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ON TENSOR PRODUCTS OF WEAK MIXING VECTOR SEQUENCES

AND THEIR APPLICATIONS TO C∗- DYNAMICAL SYSTEMS

FARRUKH MUKHAMEDOV

Abstract. We prove that, under certain conditions, uniform weak mixing (to zero)
of the bounded sequences in Banach space implies uniform weak mixing of its tensor
product. Moreover, we prove that ergodicity of tensor product of the sequences in Banach
space implies its weak mixing. Applications of the obtained results to C

∗-dynamical
systems are given.
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1. Introduction

Let X be a Banach spaces with dual space X∗. In what follows BX denotes the unit ball in X ,
i.e. BX = {x ∈ X : ‖x‖ ≤ 1}.

Recall that a sequence {xk} in X is said to be

(i) weakly mixing to zero if

lim
n→∞

1

n

n
∑

k=1

|f(xk)| = 0, for all f ∈ X∗;

(ii) uniformly weakly mixing to zero if

lim
n→∞

sup

{

1

n

n
∑

k=1

|f(xk)| : f ∈ BX∗

}

= 0;

(iii) weakly ergodic if

lim
n→∞

1

n

∣

∣

∣

∣

n−1
∑

k=0

f(xk)

∣

∣

∣

∣

= 0 for all f ∈ X∗;

(iii) ergodic if

lim
n→∞

1

n

∥

∥

∥

∥

n−1
∑

k=0

xk

∥

∥

∥

∥

= 0.

From the definitions one can see that uniform weakly mixing implies weakly mixing, as well as
ergodicity implies weak ergodicity. But, the converse is not true at all.

Example 1.1. [20] Let X = L2([0, 1]) and 1 < n1 < n2 · · · be a sequence in N such that

nj − 1

nj+1 − 1
≤

1

2
, j ∈ N

(for example, n1 = 1, n2 = 2 and nj+1 = 2nj − 1 for j ∈ N). Let

1 > t1 > t2 > · · · > 0, tj → 0

be real numbers and gi : [0, 1] → [0,∞), j ∈ N be continuous functions such that

supp(gi) ⊂ [tj+1, tj ] and ‖gj‖2 = 1

for all j ∈ N.

Put
fk = gi for nj ≤ k ≤ nj+1,

1
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then (fk)kE1 is a bounded sequence in L2([0, 1]), which is weakly convergent to zero, and so is
weakly mixing to zero, but which is not uniformly weakly mixing to zero.

Recall [20] that a sequence {xk} in a Banach space X is called convex shift-bounded if there
exists a constant c > 0 such that

∥

∥

∥

∥

p
∑

j=1

λjxj+k

∥

∥

∥

∥

≤ c

∥

∥

∥

∥

p
∑

j=1

λjxj

∥

∥

∥

∥

, k ≥ 1

holds for any p ∈ N and λ1, · · ·λp ≥ 0.
One can see that every convex shift-bounded sequence is bounded.

Example 1.2. Let U : X → X be a power bounded linear operator (i.e. the sequence {‖Uk(x)‖} is
bounded for every x ∈ X). Take x ∈ X then the sequence {‖Uk(x)‖} is convex shift-bounded.

The following theorem (see [20]) characterizes week mixing to zero which is a counter part of
the Blum-Hanson theorem [5],[11].

Theorem 1.1. For a convex shift-bounded sequence {xk} in a Banach space X the following
conditions are equivalent:

(i) {xk} is weakly mixing to zero;
(ii) {xk} is uniformly weakly mixing to zero;

There is also a characterization of uniformly weak mixing to zero by mean egodic convergence.

Theorem 1.2. For a bounded sequence {xk} in a Banach space X the following conditions are
equivalent:

(i) {xk} is uniformly weakly mixing (resp. weakly mixing) to zero;
(ii) For every sequence k1 < k2, · · · in N with sup

n∈N

kn

n
< +∞ the sequence {xkn

} is ergodic

(resp. weakly ergodic).

From this theorem we conclude that weakly ergodicity does not imply ergodicity too.
In the mentioned and others related papers (see [4, 11, 12]) tensor product of sequences which

obey mixing and ergodicity were not considered. Section 2 of this note is devoted to the extension
of the well-known classical results, stating that a transformation is weakly mixing if and only if
its Cartesian square is ergodic [1], for the tensor product of sequences in Banach spaces. In next
section 3, we provide some applications of the obtained results to uniquely E-ergodic, uniquely
E-weak mixing C∗-dynamical systems. Note that such dynamical systems were investigated in
[2, 9, 10, 15, 16].

