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Abstract

Using the construction of a nonorientable Curtis-Tits group of type Ãn, we obtain
new explicit families of expander graphs of valency five for unitary groups over finite
fields.

1 Introduction

Expanders are sparse graphs with high connectivity properties. Explicit constructions
of expander graphs have potential applications in computer science and is an area of
active research. One of the most significant recent results on expanders is that Cayley
graphs of finite simple groups are expanders, see [11],[5]. More precisely there is a k
and ǫ > 0 such that every non-abelian finite simple group G has a set of k generators
for which the Cayley graph X(G;S) is an ǫ expander. The size of k is estimated
around 1000.

The present paper is a byproduct of the investigation in [3, 4] of Curtis-Tits
structures and the associated groups. A Curtis-Tits (CT) structure over k with
(simply laced) Dynkin diagram Γ over a finite set I is an amalgam A = {Gi, Gi,j |
i, j ∈ I} whose rank-1 groups Gi are isomorphic to SL2(k), where Gi,j = 〈Gi, Gj〉,
and in which Gi and Gj commute if {i, j} is a non-edge in Γ and are embedded
naturally in Gi,j

∼= SL3(k) if {i, j} is an edge in Γ. It was shown in [3] that such
structures are determined up to isomorphisms by group homomorphisms from the
fundamental group of the graph Γ and the group Aut(k)× Z2. Moreover in the case
when the diagram is in fact a cycle, all such structure have non collapsing completions
described in [4]. It turns out that such groups can be described as fixed subgroups of
certain automorphisms of Kac-Moody groups. This is an important point since they
will turn out to have Karzdan’s property (T) hence they will give rise to expanders.
Many of these groups will be Kac-Moody groups themselves but some will not. In
particular again in the case of a cycle we obtain a new group which turns out to be a
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lattice in SL2n(K) for some local field K and so by a classical theorem it will itself
have property (T). Moreover it turns out that the group in question will have finite
unitary groups as quotients giving a more concrete result for unitary groups than [11].
In particular we have

Theorem 1 For any n there exists an ǫ > 0 and a symmetric set Sn,q of gen-
erators for SU2n(q) so that S(n, q) has size five and the family of Cayley graphs
X(SU2n(q), Sn,q) for q ≥ n forms an ǫ-expanding family of unbounded new girth.

Our methods have been introduced in [6, 8, 9] in a slightly more general setting.
The result is weaker than the types of results in [11] and [5] in the fact that the rank
of the groups need to be fixed.

2 The groups

Let V be a free k[t, t−1]-module of rank 2n with basis {ei, fi | i = 1, . . . , n}. In this
case k[t, t−1] denotes the ring of commutative Laurent polynomials in the variable t
over a field k. Recall that a σ-sesquilinear form β on V is a map β : V × V → k
so that β is linear in the first coordinate and β(u, λv + w) = σ(λ)β(u, v) + β(u,w).
Such a form is determined by its image on a basis. Let β be such that β(ei, ej) =
β(fi, fj) = 0, β(ei, fj) = tδij and β(fi, ej) = δij where σ: k[t, t−1] → k[t, t−1] is the
identity on k and interchanges t and t−1. More precisely

Gτ := {g ∈ SL2n(k[t, t
−1])|∀x, y ∈ V, β(gx, gy) = β(x, y)}

In [4] it was proved that Gτ is the “nonorientable” Curtis-Tits group.
It turns out that the group Gτ has some very interesting natural quotients and

that its action on certain Clifford-like algebras are related to phenomena in quantum
physics. see [10] for such constructions.

The aim of this paper is to prove that the group Gτ has Kazhdan’s property T.
This implies that the finite quotients of this group will form expander families. We
will also show, that the Cayley graphs of these quotients have unbounded new girth.
Before doing this we record the following lemma.

Lemma 2.1 The group Gτ can be generated with a symmetric set of size at most 5.

Proof Consider the element s ∈ SL2n(k[t, t
−1]) transforming the basis above as

follows. For each i = 1, . . . n − 1, esi = ei+1 and f s
i = fi+1, e

s
n = f1 and f s

n = t−1e1
It is not too hard to see that s is in fact an element of Gτ . Moreover consider the
subgroups
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for each k = 0, . . . n− 2 and and
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It is immediate that Ls
k = Lk+1 for k = 0, . . . n − 2 and Ln

n−1 = L0. Moreover
from [4] it follows that Gτ is generated by the Lk’s. Finally the groups L0 can be
generated by an involution x and another element y. This means that we can take
S = {x, y, y−1, s, s−1}. �

