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BILINEAR LOCAL SMOOTHING ESTIMATE AND ITS APPLICATION TO THE
CRITICAL GKDV EQUATION

SOONSIK KWON AND TRISTAN ROY

ABSTRACT. We prove an improved version of bilinear local smoothing estimate to Airy solutions.
Using this we study a smoothing property of Duhamel part of nonlinear solutions to the mass-critical
generalized KdV equation.

1. INTRODUCTION

We consider the mass-critical generalized KdV equation:
Opu + O3u = pdy(u®) =0, u:RxR—=R (1.1)

in the Sobolev space H®. Here u is =1 which corresponds to focusing or defocusing case respectively.
Smooth solutions enjoy the mass and energy conservation laws:

M(u):/u(t,z)2da::/u0(:1:)d:1:
E(u) = %/Bwu(t,x)zdx - %/uﬁdx.

It has scaling invariance, more precisely, if u(t, x) solves (1)), then so it does ux (¢, z) := A\~ 2u(t/ X3, z/\)
with initial data uy o = uo(z/A). One can check [[ux(t,-)||2 = [lu(t, )| 2 and from this property we
refer this scaling property as L2-critical.

We are interested in the strong solutions u(¢, ) to (II]) on a maximal time interval [0,7") in the sense
that u(t,z) € CtH*([0,T) x R) satisfying the integral equation

3

t
u(t) = e Pruy — / ef(tfs)agﬁw(u(sf)ds
0

3 . . . .
954 is a linear solution, i.e.

—to? 1 ite® ti(z—

It is well known that the initial value problem is locally well-posed at critical regularity s = 0 [4].
Indeed, for given initial data ug € L?(R), there is a unique solution to (L)) in u(¢,z) € C; L2N L3 L;°.
For the proof of local well-posedness, the following local smoothing estimate is crucial.

where e~

Proposition 1.1. We have
a — 3
D% ta’f”Lng S ||f||L§ (1.2)

where —a + % + % = %, and % + % < 1, except at an end point (q,r) = (0c0,00). Here D® is a
homogeneous fractional derivative. See Notations.
In particular,

493
le™" % uo|| 310 < Nluollzz- (1.3)
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Moreover, we have the inhomogeneous local smoothing estimate.

3
|y/e“%DaF@¢wdﬂugsnfm (1.4)

/ ’
LY LT

where % + % =1 and % + % = 1 where o, q and r as above.

In help with ([I3)) one can find a nonlinear solution to (II]) on a time interval [0, 7] such that

Y-
fe ta’EUOHLngO(Rx[O,T]) < e€o
for some ¢y > 0. Thus, the forward maximal lifespan T does not only depend on [Jugl|z2 but also

on the profile of ug and so the mass conservation law by itself does not give the global existence. A
byproduct of the local theory is a blow up criteria:

T" = |lullLs Lrowx[o,7+)) = 0

If ug € H*(R) for s > 0, we have subcritical local well-posedness, which says that the maximal lifespan
depends only on [lug||zs. In this case, using scaling symmetry, we obtain the lower bound on the blow

up rate
1

|T* _ t|s/3 '
See [2] for detail. In the defocusing case, if ug € H', then since the energy is finite and positive
definite, the energy conservation law immediately implies global existence.

()l 2 (1.5)

In this note we show an improved version of bilinear local smoothing estimate when the support
of two frequencies are separated.

Theorem 1.2. Let M, N > 0. Then,

560/12
D 7t82 D 7t82 < % 1.6
1D ™ fD%e™ gl parzprr2 S | 7 £z llglizz (1.6)

where

g r 2 ¢'r 6+ 4 6
for all L2-functions f and g with supp f C {€:1¢] <2M} and supp g C {€: N <[] < 2N},0 <
M < N.

In particular, we have

A MM
—t0% ¢t
e fe gl 5 () Wzl 1.7

In the space-time frequency space, the linear wave is supported on the characteristic curve 7 = £3.
Due to the curvature (or the slope of the tangent line) of the interaction of two linear waves at different
frequencies is weaker and so one can have some gain.

Remark 1.3. This type of estimate is firstly shown by Bourgain for symmetric Strichartz estimate
of Schrédinger equation in d = 2 [I]. Keraani-Vargas [5] extended to other dimension for symmetric
Strichartz norms and Chae-Cho-Lee [3] for non-symmetric norms.

Remark 1.4. The exponent in Theorem [1.Q is sharp.
Define f = xm<e<am and § = X1<e<i4nm1/2- Consider a subset K of R x R of (t,z)
1

1
K=1{(tz): < —M Y2 g < — MY
{(t,x) |1?+3|_100 ’|‘T|—100 }
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One can easily observe that for all (t,z) € K,

—t82 v 1T
) =) [ g

and
1+M1/2
e g(a)| = | / eI o M2,
1
Thus,

—t03 1
|De | > M1M2Ma||XK||L§/2Lf/2
~ Mt B RN LR
Ml"'*_* = M12

u:-lw

where used admissible condition of exponents.
Since || fl|Lz = M2 and lgllze = MY, we see the estimate ([L0) is sharp.

