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STATIC SKT METRICS ON LIE GROUPS

NICOLA ENRIETTI

Abstract. An SKT metric is an Hermitian metric on a complex manifold whose fundamental
2-form ω satisfies ∂∂ω = 0. Streets and Tian introduced in [STb] a Ricci-type flow that preserves
the SKT condition. This flow uses the Ricci form associated to the Bismut connection, the unique
Hermitian connection with totally skew-symmetric torsion, instead of the Levi-Civita connection. A
SKT metric is static if the (1,1)-part of the Ricci form of the Bismut connection satisfies (ρB)(1,1) =
λω for some real constant λ. We study invariant static metrics on Lie groups, providing in particular
a classification in dimension 4.

Introduction

Let (M2n, J, g) be an Hermitian manifold with fundamental 2-form ω(·, ·) = g(·, J ·). We say that
g is Strong KT (shorten SKT ) or pluriclosed if ∂∂ω = 0. This condition is related to the Bismut
connection [Bis89, Gau97], the unique Hermitian connection such that the torsion 3-form

c(X,Y, Z) = g(X,TB(Y, Z))

is totally skew-symmetric, and it is well known that c = −Jdω. So the SKT condition is equivalent
to dc = 0. SKT metrics were introduced in the context of type II string theory and 2-dimensional
supersymmetric σ-models [GHR84, Str86], and they have also relations with generalized Kähler ge-
ometry [GHR84, Gua10, Hit06, AG07, CG04, FT09]. Moreover, Gauduchon [Gau84] proved that for
compact complex surfaces, in the conformal class of any given Hermitian metric one can find an SKT
metric.

In [STa] Streets and Tian introduced a class of parabolic flows on a complex manifold (M,J)
for Hermitian metrics with respect to J using the Chern connection, that is the unique Hermitian
connection whose torsion has everywhere vanishing (1,1)-part. If the initial condition is Kähler, then
the solution of the flow is also a solution of the Kähler-Ricci flow. In [STb], moreover, they studied
a particular flow in this class that preserves the SKT condition, with equation

∂ω(t)

∂t
= −∂∂∗ω − ∂∂

∗
ω −

i

2
∂∂ log det g.

As noted also in [ST10], this flow is deeply connected with the Bismut connection.
We consider in particular static metrics. We say that an SKT metric g on a complex manifold

(M,J) is static if

−∂∂∗ω − ∂∂
∗
ω −

i

2
∂∂ log det g = λω

for some λ ∈ R. In [STb], it is shown that to any static metrics with λ 6= 0 we can associate a
symplectic form that tames J , what they called an Hermitian-symplectic form. By [EFV10], this
condition is equivalent to an SKT metric such that ∂ω = ∂β for some ∂-closed (2,0)-form β. So, to
find all the static metrics on a complex manifold it is sufficient to study the SKT metrics. In [EFV10]
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it was proved that a nilmanifold, i.e. the compact quotient of a nilpotent simply connected Lie group
by a discrete subgroup, endowed with an invariant complex structure J cannot admit any symplectic
form that tames J .

Our aim is to study static metrics on Lie groups and compact quotiens of Lie groups by discrete
subgoups. This is clearly related to the study of SKT metrics on such manifolds, that was developed
in [FPS02, MS09, EFV10, Swa08].

We outline the paper. In section 1 we make some preliminar observation about the flow introduced
in [STb]. First, we observe that the cohomology class [∂ω] ∈ H2,1

∂
(M) is preserved by the flow; then,

we note that we can write the flow as

∂ω(t)

∂t
= −(ρB)(1,1),

where ρB is the Ricci tensor of the Bismut connection. So, in the case of a static metric with λ 6= 0,
the symplectic 2-form that tames J is exactly ρB.

In section 2 we study static metrics on two classes of Lie groups: semisimple compact Lie groups and
nilmanifolds. It is well known that every compact Lie group admits a bi-invariant metric g. Moreover,
if we add the semisimple condition, we can find an integrable complex structure J compatible with
g. We prove that g is static with respect to J .

By [EFV10], we know that a nilmanifold endowed with an invariant complex structure cannot
admit any static metric with λ 6= 0. Adding the hypothesis that the metric is invariant, we prove
that it cannot admit any static metric with λ = 0, too.

Finally, in section 3, we classify all the static metrics on Lie algebras of dimension 4, obtaining
that a Lie algebra of dimension 4 together with an integrable complex structure J and a static metric
g is either Kähler-Einstein or the Lie algebra of the Hopf surface.

1. Link with the Bismut connection

Let (M2n, J, g) be an Hermitian manifold with fundamental 2-form ω(·, ·) = g(·, J ·). In [STb, ST10]
Streets and Tian introduced a new flow

∂ω(t)

∂t
= Φ(ω) (1.1)

using the operator

Φ(ω) = −∂∂∗ω − ∂∂
∗
ω −

i

2
∂∂ log det g, (1.2)

where ∂ + ∂ = d and

∂∗ : Ω(M)p,q → Ω(M)p−1,q

∂
∗
: Ω(M)p,q → Ω(M)p,q−1

are the adjoint operators with respect to the metric g of the operators ∂, ∂ respectively. They proved
that Φ is elliptic on the set of SKT metrics on M and that this condition is preserved by the flow.

