomorphically

p:C(X) = CX),
through a homeomorphisd : X = X', and it maps
N
p(ui) = > hiji;,
j=1
whereh;; € C(X') are given byh;; = ¢(fi;), with f;; € C(X) locally constant functions
satisfying

fij (@) = 6j 0, )-
These satisfyp _; f;j(x) = 1, which is compatible with the relatiop(x; ;) = 1.

6. Application to the QSM-system of a number field
We now return from the general situation to our specific QSf8taams, so
AK = C(XK) A ‘]]I—g

We also use the notatiom«z for the action ofn € Jf on Xk. This action corresponds to the
endomorphisms that give the crossed product actioAgnand is clearly fixed-point free. If we
factor the algebra into finite pieces as in the following frowe can deduce from the previous
section the following result:

6.1. Proposition. Lety : (Ag, o) — (AL, oL) be anisomorphism of the QSM-systems associated
to number field&K andLL. Then the isomorphisim induces a homeomorphism

p: XK 5 XL
and a family of semigroup isomorphisms

Qyp Jﬁ(f = JHT,
locally constant inr € Xk, with the compatibility condition

p(nxr) = az(n) * p(z).
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Proof. The previous proposition does not apply directly, sidgehas infinite rank. However, we
can view it as a product over finite rank semigroups, corneding to sub-semigroups generated
by prime ideals of a given norm. The fact that everything isipatible with this splitting follows
from the compatibility ofp with the time evolutions: it implies that maps the eigenspace of the
time evolutionox with eigenvaluep® to the eigenspace of the time evolution with the same
eigenvalue. Thusy induces, for each rational pringe an isomorphism

Pp - AKJ, :> A]L’p
of the subalgebrady , C Ax andAr, C Ar, given by
AKJ, = C(XK) X Jﬂz;ﬁ’

with Jﬂ‘gp C Jﬂ‘g the sub-semigroup generated by the isometrigsvith p a prime of K with

Nxk(p) = p, and similarly forAy, , = C(Xy) » Jﬂfp. To each of these subalgebras we can apply
the result of the previous proposition and obtain an inddedeomorphism

p: XK 5 XL
and a locally constant bijection

a; :{p €K : Ng(p)=p} > {qeL : NL(q) = p}.

Notice that we know a priori tha andLL have the same number of primes over the same rational
prime p, because of arithmetic equivalence. Assembling togetieset identifications for each
primep, one obtains the isomorphism

aw:JgiJﬂf.

6.2. Proposition. In the previous proposition 6.1, far € G2, the map
Qy J]f(f 5 Jﬂf,
is independent aof. If we denote it by, the compatibility condition becomes
p(nxz) = p(n) x p(z)
forz € G®andn € Jif.

Proof. The groupG2 operates faithfully by endomorphisms on the QSM-systetn, o), cf.
[31], Remark 2.2(i). We then have a commutative diagram

Xk = XL
lWEGH%b ls@(v)GGEb
Xk = XL

Thus,
e(Ve() = p(y).
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We now compute that far € G2,

pnxy-z) = pnx*(yz)) = ay(n) * o(yz).
and on the other hand

ey -x) = p(7)p(n*2) = p(7)az(n) * p(r) = az(n) * (7)p(r) = az(n) * p(yz).
So that finally for ally € G2,
Qrygy = Q.
SinceGﬁgJ acts transitively on itself, we do find that, for z ¢ Gﬁ‘(b is independent of ¢ G2
hence equal ta;, which we denote by. O

6.3. Remark. We cannot conclude that, is constant on elements @fx at this point (but of
course it is on the subspa@%).

7. From QSM to field isomorphism: multiplicative structure

7.1. We now come to the proof of Theordrh 1. Of course, (i) impli&s {iVe now show that (ii)
implies (i), i.e., that isomorphism of QSM-systems leadstmorphic fields.

7.2. Remark. The start of the proof of the Neukirch-Uchida theorem is tdugased on the
observation that a prime is characterized by its deconmipagifroup in the algebraic closure (a fact
apparently going back to F.K. Schmidt), a fact that is tgtédlse in the abelian closure. Hence
only based on the correspondence of abelianized Galoiggrauve cannot get started with the
proof in this way. In our proof, however, by what we have alsededuced in previous sections,
the isomorphism of QSM-systems induces automaticallyectign between the (prime) ideals of
the field.

We first recall the following facts on the symmetries of theN@Systems of number fields. The
statement is analogous to Proposition 2.141d] and Proposition 3.124 dfi2], where it was
formulated for the case of imaginary quadratic fields, an@iteorem 2.14 of15], formulated in
the function field case.