Let k denote the algebraic closure of k. For any a ∈ k
∗

consider the specialization
map ǫa: k[t, t

−1] → k given by ǫa(f) = f(a). The map induces a homomorphism
ǫa:SL2n(k[t, t

−1]) → SL2n(k(a)). In some instances the map commutes with the
automorphism σ and so one can define a map ǫa:G

τ → SL2n(k)
The most important specialization maps are those given by evaluating t at a = ±1

or a = ζ, a (qm + 1)-st root of 1 where q is a power of the characteristic.
Consider first a = −1. In this case the automorphism σ becomes trivial. Note

that for g ∈ Gτ we have ǫ−1(g) ∈ Sp2n(k). In this case, the image of the group Gτ is
the group Sp2n(k). Similarly, if a = 1, the automorphism σ is trivial and the map ǫ1
takes Gτ into Ω+

2n(k).
Finally assume that k = Fq and a ∈ Fq is a primitive (qs + 1)-st root of 1. and

define Ṽ = V ⊗k[t,t−1] k(a) and β̃ the respective evaluation of β. We shall also denote

by λ the image of λ under the Galois automorphism given by a 7→ a−1. Define the
transvection map Tv(λ) : Ṽ → Ṽ by Tv(λ)(x) = x + λβ̃(x, v)v. Note that the group
SU2n(q

s) is generated by the set

{Tv(λ)|λ + aλ = 0, v ∈ {ẽ1, · · · f̃n}

(by Phan theorem for example since Tei , Tfigenerate a weak Phan system, see [2] for
details).

Therefore if we can lift each such map to Gτ the theorem will be proved. We pro-
pose that for each v ∈ {ẽ1, · · · f̃n}, the lift of Tv(λ) would be given by a “transvection”
map Φv(x) = x + Fβ(x, v)v where F ∈ Fq[t, t

−1] would be an appropriate choice of
a lift of λ. This map is obviously in SL2n(Fq[t, t

−1]) so the only thing one needs to
check is the fact that it leaves β invariant. An immediate computation shows that

β(x, y)− β(Φv(x),Φv(y)) = σ(F )β(x, v)σ(β(y, v)) + Fβ(x, v)β(v, y)
= (σ(F ) + tF )β(x, v)σ(β(y, v))

and so the sufficient conditions are F (a) = λ and σ(F ) + tF = 0.
Let us assume that p ∈ Fq[t] is the minimal (monic) polynomial for a. Note that a

and a−1 are conjugate. Moreover if b is another root of p then b is a root of xq
s+1− 1

so it is a power of a and in particular b−1 is also a root of p and of course b 6= b−1



since otherwise p will not be irreducible. In conclusion the roots of p come in pairs
b, b−1. This means that p(0) = 1. Now σ(p(t)) = p(t−1) = t−2sp′(t) where p′ is a
monic irreducible polynomial that has the same roots as p so it must equal p.

We start with a random choice for F so that F (a) = λ. Since λ + aλ = 0, we
get that a is a root of σ(F ) + tF and so σ(F ) + tF = pG for some G ∈ Fq[t, t

−1].
Applying σ shows that σ(p)σ(G) = t−1pG and so σ(G) = t2s−1G.

Assume G =
∑l

i=−r ait
i, the condition above gives that −l = 2s − 1 − r and

a−r+i = al−i for each i = 1, . . . l + r.
We need to find an element H ∈ Fq[t, t

−1] so that σ(pH) + tpH = pG. Indeed,
F1 = F −pH will then have the property that F1(a) = λ. The condition on H is that
σ(H)t−2s + tH = G. There are many choices for H, one of them will be

H = t−l−2s + t−l−2s+1 + . . . t−s−1 + (a−s+1 − 1)t−s + . . . (al − 1)tl−1

�

For the rest of this section, we deal with unitary representation of topological
groups on Hilbert spaces we will follow the notations of [1]. Consider a complex
Hilbert space H. We will denote by U(H) the group of unitary transformations from
H to H, i.e. the group of all invertible bounded linear operators on H that leave
invariant the inner product. A unitary representation of a topological group G is a
group homomorphism π : G → U(H) so that g 7→ π(g)ξ is continuous for any ξ ∈ H.
Definition 2.2 Let G be a topological group and π : G → U(H) is a continuous
unitary representation of G on a Hilbert space H.

If Q ⊆ G and ǫ > 0, a vector ξ is called (Q, ǫ) invariant if supq∈Q ||π(q)ξ− ξ|| < ǫ.
An invariant vector is a vector ξ ∈ H such that ξ = π(g)ξ for all g ∈ G.

A subset Q ⊆ G is a Kazhdan set if there exists ǫ > 0 so that every unitary
representation of G that admits a (Q, ǫ) invariant vector admits a nonzero invariant
vector.