Every SKT metric on a complex manifold (M,J) specify a Dolbeaut cohomology class given by

[∂ω] ∈ H2,1

∂
(M). We see that the flow (1.1) preserves this class.

Theorem 1.1.

Let (M,J) be a complex manifold and g0 an SKT metric with fundamental 2-form ω0. If {ω(t)}t∈[0,T )

is the solution of (1.1) with initial value ω(0) = ω0, then for every t ∈ [0, T )

[∂ω(t)] = [∂ω0] ∈ H2,1

∂
(M).
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Proof.
Using (1.2) we obtain

∂Φ(ω) = −∂∂∂
∗
ω = ∂∂∂

∗
ω.

So by (1.1)
∂

∂t
[∂ω(t)] =

[

∂
∂ω(t)

∂t

]

= [∂∂∂
∗
ω(t)] = [0],

thus [∂ω(t)] is constant in H2,1

∂
(M).

�

Let (M2n, J, g) be an Hermitian manifold, and ∇ an Hermitian connection on M ; the Ricci form
ρ associated to ∇ is defined by

ρ(X,Y ) =
1

2

2n
∑

k=1

g(R(X,Y )ek, Jek),

where {ei} is a local orthonormal frame of the tangent bundle TM and R is the curvature tensor

R(X,Y )Z = ∇[X,Y ]Z − [∇X ,∇Y ]Z.

We can define the Ricci form ρB and ρC of the Bismut and Chern connection, and they are related
by the formula [FG04, AI01]

ρB = ρC + dd∗ω.

Moreover, it is well known that locally

ρC =
i

2
∂∂ log det g.

Hence, recalling that d∗ = ∂∗ + ∂
∗
, we obtain that

(ρB)(1,1) = ∂∂∗ω + ∂∂
∗
ω +

i

2
∂∂ log det g,

where (ρB)(1,1) is the (1, 1)-part of ρB ; so, as also noted in [ST10], we can rewrite equation (1.1) as

∂ω(t)

∂t
= −(ρB)(1,1). (1.3)

We recall the following

Definition 1.2 ([STb]). An SKT metric g on a complex manifold (M,J) is static if

Φ(ω) = λω (1.4)

for some λ ∈ R.

Unlike [STb], we don’t add a normalization condition, but accept that every multiple of a static
metric is still static with the same λ.

In [STb], Proposition 5.10, it is shown that if g is a SKT static metric with λ 6= 0, then the 2-form

Ω = ω −
1

λ
(∂∂∗ω + ∂∂

∗
ω)

is symplectic and tames J . Thanks to equation (1.3), a static metric can be also viewed as an SKT
metric such that the (1, 1)-part of ρB is a scalar multiple of the fundamental 2-form ω at every point
of M , that is

− (ρB)(1,1) = λω, (1.5)

so if λ 6= 0, clearly λΩ = −ρB. Therefore, if a metric is static with λ 6= 0, then 1
λ
ρB is a symplectic

form and tames J .
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Moreover, in [EFV10] it was proved that giving a symplectic form Ω which tames J is equivalent
to assign an SKT metric such that ∂ω = ∂β for some ∂-closed (2,0)-form β; but this implies that

[∂ω] = [0] in H2,1

∂
(M). So, applying Theorem 1.1 we have

Proposition 1.3.

Let (M,J) be a complex manifold, then a solution of the flow (1.1) with initial value ω0 can reach a

static metric with λ 6= 0 only if ∂ω0 is ∂-exact.

2. Static metrics on Lie groups

Let G be a Lie group; we say that a complex structure J on G is left-invariant if it is induced by
a complex structure J̃ on the Lie algebra g of G. In the same way, a left-invariant static metric g
on a Lie group G endowed with a left-invariant complex structure J is determined by a J̃-Hermitian
metric g̃ on the Lie algebra g such that the Ricci tensor of the Bismut connection is proportional to
the fundamental 2-form, i.e. (ρB)(1,1) = λω̃. In this section we consider two significative classes of
Lie groups and provide some results about the existence of static metrics.

2.1. Compact Lie groups.

If we choose an SKT metric g on a complex manifold (M,J) such that the Bismut connection ∇B

is identically zero, then

Φ(ω) = −(ρB)(1,1) = 0

and g is a static metric with λ = 0. It is well known that this condition holds in the case of a
bi-invariant metric on a Lie group, that is a metric g on G which is both left-invariant and right-
invariant. In fact, in view of [DF02] we can write the Bismut connection in terms of Lie brackets
as

g̃(∇B
XY, Z) =

1

2

{

g̃([X,Y ]− [JX, JY ], Z)− g̃([Y, Z] + [JY, JZ], X)− g̃([X,Z]− [JX, JZ], Y )
}

(2.1)

