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Abstract

We say that a loop is unbreakable when it does not have nontrivial
subloops. While the cyclic groups of prime order are the only unbreakable
finite groups, we show that nonassociative unbreakable loops exist for every
order n ≥ 5. We describe two families of commutative unbreakable loops of
odd order, n ≥ 7, one where the loop’s multiplication group is isomorphic
to the alternating group An and another where the multiplication group is
isomorphic to the symmetric group Sn. We also prove for each even n ≥ 6
that there exist unbreakable loops of order n whose multiplication group is
isomorphic to Sn.
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1 Introduction

We say that a finite loop is unbreakable whenever it doesn’t have proper subloops,
that is, other than itself and the trivial one-element loop. While it is easy to see
that the finite associative unbreakable loops are exactly the cyclic groups of prime
order, it turns out that finite, nonassociative unbreakable loops are numerous and
diverse. Our interest for these loops arose in the context of a research effort on
the classes of word languages defined in terms of finite loops; the proof of the
main theorem of [2] requires the existence for infinitely many integers n ≥ 5 of a
group-free loop of order n. A loop is group-free if none of its nontrivial subloops
or quotients is a group; an unbreakable loop is just a special case of these loops.
We prove in this article that nonassociative unbreakable loops exist for every
order n ≥ 5. More precisely, we prove existence theorems for unbreakable loops
of orders n ≥ 5, with constraints on their multiplication group and, for odd
n ≥ 7, the additional condition that the loop is commutative. Moreover, when n
is odd we are able to give fully constructive proofs. Our results are summarized
as follows.
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Theorem 1.1 There exists a nonassociative unbreakable loop for every order
n ≥ 5. Furthermore:

i. for every odd n ≥ 7, there exists a commutative unbreakable loop of order
n whose multiplication group is the symmetric group Sn, and another one
whose multiplication group is the alternating group An;

ii. for every even n ≥ 6, there exists an unbreakable loop of order n whose
multiplication group is the symmetric group Sn.

We refer the reader to [14, 4] for detailed background on loops. In this article, all
loops are finite. Let G be a loop of order n; its operation is denoted by an aster-
isk, e.g. a ∗ b = c. To each loop element a we associate its right and left actions,
Ra and La respectively, defined by Ra(b) = b ∗ a and La(b) = a ∗ b. Both actions
are permutations of G. The actions generate M(G) = 〈{ La, Ra | a ∈ G }〉, the
multiplication group of G. In the literature, these objects are also called the left
and right translations and the translation group, respectively. Note that in a
commutative loop, we have La = Ra for every a; we then speak of the action of
a and use the notation La.
Our descriptions and proofs use only basic notions and facts on groups and per-
mutations; they can be found in fundamental texts such as [11] and we assume
that they are familiar to the reader. The only exceptions are Propositions 3.3
and 4.1, taken from Piccard’s work on generating sets for the symmetric and the
alternating groups [15].
We denote by G = {0, 1, . . . , n − 1} the underlying set of a loop G of order n.
To make our descriptions simpler, we write them as if G were a subset of N

and use relations and operations usually encountered in these contexts, such as
”≤” and ”+”. The symmetric group over G is the set of all n! permutations
of {0, 1, . . . , n − 1}; its subgroup the alternating group An is the set of all even
permutations of G; this group is simple and unsolvable for every order n ≥ 5.
An even permutation can be identified in several ways; in this article we use the
following.
i. A permutation τ is even iff it contains an even number of inversions; an

inversion is a pair i, j such that i < j and τ(i) > τ(j).
ii. A permutation is even iff its cyclic representation contains an even number

of cycles of even length.

We regard the multiplication group M(G) as a subset of Sn; we therefore write
statements like ”M(G) = Sn” instead of ”M(G) is isomorphic to Sn”.
For a given loop, most of our work is done on the table of its operation (the
Cayley table), where rows and columns are labelled with the loop’s elements, and
where entry [a, b] contains the value a ∗ b. It is well known that a finite groupoid
is a quasigroup iff its Cayley table is a latin square; it is commutative iff the table
is symmetric.
The notion of multiplication group of a loop was introduced by Albert [1]. The
properties of this group have been the object of extensive study, see e.g. [3, 4,
13, 9]. Certain results have some relationship to the topic of our paper: the
multiplication group of a loop is solvable only if the loop itself is solvable [17],
which implies that the multiplication loop of a nonassociative unbreakable loop
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Order Number, Number, Proportion
total unbreakable unbrk. vs. total

5 6 2 1/3
6 109 28 25.7 %
7 23 746 9 906 41.7 %
8 106 228 849 43 803 136 41.2 %
9 9 365 022 303 540 ? ?