7.3. Lemma. Let K denote any number field. The semigrdﬁ@ N Ak, s acts by endomorphisms

of (Ag, ok ), with kernel0. The subsef?’ff( acts by automorphisms of the system, and the subset
Oy = Ox —{0} of non-zero elements of the ring of integers acts by inneoewphisms. This is
summarized by following commutative diagram:

Inn(Ag, og )~ End(Ak, ox) =<—Aut(Ax, ox) -

| | |

S WY P—Y ]

J J J

Ox Ox Ox
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Proof. Consider a given < Ok N Ag r, and the associated ideagiven by

n= SﬁK NK.
An element(v, p) € X is divisible byn if s~1p € Ox. One obtains in this way an action by
endomorphisms ofAk, o) by
es(£)(v,p) = f(v,57'p)

when(~, p) is divisible byn ande;(f) (v, p) = 0 otherwise. These are compatible by construction
with the time evolution,

€504 = OyEs, VseﬁﬂAkf, VteR.

It is clear from this definition that elements 6@% act by automorphisms.
Now consider then the case where & In this casen is the principal ideal generated by
and the non-zero values of the functian( ) can be identified as follows:

es(F)(v.p) = f(v:57p) = F(Ox(n) -7, p) = (1) (7, p),

which is an inner endormorphism, singg is an eigenvector of time evolution.
O

7.4. Remark. More generally, as we have already observed in the proof @pdition[6.2,G%

(which contains an image @k N A ;) acts by endomorphisms of the system,[81], Remark
2.2(i). Also note that automorphisms of the field induce edphisms of the associated QSM-
systems.

7.5. Remark (K-lattices) In terms of K-lattices (A, ¢), the divisibility condition above corre-

sponds to the condition that the homomorphisiiactors through
¢»:K/Oxg - KA/nA— KA/A.

The action of the endomorphisms is then given by

Es(f)((A7 ¢)7 (Ala (b/)) = f((A7 S_I(b)? (A/7 S_l(b/))

when both(A, ¢) and(A’, ¢') are divisible bys and zero otherwise.
Whens € &, we can consider the function

1 A=s"'A and ¢ = ¢;
0 otherwise.

na((A9). (A 1)) = {

These are eigenvectors of the time evolution, wittys) = Nk (n)%us, ande,(f) = ps * f > pk,
for the convolution product of the algebri:.

7.6. Proposition. An isomorphisnp : (Ag,ox) — (AL, o1) of the QSM-systems of two number
fieldsK andLL, induces an isomorphism of topological groups between tleiSgroups of their
maximal abelian extensions:

¢ GRS G
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Proof. For 3 > 1, the set of extremakMSg states ofAk is homeomorphic ta>2 ([31], Thm.
2.1(iii)). Hence from the matching dKMS-states from Lemma1.5, we find thatinduces a
homeomorphism

0 GRS G
We now need to prove that this is actuallg@up isomorphism. Again, we use théa® is also
naturally a faithful symmetry group of the systémy, o ), So there is a group homomorphism

Gﬂaé) — End(AK, O']K)

(which even factors modulo inner endomorphisms). Now we sé® that the map automatically
induces (by pullback) an isomorphism

@ : EnCKAK,UK) :> End(A]L,U]L).

Although we do not know the complete structure of the end@imiem algebra, by Lemnia 1.5, we
do know thaty sends the image @2 to the image of2". Thus, from the commutative diagram

G B . EndAg,ox)
zlgp (top) :lVJ (9rp)
G o EndAL, o)
we find thaty is indeed a topological group isomorphigi} = G2b. g

7.7. Remark. All the groupsG2® are homeomorphic to each other (and to the Cantor set). The
main point of using the set a{ MS-states at the start of the proof is to show tivet map, induces
such a homeomaorphism.

7.8. Remark. The isomorphism type of the infinite abelian groGf® is determined by its so-
calledUIm invariants ForG%, those were computed abstractly by Kubd&0]), and Onabe[B8])
computed them explicitly for quadratic imaginary fieldsr EﬂampleGg’(i) is never isomorphic to

any other group for such a field, bQ/—2) andQ(/—3) have isomorphic abelianized absolute
Galois groups (and they are not isomorphic as fields).

7.9. Proposition. Let K and L. denote two number fields admitting an isomorphignof their
QSM-systemgAx, ok ) and (Ar, o1,). Theny induces a group isomorphism of unit ideles

0: O S 0.
Proof. We have already seen thainduces a homeomorphism
0 Xg = XL,
where Xg = G2 X gt Ox; the product is balanced over the unit ideles, meaning that=

G x Oy / ~ where fori € G andm € &, we let(i,m) ~ (i, um) for anyu € 0. Also,
onG%, ¢ is already a group isomorphism. Hence all we need to do isspifwaty maps unit ideles
to unit ideles, as subsets G’
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Sinceip is already a group isomorphism when restricted to the g(égg’p we havep(1) = 1.
We find 0k as a subspace dfk by taking a (non-canonical) section
Ox = Xg : m— (1,m);
indeed,(1,m) ~ (1,n) only for m. We denote equivalence classes{oby square brackets. Now
¢: Ok — OL
satisfiesp(m) = m’ if and only if
(1, m)]) = [(1,m")].