where g̃ is the induced bi-invariant metric on the Lie algebra g and satisfy

g̃([X,Y ], Z) = −g̃(Y, [X,Z]); (2.2)

using (2.2) and the integrability of J we find ∇B = 0. To prove that g̃ is SKT we write c in terms of
Lie brackets as

c(X,Y, Z) = −g([JX, JY ], Z)− g([JY, JZ], X)− g([JZ, JX ], Y ), (2.3)

then using the integrability of J we have c(X,Y, Z) = − 1
2g([X,Y ], Z). Applying (2.2) and the Jacobi

identity we obtain dc = 0.
Since the work of Samelson and Wang [Sam53],[Wan54], it has been known that every compact

even-dimensional Lie group G admits a left-invariant complex structure JL and a right-invariant one
JR. If morevoerG is semi-simple, the bi-invariant metric gK induced by the Killing form is compatible
with both JL, JR. So

Theorem 2.1.

Let G be a compact, even-dimensional semi-simple Lie group. Then it admits a static metric with
λ = 0.

A remarkable example in this class is the Hopf surface H = S3×S1. By Theorem 2.1, H admits a
static metric with λ = 0 as also noticed in [STb]. Moreover, for any SKT metric on H (not necessarily

invariant) the cohomology class [∂ω] ∈ H2,1

∂
(M) is nonzero [Gua10]. Therefore all the static metrics

(both invariant and non-invariant) on the Hopf surface have λ = 0.
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As noted by Gualtieri [Gua10], compact even-dimensional semi-simple Lie groups are also examples
of generalized Kähler manifolds. We recall that a generalized Kähler structure on M2n can be seen
as a couple of integrable complex structure J+, J−, both compatible with a Riemannian metric g,
that satisfy the conditions

{

dc+ω+ = −dc−ω−

d(dc±ω±) = 0,

where ω±(·, ·) = gk(·, J±·) and dc± = i(∂± − ∂±). If M is a compact even-dimensional semi-simple
Lie group, (g, JL, JR) defines a generalized Kähler structure.

2.2. Nilmanifolds.

We recall that a nilmanifold is a compact quotient of a simply connected nilpotent Lie group G
by a discrete subgroup Γ. By invariant Riemannian metric (complex structure) on G/Γ we mean
one induced by a Riemannian metric (integrable complex structure) on the Lie algebra g of G. It is
well known that a nilmanifold cannot admit any Kähler metric unless it is a torus (see for example
[BG88, Has89]), and results about classification of SKT metrics on nilmanifold have been found in
[FPS02, EFV10]. Moreover, in [EFV10] it is proved that a nilmanifold (not a torus) together with an
inariant complex structure J cannot admit any symplectic form taming J , so in particular we cannot
find any static metric with λ 6= 0. We will show that if the metric is invariant, then it cannot satisfy
the relation (ρB)(1,1) = 0 unless G/Γ it is a torus, i.e. the torus is the unique nilmanifold that admit
invariant static metrics with λ = 0.

Since we are considering invariant metrics, we can reduce to the study of nilpotent Lie algebras.
We recall that a Lie algebra g is nilpotent if the descending central series {gk}k>0 defined by

g0 = g, g1 = [g, g] . . . gk = [gk−1, g]

vanishes for some k > 0. A static metric is in particular SKT, and as found in [EFV10] any SKT-
nilpotent Lie algebra g is 2-step (i.e. g2 = {0}) and his center is J-invariant; therefore we can split
g in ξ ⊕ ξ⊥, where ξ is the center, ξ⊥ the orthogonal complement to the center with respect to the
SKT metric and [ξ⊥, ξ⊥] ⊂ ξ, so for every X ∈ g we have a unique decomposition X = Xξ +X⊥,
where Xξ ∈ ξ and X⊥ ∈ ξ⊥.

In the following lemmas we make some calculations about the Bismut connection and the SKT
condition:

Lemma 2.2.

Let g be a nilpotent Lie algebra together with an integrable complex structure J and a J-Hermitian
SKT metric g, and ∇B its Bismut connection. Then

(1) ∇B
XξY

ξ = 0

(2) ∇B
XξY

⊥ ∈ ξ⊥ and

g(∇B
XξY

⊥, Z) = −
1

2
g([Y ⊥, Z] + [JY ⊥, JZ], Xξ)

(3) ∇B
X⊥Y

ξ ∈ ξ⊥ and

g(∇B
X⊥Y

ξ, Z) = −
1

2
g([X⊥, Z]− [JX⊥, JZ], Y ξ);

moreover,

J∇B
JX⊥Y

ξ = ∇B
X⊥Y

ξ (2.4)

(4) ∇B
X⊥Y

⊥ = 1
2 ([X

⊥, Y ⊥]− [JX⊥, JY ⊥]) ∈ ξ.
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Proof.
The relations (1),(2),(4) and the first part of (3) comes directly applying formula (2.1) and using the
definition of ξ. Equation (2.4) is obtained using the first part of (3) and the integrability of J .

�

Lemma 2.3.