Finally a group G has Kazhdan property (T) if it admits a compact Kazdan set.
In order to prove that our groups have property (T) we will use the following

results.

Theorem 2.3 (Theorem 1.4.15 in [1]) Let K be a local field. The group SLn(K)
has Property (T) for any integer n ≥ 3.

Theorem 2.4 If G is a locally compact group and H is a lattice in G the H has
property (T) if and only if G does.

In order to show that our group Gτ has property (T) it is sufficient to show that
Gτ is a lattice in SL2n(k((t)). To do this we use the methods of [6], [9], [8]. In
particular the more general argument is briefly described in Remark 7.11 in [8].

For convenience we state Lemma 6.13 and 6.14 from [4]:

Lemma 2.5 Suppose that cε ∈ ∆ satisfies δ∗(cε, c
τ
ε ) = w, let i ∈ I and suppose that

π is the i-panel on cε. Then,

(a) There exists a word u ∈ W such that u(u−1)τ is a reduced expression for w.



(b) If l(siw) > l(w), then all chambers dε ∈ π−{cε} except one satisfy δ∗(dε, d
τ
ε ) =

w. The remaining chamber čε satisfies δ∗(čε, (čε)
τ ) = siwsτ(i).

(c) If l(siw) < l(w), then all chambers dε ∈ π − {cε} satisfy δ∗(dε, d
τ
ε ) = siwsτ(i).

Corollary 2.6 If q ≥ n, the group Gτ has property (T).

Proof Note that the group Gτ acts transitively on the sets Cw = {c ∈ ∆+|δ∗(c, c
τ ) =

w} and these partition ∆+. For each u ∈ W pick an element cu so that δ∗(cu, c
τ
u) =

u(u−1)τ to parametrise the orbits of Gτ on ∆+. We can therefore apply Lemma
1.4.2 of [6] to conclude that Gτ is a lattice if and only if the series

∑

u∈W
1

|StabGτ (cw)|

converges. By Lemma 2.5 there are exactly ql(u) elements of C1w at distance u from
cu and the group StabGτ (cw) acts transitively on these and so 1

|StabGτ (cw)| ≤
1

ql(u)
. In

particular since there are at most (n− 1)i elements of W that have length i,

∑

u∈W

1

ql(u)
≤

∞
∑

i=0

(n− 1)i

qi

and so if q ≥ n the series converges. �

3 The expanders

Definition 3.1 Let X = (V,E) be a finite k-regular graph with n vertices. we say
that X is an (n, k, c) expander if for any subset A ⊂ V

|∂A| ≥ c(1 −
|A|

N
)|A|

where ∂A = {v ∈ V | d(v,A) = 1}.
The following property is due to Margulis [12]

Theorem 3.2 Let Γ be a finitely generated group that has property (T). Let L be a
family of finite index normal subgroups of Γ and let S = S−1 be a finite symmetric set
of generators for γ. Then the family {X(Γ/N, S) | N ∈ L} of Cayley graphs of the
finite quotients of Γ with respect to the image of S is a family of (n, k, c) expanders
for n = |Γ/N |, k = |S| and some fixed c > 0.

Corollary 3.3 If S be a symmetric generating set for Gτ then the family of Cayley
graphs X(SU2n(q

k), S) is an expanding family.

An important question about expander families is whether the girth of the graphs in
question is bounded or not.
Definition 3.4 Let Γ,L, S as in Theorem 3.2. Consider also the natural map
φN : X(Γ, S) → X(Γ/N, S). The new girth of a graph X(Γ/N, S) is the length of
the shortest circuit γ in X(Γ/N, S) so that γ is not the image of a circuit in X(Γ, S)
under the map φN .

Proposition 3.5 The new girth of the family X(SU2n(q
k), S) is unbounded.



Proof Suppose that the new girth is bounded by a number M . Since there are
finitely many possible words on S of length less than N and infinitely many graphs in
the family, it follows that there exists a path γ in X(Gτ , S) which is not a circuit so
that the the images of γ are circuits in X(SU2n(q

k), S) for infinitely many choices of
k. Without loss of generality we can assume that γ has the identity of Gτ as its initial
point. The statement above means that the end point of γ is the identity in infinitely
many X(SU2n(q

k), S). However the end point of γ is an element g ∈ SL2n(k[t, t
−1]).

However if g 6= Id2n then the set of solutions to the equation and the condition is that
g(t) = Id2n in M2n(k[t, t

−1]) is an algebraic set so it has to be finite, a contradiction.
�

Finally Lemma 2.1, Corollary 2.6, Corollary 3.3, and Proposition 3.5 prove The-
orem 1.
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