Let us now check that this map induced pymaps unit ideles to unit ideles. For this, we

takem ¢ é’]}; to be a unit idele, and we compute the imagenraf First of all, by definition,
©([(1,m)] = [1,¢(m)]. On the other hand, since is a unit itself, we havé(1,m)] = [(m,1)].
This is mapped by definition tigp(m), 1)]. Hence we find an equivalence

(1, 0(m)) ~ (p(m), 1),
i.e., the existence of a unitc ¢ with
1 = up(m).
This proves the claim that(m) is also a unit idele. O

7.10. Proposition. Let K and L denote two number fields admitting an isomorphisrof their
QSM-systemgAx, ok ) and (Ar, o1,). Theny induces a semigroup isomorphism:

Proof. We have an exact sequence
(10) 0— 5%%A]}k{’fﬁﬁK—>JH‘g,
which is (non-canonically) split by choosing a uniformizgrat every place of the field. Hence
as a semigroupA ; Nk = J;f x 0. Now ¢ induces a bijection
JEx 0 S 0 < o
given by

(n,4) = (ai(n), p(i)).
This is a group isomorphism precisely if

Qi (m 1‘1) = (m)Oéj (1‘1),

which happens exactly i;(n) is independent offor i € &.. Now & C G2, and we have seen
in Propositior 6.2 that for such elements, indegd= ;. O

7.11. Remark. One may prove in a similar way thatinduces a group isomorphism of the finite
ideles ofK andL.
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7.12. Proposition. Let K and L denote two number fields admitting an isomorphisrof their
QSM-system$ Ak, ox) and (Ar,o1,). Theng induces a semigroup isomorphism between the
multiplicative semigroups of non-zero elements of thesrioigntegers oK andLL:

(O, x) = (O, ).
Proof. The previous proposition says thainduces an isomorphism
¢ Ak s Nog = Al ¢ NoL.
From Lemma& 713, we have a natural map
Ok : Ak s NOx — End(Ag, o),
andyp induces a map
End(Ak, ox) = End(AL, op).
Now ¢, as an isomorphism of QSM-systems, also preservesitize endomorphisms:
¢ : Inn(Ag, ox) = Inn(AL, o),

but we know that R
05" (Inn(Ax, 1)) N (A s N0k ) = O

(whered'; = Ok —{0}), so we also get that induces an isomorphism

~

o : O = 0.

8. From QSM to field isomorphism: additive structure

We have already shown that isomorphism of QSM-systems ofnwnber fielddK andLL im-
plies that the number fields are arithmetically equivaldhthen follows that it gives aesidual
equivalencei.e., it also induces a bijection of prime ideals that giamsisomorphism between
residue fields[@6], Chapter VI, (2.1)). However, this argument is only basedhenfact that the
cardinalities of these (finite) fields are the same. We nowshsing Galois cohomology, that all
such residual isomorphisms are in fact naturally inducethfthe given mapp.

8.1. Proposition. LetK andLL denote two number fields whose QSM-systetas ok ) and(Ar, o1.)
are isomorphic. Lep : Ji = J;" denote the induced isomorphism of semigroups of ideals Let
denote a prime ideal df. Setp’ := ¢(p). The mapp induces an isomorphism of additive groups
of the corresponding residue fields

¢ : (Kp,+) = Ly, +).

Proof. Let Ngb denote the maximal abelian extensionkofn which p is unramified, and pick any
prime$3 abovep in Ngb. Observe thab(Ngb) is the maximal abelian extension ofin which ¢ (p)

is unramified. Also,p induces a natural isomorphism of the decomposition groujp aind any
primes’ abovey’ in cp(Ngb). SinceNgb/ K andcp(Ngb)/ IL are abelian, these decomposition groups
are independent of the choice‘pfand’ and will be denoted byJg° andDgP, respectively. Now
also observe that sind€ has abelian extensions of arbitrary high residue field iratex we have
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isomorphismsD = Gal(K; '/ K,) whereK, is the residue field of in K andK’ is an algebraic
closure. As such, we let the grouﬂil;,?b and D;’;‘,b act trivially on the moduléZ /p™. After taking
Galois cohomology, we find thatinduces an isomorphism

¢ : H'(DPZ /p") = H (D, Z /p").
However,
H' (D, 2 [p") = (W(Ky)/ (V"W (Kp), oW (Ky), +)
as abelian groups, whel& is the Witt vectors} is Verschiebungand as usualy = F' — 1 where

F'is Frobenius. Taking limits over all, we hence find thap induces an isomorphism of abelian
groups

_ — ~ — -/
o (W)W (Ky) +) S (W) oW (), +)
We observe thapWW C (p), and by taking the above isomorphism modpjave find
1 (Kpt) = (Lys+) -
]

8.2. Theorem. LetK andL denote two number fields whose QSM-systetrs ok ) and (Ar, o1.)
are isomorphic. ThefX andIL are isomorphic as fields.

