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BILINEAR LOCAL SMOOTHING ESTIMATE AND ITS APPLICATION TO THE

CRITICAL GKDV EQUATION

SOONSIK KWON AND TRISTAN ROY

Abstract. We prove an improved version of bilinear local smoothing estimate to Airy solutions.
Using this we study a smoothing property of Duhamel part of nonlinear solutions to the mass-critical
generalized KdV equation.

1. Introduction

We consider the mass-critical generalized KdV equation:

∂tu+ ∂3
xu = µ∂x(u

5) = 0, u : R× R → R (1.1)

in the Sobolev space Hs. Here µ is ±1 which corresponds to focusing or defocusing case respectively.
Smooth solutions enjoy the mass and energy conservation laws:

M(u) =

∫
u(t, x)2dx =

∫
u0(x)dx

E(u) =
1

2

∫
∂xu(t, x)

2dx−
1

3

∫
u6dx.

It has scaling invariance, more precisely, if u(t, x) solves (1.1), then so it does uλ(t, x) := λ−1/2u(t/λ3, x/λ)
with initial data uλ,0 = u0(x/λ). One can check ‖uλ(t, ·)‖L2

x
= ‖u(t, ·)‖L2

x
and from this property we

refer this scaling property as L2-critical.
We are interested in the strong solutions u(t, x) to (1.1) on a maximal time interval [0, T ) in the sense
that u(t, x) ∈ CtH

s([0, T )× R) satisfying the integral equation

u(t) = e−t∂3
xu0 −

∫ t

0

e−(t−s)∂3
x∂x(u(s)

5)ds

where e−t∂3
xu0 is a linear solution, i.e.

e−t∂3
xu0 =

1

2π

∫
eitξ

3+i(x−y)ξu0(y) dydξ.

It is well known that the initial value problem is locally well-posed at critical regularity s = 0 [4].
Indeed, for given initial data u0 ∈ L2(R), there is a unique solution to (1.1) in u(t, x) ∈ CtL

2
x∩L5

xL
10
t .

For the proof of local well-posedness, the following local smoothing estimate is crucial.

Proposition 1.1. We have

‖Dαe−t∂3
xf‖Lq

xLr
t
. ‖f‖L2

x
(1.2)

where −α + 1
q + 3

r = 1
2 , and 4

q + 2
r ≤ 1, except at an end point (q, r) = (∞,∞). Here Dα is a

homogeneous fractional derivative. See Notations.
In particular,

‖e−t∂3
xu0‖L5

xL
10
t

. ‖u0‖L2
x
. (1.3)
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Moreover, we have the inhomogeneous local smoothing estimate.

‖

∫
es∂

3
xDαF (s, x) ds‖L2

x
. ‖F‖

Lq′
x Lr′

t

(1.4)

where 1
q + 1

q′ = 1 and 1
r + 1

r′ = 1 where α, q and r as above.

In help with (1.3) one can find a nonlinear solution to (1.1) on a time interval [0, T ] such that

‖e−t∂3
xu0‖L5

xL
10(R×[0,T ]) ≤ ǫ0

for some ǫ0 > 0. Thus, the forward maximal lifespan T ∗ does not only depend on ‖u0‖L2
x
but also

on the profile of u0 and so the mass conservation law by itself does not give the global existence. A
byproduct of the local theory is a blow up criteria:

T ∗ =⇒ ‖u‖L5L10
t (R×[0,T∗)) = ∞.

If u0 ∈ Hs(R) for s > 0, we have subcritical local well-posedness, which says that the maximal lifespan
depends only on ‖u0‖Hs

x
. In this case, using scaling symmetry, we obtain the lower bound on the blow

up rate

‖u(t)‖Hs
x
&

1

|T ∗ − t|s/3
. (1.5)

See [2] for detail. In the defocusing case, if u0 ∈ H1, then since the energy is finite and positive
definite, the energy conservation law immediately implies global existence.

In this note we show an improved version of bilinear local smoothing estimate when the support
of two frequencies are separated.

Theorem 1.2. Let M,N > 0. Then,

‖Dαe−t∂3
xfDαe−t∂3

xg‖
L

q/2
x L

r/2
t

.

(
M

N

)5θ/12

‖f‖L2
x
‖g‖L2

x
(1.6)

where

−α+
1

q
+

3

r
=

1

2
, (
1

q
,
1

r
) = (

θ

6
+

1− θ

4
,
θ

6
), 0 ≤ θ ≤ 1

for all L2-functions f and g with supp f̂ ⊂ {ξ : |ξ| ≤ 2M} and supp ĝ ⊂ {ξ : N ≤ |ξ| ≤ 2N}, 0 ≤
M ≤ N.