2. Main results

Let X be a Banach spaces with dual spaces X∗. For given r > 0 and a ∈ X denote

Br,X(a) = {x ∈ X : ‖x− a‖ ≤ r}.

Let us prove the following useful theorem.

Theorem 2.1. For a bounded sequence {xk} in a Banach space X the following conditions are
equivalent:

(i) {xk} is uniformly weakly mixing to zero;
(ii) For every r > 0 and y ∈ X∗ one has

lim
n→∞

sup

{

1

n

n
∑

k=1

|f(xk)| : f ∈ Br,X∗(y)

}

= 0;

Proof. (i) ⇒(ii). Let r > 0 and y ∈ X∗. Then from (i) one gets

lim
n→∞

1

n

n
∑

k=1

|y(xk)| = lim
n→∞

‖y‖

n

n
∑

k=1

∣

∣

∣

∣

y

‖y‖
(xk)

∣

∣

∣

∣

= 0 (1)



ON TENSOR PRODUCTS OF WEAK MIXING SEQUENCES 3

Now take an arbitrary g ∈ Br,X∗(y) and denote f = 1
r
(g − y). One can see that f ∈ BX∗ .

Therefore, from (1), (i) and

sup

{

1

n

n
∑

k=1

|g(xk)| : g ∈ Br,X∗(y)

}

≤
r

n

n
∑

k=1

|y(xk)|+ sup

{

1

n

n
∑

k=1

|f(xk)| : f ∈ BX∗

}

we get the required assertion.
The implication (ii)⇒(i) is obvious. �

Let X , Y be two Banach spaces with dual spaces X∗ and Y ∗, respectively. Completion of the
algebraic tensor product X ⊙ Y with respect to a cross norm α is denoted by X ⊗α Y . By α∗ we
denote conjugate cross norm to α defined on X∗ ⊙ Y ∗.

For the dual Banach spaces X∗ and Y ∗ denote

BX∗ ⊙BY ∗ =

{ n
∑

k=1

λkxk ⊗ yk

∣

∣

∣

∣

{xk}
n
k=1 ⊂ BX∗ , {yk}

n
k=1 ⊂ BY ∗ ,

λk ≥ 0,
n
∑

k=1

λk ≤ 1, n ∈ N

}

.

By BX∗ ⊗α∗ BY ∗ denote the closure of BX∗ ⊙ BY ∗ with respect to conjugate cross-norm α∗.
One can see that BX∗ ⊗α∗ BY ∗ ⊂ B(X⊗αY )∗ .

In what follows we consider the following two conditions:

(I) There is a number r > 0 (r ≤ 1) and an element y ∈ (X ⊗α Y )∗ such that

Br,(X⊗αY )∗(y) ⊂ BX∗ ⊗α∗ BY ∗ ;

(II) X∗ ⊗α∗ Y ∗ = (X ⊗α Y )∗.

One has the following

Proposition 2.2. Let (I) be satisfied, then (II) holds.

Proof. Assume that (I) is satisfied. Then one immediately sees that y ∈ BX∗ ⊗α∗ BY ∗ . Now
let us take an arbitrary f ∈ (X ⊗α Y )∗, and show that it can be approximated by elements of

X∗ ⊗α∗ Y ∗. Indeed, denote g = y + r f
‖f‖ . Then g ∈ Br,(X⊗αY )∗(y). Due to (I) we conclude that

there is a sequence {gn} ⊂ BX∗ ⊗α∗ BY ∗ such that gn converges to g in α∗-norm. Since for all gn
one has gn ∈ X∗ ⊗α∗ Y ∗, therefore, we have g ∈ X∗ ⊗α∗ Y ∗. Hence, f = ‖f‖

r
(g − y) belongs to

X∗ ⊗α∗ Y ∗. �

Example 2.1. Let us give some more example which satisfy (I) and (II) conditions.

