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Abstract

We investigate the maximal size of distinguished submatrices of a Gaussian random

matrix. Of interest are submatrices whose entries have average greater than or equal to

a positive constant, and submatrices whose entries are well-fit by a two-way ANOVA

model. We identify size thresholds and associated (asymptotic) probability bounds

for both large-average and ANOVA-fit submatrices. Results are obtained when the

matrix and submatrices of interest are square, and in rectangular cases when the matrix

submatrices of interest have fixed aspect ratios. In addition, we obtain a strong, interval

concentration result for the size of large average submatrices in the square case. A

simulation study shows good agreement between the observed and predicted sizes of

large average submatrices in matrices of moderate size.
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1 Introduction

Gaussian random matrices (GRMs) have been a fixture in the application and theory of

multivariate analysis for many years. Recent work in the field of random matrix theory has

provided a wealth of information about the eigenvalues and eigenvectors of Gaussian, and

more general, random matrices. Motivated by problems of data mining and the exploratory

analysis of large data sets, this paper considers a different problem, namely the maximal size

of distinguished submatrices in a GRM. Of interest are submatrices that are distinguished

in one of two ways: (i) the average of their entries is greater than or equal to a positive

constant or (ii) the optimal two-way ANOVA fit of their entries has average squared residual

less than a positive constant.

Using arguments from combinatorial probability, we identify size thresholds and associ-

ated probability bounds for large average and ANOVA-fit submatrices. Results are obtained

when the matrix and the submatrices of interest are square, and when the matrix and the

submatrices of interest have fixed aspect ratios. In each case, the maximal size of a distin-

guished submatrix grows logarithmically with the dimension of the matrix, and depends in

a polynomial-type fashion on the inverse of the constant that constitutes the threshold of

distinguishability. In the rectangular case, the aspect ratio of the submatrix plays a more

critical role than the aspect ratio of the matrix itself. In addition, we obtain upper and

lower bounds for the size of large average submatrices in the square case. In particular, for

n × n GRMs, the size of the largest square submatrix with average greater than τ > 0 is

eventually almost surely within in an interval of fixed width that contains the critical value

4τ−2(lnn− ln(4τ−2 lnn)).

We assess our bounds for large average submatrices via a simulation study in which

the size thresholds for large average submatrices are compared to the observed size of such

submatrices in a Gaussian random matrix. For matrices with moderate size and aspect

ratio, there is good agreement between the observed and predicted sizes.

Results of the sort established here fall outside the purview of random matrix theory

and its techniques. Nevertheless, random matrix theory does provide some insight into the

logarithmic scale of large average submatrices. This is discussed briefly in Section 1.3 below.

1.1 Exploratory Data Analysis

The results of this paper are motivated in part by the increasing application of ex-

ploratory tools such as biclustering to the analysis of large data sets. To be specific, con-
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sider an m × n data matrix X that is generated by measuring the values of m real-valued

variables on each of n subjects or samples. The initial analysis of such data often involves

an exploratory search for interactions among samples and variables. In genomic studies of

cancer, sample-variable interactions can provide the basis for new insights and hypotheses

concerning disease subtypes and genetic pathways, c.f. [8, 17, 6, 20, 21, 25].

Formally, sample-variable interactions correspond to distinguished submatrices of X.

The task of identifying such submatrices is generally referred to as biclustering, two-way

clustering or subspace clustering in the computer science and bioinformatics literature.

There is presently a substantial body of work on biclustering methods, based on a variety

of submatrix criteria; overviews can be found in [13, 10, 15] and the references therein.

In particular, the biclustering methods by Tanay et al. [24] and by Shabalin et al. [18]

search for submatrices whose entries have a large average value, while those of Cheng and

Church [4] and Lazzeroni and Owen [12] search for submatrices whose entries are well fit

by a two-way ANOVA model. The effectiveness of these procedures in the analysis of real

data is considered in [18].

An exact or heuristic search among the (exponentially large) family of submatrices of a

data matrix for those that are distinguished by their average or ANOVA fit leads naturally

to a number of statistical questions related to multiple testing. For example, how large does

a distinguished submatrix have to be in order for it to be considered statistically significant,

and therefore potentially worthy of scientific interest? What is the statistical significance of

a given distinguished submatrix? Quantitative answers require an appropriate null model

for the observed data matrix, and in many cases, a GRM model is a natural starting point

for analysis. When a GRM null is appropriate, the results of this paper provide partial

answers to the questions above.

We note that answers to statistical questions like those above can have algorithmic

implications. For example, knowing the minimal size of a significant submatrix can provide

a useful filtering criterion for exhaustive or heuristic search procedures, or can drive the

search procedure in a direct way. The biclustering method in [18] is based on a simple,

Bonferroni corrected measure of statistical significance that arises in the initial analyses

below.

1.2 Bipartite Graphs

Our results on large average submatrices can also be expressed in graph-theoretic terms,

as every m× n matrix X is associated in a natural way with a bipartite graph G = (V,E).
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In particular, the vertex set V of G is the disjoint union of two sets V1 and V2, with |V1| = m

and |V2| = n, corresponding to the rows and columns of X, respectively. For each row i ∈ V1
and column j ∈ V2 there is an edge (i, j) ∈ E with weight xi,j . There are no edges between

vertices in V1 or between vertices in V2. With this association, large average submatrices

of X are in 1:1 correspondence with subgraphs of G having large average edge-weight. The

complexity of finding the largest subgraph of G whose average edge weight is greater than

a threshold appears to be unknown. However, it is shown in [5] that a slight variation of

this problem, namely finding the maximum edge weight subgraph in a general bipartite

matrix, is NP-complete. A randomized, polynomial time algorithm that finds a subgraph

whose edge weight is within a constant factor of the optimum is described in [1], but this

algorithm cannot readily be adapted to the problem considered here.

1.3 Connections with Random Matrix Theory

The theory of random matrices provides some insight into the relationship between large

average submatrices and the singular value decomposition. In practice, the GRM assump-

tion made here acts as a null hypothesis. If an observed matrix contains a large average

submatrix whose size exceeds the thresholds given below, one may reject the GRM hypoth-

esis, and subject the identified submatrix to further analysis. This suggest an alternative

hypothesis, under which a fixed constant is added to every element of a select submatrix

of the null matrix, effectively embedding a large average submatrix within a background of

Gaussian noise. It is then natural to ask if the embedded submatrix affects the top singular

value or singular vectors of the resulting matrix. We argue below that the answer is a

qualified no.