Proof. Follows immediately from the fact that the mapinduces an isomorphism of multiplica-
tive semigroups of non-zero integers (Proposifion 17.1@)t san be extended to a multiplicative
isomorphism of(K*, x) with (IL*, x). Then, by definingp(0) = 0, the result follows, since we
have shown that the same mapnduces an isomorphism of additive groups of all residuelgiel
(Propositior 8.1). O

9. Addendum: recovering the multiplicative structure via cohomology

We give an independent cohomological proof of the fact thas residually multiplicative,
which is not needed in the main argument, and anyhow folloas fProposition 7,12, but which
we include since it provides a nice parallel to the addithwory from the previous section. We do
remark that, given a “good” matching of ideals, a combimatié Proposition§ 811 arild 9.2 (below)
with a statement that induces a natural bijection between getsK andIL would suffice to prove
the main theorem. However, it does not seem to be so easy teuiaich bijection (this is essentially
done in Proposition 7.12, but immediately in combinatiothvei multiplicative structure).

9.1. Proposition. LetK andLL denote two number fields whose QSM-systetas ok ) and(Ar, o1.)
are isomorphic. Lep : Ji = J;" denote the induced isomorphism of semigroups of ideals Let
denote a prime ideal df above the rational prime, with ramification indexf = f(p |p) inK / Q.
Setp’ := ¢(p). The mapp induces an isomorphism of the following quotients of theiplidative
groups of the corresponding completions

o (K;/ <K:)pf_l,><> 5 (11:;,/ (L;)pf_l,x>.
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Proof. Let D, denote the decomposition group of a prime abpve N, /K, whereN, is the

maximal (not necessarily abelian) extension in whids unramified. TherD, = Gal(K; /K, ) is
the absolute Galois group of tipeadic completion of. Recall Kummer theory: for any integer,
let v, denote then-th roots of unity, then

A X A~ x\ T
Hl(DpalJ’n):Kp/OKp) )
where we letD, act onp,, like the absolute Galois group fBIp. Recall that iff = f(p|p) is the

ramification index of in KK, then the(p/ — 1)-th roots of unity belong tde. Hence the action of
Dyonp,r_q is trivial, so we find

Hl(Dpa pps—1) = Hom(Dy, pys 1) = Hom(ng, Hpi_1)-

(The crucial point for us is the last equality, which is olmscsincey,, is abelian, since it allows
us to switch from the absolute local Galois group, about tvlme have no information, to the
abelianized group, which is encoded in our system. But oksiat if the action ofD, on p,, is
not trivial, then the group cohomology does not need to faoter the abelianization.) Hence for
n = p/ — 1, the canonical isomorphisg : D* = Dg,b induces the desired isomorphism. O

9.2. Proposition. LetK andLL denote two number fields whose QSM-systetis ok ) and (AL, or)

are isomorphic. Lep : Jfg = Jﬂ denote the induced isomorphism of semigroups of ideals. Let
p denote a prime ideal d. Setp’ := ¢(p). The mapp induces an isomorphism of multiplicative
groups of the corresponding residue fields

— X ~ =X
o (Ky,x) = Ly, x).

Proof. We only have to observe thatife L is a(p/ —1)-th power, then: = 1 mod p. Hence the
maps from the previous proposition indeed reduces magtoan isomorphism of multiplicative
groups. ]

Part B. L-SERIES AND QSM-ISOMORPHISM
Let x denote a character in the Pontrjagin dua:gf. We set

X(0x(n))

FODEDIE

+
et

where it is always understood that we ¢t (n)) = 0 if n is not coprime to the conductgy of
x. This is also the ArtinL-series fory considered as a representation of the Galois group of the
finite extensiorK,, / K through whichy factors injectively [36], V11.10.6).

10. Matching L-series via QSM-isomorphism
We start by proving that (ii) implies (iii) in Theoref 2.

10.1. Proposition. An isomorphisny : (Ak, ox) — (AL, o1) induces an identification di-series
with characters fronG2.
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Proof. By Propositior 76, we have an isomorphig® = G2, hence by Pontrjagin duality, a
identification of characters

(VR @Hag 5 @ﬁb.
Also, the isomorphism of QSM-systems implies the compliibof this isomorphism with the
action of ideals by the respective Artin maps, which trateslan the dual group to

X(Ux(n)) = () (IL(e(n))

forall x € @;g,n € Ji . In particular, the conductors afandy(y) match. By the intertwining of
time evolution, we have compatibility with norms

Ng(n) = NL(¢(n))
for alln € Ji . Hence we can compute

o = $ XWk(w) PO WLlp(n)) _ s
s 2 e L2 NGy

K

O

10.2. Remark. The above result can also be seen as a manifestation of thehingabf KMSg
states. Namely, our isomorphism of QSM-systems gi¥gs) = (1.(s) (Propositiorf 4.11), and an
isomorphism of character grougsas in the previous proof. Now Lemrhall.5 implies that pullback
is an isomorphism oKMSg-states. Now for3 > 1, such a statevf';ﬁ on Ar, (corresponding to

v € Gﬁb) is pulled back to a similar state

wh s (o(f)) = wE (),

for somey € G2 and everyf € Ax. We can choose in particulgr = x € G2 (extended to zero
ideals not coprime to the conductor-gf and then the above identity becomes

g P00) LL00.9) = s X Lilos)

If we now compare the constant coefficients and use ariticnegfilivalence, we fingh(x)(vy) =
x(¥), and so finally the identity of these particuldMS-states indeed reads

Lu(¥(x),s) = Lr(x, s)-

11. QSM-isomorphism from matching L-series: isomorphism of character groups

Conversely, we now show that (iii}> (ii) in Theorem 2, namely the identity of thie-functions
implies the existence of an isomorphism of the quantumssizei mechanical systems.