(i) Let 1 < p, q < ∞, with conjugate indices p′, q′ (i.e. p′ = p
p−1 ). Consider ℓp, ℓq. Then for

the projective norm π one has (ℓp ⊗π ℓq)
∗ = ℓp′ ⊗π∗ ℓq′ if and only if p > q′ (see Corollary

4.24, Theorem 4.21 [18]).
(ii) We give here a sufficient condition to satisfy (II). The proof can be found in (see Theorem

5.33 [18]).
Let X and Y be Banach spaces such that X∗ has the Radon-Nikodym property and

either X∗ or Y ∗ has the approximation property. Then

(X ⊗ǫ Y )∗ = X∗ ⊗π Y ∗

here ǫ and π are the injective and the projective norms, respectively.
Note that more examples are given in [18].

Theorem 2.3. Let X and Y be two Banach spaces with a cross-norm α such that condition (I)
is satisfied. Let {xk} be a be bounded sequence in X. Then the following assertions are equivalent

(i) for any bounded sequence {yk} in Y , the sequence {xk⊗yk} in X⊗αY is uniformly weakly
mixing to zero;

(ii) {xk} is uniformly weakly mixing to zero.



4 FARRUKH MUKHAMEDOV

Proof. (i)⇒ (ii). Let us take any nonzero element y ∈ Y . Define a sequence {yk} by yk = y for all
k ∈ N. For the defined sequence due to condition (i) we have

lim
n→∞

sup

{

1

n

n
∑

k=1

|f(xk ⊗ y)| : f ∈ B(X⊗αY )∗

}

= 0. (2)

Now take f = g ⊗ h with g ∈ BX∗ and h ∈ BY ∗ , h(y) 6= 0. Then from (2) one gets

lim
n→∞

(

sup
g∈BX∗

{

1

n

n
∑

k=1

|g(xk)|

})

|h(y)| = 0

which implies the assertion.
(ii)⇒ (i). Let {yk} be an arbitrary bounded sequence in Y , and f ∈ BX∗ , g ∈ BY ∗ be any

functionals. Then the Schwarz inequality yields

1

n

n
∑

k=1

|f(xk)g(yk)| ≤

√

√

√

√

1

n

n
∑

k=1

|f(xk)|2

√

√

√

√

1

n

n
∑

k=1

|g(yk)|2

≤ max
k

{‖yk‖}‖g‖

√

√

√

√

1

n

n
∑

k=1

|f(xk)|2. (3)

Moreover,

sup
f∈BX∗

{

1

n

n
∑

k=1

|f(xk)|
2

}

≤ max{‖xk‖} sup
f∈BX∗

{

1

n

n
∑

k=1

|f(xk)|

}

−→ 0 as n → ∞.

Therefore, (3) implies that

lim
n→∞

sup
f∈BX∗ ,

g∈BY ∗

{

1

n

n
∑

k=1

|f ⊗ g(xk ⊗ yk)|

}

= 0. (4)

Hence, using the norm-denseness of the elements
∑m

k=1 λkfk ⊗ gk, {fk} ⊂ BX∗ , {gk} ⊂ BY ∗

(where λk ≥ 0,
∑n

k=1 λk ≤ 1 ) in BX∗ ⊗∗
α BY ∗ from (4) one gets

lim
n→∞

sup
ϕ∈BX∗⊗∗

αBY ∗

{

1

n

n
∑

k=1

|ϕ(xk ⊗ yk)|

}

= 0. (5)

Thanks to condition (I) one has

sup
f∈Br,(X⊗αY )∗ (y)

{

1

n

n−1
∑

k=0

|f(xk ⊗ yk)|

}

≤ sup
w∈BX∗⊗∗

αBY ∗

{

1

n

n−1
∑

k=0

|w(xk ⊗ yk)|

}

,

consequently (5) with Theorem 2.1 yields the required statement. �

Remark. From the proof of Theorem 2.3 one can see that the implication (i)⇒ (ii) is still valid
without condition (I).

Using the same argument as above given the proof we get the following

Corollary 2.4. Let X and Y be two Banach spaces with a cross-norm α such that condition (II) is
satisfied. Let {xk} be a be bounded sequence in X. Then for the following assertions are equivalent

(i) for any bounded sequence {yk} in Y , the sequence {xk ⊗ yk} in X ⊗α Y is weakly mixing
to zero;

(ii) {xk} is weakly mixing to zero.