As an application of the bilinear local smoothing estimate we can obtain the smoothing property
of the integral part of the Duhamel formula of nonlinear solutions.

Theorem 1.5. Suppose ug € H® for s > 3/4. Let write a solution to (LI as:
u(t) = e %ug + w(t) te0,T%).

Then w(t) € H* as long as the solution exists.
Furthermore, if T* < oo, then we have

1

_ 1.8
|T* t|1/3 ( )

10zw(®)l| L2 2

For H! initial data, Martel and Merle [7, 8] studied the existence of blow up solutions and the
lower bound of blow up profile when the solution has mass near that of ground state.

Remark 1.6. It shows that the blow up phenomenon has an H' mechanism. Despite the fact that
u(t) € H® for s < 1, all blow up profiles belong to H*.

In Section 2 we prove Theorem and in section 3 we give the proof of Theorem

Notations. We use space-time mixed norm notation:

u(t, )| oy = / /|u (t, 2)|"dt) " d )

We denote the fractional derivative as DS & =1°f ( ) and the Sobolev norm as

[fllers = [1(D)” f| 2

where (£) = |£] + 1 and f is the Fourier transform of f. We use X < Y to denote the estimate
X < CY where C depends only on the fixed parameters and exponents. We shall need the following
Littlewood-Paley projection operators. Let ¢(£) be a bump function, supp ¢ € {|¢| < 2} and ¢(&) =
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on {|¢] < 1}. For each dyadic number N = 27, j € N,
Pn f(€) = (6(€/N) — ¢(26/N)) F(€)

~

Pof(€) = ((6)F(€)
Ponf(€) = > Puf(€)

M<N
PonF(&) = (I = P<n)f(€)

and we also use a wider projection operator ﬁN = Pnj2 + Pn + Pan.

2. PROOF OF THEOREM

Since (L6) is a scaling invariant estimate, by scaling one can assume N = 1. In view of (L2]), we may
also assume M < 1. ([L6]) follows by interpolating the following two estimates:

— — 3 — b 3
|D4e=102 fDV 4= 1 e < | Flus gl e (2.1)

|DYe™%2 fDYOe™ % gl s < M| £l 2l 22 (22)

1) is an immediate result of (L2). Now we prove (2.2). Using Bernstein’s inequality and observing
frequency support of f and g, we are reduced to show that

153 . 453
le™*% fe=*%gllLs , S M| fllzllgll 2 (2:3)
23) is derived from the following lemma: indeed, it follows from the interpolation of ((2.4)))(p=2)

and (([2.3))

Lemma 2.1. Assume that f and g are functions such that supp|f] C [0,2M], supp|g| C [1,2], M < 1
(a) Let p > 2. Then we have
3

— 3 —
le™"% fe="%=g|| s

x

Sl (2.4)

p

where p’ = L5

(b)
— 3 —_ 3
le™*% fe tamgHL;ﬁ,t S MY fllezllgll ez (22

Lemma 2J)a) follows from a classical argument of Fefferman and Stein [6]. It makes use of
Hausdorfl-Young inequality. We give a proof in the appendix for the sake of completeness.
In order to show (23] we use the example of Remark [[4] Decompose g into functions whose fre-
quency support are on small intervals of length M'/2. Indeed, for integer k, 1 < k < M~1/2, set
I, = 1+ (k—1)MY2, 14+ kM*"?] and set gk = gxr,. Then g =", gx. Then we will use the following
orthogonality inequality:

Lemma 2.2. We have
1/2
—t93 ¢ —t03 —t93 ¢ —t83 |2
I e e gl < (3 e re )3, ) (2.6)
k k
Assuming that Lemma is true for a moment, we are reduced to show

_ 493 493 1/2
(Dl re gl ) < M) £z gl uz.
k
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Using ([Z4) for p = 4, and the size of support of f and gi, we estimate

3 493 ~ 1/2
(Zne 9 remtg2, ) < (IR i)
k
< M3/8|IF] ~ 2 \1/2
< M| Pl (3 NGkl132)
k

= M*2|| |l 2|9l =
which concludes (2.1).