Let g be a nilpotent Lie algebra together with an integrable complex structure J and a J-Hermitian
SKT metric g. Then

g([X, JX ], [Y, JY ]) =
1

2

(

‖[X,Y ]‖2 + ‖[X, JY ]‖2 + ‖[JX, Y ]‖2 + ‖[JX, JY ]‖2
)

for every X,Y ∈ g.

Proof.
If X or Y belongs to the center, then the lemma is obviously true; so we consider the case X,Y ∈ ξ⊥.
Using (2.1) and (2.3) we have

0 = dc(X,Y, JX, JY ) = − c([X,Y ], JX, JY ) + c([X, JX ], Y, JY )− c([X, JY ], Y, JX)−

− c([Y, JX ], X, JY ) + c([Y, JY ], X, JX)− c([JX, JY ], X, Y )

= + g([X,Y ], [X,Y ])− g([Y, JY ], [X, JX ]) + g([X, JY ], [X, JY ])

+ g([Y, JX ], [Y, JX ])− g([Y, JY ], [X, JX ]) + g([JX, JY ], [JX, JY ])

= − 2g([X, JX ], [Y, JY ]) + ‖[X,Y ]‖2 + ‖[X, JY ]‖2 + ‖[JX, Y ]‖2+

+ ‖[JX, JY ]‖2

as required.
�

Now we are ready to prove the

Theorem 2.4.

Let G/Γ a nilmanifold (not a torus) together with an invariant complex structure J . Then it does
not admit any J-Hermitian invariant static metric with λ = 0.

Proof.
Let g the Lie algebra of G, J̃ the induced integrable complex structure and g a J̃-Hermitian SKT
metric; we have g = ξ ⊕ ξ⊥. Choose {e1, . . . , e2m} and {f1, . . . , f2k} to be orthonormal basis respec-
tively of ξ⊥ and ξ with 2m+2k = 2n = dim g; then {e1, . . . , e2m, f1, . . . , f2k} is an orthonormal basis

of g. Note that (ρB)(1,1)(X, J̃X) = ρB(X, J̃X), so in order to prove that (ρB)(1,1) 6= 0 we will show

that ρB(X, J̃X) is not zero for some X ∈ g.
Suppose X ∈ ξ⊥; by definition,

ρB(X, J̃X) =
1

2

(

2m
∑

i=1

g(RB(X, J̃X)ei, J̃ei) +

2k
∑

j=1

g(RB(X, J̃X)fj , J̃fj)
)

;

we consider the two summation separately.

• By definition of RB, we obtain

g(RB(X, J̃X)ei, J̃ei) = g(∇B
X∇B

J̃X
ei, J̃ei)− g(∇B

J̃X
∇B

Xei, J̃ei)− g(∇B

[X,J̃X]
ei, J̃ei).

Applying Lemma 2.2 and using the integrability of J̃ we have

g(∇B
X∇B

J̃X
ei, J̃ei) = −g(∇B

J̃X
∇B

Xei, J̃ei) = −
1

4
‖[X, ei]− [J̃X, J̃ei]‖

2
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and

g(∇B

[X,J̃X]
ei, J̃ei) = −g([X, J̃X ], [ei, J̃ei]),

so

g(RB(X, J̃X)ei, J̃ei) = −
1

2
‖[X, ei]− [J̃X, J̃ei]‖

2 + g([X, J̃X ], [ei, J̃ei]). (2.5)

• Again by definition of RB and applying Lemma 2.2 and equation (2.4), we obtain

g(RB(X, J̃X)fj , J̃fj) = g(∇B
X∇B

J̃X
fj , J̃fj)− g(∇B

J̃X
∇B

Xfj , J̃fj)

=
1

2
g([X,∇B

J̃X
fj − J̃∇B

Xfj ]− [J̃X, J̃∇B

J̃X
fj +∇B

Xfj ], J̃fj)

= g([X,∇B

J̃X
fj ]− [J̃X, J̃∇B

J̃X
fj ], J̃fj).

By Lemma 2.2 ∇B

J̃X
fj ∈ ξ⊥, so we can write

∇B

J̃X
fj =

2m
∑

i=1

g(∇B

J̃X
fj , ei) ei = −

1

2

2m
∑

i=1

g([J̃X, ei] + [X, J̃ei], fj) ei,

then

[X,∇B

J̃X
fj ] = −

1

2

2m
∑

i=1

g([J̃X, ei] + [X, J̃ei], fj)[X, ei]

and

[J̃X, J̃∇B

J̃X
fj ] = −

1

2

2m
∑

i=1

g([J̃X, ei] + [X, J̃ei], fj)[J̃X, J̃ei].

Now, using the integrability of J̃ and the J̃-invariance of g

g([X,∇B

J̃X
fj ]− [J̃X, J̃∇B

J̃X
fj ], J̃fj) =

1

2

2m
∑

i=1

[

g([J̃X, ei] + [X, J̃ei], fj)
]2
;

but fj is an orthonormal basis of ξ and [J̃X, ei] + [X, J̃ei] ∈ ξ, so

2k
∑

j=1

[

g([J̃X, ei] + [X, J̃ei], fj)
]2

= ‖[X, ei]− [J̃X, J̃ei]‖
2.