We start by proving that if we have a bijection of charactére,matching of.-series automati-
cally implies that this bijection is an isomorphism of greup

11.1. Proposition. Let K and L. denote two number fields. Suppases a set-theoretic bijection
w Gab ~ G
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that induces an identity of the respectikgunctions

Theney is agroupisomorphism.
Proof. If
an by,
> —5 and > 3
are twoL-series, we mean by thefusionthe L-series
Z anbn
nb -’
The first ingredient of our proof is the trivial observatidrat if two L-series are equal, so are their
fusions. The second ingredient is that the oblgeries with a pole at = 1 is the one with trivial

character, i.e., the zeta functioj@g], VI1.8.5).
If we use the trivial charactey = 1 in the hypothesis, we find that

Lu(y(1),8) = x(B),

which has a pole at = 1. Hencey (1) = 1.
Next, let y be a character. The fusion of thieseriesLy (v(x), 3) and Ly (y»(x~ 1), 3) is by
hypothesis equal to

Le(x-x~ B) = k(B).
Since this has a pole gt= 1, we find thaty () - 1»(x~!) is the trivial character, i.e.,
P =)
Now lety andy’ be two characters. We consider theseries
L () () ()7 B),
which is the fusion of thd.-series corresponding to the three characters
PO, 00~ = v andy ()T = (.

Hence it is equal to thék (1, 3) = (k (/). Since this has a pole at= 1, we conclude that

Pxx') = L)Y(X).

We conclude from this that is a group isomorphism. O

12. QSM-isomorphism from matching L-series: compatible isomorphism of ideals
12.1. Proposition. Let K and L denote two number fields. Suppasés a continuoushijection
) (A?%b = (A?ib
that induces an identity of the respectizegunctions

Li(x; 8) = Lu(¥(x), B)-
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Then there exists a semigroup isomorphigm: Jﬂ‘g — Jﬂ, which is compatible with the Artin
reciprocity map undet) in the sense that

Y oW = ("L/}_l)* o Jk.

Proof. The previous proposition shows thatis a group isomorphism, g6(1) = 1, which means
that the zeta functiong ¢series for the trivial character) match on both sides:

(k(s) = CL(s)-

This is arithmetic equivalence, and it shows in particuteat there is a bijection between the sets
of primes ofK andL above a given rational primeand with a given inertia degregé We need to
match these primes in such a way that they are compatibleAwith reciprocity. The naive way
is to map a prime of K to a primeq above the samg, with the same inertia degree, and such that

(11) dL(a) = (™) Ik (p)

The main point is to show that it is always possible to find sgcland to show that one may
perform this in a bijective way between primes. We prove liyisising a combination af-series
as counting function for the number of such idepl©bserve that the identity (IL1) is equivalent to
the dual statement that

X(Ux(p)) = L) (IL(a))

for all characterg, € é;g, and this provides the link ta-series.
The identification ofL-series means that for any charactemwe have

x(Vx(n P (x) (01, (m))
(12) _NK<> Z Ni(m)y

We fix an integem and consider the norm-part of this identity:

ne JH‘{

(13) Yo xWxm) = D $()(@L(m)).
Sy

In this notation, remember that we have gatqual to zero on ideals not coprime to its conductor.

Recall that the character grom@%J is a compact topological group, and thus carries a (normal-
ized) Haar measuréy. We consider the subgrou[;i&ﬁgb of characters whose conductor is coprime
to a given integen (that this is a subgroup follows fromxf = f, +fy). We integrate the identity

(I3) against this measure, times the functigh ') for a fixed elementy € G2 — interchanging
the order of integration and summation by absolute converewe find

a9 Y ( L, x(v‘l)x(ﬁK(n))dx>= > ( L. x(v‘l)w(x)(v“m(m))dx)

ne gt me st
Ng(n)=n Ny, (m)=n

Recall the following fact:



QSM AND ANABELIAN GEOMETRY 31

12.2. Lemma. On any compact topoAIogicaI groug with normalized Haar measuké., and nor-
malized Haar measuréx on its dualG, it holds true for anyy € ¢ that

[ ata™ada = 5-.9)
is the characteristic function af. O
Let us introduce the following set of ideals fore Z>, andy € G%*
B,(v) ={n€ Jf : Nx(n) =n anddg(n) =~}
and denote the cardinality of this set by

bn(7) = #Bn(7),

(or bk () if we want to indicate the dependence on the ground #gldBy the Lemma, the value
of the left hand side of Equatioh{[14) is
VOI(G]?QN)

LHS([14) = WG%) b ().