It remains to show Lemma
We write, using Plancherel theorem,

93 403 _ 493 _ 493
1D et fe gz, = Ze s et % gi)? 1z
k
= Ze t63 aggkze—taﬁfe—taﬁgj”Liz

—_~—

— ”Ze 103 f 4 o~ ey £k e 102 g‘*e’tagngLiyg-

where f(t,z)(7,§) is the space-time Fourier transform of f(¢,z). We denote by E;j the support of

the function e=t% f x e 1% f x e~t92g; x e—t92g,. We claim that the Ej;; are essentially disjoint. In
other words, there is a constant C, independent of M, so that

Z XEjx S (2.7)

By this claim, we estimate

e~ e~

||Ze DR w T fac g x e D] s

— 1/2
<C Z ||e_t8'*f * e_tc?gf x e mg * e_tamgk” )

(

C(Zﬂe_ta 10 ge” wgfe_t(r)ggj||L§,as)1/2

ik

C(Z/|€‘t83fe‘taggke‘tagfe_taggj|2)1/2
ik

— ¢ / <Z o2 peteig2)2)

_C’||Z|e 0z fe =t g |2 o

<CZ|||€ 2 et g 12

_ 3
:CZHe 02 fe %% gy,
k
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e~

We are left to show the inequality (7). One can easily see that the support of e~ gy is in Ej, =

{(,€) : |€ = kM2 < M2 7 = €3}, and the support of e=t9% f is in {(7,&) : |¢| < 2M,7 = £3}. If
(p,n) € Ej i, then there exists (&1, &) such that (&5,&1) € Ey, (§5,&) € Ej,|p— & — &] < 4M, and
In — & —&| <4M.

From the identity 467 + 45 = (&1 + £)% 4 3(&1 — &)% (&1 + &2), we see that

Ejx C Fe={(pn): In— (G +k)MY2 <3MY2 3|k — j|* = 8)M < [4p — | < (6]k — j|* + 8)M}.

It is easy to verify that the F}’s overlap only a finite number of times and that this number is
bounded by a universal constant.

3. PROOF OF THEOREM

In this section we prove Theorem Firstly, we show Proposition 3.1l

Proposition 3.1. Let b < 1/4.

_ 93 _ 93
192 (e~ "= uoe ™" = vo) || 525 S Nluol| e [|vo | i (3.1)
Ed t

Proof. We use the Littlewood-Paley operators to decompose into the paraproduct:

to3

— 3 J—
Ope ™ Fruge ™%y = mpp, + T + Thi

where

a3 a3
T = g PynOge ey Pyre oy,
N>M
a3 a3
Thh — E PNﬁme tawUOPMe ta”’Uo
N~M
3

- 3 -
Thl = E PNﬁme tawUOPMe ta”’Uo.
N<M

By the triangle inequality, we have

.53 .3
”aﬂﬂ(e tazqu tawU0)||Li/2L§ < ”ﬂ—thLipo + ||7Thh||Li/2L§ + HﬂthLipo'
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We estimate term by term. For the first two terms we can use the usual local smoothing estimate
since the derivative falls in the low frequency part.

oo
_ 403 _ 493
mnnll o/ s < ‘Z 1 Pas e g Pyse™ P

j=-1

o0
~ _ 403 ~ _ 493
S Z ([P Oze ta“UOHLngO”PzJ'@ ta”UOHL;»LgO

~Y
j=-—1
fe%e) " 3 - 5
S Z 2J||P2j€_t8W0||L§L}°||P2j€_t8wvo||L§L§0
j=-1
[e%s} o 5 ) . 5
= > 2lIPore P ugl g2V By o]l g0
j=-1

oo
<Y 2% Byruol| 2290 | Byivo| 2

j=—1

< llwollze llvol [ -

where ]52]- = Pyj-1 + Py + Pyj+1.

QlA

<
Il
-
~
Il
|
-

493 Y|
HTrlh”L‘;’/zLi’ 5 ||P2kaze tamuopzje tam’UOHL‘;’/QL?

<.
|
—_

~ _ 493 ~ _ 493
|| PorOze ta””UOHLgLJ;“HPwe taxUOHLi’L}O

A

<
I
3
<. x>
i
|
L

2% Py e ™= || 5 10| Pas e~ o | 5 10

A

j=1k=-—1
oo j—1
= Z Qb(kfj)Qbk||ﬁ%eitagUOHLgL%“Qj(lfb) [Fz2 eftangHLgL%O
j=1k=—1
oo j—1
< Z Z 2b(k—j)2bk”ﬁ2kuO||L22j(l—b)||ﬁ2jvo||L§
j=1k=-1
o0
S D27 U Pyuo| 2207 Py 2
i=1 i>i

< ||u0||HbHUO||H1*b-
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For the last term, the high-low paraproduct, we need to use improved bilinear estimate (L1).

klv.

<
I
=
~
Il
|
-

3 3
”thLi/2L§ < ||P2je—t@m(%’dopgk€_tamU0||L2/2L?