Finally, we have

2k
∑

j=1

g(RB(X, J̃X)fj , J̃fj) =
1

2

2m
∑

i=1

‖[X, ei]− [J̃X, J̃ei]‖
2. (2.6)

Combining equations (2.5) and (2.6) we obtain

ρB(X, J̃X) = +
1

2

2m
∑

i=1

(

−
1

2
‖[X, ei]− [J̃X, J̃ei]‖

2 + g([X, J̃X ], [ei, J̃ei])
)

+

+
1

4

2m
∑

i=1

(

‖[X, ei]− [J̃X, J̃ei]‖
2
)

=
1

2

2m
∑

i=1

g([X, J̃X ], [ei, J̃ei])
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and using Lemma 2.3

=
1

4

2m
∑

i=1

(

‖[X, ei]‖
2 + ‖[X, J̃ei]‖

2 + ‖[J̃X, ei]‖
2 + ‖[J̃X, J̃ei]‖

2
)

>
1

4

2m
∑

i=1

‖[X, ei]‖
2 > 0

since X ∈ ξ⊥; this concludes the proof.
�

Remark 2.5. The results of this section can be summarize as follows: let G/Γ a nilmanifold (not a
torus) together with an invariant complex structure J and a J-invariant SKT metric g; then if g is a
static metric, it must be non-invariant and with λ = 0.

Whether such metrics exists or not is still not known to the author, but an approach to the problem
could be the following: let G/Γ be a nilmanifold and µ a volume element induced by a bi-invariant
one on the Lie group G [Mil76]. After rescaling, we can suppose that G/Γ has volume equal to
1. Suppose that G/Γ is endowed with an invariant complex structure J induced by an integrable

complex structure J̃ on the Lie algebra g of G; Belgun [Bel00] showed that if we choose a J-Hermitian,

non-invariant metric g on G/Γ, then we can define a J̃-Hermitian metric g̃ on g by posing

g̃(X,Y ) =

∫

m∈M

gm(Xm, Ym)dµ

for any left-invariant vector fields X,Y . This method is called symmetrization process. Moreover, in
[Uga07] it was proved that if the metric g is SKT, then g̃ is still SKT. Thus, if a nilmanifold admits a
non-invariant static metric with λ = 0, then it necessarily induces an SKT metric g̃ on g. In general,
however, it is not true that the Ricci form ρ̃B of the metric g̃ is obtained by the symmetrization of
the Ricci tensor ρB of g, so it is an open problem to check if the induced invariant metric g̃ is still
static.

3. Static metrics in dimension 4

In this section we classify all the invariant static metrics on Lie groups of dimension 4 endowed
with a left-invariant complex structure. Since we are interested in invariant structures on Lie groups,
it is sufficient to study the induced structures on the corresponding Lie algebra.

Let g a Lie algebra; we can define the derived series of g as g1 = [g, g], gk = [gk−1, gk−1]. We say
that g is solvable if there exists an integer s such that gs = 0. According to [BB81], a Lie algebra of
dimension 4 is either solvable, isomorphic to su(2)× R or isomorphic to sl(2,R)× R.

In the sequel we use a shorten notation to identify Lie algebras: for example, g = (0,−2 · 12− 2 ·
34,−13,−14) means that g∗ admits a basis {f i} of real 1-forms such that



















df1 = 0

df2 = −2f12 − 2f34

df3 = −f13

df4 = −f14.
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Theorem 3.1.

The only 4-dimensional Lie algebras admitting an Hermitian structure (g, J) with g static are iso-
morphic to

aff
R
× aff

R
= (0,−12, 0,−34)

d′
4,|− 1

t |
= (0,−2 · 12− 2 · 34,−13− t · 14, t · 13− 14)

d4, 1
2

= (0,−2 · 12− 2 · 34,−13,−14)

r′3,0 × R = (0, 0, 14,−13)

su(2)× R.

Moreover, except for su(2)× R, all such Hermitian structures are Kähler-Einstein.

Proof.
We first consider the case of g solvable. A classification of 4-dimensional solvable Lie algebras ad-
mitting a left-invariant integrable complex structure can be found in [ABDO05, Ova04, Sno90], and
recently Madsen and Swann in [MS09] gave a classification of SKT structures on solvable Lie algebras
of dimension four. With the help of a Maple software, we use this classification to compute directly
the Ricci tensor of the Bismut connection and then we impose the static condition (1.5) to find all
the static metrics. According to [MS09], we can suppose that if g is solvable and admits an SKT
structure the integrable complex structure J is defined by Je1 = e2, Je3 = e4, where {e1, e2, e3, e4}
is a basis of g∗. Moreover, g belongs to one of the following cases:

• Complex case: g has structural equations


















de1 = 0

de2 = a1e
12

de3 = b1e
12 + b2e

13 + b3e
14 − c1e

23 + c2e
24

de4 = d1e
12 + d2e

13 + d3e
14 − f1e

23 + f2e
24 + h1e

34

and the real coefficients a1, bi, ci, di, fi, h1 satisfy the following equations:

f1 − c2 − d3 + b2 = 0 f2 + c1 − d2 − b3 = 0
a1c1 − b3f1 − c2d2 = 0 c2a1 − c2b2 + c2d3 − b3c1 − b3f2 = 0

h1

(

b2
2 + b3

2 + c1
2 + c2

2
)

= 0 f1a1 + f1b2 − f1d3 − d2c1 − f2d2 + h1d1 = 0

a1f2 + b1h1 − b3f1 − c2d2 = 0 (a1 + b2 + d3) (b2 + d3) + (c1 − f2)
2 − h1d1 = 0.

The fundamental 2-form of the SKT metric is ω = e12 + e34, and we obtain

Φ(X,Y ) = − (a1
2 + b1

2 + d1
2 +

1

2
f1a1 −

1

2
d3a1 +

1

2
c2a1 −

1

2
b2a1 + h1d1) · e

12−

− (
1

2
b1b2 +

1

2
d1d2 +

1

2
h1d2 +

1

2
b1c2 +

1

2
d1f2 +

1

2
h1f2) · (e

13 + e24)−

− (
1

2
b1b3 +

1

2
d1d3 +

1

2
d3h1 +

1

2
b1c1 +

1

2
d1f1 +

1

2
h1f1) · (e

14 − e23)−

− (
1

2
f1c2 −

1

4
d2

2 −
1

2
d2b3 −

1

4
f1

2 +
1

2
b3f2 + h1d1 −

1

2
c2d3 −

1

4
d3

2+

+
1

2
f2d2 −

1

4
f2

2 +
1

2
f1d3 + h1

2 −
1

4
b3

2 −
1

4
c2

2 +
1

2
b2d3+

+
1

2
d2c1 −

1

2
f2c1 −

1

4
b2

2 −
1

2
f1b2 +

1

2
c2b2 −

1

4
c1

2 +
1

2
c1b3) · e

34.
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Imposing the static condition we obtain two possible cases, depending on whether λ = 0 or
λ 6= 0. In the first case the structure equations are











de1 = de2 = 0

de3 = b3e
14 + c2e

24

de4 = −b3e
13 − c2e

23,

(3.1)

and by [MS09] we have that g ∼= r′3,0 × R and that g is Kähler-Einstein with λ = 0.
Since g is KE, in particular it is Einstein, so it must be contained in the classification of

homogeneous spaces of dimension 4 admitting Einstein metrics given in [Jen69].
With the change of basis given by

f1 =
b3e1 + c2e2
b23 + c22

, f2 =
−c2e1 + b3e2

b23 + c22
, f3 =

e3
√

b23 + c22
, f4 =

e4
√

b23 + c22

we obtain the structure equations










df1 = df2 = 0

df3 = f14

df4 = −f13,

the metric g becomes

g =
1

b23 + c22

(

4
∑

i=1

f i ⊗ f i
)

and J is again defined by Jf1 = −f2 and Jf3 = −f4; so this corresponds to case 1 of the
Theorem of Chapter III in [Jen69].

On the other end, if λ 6= 0 the structure equations are


















de1 = 0

de2 = a1e
12

de3 = 0

de4 = ±a1e
34

(3.2)

with a1 6= 0; the metric g is Kähler-Einstein with λ = −a21 < 0, and g ∼= aff
R
× aff

R
.

With the change of basis given by

f1 = −
e1

a1
f2 = −

e2

a1
f3 = ±

e3

a1
f4 = ±

e4

a1

we obtain the structure equations










df1 = df3 = 0

df2 = −f12

df4 = −f34,

the metric g becomes

g =
1

a21

(

4
∑

i=1

f i ⊗ f i
)

and J is again defined by Jf1 = −f2 and Jf3 = −f4; so this corresponds to case 4 of the
Theorem of Chapter III in [Jen69].
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• Real case I: g has structural equations


















de1 = 0

de2 = a1e
12 + a3(e

14 − e23) + b2e
34

de3 = 0

de4 = d1e
12 + d3(e

14 − e23) + h1e
34,

where de2 and de4 are linearly indipendent and the real coefficients satisfy the following
equations:

b2a1 − b2d3 + f2a3 − a3
2 = 0 d1f2 − d1a3 + d3a1 − d3

2 = 0
d3a3 − b2d1 = 0 (d1 − a3)(f2 + a3)− (d3 + a1)(d3 − b2) = 0.