In particular, we have

‖e−t∂3
xfe−t∂3

xg‖
L

5/2
x L5

t
.

(
M

N

)1/4

‖f‖L2
x
‖g‖L2

x
(1.7)

In the space-time frequency space, the linear wave is supported on the characteristic curve τ = ξ3.
Due to the curvature (or the slope of the tangent line) of the interaction of two linear waves at different
frequencies is weaker and so one can have some gain.

Remark 1.3. This type of estimate is firstly shown by Bourgain for symmetric Strichartz estimate
of Schrödinger equation in d = 2 [1]. Keraani-Vargas [5] extended to other dimension for symmetric
Strichartz norms and Chae-Cho-Lee [3] for non-symmetric norms.

Remark 1.4. The exponent in Theorem 1.2 is sharp.

Define f̂ = χM≤ξ≤2M and ĝ = χ1≤ξ≤1+M1/2 . Consider a subset K of R× R of (t, x)

K = {(t, x) : |x+ 3t| ≤
1

100
M−1/2, |x| ≤

1

100
M−1}.
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One can easily observe that for all (t, x) ∈ K,

|e−t∂3
xf(x)| = |

∫ 2M

M

eitξ
3+ixξdξ| ∼ M

and

|e−t∂3
xg(x)| = |

∫ 1+M1/2

1

eitξ
3+ixξ| ∼ M1/2.

Thus,

‖De−t∂3
x
‖ ≥ M1M

1
2Mα‖χK‖

L
q/2
x L

r/2
t

∼ M
3
2
+αM− 1

2
· 2rM−1· 2q

∼ M1+ 2
r−

1
q = M

5θ
12

+ 3
4

where used admissible condition of exponents.
Since ‖f‖L2

x
= M1/2 and ‖g‖L2

x
= M1/4, we see the estimate (1.6) is sharp.

As an application of the bilinear local smoothing estimate we can obtain the smoothing property
of the integral part of the Duhamel formula of nonlinear solutions.

Theorem 1.5. Suppose u0 ∈ Hs for s > 3/4. Let write a solution to (1.1) as:

u(t) = e−t∂3
xu0 + w(t) t ∈ [0, T ∗).

Then w(t) ∈ H1 as long as the solution exists.
Furthermore, if T ∗ < ∞, then we have

‖∂xw(t)‖L2
x
&

1

|T ∗ − t|1/3
(1.8)

For H1 initial data, Martel and Merle [7, 8] studied the existence of blow up solutions and the
lower bound of blow up profile when the solution has mass near that of ground state.

Remark 1.6. It shows that the blow up phenomenon has an H1 mechanism. Despite the fact that
u(t) ∈ Hs for s < 1, all blow up profiles belong to H1.

In Section 2 we prove Theorem 1.2 and in section 3 we give the proof of Theorem 1.5.

Notations. We use space-time mixed norm notation:

‖u(t, x)‖Lq
xL

r
t
:=

(∫ ( ∫
|u(t, x)|rdt

)q/r
dx

)1/q

.

We denote the fractional derivative as D̂sf(ξ) = |ξ|sf̂(ξ) and the Sobolev norm as

‖f‖Hs = ‖〈D〉sf‖L2

where 〈ξ〉 = |ξ| + 1 and f̂ is the Fourier transform of f . We use X . Y to denote the estimate
X ≤ CY where C depends only on the fixed parameters and exponents. We shall need the following
Littlewood-Paley projection operators. Let φ(ξ) be a bump function, suppφ ∈ {|ξ| ≤ 2} and φ(ξ) = 1
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on {|ξ| ≤ 1}. For each dyadic number N = 2j, j ∈ N,

P̂Nf(ξ) = (φ(ξ/N) − φ(2ξ/N))f̂(ξ)

P̂0f(ξ) = (φ(ξ))f̂ (ξ)

P̂≤Nf(ξ) =
∑

M≤N

PMf(ξ)

P̂>Nf(ξ) = ̂(I − P≤N )f(ξ)

and we also use a wider projection operator P̃N = PN/2 + PN + P2N .