Let W be an m×n Gaussian random matrix, representing the null distribution. Define

a rank-one matrix S = 2τabt, where τ > 0 is a fixed constant, and a ∈ {0, 1}m, b ∈ {0, 1}n

are indicator vectors having k and l non-zero components, respectively. The outer produce

a bt defines a submatrix C whose rows and columns are indexed by the indicator vectors

a and b, respectively. The matrix Y = W + S is distributed according to an alternative

hypothesis under which the fixed constant τ has been added to every entry of the submatrix

C.

Suppose that the dimensions m,n, k and l grow (with n, say) in such a way that the

matrix aspect ratio m/n→ α with α ∈ [1,∞), and the submatrix aspect ratio k/l remains

bounded away from zero and infinity. It is easy to see that the average of the k×l submatrix

C in Y has distributionN (2τ, (kl)−1), which is greater than τ with overwhelming probability

4



when k and l are large. It follows from Proposition 1 that the probability of finding a k× l

submatrix with average greater than τ in the matrix W is vanishingly small if k and l grow

faster than log n. Thus, we might expect to see evidence of C in the first singular value, or

the associated singular vectors, of Y .

Given an m× n matrix U , let s1(U) ≥ · · · ≥ sm(U) denote its ordered singular values,

and let ||U ||F =
∑

i,j u
2
i,j denote its Frobenius norm. The difference between the largest

singular value of W and Y can be bounded as follows:

(s1(Y )− s1(W ))2 ≤
n∑
j=1

(sj(Y )− sj(W ))2

≤
n∑
j=1

(sj(Y −W ))2

= ||Y −W ||2F = ||Z||2F = τ2 k l. (1)

The second line above follows an inequality of of Lidskii (c.f. Exercise 3.5.18 of [9]), and the

third makes use of the fact that the Frobenius norm of a matrix is the sum of the squares

of its singular values. By a basic result of Geman [7],

s1(W )

n1/2
→
(

1 + α1/2
)

(2)

with probability one as n tends to infinity. If k = o(m1/2) and l = o(n1/2), inequality (1)

implies that n−1/2|s1(Y )−s1(W )| → 0 with probability one, and therefore (2) holds with Y

in place of W . In other words, the asymptotic behavior of n−1/2s1(W ) is unchanged under

the alternative Y = W + Z if the dimensions of the embedded submatrix C grow more

slowly than n1/2. (Recall that m is asymptotically proportional to n.)

For fixed τ and k, l such that log n << k, l << n1/2, the embedded submatrix C in Y is

highly significant, but has no effect on the scaled limit of s1(Y ). Under the same conditions,

C is also not recoverable from the top singular vectors of Y . To be precise, let u1 and v1

be the left and right singular vectors of Y corresponding to the maximum singular value

s1(Y ). Using results of Paul [16] on the singular vectors of spiked population models, it

can be shown that atu1 and btv1 tend to zero in probability as n tends to infinity. Thus the

row and column index vectors of C are asymptotically orthogonal to the first left and right

singular vectors of Y .

1.4 Overview

The next section contains probability bounds and a finite interval concentration result

for the size of large average submatrices in the square case. Size thresholds and probability
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bounds for ANOVA submatrices in the square case are presented in Section 3. Thresholds

and bounds in the rectangular case are given in Section 4. Section 5 contains a simulation

study for large average submatrices. Sections 6 – 8 contain the proofs of the main results.

2 Thresholds and Bounds for Large Average Submatrices

Let W = {wi,j : i, j ≥ 1} be an infinite array of independent N (0, 1) random variables,

and for n ≥ 1, let Wn = {wi,j : 1 ≤ i, j ≤ n} be the n × n Gaussian random matrix

equal to upper left hand corner of W . (The almost-sure asymptotics of Theorem 1 requires

consideration of matrices Wn that are derived from a fixed, infinite array.) A submatrix

of Wn is a collection U = {wi,j : i ∈ A, j ∈ B} where A,B ⊆ {1, . . . , n}. The Cartesian

product C = A × B will be called the index set of U , and we will write U = Wn[C]. The

dimension of C is |A| × |B|, where |A|, |B| denote the cardinality of A and B, respectively.

Note that the rows A need not be contiguous, and that the same is true of the columns B.

When no ambiguity will arise, the index set C will also be referred to as a submatrix of Wn.

Definition: For any submatrix U of Wn with index set C = A×B, let

F (U) =
1

|C|
∑

(i,j)∈C

wi,j =
1

|A||B|
∑

i∈A,j∈B
wi,j

be the average of the entries of U . Note that F (U) ∼ N (0, |C|−1).

We are interested in the maximal size of square submatrices whose averages exceed a

fixed threshold. This motivates the following definition.

Definition: Fix τ > 0 and n ≥ 1. Let Kτ (Wn) be the largest k ≥ 0 such that Wn contains

a k × k submatrix U with F (U) ≥ τ .

As the rows and columns of a submatrix need not be contiguous, the statistic Kτ (Wn)

is invariant under row and column permutations of Wn. We may regard the Gaussian

distribution of Wn as a null hypothesis for testing an observed n×n data matrix, and Kτ (·)

as a test statistic with which we can detect departures from the null. Our immediate goal is

to obtain bounds on the probability that Kτ (Wn) exceeds a given threshold, and to identify

a threshold for Kτ (Wn) that governs its asymptotic behavior. To this end, we begin the

analysis of Kτ (Wn) using standard first moment type arguments, which are detailed below.