Proposition 2.5. Let X be a Banach space and {xk} be a bounded sequence in X such that the
sequence {xk ⊗ xk} is ergodic in X ⊗α X. Then {xk} is uniformly weakly mixing to zero.
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Proof. Ergodicity of the the sequence {xk ⊗ xk} means that

lim
n→∞

1

n

∥

∥

∥

∥

n
∑

k=1

xk ⊗ xk

∥

∥

∥

∥

= 0,

whence we find

lim
n→∞

sup
f∈BX∗

{

1

n

∣

∣

∣

∣

f ⊗ f

( n−1
∑

k=0

xk ⊗ xk

)
∣

∣

∣

∣

}

= lim
n→∞

sup
f∈BX∗

{

1

n

∣

∣

∣

∣

n−1
∑

k=0

f ⊗ f(xk ⊗ xk)

∣

∣

∣

∣

}

= lim
n→∞

sup
f∈BX∗

{

1

n

n−1
∑

k=0

|f(xk)|
2

}

= 0. (6)

The Schwartz inequality implies that

sup
f∈BX∗

{

1

n

n−1
∑

k=0

|f(xk)|

}

≤

√

√

√

√ sup
f∈BX∗

{

1

n

n−1
∑

k=0

|f(xk)|2
}

Therefore, due to (6) we find that {xk} is uniformly weakly mixing to zero. �

Similarly, one can prove

Corollary 2.6. Let X be a Banach space and {xk} be a bounded sequence in X such that the
sequence {xk ⊗ xk} is weakly ergodic in X ⊗α X. Then {xk} is weakly mixing to zero.

Theorem 2.7. Let X be a Banach spaces with a cross-norm α on X ⊙X such that condition (I)
is satisfied with Y = X. Let {xk} be a be bounded sequence in X. Then the following assertions
are equivalent

(i) the sequence {xk ⊗ xk} is ergodic in X ⊗α X;
(ii) the sequence {xk ⊗ xk} is uniformly weakly mixing to zero in X ⊗α X;
(iii) {xk} is uniformly weakly mixing to zero.

Proof. The implication (i)⇒ (iii) immediately follows from Proposition 2.5. The implication (iii)⇒
(ii) follows from Theorem 2.3. The implication (ii)⇒ (i) is evident. �

Corollary 2.8. Let X be a Banach spaces with a cross-norm α on X⊙X such that condition (II)
is satisfied with Y = X. Let {xk} be a be bounded sequence in X. Then the following assertions
are equivalent

(i) the sequence {xk ⊗ xk} is weakly ergodic in X ⊗α X;
(ii) the sequence {xk ⊗ xk} is weakly mixing to zero in X ⊗α X;
(iii) {xk} is weakly mixing to zero.

Theorem 2.9. Let X and Y be two Banach spaces with a cross-norm α on X ⊙ Y such that con-
dition (I) (resp. (II)) is satisfied. Let {xk} be a bounded sequence in X. The following assertions
are equivalent

(i) for any bounded sequence {yk} in Y , the sequence {xk ⊗ yk} in X ⊗α Y is ergodic (resp.
weakly ergodic);

(ii) {xk} is uniformly weakly mixing (resp. weakly mixing) to zero.

Proof. (i)⇒ (ii). Let us take any nonzero element y ∈ Y . Define a sequence {yk} by yk = y for all
k ∈ N. For the defined sequence due to condition (i) we have

lim
n→∞

∥

∥

∥

∥

1

n

n
∑

k=1

xk ⊗ y

∥

∥

∥

∥

= lim
n→∞

∥

∥

∥

∥

1

n

n
∑

k=1

xk

∥

∥

∥

∥

‖y‖ = 0 (7)

which means {xk} is ergodic. The condition yields that {xk ⊗ xk} is ergodic, hence Theorem 2.7
implies that that {xk} is uniformly weakly mixing to zero.

(ii)⇒ (i). According to Theorem 2.3 we find that {xk ⊗ yk} is uniformly weakly mixing to zero,
for every bounded sequence {yk} in Y . Hence, it is ergodic. �



6 FARRUKH MUKHAMEDOV

3. Applications to C∗-dynamical systems

In this section A will be a C∗- algebra with the unity 1I. Recall a linear functional ϕ ∈ A∗

is called positive if ϕ(x∗x) ≥ 0 for every x ∈ A. A positive functional ϕ is said to be a state if
ϕ(1I) = 1. By S(A) we denote the set of all states on A. A linear operator T : A 7→ A is called
positive if Tx ≥ 0 whenever x ≥ 0. By Mn(A) we denote the set of all n×n-matrices a = (aij) with
entries aij in A. A linear mapping T : A 7→ A is called completely positive if the linear operator
Tn : Mn(A) 7→ Mn(A) given by Tn(aij) = (T (aij)) is positive for all n ∈ N. A completely positive
map T : A 7→ A with T1I = 1I is called a unital completely positive (ucp) map. A pair (A, T )
consisting of a C∗-algebra A and a ucp map T : A 7→ A is called a C∗-dynamical system. Let B be
another C∗-algebra with unit. A completion of the algebraic tensor product A ⊙B with respect
to the minimal C∗-tensor norm on A⊙B is denoted by A⊗B, and it would be also a C∗-algebra
with a unit (see, [19]). It is known [19] that if (A, T ) and (B, H) are two C∗-dynamical systems,
then (A⊗B, T ⊗H) is also C∗-dynamical system. Since a mapping T ⊗H : A⊗B 7→ A⊗B given
by (T ⊗H)(x⊗ y) = Tx⊗Hy is a ucp map.

Let (A, T ) be a C∗dynamical system, and B be a subspace of A. Let E : A → B be a norm-one
projection, i.e. E2 = E. In [8] (see also [9, 16]) it has been introduced the following notations

Definition 3.1.

(i) (A, T ) is said to be unique E–ergodic if

lim
n→∞

1

n

n
∑

k=1

ϕ(T k(x)) = ϕ(E(x)) , x ∈ A , ϕ ∈ S(A) . (8)

(ii) (A, T ) is said to be unique E–weakly mixing if

lim
n→∞

1

n

n−1
∑

k=0

∣

∣ϕ(T k(x)) − ϕ(E(x))
∣

∣ = 0 , x ∈ A , ϕ ∈ S(A) . (9)

It can readily seen (cf. [9]) that the map E below is a norm one projection onto the fixed point
subspace AT = {x ∈ A : Tx = x}. Therefore, in what follows we denote it by ET . In [2], (i) is
called unique ergodicity w.r.t. the fixed point subalgebra, whereas (ii) is called in [9] E–strictly
weak mixing. In addition, when E = ω( · )1I (i.e. when there is a unique invariant state for T ), (i)
is the well–known unique ergodicity, and (ii) is called strict (unique) weak mixing in [16]. Note
that in [3] reletions between unique ergodicity, minimality and weak mixing was studied.

By using the Jordan decomposition of bounded linear functionals (cf. [19]), one can replace
S(A) with A∗ in Definition 3.1.

Note that in [9, 15] it has been shown that the free shift on the reduced amalgamated free product
C∗–algebra, and lenght–preserving automorphisms of the reduced C∗–algebra of RD-group for the
lenght–function, including the free shift on the free group on infinitely many generators are enjoy
unique E-mixing property. Such class of dynamical systems first time was defined and studied in
[2]. Note that in [10] more other complicated unique E-ergodic and unique mixing C∗-dynamical
systems arising from free probability have been studied. Note that in [7] sufficient and necessary
conditions for ergodicity in terms of joinings are studied.

In this section we are going to apply the results of the previous section to the given notions.

Theorem 3.2. Let (A, T ), (B, H) be two C∗-dynamical systems with (A ⊗B)T⊗H = AT ⊗BH ,
and assume that (A⊗B)∗ = A∗ ⊗B∗ is satisfied. Then the following assertions are equivalent:

(i) The C∗-dynamical system (A⊗B, T ⊗H) is unique ET ⊗ EH-weak mixing;
(ii) (A, ϕ, T ) and (B, ϕ1, H) are unique ET and EH weak mixing, respectively.

Proof. First note that (A⊗B)T⊗H = AT ⊗BH implies that ET⊗H = ET ⊗ EH , therefore, in the
proof we will deal with ET ⊗EH . Consequently, the implication (i)⇒(ii) immediately follows from
the definition.