Figure 1: Unbreakable loops of size 5 to 9

Order Number Multiplication group
n of loops Sn An Zn Other

5 2 1 0 1 0
6 28 28 0 0 0
7 9 906 9 904 1 1 0
8 43 803 136 43 799 370 3 765 0 1

Figure 2: Multiplication group of unbreakable loops, sizes 5 to 8

is always unsolvable; certain groups cannot be the multiplicative group of any
nonassociative loop [16]; and for every n 6= 2, 4, 5, the alternating group An can
be the multiplication group of a loop of order n [7].
In the next section, we report on the exhaustive analysis we made on loops of
orders 5 to 8. Section 3 contains the proof of our main theorem, and is followed
by a short conclusion. Our paper contains a large number of constructions and
examples; we inserted in the main text only those we deemed absolutely necessary
for understanding, and gathered the rest in the Appendix.

2 Small loops

Scrutiny of the exhaustive lists of small latin squares (see for example [12]) shows
that nonassociative loops exist with orders 5 and 6. Among them, there are one
unbreakable loop of order 5 and 28 of order 6; their multiplication groups are
equal to the symmetric group of the same order. Samples loops of orders 5 and
6 are displayed in the Appendix.

The number of loops (always counted up to isomorphism) increases rapidly with
the order; an exhaustive study of all loops of size n = 7 and n = 8 is possible, but
it is already unthinkable for n = 9, see Figure 1 (the number for n = 9 is quoted
from [12]). The first step in our work consisted in analyzing every loop of size 6
to 8; the problem of generating a list of these loops has already been addressed
[8]. For each loop we computed its multiplication group and for n = 7, verified
whether the loop is commutative. The following fact allowed us skip this test for
n = 8.
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Proposition 2.1 Unbreakable loops of even order cannot be commutative.

Proof. In a symmetric latin square, the number of occurrences of a given element
on the diagonal has the same parity as the size of the square [6]. Thus, in a loop
of even size, since 0 ∗ 0 = 0 there must be some a 6= 0 such that a ∗ a = 0, which
means that {0, a} is a subloop isomorphic to the group Z2. �

The results of our exhaustive search are summarized on Figure 2. We notice a
number of interesting facts.
i. M(G) = Sn for the vast majority of unbreakable loops; however there are

loops of sizes 7 and 8 for which M(G) = An.
ii. There are eight commutative unbreakable loops of order 7. One of them is

the only unbreakable loop of order 7 whose multiplication group is A7; its
Cayley table is displayed in the Appendix.

iii. There is also a lone loop of size 8 for which M(G) is neither Sn nor An;
we determined with the GAP software that this multiplication group has
order 1344 and is isomorphic to the semidirect product Z3

2 ⋊PSL(2, 7); its
Cayley table is displayed in the Appendix.

Building on these observations, we undertook to verify that for every odd n,
there exists an unbreakable, commutative loop of size n such that M(G) = Sn

and another one such that M(G) = An. For loops of even order we cannot use
commutativity to make our work easier; we nevertheless prove the existence for
every even n ≥ 10 of an unbreakable loop which satisfies M(G) = Sn; examples
for n = 6 and n = 8 are given in the Appendix.

3 Unbreakable loops of odd size

In this section, we prove Theorem 1.1 for the odd values of n. We do so by
building two families of loops, one with M(G) = Sn for each n ≥ 21, and the
other family with M(G) = An for each n ≥ 43. For those odd values of n not
covered by our proofs, we give in the Appendix a set of sample loops of order n.
The rest of this section is structured as follows. First, we build a n×n symmetric
partial latin square, which we call the template, and we show that it can be
completed to yield a commutative unbreakable loop whose multiplication group
is either Sn or An, provided that an additional constraint is respected. Next, we
prove how to fill the template in order to ensure that M(G) = Sn or M(G) = An.