Let Γk(n, τ) be the number of k × k submatrices in Wn having average greater than or

equal to τ . We begin by identifying the value of k for which E Γk(n, τ) is approximately
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equal to one. If Sk denotes the set of all k × k submatrices of Wn then

Γk(n, τ) =
∑
U∈Sk

I{F (Wn[U ]) ≥ τ}, (3)

and consequently

E Γk(n, τ) = |Sk| · P (F (Wn[U ]) ≥ τ) =

(
n

k

)2

(1− Φ(τk)) ≤
(
n

k

)2

e−
τ2k2

2 , (4)

where in the last step we have used a standard bound on 1− Φ(·). For s ∈ (0, n) define

φn,τ (s) = (2π)−
1
2 nn+

1
2 s−s−

1
2 (n− s)−(n−s)−

1
2 e−

τ2s2

4 . (5)

Using the Stirling approximation of
(
n
k

)
, it is easy to see that φn,τ (k) is an approximation

of the square root of the final expression in (4). In particular, the rightmost expression in

(4) is less than 2φn,τ (k)2. With this in mind, let s(n, τ) be any positive, real root of the

equation

φn,τ (s) = 1. (6)

The next result shows that s(n, τ) exists and is unique, and it provides an explicit expression

for its value when τ is fixed and n is large.

Lemma 1. Let τ > 0 be fixed. When n is sufficiently large, equation (6) has a unique root

s(n, τ), and

s(n, τ) =
4

τ2
lnn − 4

τ2
ln

(
4

τ2
lnn

)
+

4

τ2
+ o(1) (7)

where o(1)→ 0 as n→∞.

We show below that the asymptotic behavior of the random variables Kτ (Wn) is gov-

erned by the root s(n, τ) of equation (6). To begin, note that for values of k greater than

s(n, τ), the expected number of k× k submatrices U of Wn with F (U) ≥ τ is less than one.

The next proposition shows that the probability of seeing such large submatrices is small.

Proposition 1. Let τ > 0 be fixed. For every ε > 0, when n is sufficiently large,

P (Kτ (Wn) ≥ s(n, τ) + r) ≤ 4

τ2
n−2 r

(
lnn

τ2

)2r+ε

(8)

for every r = 1, . . . , n.

The proofs of Lemma 1 and Proposition 1 are given in Section 6. The arguments

are similar to those in [23], with adaptations to the present setting. A result similar to
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Proposition 1 can also be obtained from the comparison principle for Gaussian sequences (cf.

[19]). To be specific, fix k ≥ 1 and note that the family of random variables {F (U) : U ∈ Sk}

is a Gaussian random field with m =
(
n
k

)2
elements that are pairwise positively correlated,

and have a common N (0, kτ) distribution. Then, by the comparison principle,

P (Kτ (Wn) ≥ k) = P

(
max
U∈Sk

F (U) ≥ τ
)
≤ P (max{Z1, ..., Zm} ≥ τ) ,

where Z1, . . . , Zm are independentN (0, kτ) random variables. Using Poisson approximation

based bounds such as those in Section 4.4 of [2], one may obtain a probability upper bound

similar to that in (8).

It follows from Proposition 1 and the Borel Cantelli Lemma that, with probability one,

Kτ (Wn) is eventually less than or equal to ds(n, τ)e+ 1 ≤ s(n, τ) + 2. Our principal result,

stated in Theorem 1 below, makes use of a second moment argument in order to obtain a

corresponding lower bound. The proof is given in Section 8.

Theorem 1. Let Wn, n ≥ 1, be Gaussian random matrices derived from an infinite array

W , and let τ > 0 be fixed. With probability one, when n is sufficiently large,

s(n, τ) − 4

τ2
− 12 ln 2

τ2
− 4 ≤ Kτ (Wn) ≤ s(n, τ) + 2. (9)

The difference between the upper and lower bounds in Theorem 1 is a constant that

depends on τ , but is independent of the matrix dimension n. In particular the values of the

random variable Kτ (Wn) are eventually concentrated on an interval that contains s(n, τ)

and whose width is independent of n.

The lower bound in Theorem 1 can be further improved. An examination of the argu-

ment in Lemma 4 in the Appendix shows the inequality of the theorem still holds if the

quantity 12 ln 2 is replaced with any constant greater than 8 ln 2.

Extending earlier work of Dawande et al. [5] and Koyuturk et al. [11], Sun and Nobel

[22, 23] obtained a similar, two-point concentration result for the size of largest square

submatrix of ones in an i.i.d. Bernoulli random matrix. Bollobás and Erdős [3], and Matula

[14], established analogous results for the clique number of a regular random graph. (See

[23] for additional references to work in the binary case.) The proof of Theorem 1 relies on

a second moment argument, but differs from the proofs of these earlier results due to the

continuous setting. In particular, the proof makes use of the fact that, under the Gaussian

assumption made here, for any k × k submatrix U of W , there exist simple upper bound

and lower bounds on P (F (U) ≥ τ), and that the ratio of these bounds is of order τk.
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3 Thresholds and Bounds for ANOVA Submatrices

In this section we derive bounds like those in Proposition 1 for the size of submatrices

whose entries are well-fit by a two-way ANOVA model. Roughly speaking, the ANOVA

criterion identifies submatrices whose rows (and columns) are shifts of one another.

Definition: For a submatrix U of Wn with index set A×B, define

G(U) = min

 1

(|A| − 1)(|B| − 1)

∑
i∈A,j∈B

(wij − ai − bj − c)2
 ,

where the minimum is taken over all real constants {ai : i ∈ A}, {bj : j ∈ B} and c.

Under the ANOVA criterion, a submatrix U will warrant interest if g(U) is less than a

pre-defined threshold. Note that by standard arguments,

G(U) =
1

(|A| − 1)(|B| − 1)

∑
i∈A,j∈B

(wij − wi. − w.j + w..)
2,

where wi., w.j , and w.. denote the row, column, and the full submatrix averages, respectively.

Definition: Given 0 < τ < 1, let Lτ (Wn) be the largest value of k such that Wn contains

a k × k submatrix U with G(U) ≤ τ .

Arguments similar to those in the proof of Proposition 1, in conjunction with a prob-

ability upper bound on the left tail of a χ2 distribution, establish the following bound on

Lτ (Wn). The proof is given in Section 7.

Proposition 2. Let τ > 0 be fixed. For every ε > 0, when n is sufficiently large,

P (Lτ (Wn) ≥ t(n, τ) + r) ≤ 4

h(τ)

(
lnn

h(τ)

)2r+2+ε

n−2 r (10)

for every r = 1, . . . , n, where

t(n, τ) =
4

h(τ)
lnn− 4

h(τ)
ln

(
4

h(τ)
lnn

)
+

4

h(τ)
+ 2

and

h(τ) = 1− τ − log(2− τ). (11)

Proposition 2 and the Borel Cantelli Lemma imply that Lτ (Wn) ≤ t(n, τ)+1 eventually

almost surely. The arguments used to lower bound Kτ (Wn) in Theorem 1 do not extend

readily to Lτ (Wn), and we are not aware if a similar interval-concentration result holds in

this case.
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4 Thresholds and Bounds for Rectangular Submatrices

The probability bounds of Proposition 1 and 2 can be extended to non-square sub-

matrices of non-square matrices by adapting the methods of proof detailed in Sections 6

and 7, respectively. We present the resulting bounds below, without proof. Similar results

concerning submatrices of 1s in binary matrices can be found in [23].