2. Proof of Theorem 1.2

Since (1.6) is a scaling invariant estimate, by scaling one can assume N = 1. In view of (1.2), we may
also assume M ≪ 1. (1.6) follows by interpolating the following two estimates:

‖D−1/4e−t∂3
xfD−1/4e−t∂3

xg‖L2
xL

∞

t
. ‖f‖L2

x
‖g‖L2

x
(2.1)

‖D1/6e−t∂3
xfD1/6e−t∂3

xg‖L3
x,t

. M5/12‖f‖L2
x
‖g‖L2

x
(2.2)

(2.1) is an immediate result of (1.2). Now we prove (2.2). Using Bernstein’s inequality and observing
frequency support of f and g, we are reduced to show that

‖e−t∂3
xfe−t∂3

xg‖L3
x,t

. M1/4‖f‖L2
x
‖g‖L2

x
. (2.3)

(2.3) is derived from the following lemma: indeed, it follows from the interpolation of ((2.4))(p=2)
and ((2.5))

Lemma 2.1. Assume that f and g are functions such that supp|f̂ | ⊂ [0, 2M ], supp|ĝ| ⊂ [1, 2], M ≪ 1
(a) Let p ≥ 2. Then we have

‖e−t∂3
xfe−t∂3

xg‖Lp
x,t

. ‖f̂‖
Lp′

x
‖ĝ‖

Lp′
x

(2.4)

where p′ = p
p−1 .

(b)

‖e−t∂3
xfe−t∂3

xg‖L4
x,t

. M3/8‖f‖L2
x
‖g‖L2

x
(2.5)

Lemma 2.1(a) follows from a classical argument of Fefferman and Stein [6]. It makes use of
Hausdorff-Young inequality. We give a proof in the appendix for the sake of completeness.
In order to show (2.5) we use the example of Remark 1.4. Decompose g into functions whose fre-
quency support are on small intervals of length M1/2. Indeed, for integer k, 1 ≤ k ≤ M−1/2, set
Ik = [1+(k−1)M1/2, 1+kM1/2] and set ĝK = gχIk . Then g =

∑
k gk. Then we will use the following

orthogonality inequality:

Lemma 2.2. We have

‖
∑

k

e−t∂3
xfe−t∂3

xg‖L4
t,x

.
(∑

k

‖e−t∂3
xfe−t∂3

xg‖2L4
t,x

)1/2

(2.6)

Assuming that Lemma 2.2 is true for a moment, we are reduced to show
(∑

k

‖e−t∂3
xfe−t∂3

xg‖2L4
t,x

)1/2

. M3/8‖f‖L2
x
‖g‖L2

x
.
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Using (2.4) for p = 4, and the size of support of f and gk, we estimate

(∑

k

‖e−t∂3
xfe−t∂3

xg‖2L4
t,x

)1/2

.
(∑

k

‖f̂‖2L4/3‖ĝk‖
2
L4/3

)1/2

. M3/8‖f̂‖L2

(∑

k

‖ĝk‖
2
L2

)1/2

= M3/8‖f‖L2‖g‖L2

which concludes (2.5).

It remains to show Lemma 2.2.
We write, using Plancherel theorem,

‖
∑

k

e−t∂3
xfe−t∂3

xgk‖
2
L4

x,t
= ‖(

∑

k

e−t∂3
xfe−t∂3

xgk)
2‖L2

t,x

= ‖
∑

k

e−t∂3
xfe−t∂3

xgk
∑

j

e−t∂3
xfe−t∂3

xgj‖L2
t,x

= ‖
∑

j,k

ẽ−t∂3
xf ∗ ẽ−t∂3

xf ∗ ˜e−t∂3
xgj ∗

˜e−t∂3
xgk‖L2

τ,ξ
.

where f̃(t, x)(τ, ξ) is the space-time Fourier transform of f(t, x). We denote by Ej,k the support of

the function ẽ−t∂3
xf ∗ ẽ−t∂3

xf ∗ ˜e−t∂3
xgj ∗

˜e−t∂3
xgk. We claim that the Ej,k are essentially disjoint. In

other words, there is a constant C, independent of M , so that
∑

j,k

χEj,k
≤ C. (2.7)