<.
|
—

2521493 || Pys | 2 || Porvo | 2
1

A

<
Il
-
£
Il

<.
=

2D O= D20 Pyjug|| 22| Porvo | 2

o

1k

—

J
So llwollze [[voll 21—

where we used Berstein’s inequality, Cauchy-Schwartz inequality, and ([L7]).

Applying Holder inequality to (7)), we easily obtain the following corollary.
Corollary 3.2. Let s > 3/4. Then we have

3
10 (™" u0)*ll L2 < Nl

We are now ready to prove Theorem

We see from the local well-posedness theory [4] that for a given € > 0, there exists T = T'(||uol| &=, €)

such that
maX(||<D>Sulin||LgL10([o T|xR)» ||<D>Sw||LgL§0([o,T]xR)) <e
where w;, is a linear solution, i.e. uzin = e % ug.
We claim that
10xwl| 5 10 (0,17 xR) < Ce

Indeed, from (B and [B.2]), by reducing the value of T if necessary, we have

|0z (e™ 2“0) 21 2o, 1) xR) < €

83
102 (e % une ™ w0l 2 2 0 1y <

(3.3)

(3.4)
(3.5)

We estimate [|0;wl| s £10(j0,7)xr) using (L2)), its inhomogeneous counter part, and Christ-Kiselev

lemma as follows:

wwmmwMwa/ =992, (45 (3))ds| 12 L0 0.1k

Sl [ oy

S 110x(u )”L,}ULE([O,T]XR)

= [|0x (wrin + w)5||L;L$([o,T]xR)

S0 (W)l 22 220,77 xR) + 1102 (wrinw®) || L1 22 (0,77 <) + the Test

=1+II+1II

We can estimate
I's ||8rw||LgL%0||w”%gL}°
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and I is absorbed to the left hand side by choosing e small.
I11 is easily estimated by (84) and B3] since IT1 contains at least two uy,’s. For example, we have

10z (wtin wiin)wwwl gy 1z + lufimw?dewl Ly pz S 1Dl pyollwlGs pao + 105wl g pyo Wl T pyollutinll Lz 1o
S €+ e dswl| s Lo

Choosing € to be small, we can estimate

Il S e
In order to show the bound of I7 it is enough to show
||8mulinw||L2/2L?([0)T]XR) 5 € (36)
In view of
t
_ 93 (1—5)83
(R /O Bue= e~ =120, (u3(6))ds| 15/, 0 110
and Christ-Kiselev lemma it suffices to show
T
_ 493 (t—5)83
I /0 Ope 102 gt )3181(u5(5))ds||Li/2Li,([07T]XR) <e. (3.7)

We estimate, using (3.]) and the inhomogeneous local smoothing estimate (L4)
T
—td3 —(t—8)83 5
||/0 Oze upe 0 (u (S))d8||L2/2L§([0,T]xR)
—t93 —t93 g 593 5
= ||8;,;e zUpe z e m[)z(u (S))dS”L‘;’/QLi’([O,T]XR)
0

T
3
< Juoll | / €592, (uP (5))ds| 1

<D>S(U5)||L;L§([0,T] XR)

< Nlwollze

S Mol m= (D) ull 7 110 (po.7)xm)
< lluo m= €.
Combining altogether, we have
||<D>1w||LgL§0([o,T]xR) < Ce.

In a similar way one can estimate again using Christ-Kiselev lemma, for 0 <t < T,

t
ID w(t)| gz = [ D et} / €029, (u? (s))ds| 2
0

T
SID* [ e (s)as
0

SID W)l 21 p2 (0, 7yxw)
<e

Now we remain to show the lower bound of blow up rate, (L8]).

From (L3) we have
1

|T* _ t|5/3 ’
Because the H® norm of the linear part of the solution is conserved, by interpolation,

lw)lle < llwt)llzz* w5

lw(®)z; 2
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Since ||w(t)||r2 < 2|Jugl|r2, we can conclude

1
lw®ll g 2 AT SIvES

APPENDIX

Proof of 2.4).
Writing

we

@

SO e ig(ta) = [ [ et fle gl dede,
make a change of variables (u,v) = (£ + &2, & + £3). Then we obtain

67t82f€7 g(t,x) = c// eI (u, v) dudv

where TI(u, v) = f(£1)5(&)]J 7] and J = det 200 —

9(&1,82) (52 &)

We can view

e10s feftazg(t, z) = I(t, z).

Hence, using Hausdorff-Young inequality, for p > 2,

—t83 p —t83 I
=% e g, = ey, <11

p

where p’ = 2.

To

p—1
compute ||II||; 7, we use the fact [§1 — &2 > 1/2 (i.e. |J| ~ 1) and change variables back to &1, &s.

Indeed,

) /—//}f& (&) dudo
- / FengE)” |7 ] derde

~ LA o 191 -
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