We now perform a base change in the bracketed integral ongiiehand side of (14), using the
homeomorphism
Yo Gﬂag — G,
which we can do sincé preserves the subgroups indexedby
Y(GEn) = GLn.
Indeed, iff, is not coprime to, Lk (x, s) has a missing Euler factor at a prime numpeiividing
n. Hence, by the equality af-series, alsd...(¢(x), s) has such a missing Euler factor, g,
is not coprime tg (hencen).
Also recall that a continuous group homomorphism of compmlogical groups is automati-
cally an isometry for normalized Haar measure (this folldwesn the uniqueness of Haar measure

up to scaling). This applies in our case, since from Projogi1.1 above, we know that is a
group isomorphism. Observe thatis also an isometry when restricted to theh level group

G®..
Hence the integral at the right hand side[ofl (14) becomes
(15) Ly v @G s m)an
L,n

We now use Lemn{a12.2, but on the dual gr&n@n. For this, we observe that for fixea coprime
tof,,

Ew o = 7 () (0L (m))
is a character 06:2°, . The lemma implies that

1 1 B Vol(Gitjn)/vol(Gib) if Z2n=1;
/@Ebnw (MG )m(b)dn _{ 0 otherwise.
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Now =,, = 1 means that

n(dL(m)) =~ (n)(y) for all n € GF°,,.
Plugging everything back in, we find that the right hand sitlEgquation [1%#) becomes

vol(GE,)

RHSIY) = — =& #{me Ji with Np(m) = nanddy(m) = (v 1)*(y)}
vol(GE®)

vol(G2 )
= —=2 b ((H ().
VO](GEb) L, ((w ) (’Y))
Sincew is an isometry, it preserves volume, so we conclude thatlfoy & G2° and for all
integersn,

(16) bxn(7) = bLa (™) (7).
We now switch to the subsets consisting of prime ideals. Risrgurpose, we introduce the
subset’,,(vy) of B, (v):

Cn(7) = {n € Jf : n prime ideal Nk (n) = n and ¥x(n) = 7},

and denote the cardinality of this sety(y) = #C.. (7).
Then we have a decomposition

By =Cuy) [T II B2 <Q9K(7n1)>/52-

nyln ni
n1#ln N(ny)=nq

Let us explain this notation. The sB%, () is the disjoint union of”,, () together with all “old”
sets that correspond to choosing a non-trivial factonsati = n; - ns, choosingn; with normn;
(a non-trivial divisor ofn) and such thai; n, has image by reciprocity — or, what is the same,
ne has normn/n, and image by reciprocity /Jx (ny). Now all these choices are disjoint, up to
permuting the factors in the factorisation= n; - ny, which we indicate in the notation by dividing
by the symmetric grougy,. The upshot is that the functionrg () are a univeral expression in
terms ofb,, () and an enumeration of ideals of given norm.

Hence we conclude also that

CK,n(’V) = C]L,n((w_l)*(/y))'
This says exactly that the number of prime ideals with a givesige under reciprocity and given
norm inK is the same as the number of prime ideal& @fith the same norm and compatible Artin
action. We define a map of semigroups of ideals

v Jﬂz — JE‘
on generators, by sending a prime ideadf K to any prime ideal; of . with the same norm
Nk(q) = Nx(p) = p/®®) and withdy,(q) = (~1)*9k(p). The above count shows exactly that
the ambiguity in choosing suahis the same as the ambiguity in choosing a prime igéaf K
with the same norm (recall that by arithmetic equivalenie,ibertia degrees match) and the same

image by the Artin map gs This shows that the map can be made bijective on prime ideatce
on all ideals, and compatible with norms (inertia degrees)the Artin map. O
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12.3. Remark. It seems there are many possible choices for the ¥negpbe compatible with Artin
reciprocity and the given isomorphism of character grodjmss is not so strange in the light of the
fact that we cannot expect to construatraqueisomorphism of QSM-systems from the matching
of L-series; for example, there are automorphisms of the QS3tesythat induce the identity on
L-series, just like there are automorphisms of a number figltinduce equalities df-series, cf.
the discussion already in Artifl{], afterSatz % about relations betweelrseries on number fields
different from@Q.

13. QSM-isomorphism from matching L-series: homeomorphism onXg

We now proceed to show thdtalso induced a natural map from the whole abelian &Xx ),
not just on the part) : C(G%b) = C(Gﬁb) where it is automatically defined (by continuity ©j.
We check this on “finite” parts of these algebras that exhdnestvhole algebra, cf. al§81]], proof
of Thm. 2.1 (or section 3 dfL3] for a description in terms dk-lattices).