By this claim, we estimate

‖
∑

j,k

ẽ−t∂3
xf ∗ ẽ−t∂3

xf ∗ ˜e−t∂3
xgj ∗

˜e−t∂3
xgk‖L2

t,x

≤ C
(∑

j,k

‖ẽ−t∂3
xf ∗ ẽ−t∂3

xf ∗ ˜e−t∂3
xgj ∗

˜e−t∂3
xgk‖

2
L2

t,x

)1/2

= C
(∑

j,k

‖e−t∂3
xfe−t∂3

xgke
−t∂3

xfe−t∂3
xgj‖L2

t,x

)1/2

= C
(∑

j,k

∫
|e−t∂3

xfe−t∂3
xgke

−t∂3
xfe−t∂3

xgj|
2
)1/2

= C
(∫

(
∑

k

|e−t∂3
xfe−t∂3

xgk|
2)2

)1/2

= C‖
∑

k

|e−t∂3
xfe−t∂3

xgk|
2‖L2

≤ C
∑

k

‖|e−t∂3
xfe−t∂3

xg|2‖L2

= C
∑

k

‖e−t∂3
xfe−t∂3

xgk‖
2
L4.
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We are left to show the inequality (2.7). One can easily see that the support of ˜e−t∂3
xgk is in Ek =

{(τ, ξ) : |ξ − kM1/2| ≤ M1/2, τ = ξ3}, and the support of ẽ−t∂3
xf is in {(τ, ξ) : |ξ| ≤ 2M, τ = ξ3}. If

(ρ, η) ∈ Ej,k, then there exists (ξ1, ξ2) such that (ξ31 , ξ1) ∈ Ek, (ξ
3
2 , ξ2) ∈ Ej , |ρ − ξ31 − ξ32 | ≤ 4M, and

|η − ξ1 − ξ2| ≤ 4M .
From the identity 4ξ31 + 4ξ32 = (ξ1 + ξ2)

3 + 3(ξ1 − ξ2)
2(ξ1 + ξ2), we see that

Ej,k ⊂ Fj,k = {(ρ, η) : |η − (j + k)M1/2| ≤ 3M1/2, (3|k − j|2 − 8)M ≤ |4ρ− η3| ≤ (6|k − j|2 + 8)M}.

It is easy to verify that the Fj,k’s overlap only a finite number of times and that this number is
bounded by a universal constant.

3. Proof of Theorem 1.5

In this section we prove Theorem 1.5. Firstly, we show Proposition 3.1.

Proposition 3.1. Let b < 1/4.

‖∂x(e
−t∂3

xu0e
−t∂3

xv0)‖L5/2
x L5

t
. ‖u0‖Hb‖v0‖H1−b (3.1)

Proof. We use the Littlewood-Paley operators to decompose into the paraproduct:

∂xe
−t∂3

xu0e
−t∂3

xv0 = πlh + πhh + πhl

where

πlh =
∑

N>M

PN∂xe
−t∂3

xu0PMe−t∂3
xv0

πhh =
∑

N∼M

PN∂xe
−t∂3

xu0PMe−t∂3
xv0

πhl =
∑

N<M

PN∂xe
−t∂3

xu0PMe−t∂3
xv0.

By the triangle inequality, we have

‖∂x(e
−t∂3

xu0e
−t∂3

xv0)‖L5/2
x L5

t
≤ ‖πlh‖L5/2

x L5
t
+ ‖πhh‖L5/2

x L5
t
+ ‖πhl‖L5/2

x L5
t
.
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We estimate term by term. For the first two terms we can use the usual local smoothing estimate
since the derivative falls in the low frequency part.

‖πhh‖L5/2
x L5

t
.

∞∑

j=−1

‖P2j∂xe
−t∂3

xu0P2j e
−t∂3

xv0‖L5/2
x L5

t

.

∞∑

j=−1

‖P̃2j∂xe
−t∂3

xu0‖L5
xL

10
t
‖P̃2je

−t∂3
xv0‖L5

xL
10
t

.

∞∑

j=−1

2j‖P̃2je
−t∂3

xu0‖L5
xL

10
t
‖P̃2je

−t∂3
xv0‖L5

xL
10
t

=

∞∑

j=−1

2bj‖P̃2je
−t∂3

xu0‖L5
xL

10
t
2j(1−b)‖P̃2je

−t∂3
xv0‖L5

xL
10
t

.

∞∑

j=−1

2bj‖P̃2ju0‖L22j(1−b)‖P̃2jv0‖L2
x

. ‖u0‖Hb‖v0‖H1−b

where P̃2j = P2j−1 + P2j + P2j+1 .

‖πlh‖L5/2
x L5

t
.

∞∑

j=1

j−1∑

k=−1

‖P2k∂xe
−t∂3

xu0P2je
−t∂3

xv0‖L5/2
x L5

t

.

∞∑

j=1

j−1∑

k=−1

‖P̃2k∂xe
−t∂3

xu0‖L5
xL

10
t
‖P̃2je

−t∂3
xv0‖L5

xL
10
t

.