Definition: Let W (m,n) denote an m × n Gaussian random matrix, and let α > 0 and

β ≥ 1 be fixed aspect ratios for the sample matrix and target submatrix respectively.

a. For τ > 0 let Kτ (W : n, α, β) be the largest integer k such that there exists a dβke×k

submatrix U in W (dαne, n) with F (U) ≥ τ .

b. For 0 < τ < 1 let Lτ (W : n, α, β) be the largest integer k such that there exists a

dβke × k submatrix U in W (dαne, n) with G(U) ≤ τ .

Proposition 3. Fix τ > 0 and any ε > 0. When n is sufficiently large,

P (Kτ (W : n, α, β) ≥ s(n, τ, α, β) + r) ≤ n−(β+1) r

(
lnn

τ2

)(β+1+ε)r

for each 1 ≤ r ≤ n, where

s(n, τ, α, β) =
2(1 + β−1)

τ2
lnn− 2(1 + β−1)

τ2
ln

[
2(1 + β−1)

τ2
lnn

]
+

2

τ2
lnα+ C1(β, τ),

for some constant C1(β, τ) > 0.

Proposition 4. Fix 0 < τ < 1 and any ε > 0. When n is sufficiently large,

P (Lτ (W : n, α, β) ≥ t(n, τ, α, β) + r) ≤ n−(β+1) r

(
lnn

h(τ)

)(β+1+ε)r

for each 1 ≤ r ≤ n, where

t(n, τ, α, β) =
2(1 + β−1)

h(τ)
lnn− 2(1 + β−1)

h(τ)
ln

[
2(1 + β−1)

h(τ)
lnn

]
+ h(τ)−1 lnα+ C2(β, τ),

for some constant C2(β, τ) > 0, where h(τ) is defined as in (11).

Remark: The bounds in Propositions 3 and 4 have a similar form. In each case, the bound

is of the form n−(β+1) r times a polynomial in lnn, and the leading term in s(·) and t(·)

are of the form (1 + β−1) lnn times a function of the threshold τ . We note the critical role

played by the aspect ratio β of the target submatrix. By contrast, the aspect ratio α of the

sample matrix plays a secondary role, its logarithm appearing only in the constant term of

s(·) and t(·).
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5 Simulation Study for Large Average Submatrices

The size thresholds and probability bounds presented in Sections 2 - 4 are asymptotic,

and it is reasonable to ask if they apply to matrices of moderate size. To this end, we

carried out a simulation study in which we compared the size of large average submatrices

in simulated Gaussian data matrices with the bounds predicted by the theory. An exhaus-

tive search for large average submatrices is not computationally feasible. Our study was

based on a simple search algorithm for large average submatrices that is used in the biclus-

tering procedure of Shabalin et al. [18]. Analogous application of existing ANOVA based

biclustering procedures does not appear to be straightforward, so the simulation study was

restricted to the large average criteria.

The search algorithm from [18] operates as follows. Given an m×n data matrix W and

integers 1 ≤ k ≤ m and 1 ≤ l ≤ n, a random subset of l columns of W is selected. The

sum of each row over the selected set of l columns is computed, and the rows corresponding

to the k largest sums are selected. Then the sum of each column over the selected set

of k rows is computed, and the columns corresponding to the l largest sums are selected.

This alternating update of row and column sets is repeated until a fixed point is reached,

and the average of the resulting k × l matrix is recorded. The basic search procedure is

repeated N times, and the output of the search algorithm is the largest of the N observed

submatrix averages. The search algorithm is not guaranteed to find the k×l submatrix of W

with maximum average. However, the algorithm provides a lower bound on the maximum

average value of k × l submatrices We conducted two experiments, one for square matrices

and one for rectangular matrices.

Square matrices. We considered matrices of size n = 200 and n = 500. Results from

the case n = 200 are summarized in Figure 1. For a fixed k ≥ 1, we generated a 200× 200

Gaussian random matrix W , and then used the search algorithm described above to find a

lower bound, τk, on the maximum average of the k× k submatrices of W using N = 10000

iterations of the search procedure. Different random matrices W were generated for different

values of k. The upper and lower bounds of Theorem 1 begin to diverge when τ ≤ 1/2, so

we restricted attention to values of k for which τk > 1/2. In this case k ranged from 1 to 55.

A linear interpolation of the pairs (τk, k) appears as the red curve in Figure 1. We have also

plotted the threshold function s(n, τ) derived in Lemma 1, omitting the o(1) term, as well

as the upper and lower bounds from Theorem 1. As can be seen from the figure, there is

good agreement between the observed and predicted sizes of large average submatrices. In
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Figure 1: Results of 200 x 200 simulations
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Figure 2: Results of 500 x 500 simulations
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particular, for the range τ ≥ 1/2 the observed sizes of large average submatrices fall within

the upper and lower bounds of the theorem.

Simulations for matrix size n = 500 were carried out in a similar fashion. The results,

based on N = 10000 iterations of the search procedure for each value of k, are summarized

in Figure 2. Restricting attention to τk > 1/2 leads to matrix sizes k between 1 and 55 As

in the case n = 200 there is good agreement between the observed and predicted sizes of

large average submatrices, and the observed sizes of large average submatrices fall within

the upper and lower bounds of Theorem 1.

Non-Square matrices. We also carried out two simulation studies for rectangular
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Figure 3: Results for rectangular simulations
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matrices of sizes 20, 000 × 200 and 100, 000 × 1000 (matrix aspect ratio α = 100). These

sizes reflect those commonly seen in high-throughput genomic data. In each case, we looked

for submatrices with aspect ratio β = 5 and β = 10. For each fixed k ∈ {5, 10, 15, 20, 25},

we generated a Gaussian random matrix of the appropriate size and then used the search

algorithm with N = 10000 iterations to identify βk×k submatrices with large average. The

results are summarized in the (interpolated) red curves of Figure 5. The theoretical upper

bounds from Proposition 3 are plotted in blue for comparison. In each case the observed

maxima lie below the theoretical upper bound; the gap decreases with decreasing β and

increasing τ .