In this case we have that g ∼= aff
R
× aff

R
. The fundamental 2-form of the SKT metric is

ω = e12 + e34 + te14 + te23 with t ∈ (−1, 1), and it is Kähler if and only if t = 0. Computing
(ρB)(1,1) we find

Φ(X,Y ) = +
b2a1 + f2d1 + a1

2 + d1
2

t2 − 1
· e12 +

b2
2 + f2

2 + b2a1 + f2d1
t2 − 1

· e34+

+
b2a3 + f2d3 + a3a1 + d3d1

t2 − 1
· (e14 − e23),

and imposing the static condition we obtain the structure equations


























de1 = de3 = 0

de2 = b2
3a23 + b22
b22 − a23

e12 + a3(e
14 − e23) + b2 e

34

de4 = a3 e
12 + b2(e

14 − e23) + a3
a23 + 3b22
a23 − b22

e34,

(3.3)

with a3 6= 0. Moreover t = 0, so the metric g =
∑4

i=1 e
i ⊗ ei is Kähler-Einstein with

λ = −2
(a2

3
+b2

2
)3

(a2

3
−b2

2
)2

< 0.

With the change of basis given by

f1 =
(a23 − b22)

2

2(a23 + b22)
2
(−

e1

a3 + b2
−

e3

a3 − b2
) f2 =

(a23 − b22)
2

2(a23 + b22)
2
(−

e2

a3 + b2
−

e4

a3 − b2
)

f3 =
(a23 − b22)

2

2(a23 + b22)
2
(

e1

a3 − b2
−

e3

a3 + b2
) f4 =

(a23 − b22)
2

2(a23 + b22)
2
(

e2

a3 − b2
−

e4

a3 + b2
)

we obtain the structure equations










df1 = df3 = 0

df2 = −f12

df4 = −f34,

the metric g becomes

g = 2
(a23 + b22)

3

(a23 − b22)
2

(

4
∑

i=1

f i ⊗ f i
)

and J is again defined by Jf1 = −f2 and Jf3 = −f4; so this corresponds to case 4 of the
Theorem of Chapter III in [Jen69].
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• Real case II: g has structural equations



































de1 = 0

de2 = −kq2 e12 − kqr(e14 − e23)− kr2 e34

de3 =
c3q

r
e12 + c3 e

14

de4 =
kq3

r
e12 − c3 e

13 + kq2(e14 − e23) + kqr e34,

with q, r, k ∈ R such that q2+r2 = 1, r > 0 and k 6= 0; in this case g ∼= d′4,0. The fundamental

2-form of the SKT metric is ω = e12 + e34 + te14 + te23, with t ∈ (−1, 1), and it is never
Kähler. Computing (ρB)(1,1) we find

Φ(X,Y ) = +
q
(

k2qr4 − tkr3c3 + 2 k2q3r2 − c3kq
2tr + c3

2q + k2q5
)

r2 (t2 − 1)
· e12−

−
1

2

c3
(

c3tr + kq3 + kqr2
)

r (t2 − 1)
· (e13 + e24) +

k2
(

r4 + 2 q2r2 + q4
)

t2 − 1
· e34+

+
1

2

−c3kq
2tr + 4 k2q3r2 + 2 k2q5 + c3

2q − tkr3c3 + 2 k2qr4

r (t2 − 1)
· (e14 − e23),

and imposing the static condition we obtain that q = r = 0, that contradicts the condition
q2 + r2 = 1. So we don’t have any static metrics.

• Real case III: g has structural equations



































de1 = 0

de2 = −k(1 + q2) e12 − kqr(e14 − e23)− kr2 e34

de3 =
c3q

r
e12 −

k

2
e13 + c3 e

14

de4 =
q

r
(kq2 +

k

2
) e12 − c3 e

13 + (kq2 −
k

2
)e14 − kq2e23 + kqr e34,

with q, r, k ∈ R such that q2 + r2 = 1, r > 0 and k 6= 0; if c3 = 0 we have g ∼= d4, 1
2

, otherwise

g ∼= d′
4,| k

2c3
|
. The fundamental 2-form of the SKT metric is ω = e12 + e34 + te14 + te23 with

t ∈ (−1, 1), and is Kähler if and only if q = 0. Computing (ρB)(1,1) we find

Φ(X,Y ) = +
1

4

(2 r2k2 − 4 ktr3c3q − 8 krc3qt− 12 krq3c3t+ 4 r4k2 + 4 q2r2k2

r2 (−1 + t2)
+

+
4 q4k2 + 4 c3

2q2 + 4 k2q6 + k2q2 + 4 r4k2q2

r2 (−1 + t2)

)

· e12+

+
1

8

−4 c3
2tr + 2 tk2rq2 + k2tr + 4 kq3c3 + 2 k2tr3 − 4 r2kc3q

r (−1 + t2)
· (e13 + e24)−

−
1

8

(8 k2q5 − k2q − 16 k2q3r2 + 4 rkc3tq
2 − 8 k2r4q + 4 rkc3t− 2 k2qr2 − 4 c3

2q

r (−1 + t2)
+

+
2 q3k2 + 4 c3tr

3k

r (−1 + t2)

)

· (e14 − e23)−
1

2

k2
(

−r2 − 2 r4 − 4 q2r2 + 2 q4 + q2
)

−1 + t2
· e34,
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and imposing the static condition we obtain q = t = 0, so the structure equations are


































de1 = 0

de2 = −k(e12 + e34)

de3 = −
k

2
e13 + c3 e

14

de4 = −c3 e
13 −

k

2
e14.