Let us consider the implication (ii)⇒(i). Let x ∈ A and y ∈ B. Define two sequences as follows

xk = T k(x)− ET (x), yk = Hk(y)− EH(y), k ∈ N. (10)
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Then one can see that the sequences are weakly mixing. Hence, Corollary 2.4 implies that the
sequence {xk ⊗ yk} is weakly mixing as well. This means that for every ω ∈ (A ⊗B)∗ one has

lim
n→∞

1

n

n
∑

k=1

∣

∣ω(T k(x) ⊗Hk(y))− ω(T k(x)⊗ EH(y))

−ω(ET (x)⊗Hk(y)) + ω(ET (x) ⊗ EH(y))
∣

∣ = 0 (11)

Now define two functionals ω1 and ω2 on A and B, respectively, as follows:

ω1(·) = ω(· ⊗ EH(y)) ω2(·) = ω(ET (x)⊗ ·), (12)

here ET (x) and EH(y) are fixed. Then according weak mixing condition (see (ii)) one has

lim
n→∞

1

n

n
∑

k=1

∣

∣ω1(T
k(x)) − ω1(ET (x))

∣

∣ = 0, (13)

lim
n→∞

1

n

n
∑

k=1

∣

∣ω2(H
k(y))− ω2(EH(y))

∣

∣ = 0. (14)

The last relations (13),(14) with (12) mean that

lim
n→∞

1

n

n
∑

k=1

∣

∣ω(T k(x) ⊗ EH(y))− ω(ET (x)⊗ EH(y))
∣

∣ = 0, (15)

lim
n→∞

1

n

n
∑

k=1

∣

∣ω(ET (x)⊗Hk(y))− ω(ET (x)⊗ EH(y))
∣

∣ = 0. (16)

The inequality

|ω(T k ⊗Hk(x⊗ y)) − ω(ET (x) ⊗ EH(y))|

≤

∣

∣

∣

∣

ω(T k(x) ⊗Hk(y))− ω(T k(x) ⊗ EH(y))

−ω(ET (x)⊗Hk(y)) + ω(ET (x) ⊗ EH(y))

∣

∣

∣

∣

+
∣

∣ω(T k(x)⊗ EH(y))− ω(ET (x)⊗ EH(y))
∣

∣

+
∣

∣ω(ET (x) ⊗Hk(y))− ω(ET (x)⊗ EH(y))
∣

∣

with (11),(15) and (16) imply that

lim
n→∞

1

n

n
∑

k=1

∣

∣ω(T k ⊗Hk(x⊗ y)) − ω(ET ⊗ EH(x⊗ y))
∣

∣ = 0. (17)

The norm-denseness of the elements
∑m

i=1 xi ⊗ yi in A⊗B with (17) yields

lim
n→∞

1

n

n
∑

k=1

∣

∣ω(T k ⊗Hk(z)) − ω(ET ⊗ EH(z))
∣

∣ = 0.

for arbitrary z ∈ A⊗B. So, (A ⊗B, T ⊗H) is unique ET ⊗ EH -weak mixing. �

Remark. The proved theorem extends some results of [14, 15]. We note that in [3, 13] similar
results were proved for non-commutative dynamical systems defined over von Neumann algebras.

Example 3.1. Let us consider some more examples of C∗-algebras which satisfy the condition
(A⊗B)∗ = A∗ ⊗B∗.

(i) Let K be a compact metric space. By C(K) we denote the set of all continuous functions.
Then one can see that C(K) and its dual C(K)∗ are separable. Then due to Corollary
5.42 [18] the space C(K)∗ has the Radon-Nikodým property (see [18] for more details).
Moreover, it also has the approximation property (see [18], p.74). Therefore, according to
Theorem 5.33 [18] we have (C(K)⊗ A)∗ = C(K)∗ ⊗ A

∗ for every C∗-algebra A.
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(ii) Consider the space c0, which dual ℓ1 has the Radon-Nikodým and the approximation
properties (see [18]). Hence, again Theorem 5.33 [18] implies that (c0 ⊗ A)∗ = (c0)

∗ ⊗ A∗

for every C∗-algebra A.
(iii) Let Mn(C) be the algebra of n×n matrices over C. Then owing to Theorem 5.33 [18] one

has (Mn(C)⊗ A)∗ = (Mn(C))
∗ ⊗ A∗ for every C∗-algebra A.

Theorem 3.3. Let (A, T ) be a C∗-dynamical systems. Then for the following assertions

(i) (A, T ) is unique ET -weak mixing;
(ii) for every (B, H) - unique EH-ergodic C∗-dynamical system with ET⊗H = ET ⊗ EH and

A∗⊗B∗ = (A⊗B)∗, the C∗-dynamical system (A⊗B, T ⊗H) is unique ET ⊗EH-ergodic;

the implication (i)⇒(ii) holds true.