6 Proof of Lemma 1 and Proposition 1

Proof of Lemma 1: Let τ > 0 be fixed, and note that

lnφn,τ (s) = (n+
1

2
) lnn− (s+

1

2
) ln s− (n− s+

1

2
) ln(n− s)− τ2s2

4
− 1

2
ln 2π. (12)

Differentiating lnφn,τ (s) with respect to s yields

∂ lnφn,τ (s)

∂s
=

1

2(n− s)
+ ln(n− s)− 1

2s
− ln s− sτ2

2
.

The last expresssion is negative when 2τ−2 lnn < s < 4τ−2 lnn; we now consider the

value of lnφn,τ (s) for s outside this interval. A straightforward calculation shows that for

0 < s ≤ 2τ−2 lnn,

lnφn,τ (s) ≥ s

(
ln(n− 2τ−2 lnn)− sτ2

4
− ln lnn− ln 2τ−2

)
− 1

2
ln s− 1

2
ln 2π,

13



which is positive when n is sufficiently large. In order to address the other extreme, note

that from (12) we have

lnφn,τ (s) ≤ s

(
ln(n− s)− sτ2

4
− ln s

)
− 1

2
ln s+ (n+ 1/2) ln

(
n

n− s

)
. (13)

It is easy to check that the right hand side of the above inequality is negative when s > n−2.

Considering separately the cases s + 2 < n < (2 ln 2)−1s ln s and n ≥ (2 ln 2)−1s ln s, one

may upper bound the final term above by (s ln s)/2+(ln 2)/2 and 2s+(ln 2)/2, respectively.

Thus, for s < n− 2, we have

lnφn,τ (s) ≤ s

(
ln(n− s)− sτ2

4
− ln s

)
− 1

2
ln s+ 2s+

s ln s

2
+

ln 2

2
,

and in particular, for 4τ−2 lnn ≤ s < n− 2,

lnφn,τ (s) ≤ s

(
2− ln s

2

)
− 1

2
ln s+

ln 2

2
< 0

when n (and therefore s) is sufficiently large. Thus for large n there exists a unique solution

s(n, τ) of the equation φn,τ (s) = 1 with s(n, τ) ∈ (2τ−2 lnn, 4τ−2 lnn).

Taking logarithms of both sides of the equation φn,τ (s) = 1 and rearranging terms yields

the expression

1

2
ln

n

n− s
+ n ln

n

n− s
− (s+

1

2
) ln s+ s ln(n− s)− τ2s2

4
=

ln 2π

2
. (14)

The argument above shows that the (unique) solution of this equation belongs to the interval

(2τ−2 lnn, 4τ−2 lnn), so we consider the case in which s and n/s tend to infinity with n.

Dividing both sides of (14) by s yields

ln(n− s)− sτ2

4
− ln s = −1 +O(

ln s

s
),

which, after adding and subtracting terms, can be rewritten in the equivalent form

lnn− sτ2

4
− ln lnn = ln

( s

lnn

)
− ln

(
n− s
n

)
− 1 +O(

ln s

s
). (15)

For each n ≥ 1, define R(n) via the equation

s(n, τ) = 4τ−2 lnn− 4τ−2 ln lnn+R(n).

Plugging the last expression into (15), we find that R(n) = 4
τ2

(1 − ln 4
τ2

) + o(1), and the

result follows from the uniqueness of s(n, τ).

Proof of Proposition 1: Fix τ > 0. If ds(n, τ)e+ r > n the bound (1) holds trivially; in

the case of equality, it follows from a standard Gaussian tail bound when n is sufficiently

14



large. Fix n ≥ 1 for the moment and suppose that l = ds(n, τ)e+ r ≤ n− 1. By Markov’s

inequality and the definition of φn,τ (·),

P (Mτ (Wn) ≥ s(n, τ) + r) = P (Mτ (Wn) ≥ l)

= P (Ul(n, τ) ≥ 1)

≤ EUl(n, τ)

≤ 2φ2n,τ (l) ≤ 2φ2n,τ (s(n, τ) + r). (16)

Let γ = e−τ
2/4 and, to reduce notation, denote s(n, τ) by sn. Under the constraint on r, a

straightforward calculation shows that one can decompose the final term above as follows:

2φ2n,τ (sn + r) = 2φ2n,τ (sn) γ2rsn [An(r)Bn(r)Cn(r)Dn(r) ]2 (17)

where

An(r) =

(
n− r − sn
n− sn

)−n+r+sn− 1
2

Bn(r) =

(
r + sn
sn

)−sn− 1
2

Cn(r) =

(
n− sn
r + sn

γsn
)r

Dn(r) = γr
2

It is enough to bound the right hand side of (17) as n increases and r = r(n) is such

that ds(n, τ)e+ r ≤ n− 1. By definition, φn,τ (sn) = 1, and for each fixed ε > 0,

max
r≥1

2γ2rsn

n−2r(2 lnn
τ2

)2r+ε
→ 0 as n→∞.

Thus it suffices to show that the product An(r)Bn(r)Cn(r)Dn(r) is uniformly bounded in

r. To begin, note that for any fixed 0 < δ < 4,

Cn(r)
1
r =

n− sn
r + sn

γsn ≤ n

sn
γsn ≤ 4

4− δ
e−1 · o(1).

The last term will be less than one when δ is sufficiently small. The term Bn(r) ≤ 1

for each r ≥ 1, so it only remains to show that maxr≥1An(r) · Dn(r) is bounded as a

function of n. A straightforward calculation shows that lnAn(r) ≤ r, and consequently,

lnAn(r) ·Dn(r) ≤ r − τ2r2

4 , a quadratic function of r that is bounded from above.

7 Proof of Proposition 2

For any k×k submatrix U of the Gaussian random matrix Wn, it follows from standard

arguments that (k−1)2G(U) has a χ2 distribution with (k−1)2 degrees of freedom. In order

to bound the quantity P (G(U) ≤ τ), which arises in the analysis of Lτ (Wn), we require an

initial result relating the right and left tails of the χ2 distribution.