(3.4)

Therefore g =
∑4

i=1 e
i ⊗ ei is a Kähler-Einstein metric with λ = − 3

2k
2 < 0.

With the change of basis given by

f1 =
2e1
k

f2 =
2e2
k

f3 =
2e3
k

f4 =
2e4
k

and defining t = − 2c3
k

we obtain the structure equations


















df1 = 0

df2 = −2f12 − 2f34

df3 = −f13 − t f14

df4 = t f13 − f14,

the metric g becomes

g =
4

k2

(

4
∑

i=1

f i ⊗ f i
)

and J is again defined by Jf1 = −f2 and Jf3 = −f4; so this corresponds to case 2 of the
Theorem of Chapter III in [Jen69].

Now we consider the other 4-dimensional Lie algebras su(2)×R and sl(2,R)×R, whose structure
equations are

su(2)× R















de1 = −e23

de2 = e13

de3 = −e12

de4 = 0

sl(2,R)× R















de1 = −e23

de2 = e13

de3 = e12

de4 = 0

From a more general result in [RAS10] we obtain that the only integrable complex structures on these
algebras are defined in both cases by

Je1 = e2, Je3 = −p · e3 + (1 + p2) · e4.

With a brief calculation, we find that all the metrics compatible with those complex structures are
represented by a symmetric real matrix (mij)i,j=1..4 whose coefficients satisfy

m41 =
−m32 + pm31

p2 + 1
, m42 =

m31 + pm32

p2 + 1
, m12 = 0,

m43 = p
m33 + (p2 + 1)m44

2(p2 + 1)
, m33 = (1 + p2)m44.

(3.5)

Note that both these Lie algebras are simple, thus by Theorem 8 of [Chu74] they cannot admit
any invariant symplectic structure, so no invariant static metric with λ 6= 0 can be found on these
algebras.

We study the two cases separately:
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• su(2)× R

If we consider a metric g represented by a symmetric real matrix (mij)i,j=1..4 whose coeffi-
cients satisfy (3.5), we find

Φ(X,Y ) = −
−2m31

2 − 2m32
2 + (1 + p2)m44 m11 −m44

2(1 + p2)2

−m31
2 −m32

2 +m44 m11 p2 +m44 m11
· e12−

−
1

2

(1 + p2)(m44m32 +m11m32 + p ·m44m31)

−m31
2 −m32

2 +m44 m11 p2 +m44 m11
· (e13 + e24)−

−
1

2

m44 p
2m31 +m44 m31 + pm11m32 +m31 m11

−m31
2 −m32

2 +m44 m11 p2 +m44 m11
· (e14 − e23).

As said before, this algebra can only admit static metric with λ = 0; imposing that (ρB)(1,1) =
0 we obtain that m11 = (1 + p2)m44 and m31 = m32 = 0, so every metric in the form









(1 + p2)m44 0 0 0
0 (1 + p2)m44 0 0
0 0 (1 + p2)m44 pm44

0 0 pm44 m44









is a static metric with λ = 0.
Note that su(2) × R is the Lie algebra of the Hopf surface H considered before, so one of
those metrics is the bi-invariant one. Computing the Bismut connection we find

∇B
XY =

p x4y2
p2 + 1

e1 −
p x4y1
p2 + 1

e2,

so for p = 0 we have the bi-invariant metric, because this implies ∇B
XY = 0.

• sl(2,R)× R

If we consider a metric g represented by a symmetric real matrix (mij)i,j=1..4 whose coeffi-
cients satisfy (3.5), we find that

Φ(X,Y ) = +
−2m31

2 − 2m32
2 + (1 + p2)m44 m11 +m44

2(1 + p2)2

−m31
2 −m32

2 +m44 m11 p2 +m44 m11
· e12−

−
1

2

(1 + p2)(−m44m32 +m11m32 − p ·m44m31)

−m31
2 −m32

2 +m44 m11 p2 +m44 m11
· (e13 + e24)−

−
1

2

−m31 m44 p
2 −m44 m31 + pm11m32 +m31 m11

−m31
2 −m32

2 +m44 m11 p2 +m44 m11
· (e14 − e23).

Again, this algebra can only admit static metric with λ = 0, and imposing that (ρB)(1,1) = 0
we obtain that m11 = −(1 + p2)m44 and m31 = m32 = 0; but m11m44 6 0, that is a
contradiction because g is positive definite. Then sl(2,R) × R does not admit any static
metric.

�

Using theorem 3.1 we note that if (g, J) is a Lie algebra of dimension 4 together with an integrable
complex structure J and g is a static metric, then either (g, J) is Kähler-Einstein or g is the Lie
algebra of the Hopf surface. This reflects a more general situation that was pointed out in Remark 2
of [AI01] using a result of [GI97]:

Proposition 3.2.

Let (M,J) be a compact complex surface and g a static J-Hermitian metric; then (M, g, J) is con-
formally equivalent either to a Kähler-Einstein manifold or to a Hopf surface.
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