∞∑

j=1

j−1∑

k=−1

2k‖P̃2ke
−t∂3

xu0‖L5
xL

10
t
‖P̃2je

−t∂3
xv0‖L5

xL
10
t

=

∞∑

j=1

j−1∑

k=−1

2b(k−j)2bk‖P̃2ke
−t∂3

xu0‖L5
xL

10
t
2j(1−b)‖P̃2je

−t∂3
xv0‖L5

xL
10
t

.

∞∑

j=1

j−1∑

k=−1

2b(k−j)2bk‖P̃2ku0‖L22j(1−b)‖P̃2jv0‖L2
x

.

∞∑

i=1

2−bi
∑

j≥i

2b(j−i)‖P̃2j−iu0‖L22(1−b)j‖P̃2jv0‖L2

. ‖u0‖Hb‖v0‖H1−b .
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For the last term, the high-low paraproduct, we need to use improved bilinear estimate (1.7).

‖πlh‖L5/2
x L5

t
.

∞∑

j=1

j−1∑

k=−1

‖P2je
−t∂3

x∂xu0P2ke
−t∂3

xv0‖L5/2
x L5

t

.

∞∑

j=1

j−1∑

k=−1

2(k−j)/42j‖P2ju0‖L2‖P2kv0‖L2

=
∞∑

j=1

j−1∑

k=−1

2(k−j)(b−1/4)2j(1−b)‖P2ju0‖L22kb‖P2kv0‖L2

.b ‖u0‖Hb‖v0‖H1−b

where we used Berstein’s inequality, Cauchy-Schwartz inequality, and (1.7). �

Applying Hölder inequality to (1.7), we easily obtain the following corollary.

Corollary 3.2. Let s > 3/4. Then we have

‖∂x(e
−t∂3

xu0)
5‖L1

xL
2
t
. ‖u0‖

5
Hs . (3.2)

We are now ready to prove Theorem 1.5.
We see from the local well-posedness theory [4] that for a given ǫ > 0, there exists T = T (‖u0‖Hs , ǫ)
such that

max(‖〈D〉sulin‖L5
xL

10
t ([0,T ]×R), ‖〈D〉sw‖L5

xL
10
t ([0,T ]×R)) ≤ ǫ

where ulin is a linear solution, i.e. ulin = e−t∂3
xu0.

We claim that

‖∂xw‖L5
xL

10
t ([0,T ]×R) ≤ Cǫ (3.3)

Indeed, from (3.1) and (3.2), by reducing the value of T if necessary, we have

‖∂x(e
−t∂3

xu0)
5‖L1

xL
2
t ([0,T ]×R) ≤ ǫ (3.4)

‖∂x(e
−t∂3

xu0e
−t∂3

xu0)‖L5/2
x L5

t ([0,T ]×R)
≤ ǫ (3.5)

We estimate ‖∂xw‖L5
xL

10
t ([0,T ]×R) using (1.2), its inhomogeneous counter part, and Christ-Kiselev

lemma as follows:

‖∂xw‖L5
xL

10
t ([0,T ]×R) = ‖∂x

∫ t

0

e−(t−s)∂3
x∂x(u

5(s))ds‖L5
xL

10
t ([0,T ]×R)

. ‖∂x

∫ T

0

es∂
3
x∂x(u

5)ds‖L2
x

. ‖∂x(u
5)‖L1

xL
2
t ([0,T ]×R)

= ‖∂x(ulin + w)5‖L1
xL

2
t ([0,T ]×R)

. ‖∂x(w
5)‖L1

xL
2
t ([0,T ]×R) + ‖∂x(ulinw

4)‖L1
xL

2
t ([0,T ]×R) + the rest

= I + II + III.

We can estimate

I . ‖∂xw‖L5
xL

10
t
‖w‖4L5

xL
10
t
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and I is absorbed to the left hand side by choosing ǫ small.
III is easily estimated by (3.4) and (3.5) since III contains at least two ulin’s. For example, we have

‖∂x(ulinulin)www‖L1
xL

2
t
+ ‖u2

linw
2∂xw‖L1

xL
2
t
. ‖Dsu‖2L5

xL
10
t
‖w‖3L5

xL
10
t
+ ‖∂xw‖L5

xL
10
t
‖w‖2L5

xL
10
t
‖ulin‖L5

xL
10
t

. ǫ5 + ǫ4‖∂xw‖L5
xL

10
t
.