15



Lemma 2. Suppose that X ∼ χ2
` for some ` ≥ 3. Then for 0 < t < `− 2 we have

P (X ≤ t) ≤ P (X ≥ 2`− 4− t).

Proof of Lemma 2: Let f denote the density function of X and let 0 < t < `− 2. Since

P (X ≤ t) =

∫ t

0
f(s) ds and P (X ≥ 2`− 4− t) ≥

∫ 2`−4

2`−4−t
f(s) ds,

it suffices to show that

f(s)

f(2`− 4− s)
≤ 1 for all 0 < s < `− 2. (18)

To this end, note that the ratio in (18) can be rewritten as follows:

f(s)

f(2`− 4− s)
=

s(`−2)/2 e−s/2

(2`− 4− s)(`−2)/2 e−(2`−4−s)/2

=

[(
1− 2`− 4− 2s

2`− 4− s

)
e2(`−2−s)/(`−2)

](`−2)/2
.

=

[(
1− 1

u

)
e

2
2u−1

](`−2)/2
with u =

2`− 4− s
2`− 4− 2s

. (19)

As s tends to `− 2, u tends to infinity, and therefore

lim
s→(`−2)

f(s)

f(2`− 4− s)
= lim

u→∞

(
1− 1

u

)
e

2
2u−1 = 1.

Thus, it suffices to show that for u ∈ (1,∞), the final term in (19) is an increasing function

of u. Differentiating with respect to u we find that

d

du

(
1− 1

u

)
e

2
2u−1 =

(2u− 1)2 − 4(u− 1)u

u2(2u− 1)2
e

2
2u−1 > 0

where the inequality follows from the fact that u > 1. Inequality (18) follows immediately.

Proof of Proposition 2: To begin, note that if X has a χ2 distribution with ` degrees of

freedom, then by a standard Chernoff bound,

P (X ≥ r) ≤ min
0<s< 1

2

(1− 2s)−
`
2 e−sr =

[(
`

r

)
e(

r
`
−1)
]−`/2

(20)

Let τ > 0 be fixed. Fix n ≥ 1 for the moment and let r ≥ 1 be such that k =

dt(n, τ)e + r ≤ n, where t(n, τ) is defined as in the statement of Proposition 2. Let U be

any k × k submatrix of Wn, and let ` = (k − 1)2. As noted above, the random variable

16



`G(U) has a χ2 distribution with ` degrees of freedom, so by Lemma 2 and inequality (20),

P (G(U) ≤ τ) = P (`G(U) ≤ ` τ) ≤ P (`G(U) ≥ (2− τ)`− 4)

≤ exp

{
− `

2

[
(2− τ)`− 4

`
− 1 + ln

`

(2− τ)`− 4

]}

= exp

{
− `

2
[(1− τ)− ln(2− τ)]

}
exp

{[
2 +

`

2
ln

(
1− 4

`(2− τ)

)]}
.

One may readily show that the second term above is O(1). It then follows from a first

moment argument that

P (Lτ (Wn) ≥ k) ≤
(
n

k

)2

P (G(U) ≤ τ) ≤ C

(
n

k

)2

q(k−1)
2 ≤ C

(
n

k − 1

)2

q(k−1)
2 · n2 (21)

where C is a finite constant and

q = exp

{
1

2
[−(1− τ) + ln(2− τ)]

}
.

Fix ε > 0. By following the proofs of Lemma 1 and Proposition 1, replacing τ2 with

h(τ) = 1− τ − ln(2− τ), one can show that for every r ≥ 1 such that

k =

⌈
4

h(τ)
lnn− 4

h(τ)
ln

(
4

h(τ)
lnn

)
+

4

h(τ)

⌉
+ 2 + r

is at most n, we have(
n

k − 1

)2

q(k−1)
2 ≤ 4

h(τ)

(
lnn

h(τ)

)2r+2+ε

n−2 r−2,

and the result then follows from (21).

8 Proof of Theorem 1

In what follows we make use of standard bounds on the tails of the Gaussian distribution,

namely that (3s)−1e−s
2/2 ≤ 1 − Φ(s) ≤ s−1e−s

2/2 for s ≥ 3. The proof of Theorem 1 is

based on several preliminary results. The first result bounds the ratio of the variance of

Γk(τ, n) and the square of its expected value, a quantity that later arises from an application

of Chebyshev’s inequality.

Lemma 3. Fix τ > 0. There exist integers n0, k0 ≥ 1 and a positive constant C depending

on τ but independent of k and n, such that for any n ≥ n0 and any k ≥ k0,

Var Γk(τ, n)

(E Γk(τ, n))2
≤ C k4

k∑
l=1

k∑
r=1

(
k
l

)(
n−k
k−l
)(

n
k

) (
k
r

)(
n−k
k−r
)(

n
k

) exp

{
rlτ2

2

(
1 +

k2 − rl
k2 + rl

)}
. (22)
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Proof: Let Sk denote the collection of all k × k submatrices of Wn. It is clear that

E Γk(n, τ) =
∑
U∈Sk

P (F (U) > τ) =

(
n

k

)2

(1− Φ(kτ)) . (23)

In a similar fashion, we have

E Γ2
k(n, τ) =

∑
Ui,Uj∈Sk

P (F (Ui) > τ and F (Uj) > τ)

Note that the joint probability in the last display depends only on the overlap between the

submatrices Ui and Uj . For 1 ≤ r, l ≤ k define

G(r, l) = P (F (U) > τ and F (V ) > τ)

where U and V are two fixed k×k submatrices of W having r rows and l columns in common.

Then E Γk(n, τ) =
(
n
k

)2
G(0, 0)1/2, and a straightforward counting argument shows that

E Γ2
k(n, τ) =

k∑
r=0

k∑
l=0

(
n

k

)2(k
r

)(
n− k
k − r

)(
k

l

)(
n− k
k − l

)
G(r, l).

In particular,

Var Γk(n, τ)

(E Γk(n, τ))2
=

k∑
r=0

k∑
l=0

(
k
l

)(
n−k
k−l
)(

n
k

) (
k
r

)(
n−k
k−r
)(

n
k

) (
G(r, l)

G(0, 0)

)
− 1.