13.1. Lemma. The mapy extends to an algebra isomorphism
Y2 O(GR x 42 Ox) = C(GE x 4x OL).
Proof. Recall that the mag : G2 = G2 induces by duality a group isomorphism
(W) GBS G,
and letw : Jﬂ‘g = Jf denote the compatible isomorphism of semigroups of ideditsduced in

the previous section.
We use the terminology frof81]. Let ux denote the measure on

__ vab p
X]K—GK Xﬁ%ﬁK

given as the products of normalized Haar measures®and on every facto&K,,g of Ok (so that
é’]};m has measuré — 1/Nk (p)). Take dfinite set of primesB C J;© and consider the space

.__ /ab 7
Xk,B = G X gt Ok, B,

wheredk g = [[,cp Okp- Then
Xk = lim Xk .
B

Let Jﬂ‘g’ p denote the subsemigroup QJE generated byB. Let us also introduce the non-standard
notation .

X]IZB = G%b Xﬁ% ﬁK,B'
As a group, it is isomorphic to

Xiep = G2/9x(Ok pe);
wheredg : Ai — G2is the Artin map at the level of ideles, afi#f is the complement oB in
the set of prime ideals d&.

We can decompose

X =Xg g [[ X% 5
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with

Xgpi= |J neXgpandXz 5= Yk,
neJ{{B pEB
where
Yrp = {(v,p) € Xx,5 : pp = 0}.
As usual,n x— is the action by Artin reciprocity. Observe tha’gz(’ g Is a set ofux-measure zero.
By total disconnectedness, the algelotaXk ) is generated by the characteristic functions of
clopen sets. NowKk g has no open sets of Haar measure zero. Indegehdic ring of integers
ﬁp does not have non-empty open sEt®f measure zero, sindé contains a ball of sufficiently
small radius around any point in it, and this will have Haamamsege thep-adic absolute value of
the radius; the same argument applies#8, by considering it as the idele class group modulo
connected component of the identity and using the idele ndtrfollows thatXﬂlQB is dense in
Xk, B, as the complement cannot contain any open set. Define tbednsf, , by

X(Wxm) ) if x e nx Xy p;

Jax : Xxp = Coae { 0 otherwise,

for x running through the characters of condugtpe JE,B- andn any ideal. In Section 2 dB1]],
it is proven that the span of the functiorig, contains the characteristic functions of the clopen
subsets ofX]}&B, hence by density they sp&i( Xk z).

We can then define a map

Y+ C(XkB) = C(XLw(wB))
as the closure of the map given by

AL TORTCO
The map is a vector space isomorphism by construction, &iotter) and ¥ are bijective.

To see that the map is well-defined, we need to check that thductors match, i.e., th%(x)
and¥ (f, ) have the same prime divisors; but the prime divispes ¥ (p) of §,,, ) are exactly those
q for which ¢ (x)(91.(q)) = 0. Since we have by construction thatx)(J.(¥(p))) = x(Ix(p)),
this set ofq is the image unde¥ of thep with x (Jx(p)) = 0, viz., dividing the conductor of.

By taking direct limits, we arrive at a topological vectorlsp isomorphism

¢ =limyp : C(Xg) — C(Xy).
B

To see that the map is an algebra homomorphism, we need to check it is compatittternul-
tiplication. For this, we observe that where the functjqn, is nonzero, it is given by a pullback.
Indeed, fory € W(n) x X} ;5 We can seg as an element af’3’, so we can find: € n+X} 5
with y = (¢)*x, and we have that

B (far) W) = Fumyueo @) = L0)WLE W) y) = x(Wrm)'z) = () fax ().

By compatibility with conductors, the map is also a pullbaxrkelements where the function is
zero. Hence if¢ andy’ are two characters %", andn, v’ are two ideals iV , for B sufficiently
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large, we find

7/)(fn,x : fnﬂx’) = (¢_1)* (fn,x ' fn’,x’) = (T,Z)_l)* (fn,x) : (T,Z)_l)* (fn’,x’) = ¢(fn,x) : ¢(fn’7x’)v

which, after taking linear combinations and closures, iegpthaty is multiplicative.
O

13.2. Remark. Note that we have proven thaix and X7, are homeomorphic; we didn’t prove a
this point that the rings of integral adelé% and &, are isomorphic (as rings).

13.3. Remark(KK-lattices) Let %K,l denote the space of 1-dimensiofi&lattices up to scaling;
recall thatC'(Xx) = C(#x.1). The preceding proof organizes this space into an indusjiseem
of the space€’(.#k 1 i) of functions that depend on the datgnof aK-lattice (A, ¢) only through
its projection tod .

14. QSM-isomorphism from matching L-series: end of proof

14.1. Theorem. LetK andL denote two number fields. Suppasé a homeomorphism

~

) @%b — @ib
that induces an identity of the respectikeunctions
Li(x, 8) = Li(¥(x), B)-
Then there is an isomorphism of QSM-systemg Ak, ox) — (AL, oL).
Proof. We assemble all our maps into th&-algebra isomorphism
p : Ag = C(Xg) @ J§ = AL = C(X1) x Ji = (f,n) = (¥(f), ¥ (n)).

Looking at the construction of the reduced crossed produetindeed get &'*-algebra isomor-
phism, since by construction, the map is compatible withattteon of the semigroup on the abelian
part.