Choosing ǫ to be small, we can estimate
II . ǫ.

In order to show the bound of II it is enough to show

‖∂xulinw‖L5/2
x L5

t ([0,T ]×R)
. ǫ (3.6)

In view of

‖∂xulinw‖L5/2
x L5

t ([0,T ]×R)
= ‖

∫ t

0

∂xe
−t∂3

xu0e
−(t−s)∂3

x∂x(u
5(s))ds‖

L
5/2
x L5

t ([0,T ]×R)

and Christ-Kiselev lemma it suffices to show

‖

∫ T

0

∂xe
−t∂3

xu0e
−(t−s)∂3

x∂x(u
5(s))ds‖

L
5/2
x L5

t ([0,T ]×R)
. ǫ. (3.7)

We estimate, using (3.1) and the inhomogeneous local smoothing estimate (1.4)

‖

∫ T

0

∂xe
−t∂3

xu0e
−(t−s)∂3

x∂x(u
5(s))ds‖

L
5/2
x L5

t([0,T ]×R)

= ‖∂xe
−t∂3

xu0e
−t∂3

x

∫ T

0

es∂
3
x∂x(u

5(s))ds‖
L

5/2
x L5

t ([0,T ]×R)

. ‖u0‖Hs‖

∫ T

0

es∂
3
x∂x(u

5(s))ds‖Hs

. ‖u0‖Hs‖〈D〉s(u5)‖L1
xL

2
t ([0,T ]×R)

. ‖u0‖Hs‖〈D〉su‖5L5
xL

10
t ([0,T ]×R)

. ‖u0‖Hsǫ5.

Combining altogether, we have

‖〈D〉1w‖L5
xL

10
t ([0,T ]×R) ≤ Cǫ.

In a similar way one can estimate again using Christ-Kiselev lemma, for 0 ≤ t ≤ T ,

‖D1w(t)‖L2 = ‖D1e−t∂3
x

∫ t

0

es∂
3
x∂x(u

5(s))ds‖L2

. ‖D1

∫ T

0

es∂
3
x∂x(u

5(s))ds‖L2

. ‖D1(u5)‖L1
xL

2
t ([0,T ]×R)

. ǫ.

Now we remain to show the lower bound of blow up rate, (1.8).
From (1.5) we have

‖w(t)‖Hs
x
&

1

|T ∗ − t|s/3
.

Because the Hs norm of the linear part of the solution is conserved, by interpolation,

‖w(t)‖Hs ≤ ‖w(t)‖1−s
L2 ‖w(t)‖sH1 .
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Since ‖w(t)‖L2 ≤ 2‖u0‖L2 , we can conclude

‖w(t)‖Ḣ1 &
1

|T ∗ − t|1/3
.

Appendix

Proof of (2.4).
Writing

e−t∂3
xfe−t∂3

xg(t, x) = c

∫∫
eix(ξ1+ξ2)+(ξ3

1
+ξ3

2
)f̂(ξ1)ĝ(ξ2) dξ1dξ2,

we make a change of variables (u, v) = (ξ1 + ξ2, ξ
3
1 + ξ32). Then we obtain

e−t∂3
xfe−t∂3

xg(t, x) = c

∫∫
eixu+itvΠ(u, v) dudv

where Π(u, v) = f̂(ξ1)ĝ(ξ2)|J
−1| and J = det ∂(u,v)

∂(ξ1,ξ2)
= 1

3(ξ2
2
−ξ2

1
)
.

We can view
e−t∂3

xfe−t∂3
xg(t, x) = Π̂(t, x).

Hence, using Hausdorff-Young inequality, for p ≥ 2,

‖e−t∂3
xfe−t∂3

x‖Lp
t,x

= ‖Π̂‖Lp
t,x

≤ ‖Π‖
Lp′

t,x

where p′ = p
p−1 .

To compute ‖Π‖Lp′ , we use the fact |ξ1 − ξ2| ≥ 1/2 (i.e. |J | ∼ 1) and change variables back to ξ1, ξ2.
Indeed,

‖Π‖p
′

Lp′ =

∫∫ ∣∣f̂(ξ1)ĝ(ξ2)J−1
∣∣p′

dudv

=

∫∫ ∣∣f̂(ξ1)ĝ(ξ2)
∣∣p′ ∣∣J−1

∣∣p′ ∣∣J
∣∣ dξ1dξ2

∼ ‖f̂‖Lp′‖ĝ‖Lp′ .

�
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