=

k∑
r=1

k∑
l=1

(
k
l

)(
n−k
k−l
)(

n
k

) (
k
r

)(
n−k
k−r
)(

n
k

) (
G(r, l)

G(0, 0)
− 1

)
.

where we have used the fact that
(
k
l

)(
n−k
k−l
)
/
(
n
k

)
is a probability mass function, and that

G(0, l) = G(r, 0) = G(0, 0). When kτ ≥ 3 we have G(0, 0) = (1− φ(kτ))2 ≥ (3kτ)−2e−k
2τ2 ,

and it therefore suffices to show that for 1 ≤ r, l ≤ k,

G(r, l) ≤ C k2 exp

{
−k2τ2 +

rlτ2

2

(
1 +

k2 − rl
k2 + rl

)}
(24)

where C > 0 depends on τ but is independent of k and n. Inequality (24) is readily

established when r = l = k, so we turn our attention to bounding G(r, l) when 1 ≤ rl < k2.

In this case

G(r, l) =

√
rl√
2π

∫ ∞
−∞

e−
rlt2

2 P

(
F (U ∩ V c) ≥ k2τ − rlt√

k2 − rl

)2

dt

where U, V are submatrices of Wn having r rows and l columns in common. Let Φ(x) =

1− Φ(x). Note that G(r, l) = D0 +D1 where

D0 =

√
rl√
2π

∫ ∞
−∞

e−
rlt2

2 Φ
2
(
k2τ − rlt√
k2 − rl

)
I{k2τ − rlt < 1} dt (25)
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and

D1 =

√
rl√
2π

∫ ∞
−∞

e−
rlt2

2 Φ
2
(
k2τ − rlt√
k2 − rl

)
I{k2τ − rlt ≥ 1} dt. (26)

Consider first the term D1 defined in (26). As rl 6= k2 and k2τ − rlt ≥ 1, the normal

tail bound yields

Φ

(
k2τ − rlt√
k2 − rl

)
≤

√
k2 − rl√

2π(k2τ − rlt)
exp

{
−(k2τ − rlt)2

2(k2 − rl)

}
= O(

√
k2 − rl) exp

{
−(k2τ − rlt)2

2(k2 − rl)

}
.

Plugging the last expression into (26), the exponential part of the resulting integrand is

−(k2τ − rlt)2

(k2 − rl)
− rlt2

2
,

which (after lengthy but straightforward algebra) can be expressed as

−k2τ +
rlτ2

2

(
1 +

k2 − rl
k2 + rl

)
− rl(k2 + rl)

2(k2 − rl)

(
(τ − t) + τ

(
k2 − rl
k2 + rl

))2

.

It then follows that

D1 ≤ O(k2 − rl) exp

{
−k2τ2 +

rlτ2

2

(
1 +

k2 − rl
k2 + rl

)}
×
√
k2 − rl
k2 + rl

×
∫ ∞
∞

√
rl(k2 + rl)

k2 − rl
exp

{
−rl(k

2 + rl)

2(k2 − rl)

(
τ − t+

τ(k2 − rl)
k2 + rl

)2
}

dt

The term preceding the integral is less than one, and the integral is equal to one. Thus D1

is less than the right side of (24).

We next consider the term D0 defined in (25). Note that k2τ − rlt < 1 is equivalent to

t > (k2τ − 1)/rl, and therefore

D0 ≤
∫ ∞
(k2τ−1)/rl

√
rl√
2π

e−
rlt2

2 dt = Φ

(
k2τ − 1√

rl

)
≤ k

√
rl√

2π(k2τ − 1)
e−

(k2τ−1)2

2rl
−ln k.

Comparing the last term above with (24), it suffices to show that when k is sufficiently

large,
(k2τ − 1)2

2rl
+ ln k ≥

(
k2 − rl

2

)
τ2

or equivalently

(k2 − rl)2 τ2 − 2k2τ + 1 + 2rl ln k ≥ 0. (27)

Suppose first that rl ≥ k2 − k/
√

ln k. In this case, the left side of the expression above is

at least

−2k2τ + 1 + 2rl ln k ≥ −2k2τ + 1 + 2(k2 − k/
√

ln k) ln k > 0

19



when k is sufficiently large. Suppose now that k2−rl > k/
√

ln k. As a quadratic function of

τ , the left side of (27) takes its minimum at τ = k2/(k2− rl)2, and the corresponding value

is rl [−2k2 + rl+ 2(k2− rl)2 ln k]/(k2− rl)2. In this case, the assumption k2− rl > k/
√

ln k

implies

−2k2 + rl + 2(k2 − rl)2 ln k > rl > 0.

This establishes (27) and complete the proof.

Lemma 4. Let τ > 0 be fixed. When k is sufficiently large, for every integer n satisfying

the condition

k ≤ 4

τ2
lnn − 4

τ2
ln

(
4

τ2
lnn

)
− 12 ln 2

τ2
(28)

we have the bound
Var Γk(τ, n)

(E Γk(τ, n))2
≤ k−2.

Remark: For the proof of Theorem 1, it is enough to show that the sum over k of the ratio

above is finite, and for this purpose the upper bound k−2 is sufficient.

Proof: Let n satisfy the condition (28). By Lemma 3, it suffices to show that

k4
k∑
l=1

k∑
r=1

(
k
l

)(
n−k
k−l
)(

n
k

) (
k
r

)(
n−k
k−r
)(

n
k

) exp

{
rlτ2

2

(
1 +

k2 − rl
k2 + rl

)}
≤ k−2. (29)

In order to establish (29), we will show that each term in the sum is less than k−8. To

begin, note that (
k
l

)(
n−k
k−l
)(

n
k

) ≤
(
k
l

)
kl (n− k)k−l

(n− k)k
=

(
k

l

)
kl(n− k)−l,

and that (n− k)−l = O(n−l) when l ≤ k = O(n1/2). Thus for some constant C > 0,(
k
l

)(
n−k
k−l
)(

n
k

) (
k
r

)(
n−k
k−r
)(

n
k

) ≤ C

(
k

r

)(
k

l

)
kr+l n−(r+l).