Proof. Let (B, , H) be a C∗-dynamical system as in (ii). Now take arbitrary elements x ∈ A and
y ∈ B, and consider the corresponding sequences {xk} and {yk} given by (10). Then due to the
condition {xk} is weak mixing and {yk} is weak ergodic. Hence, Theorem 2.9 yields that {xk⊗yk}
is weak ergodic, which means for every ω ∈ (A⊗B)∗ one has

lim
n→∞

1

n

n
∑

k=1

(

ω(T k(x) ⊗Hk(y))− ω(T k(x) ⊗ EH(y))

−ω(ET (x) ⊗Hk(y)) + ω(ET (x)⊗ EH(y))
)

= 0 (18)

Using similar arguments as in the proof of Theorem 3.2 we find

lim
n→∞

1

n

n
∑

k=1

∣

∣ω(T k(x) ⊗ EH(y))− ω(ET (x)⊗ EH(y))
∣

∣ = 0, (19)

lim
n→∞

1

n

n
∑

k=1

(

ω(ET (x)⊗Hk(y))− ω(ET (x) ⊗ EH(y))
)

= 0. (20)

From
∣

∣

∣

∣

1

n

n
∑

k=1

(

ω(T k ⊗Hk(x⊗ y)) − ω(ET (x) ⊗ EH(y))
)

∣

∣

∣

∣

≤

∣

∣

∣

∣

1

n

n
∑

k=1

(

ω(T k(x)⊗Hk(y))− ω(T k(x)⊗ EH(y))

−ω(ET (x)⊗Hk(y)) + ω(ET (x)⊗ EH(y))
)

∣

∣

∣

∣

+
1

n

n
∑

k=1

∣

∣ω(T k(x) ⊗ EH(y))− ω(ET (x) ⊗ EH(y))
∣

∣

+

∣

∣

∣

∣

1

n

n
∑

k=1

(

ω(ET (x)⊗Hk(y))− ω(ET (x)⊗ EH(y))
)

∣

∣

∣

∣

and (18)-(20) we obtain

lim
n→∞

1

n

n
∑

k=1

(

ω(T k ⊗Hk(x⊗ y)) − ω(ET ⊗ EH(x⊗ y))
)

= 0.

Finally, the density argument shows that (A⊗B, T ⊗H) is unique ET ⊗ EH -ergodic. �

Remark. We note that all the results of this section extends the results of [14, 15] to uniquely
E-ergodic and uniquely E-weak mixing.

Remark. We have to stress that the unique ergodicity T ⊗ H does not imply unique weak
mixing of T . Indeed, let us consider the following examples.
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Example 3.2. Let A = C
2 and

T =

(

0 1
1 0

)

.

It is clear that AT = C1I, so T is ergodic, i.e.

lim
n→∞

1

n

n
∑

k=1

T k(x, y) =
x+ y

2
(1, 1). x, y ∈ C

From the equality
∣

∣

∣

∣

T k(x, y)−
x+ y

2
(1, 1)

∣

∣

∣

∣

=

∣

∣

∣

∣

x− y

2

∣

∣

∣

∣

we infer that T is not unique weak mixing.
On the other hand, the equality

(A⊗ A)T⊗T = {(x, y, y, x) : x, y ∈ C},

implies unique ET⊗T -ergodicity of T ⊗ T .

Example 3.3. Let A = C3 and B = C2. Consider the a mapping P : A → A given by

P (x, y, z) = (y, x, uy + vz), (21)

where u, v > 0 and u + v = 1. It is clear that P is positive and unital. Direct calculations show
that AP = C1I, which means P is uniquely ergodic.

Now consider the mapping P ⊗T , where T is defined as above. One can see that such a mapping
acts as follows

P ⊗ T (x,y) = (Py, Px)

where x,y ∈ A. Hence, we find

(A⊗B)P⊗T =
{

(x, Px) : x ∈ A
P 2}

.

Therefore, from (21) one immediately gets

P 2(x, y, z) = (x, y, ux+ uvy + v2z). (22)

Thus, we find

A
P 2

=

{(

x, y,
x+ vy

1 + v

)

: x, y ∈ C

}

.

On the other hand, we have AP ⊗BT = C1I, which means (A⊗B)P⊗T 6= AP ⊗BT .
Similarly reasoning as in Example 3.2 we can show that P ⊗ T is uniquely EP⊗T -ergodic.
Note that, from the provided examples we infer the importance of condition ET⊗H = ET ⊗EH .
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