It remains to verify that this map is indeed a QSM-isomonphise., that it commutes with time
evolution. On the abelian part, there is nothing to veriiiycs it is stable by time evolution. On the
semigroup part, it is a simple consequence of the factdhateserves norms:

NL(¥(n)) = Ng(n).
This only needs to be verified on prime ideals- p, where it is equivalent to

S IK) = f(¥(p)[L),
which holds true by the construction @f. So finally, on the one hand

oL (p(pn)) = NLW ()" 11 ()
and on the other hand,
okt (i) = PNk ()" i) = Nie(0)* pos (n)-

This finishes the proof that, ; o ¢ = ¢ o o ;. ]
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14.2. Remark. In the particular case of QSM-systems of number fields, wetfiatlan equality
of KMSy states at all inverse temperaturgs> 1 (manifesting themselves here Asseries with
characters) implies that the systems are isomorphic. Oiyenoader in how far a QSM-system is
characterized by its generalized equilibrium states ineseense.

14.3. Remark. As quoted in the introduction, ifiL6], it was shown that an equality of infinitely
many Dirichlet series associated to a map between closeddRigan manifolds is equivalent to
this map being an isometry. In the same reference, it is thewis how to use this theorem to
define a distance between closed Riemannian manifoldsfiemim over a usual distance between
complex functions. With number fields, we are now in a veryl@g@us situation, in that we
characterize number fields by an equality of Dirichlet seri@ne might use this to define a distance
on the set of all number fields up to isomorphism. It then rem&o investigate whether this
(forcedly discrete) distance on a countable set has aresiteg completion (much like passing
from Q to R): are there interesting ‘limits’ of number fields?

15. Proof of Theoren3

It suffices to show that (iv) implies (iii). Let @gg, then, by performing a change in summation
m = W¥(n) in the L-series as follows (using that norms are preserved, and Arips intertwined):

X(Vx (n)) (&) () (9. (m))

PO = 2 Ty T 2 Ny 0T

15.1. Remark. In Uchida’s proof of the function field case of the NeukirckHita theorem[¢8]),
the construction of a multiplicative map of global functids (K*, x) = (IL*, x ) is based on the
existence of topological group isomorphisms of the iddles A, = A} and of the abelianized
Galois groups) : G2 = G2 which are compatible with the Artin maps, using that in a fiorc
field K, the groupK* is the kernel of the Artin map (which is not surjective in tlogse). The
conditions that go into this proof are a bit similar to the @@ Theoreni 3. Our theorem shows
that similar conditions imply the same result for numbemdtehs for function fields, albeit with a
rather different proof.

16. Relaxing the conditions onl-series

16.1. One may now wonder whether condition (iii) of the main TheoiZ can be weakened. For
example, is it possible to restrict to characters of fixe@®/pt least for rational characters of order
two (i.e., arising from quadratic extensions by the squact of a rational number), this is not the
case, as the following proposition shows.

16.2. Proposition. SupposéK andlL are number fields with the same Dedekind zeta function. Then
for any quadratic charactey whose conductor is a rational non-squarelknnor IL, we have an
equality of L-seriesLk(x, s) = Lr(x, ).

Proof. We have

(17) (k(s) = CL(s)
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This says thalk andL are arithmetically equivalent, which we can express in grtineoretical
terms by GaBmann’s criterioffi39]) as follows: letN be Galois ovef) containingK andL; then
Gal(N /K) andGal(N /L) intersect all conjugacy classes@ul(N / Q) in the same number of
elements.

Let M = Q(v/d) for a rational non-squaré. It is easy to see from GaRmann’s criterion for
arithmetic equivalence that then, the compo8ithl andIL. M are also arithmetically equivalent
(cf. e.g. Uchidd47], Lemma 1): choos® so it also contain®1, and verify thaiGal(N / K M) and
Gal(N /L M) intersect all conjugacy classes@al(N / Q) in the same number of elements. We
conclude that the zeta functions &M = K(v/d) andLL = L(1/d) are equal:

(18) Ckm(s) = CLm(s)
Let x be the quadratic character that belongd.t8y Artin factorization, we can write

(19) Cem(s) = Ck(s) - Lr(x; s) and¢Lm(s) = CL(s) - LL(x; s).
We find the conclusion by combining_{17),{18) ahd](19). O

16.3. Remark. We do not know a direct “analytic” proof that equality of zétenctions implies
equality of all quadratic twisL-series. As a matter of fact, looked at in a purely analytig,tlae
result does not appear to be so obvious at all.

16.4. A matching of allL-series implies in particular a matching of all zeta functief ray class
fields. Bart de Smit suggests to investigate whether camd(iii) can be weakened to

(iiiy There is a bijection of ideal¥ : Jf — J;" such that
Crm)(8) = CLwm)) (s)

for all idealsn € J.

Here,K(n) is the ray class field correspondingrt¢the maximal abelian extension &fof conduc-
tor n). The connection arises from the fact that the zeta funaifdhe ray class field is (by Artin
factorisation) the product of thé-series corresponding to the characters of the ray clasgpgro
modulon.
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