Rewriting (28) as lnn ≥ τ2k
4 + ln( 4

τ2
lnn) + 3 ln 2 yields the bound

n−(r+l) exp

{
rlτ2

2

(
1 +

k2 − rl
k2 + rl

)}

≤ e−3 (r+l) ln 2

(
4

τ2
lnn

)−(r+l)
exp

{
τ2

2

(
rl

2k2

k2 + rl
− k

2
(r + l)

)}
.

Combining the last three displays, and using the fact that k ≤ 4
τ2

lnn by assumption, it

suffices to show that(
k

r

)(
k

l

)
e−3(r+l) ln 2 exp

{
τ2

2

(
rl

2k2

k2 + rl
− k

2
(r + l)

)}
≤ k−8. (30)
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In order to establish (30), we consider two cases for r+ l. Suppose first that r+ l ≤ 3k
4 .

By elementary arguments(
k

r

)(
k

l

)
≤
(

2k

r + l

)
≤ (2k)r+l and rl

2k2

k2 + rl
≤ (r + l)2

4

2k2

k2 + rl
≤ (r + l)2

2
.

It follows from these inequalities that(
k

r

)(
k

l

)
exp

{
τ2

2

[
rl

2k2

k2 + rl
− k

2
(r + l)

]}
≤ exp

{
τ2

2

[
(r + l)2

2
− k

2
(r + l)

]
+ (r + l) ln 2k

}
= exp

{
τ2(r + l)

2

[
(r + l)

2
− k

2
+

2 ln 2k

τ2

]}
≤ exp

{
τ2(r + l)

2

[
3k

8
− k

2
+

2 ln 2k

τ2

]}
.

As the exponent above is negative when k is sufficiently large, (30) follows. Suppose now

that r + l ≥ 3k
4 . From the simple bounds r + l ≥ 2

√
rl and k2 + rl ≥ 2

√
k2rl we find that

rl
2k2

k2 + rl
− k

2
(r + l) ≤ 2rlk2

2
√
k2rl

− k
√
rl = 0,

and it suffices to bound the initial terms in (30). But clearly,(
k

r

)(
k

l

)
e−3(r+l) ln 2 ≤ 22k · 2−

9k
4 ,

which is less than k−8 when k is sufficiently large.

Proof of Theorem 1: Proposition 1 and the Borel-Cantelli lemma imply that eventually

almost surely Kτ (Wn) ≤ ds(n, τ)e+1. Thus, we only need to establish an almost sure lower

bound on Kτ (Wn). To this end, define functions

f(n) =
4

τ2
lnn− 4

τ2
ln

(
4

τ2
lnn

)
− 12 ln 2

τ2
and g(k) = min{n ≥ 1, bf(n)c = k}

for integers n ≥ 1 and k ≥ 1, respectively. It is easy to see that f(n) is strictly increasing for

large values of n, and clearly f(n) tends to infinity as n tends to infinity. A straightforward

argument shows that g(k) has the same properties Thus for every sufficiently large integer

n, there exists a unique integer k = k(n) such that g(k) ≤ n < g(k + 1).

Fix m ≥ 1 and consider the event Am that for some n ≥ m the random variable Kτ (Wn)

is less than the lower bound specified in the statement of the theorem. More precisely, define

Am =
⋃
n≥m

{
Kτ (Wn) ≤ s(n, τ)− 12 ln 2

τ2
− 4

τ2
− 3

}
.
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To establish the lower bound, it suffices to show that P (Am) → 0 as m → ∞. To begin,

note that when m is large

Am ⊆
⋃

k≥bf(m)c

⋃
g(k)≤n<g(k+1)

{
Kτ (Wn) ≤ s(n, τ)− 12 ln 2

τ2
− 4

τ2
− 4

}
.

Fix n ≥ m sufficiently large, and let k = k(n) be the unique integer such that g(k) ≤ n <

g(k + 1). The definition of g(k) and the monotonicity of f(·) ensures that k = bf(g(k))c ≤

f(n) < k + 1. In conjunction with the definition of f(n) and Lemma 1, this inequality

implies that

1 = k + 1− k > f(n)− bf(g(k))c ≥ f(n)− f(g(k))

= s(n, τ)− s(g(k), τ) + o(1),

and therefore s(n, τ) < s(g(k), τ) + 1 + o(1). Define

r(k) =

⌊
s(g(k), τ)− 12 ln 2

τ2
− 4

τ2

⌋
.

From the bound on s(n, τ) above and the fact that Kτ (Wg(k)) ≤ Kτ (Wn), we have{
Kτ (Wn) ≤ s(n, τ)− 12 ln 2

τ2
− 4

τ2
− 3

}
⊆

{
Kτ (Wg(k)) ≤ r(k)− 1 + o(1)

}
⊆

{
Kτ (Wg(k)) ≤ r(k)− 1

}
,

where the last relation makes use of the fact that Kτ and r(k) are integers. Thus we find

that

Am ⊆
⋃

k≥bf(m)c

{
Kτ (Wg(k)) ≤ r(k)− 1

}
.

Consider the events above. For fixed k,

P (Kτ (Wg(k)) ≤ r(k)− 1) = P (Γr(k)(τ, g(k)) = 0) ≤
Var Γr(k)(τ, g(k))

(E Γr(k)(τ, g(k)))2
(31)

where we have used the fact that for a non-negative integer-valued random variable X

P (X = 0) ≤ P (|X − EX| ≥ EX) ≤ VarX

(EX)2

by Chebyshev’s inequality. As r(k) ≤ f(g(k)), Lemma 4 ensures that the final term in (31)

is less than k−2, and the Borel-Cantelli lemma then implies that P (Am) → 0 as m → ∞.

This completes the proof of Theorem 1.

Acknowledgements

The authors would like to thank Andrey Shabalin for his assistance with the simulation

22



results in Section, and for his help in clarifying the connections between the work described

here and results in random matrix theory. We would also like to thank John Hartigan for

pointing out the use of the Gaussian comparison principle as an alternative way of obtaining

the bounds of Proposition 1. The work presented in this paper was supported in part by

NSF grants DMS 0406361 and DMS 0907177.

References

[1] Alon, N. and Naor, A. (2006). Approximating the Cut-Norm via Grothendieck’s

Inequality. SIAM Journal of Computating 35:4, 787–803.

[2] Arratia, R., Goldstein, L. and Gordon, L. (1990). Poisson Approximation and

the Chen-Stein Method. Statistical Science 5:4, 403–424.
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