3.1 A template for the Cayley table

From now on, let n = 2p+ 1. We denote by [i, j] the content of the table at line
i and column j. Since we build a symmetric table, it is enough to specify [i, j]
for i ≤ j. The partial latin square resulting from the forthcoming specifications
is called the template.
i. For all i, j with 0 ≤ i ≤ n− 1 and 0 ≤ j ≤ n− i, let [i, j] = i+ j (mod n).
ii. For all i, j with i ≥ 7 and n− i+ 6 ≤ j ≤ n− 1, let [i, j] = i+ j (mod n).
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iii. Modify lines 1, 2, and column n − 1 as follows: [1, 2] = 0; [1, p + 2] = 3;
[p + 4, n − 1] = 5.

iv. Complete lines 1 through 5 as follows:
[1, n − 1] = p+ 3; [2, n − 2] = 1; [2, n − 1] = 3;
[3, n − 3] = 1; [3, n − 2] = 2; [3, n − 1] = 0.
[4, n − 4] = 1; [4, n − 3] = 0; [4, n − 2] = 3; [4, n− 1] = 2;
[5, n− 5] = 2; [5, n− 4] = 0; [5, n− 3] = 3; [5, n− 2] = 4; [5, n− 1] = 1.

These positions define the top right region. By symmetry, this also defines
a bottom left region.

v. Finally, let
[p+1, p+1] = 3; [p+1, p+2] = 0; [p+1, p+3] = 5; [p+1, p+4] = 4;
[p + 1, p + 5] = 2;
[p + 2, p + 2] = 5; [p+ 2, p + 3] = 4; [p+ 2, p + 4] = p+ 3;
[p + 3, p + 3] = 1.

These positions define the central triangle.

The template for n = 21 is represented on Figure 3. In this figure, the cells
whose content is not specified are identified with a question mark ”?”. Also,
entries [i, j] where the template differs from the table of Zn, i.e. those where
[i, j] 6≡ i + j (mod n), are printed in boldface. Borders are drawn around
the central triangle and the top right and bottom left regions. Observe that
[5, 16] = [11, 15] = 2: therefore it is not possible to build a smaller template
consistent with the above specifications.
Those cells whose content is not specified in the template are at positions [i, j]
such that n ≤ i + j ≤ n + 5; they must eventually be filled with an element of
{0, 1, 2, 3, 4, 5}. Located on either side of the central triangle, they constitute a
region which we call the undefined zone.
This template was obtained through experiments where we built a partially de-
fined latin square in which all positions [i, j] such that i+ j < n or i+ j > n+ 5
were filled as above and then let a computer try to fill the remaining positions in
order to yield a suitable latin square. We observed that a small number of com-
binations of central triangle and top right region occur in our results for every n
above a reasonable threshold. Among these combinations we chose for this proof
the one for which the threshold is minimal.

Loops defined out of this template have a number of useful properties; we state
and prove them in the rest of this subsection.

Lemma 3.1 If a loop has a Cayley table consistent with the template and if it
also satisfies the constraint that [i, j] 6= 0 in every position where i+ j = n, then
it is unbreakable.

Proof. Let 〈k〉 denote the subloop generated by k ∈ G; we show that 〈k〉 = G for
every element k 6= 0. We first consider k = 2: it is readily seen from the above
specifications that [2, j] = j + 2 for every 2 ≤ j ≤ n − 3, which implies that 2
generates all even values between 2 and n− 1. Next, [2, n− 1] = 3, and from this
all odd values between 5 and n− 2 can be generated. Finally, [2, n − 2] = 1 and
[2, 1] = 0 yield 〈2〉 = G. Since [1, 1] = 2, it follows immediately that 〈1〉 = G.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 1 2 0 4 5 6 7 8 9 10 11 12 3 14 15 16 17 18 19 20 13

2 2 0 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 3

3 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 0

4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 0 3 2

5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 2 0 3 4 1

6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ? ? ? ? ? ?

7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ? ? ? ? ? ? 6

8 8 9 10 11 12 13 14 15 16 17 18 19 20 ? ? ? ? ? ? 6 7

9 9 10 11 12 13 14 15 16 17 18 19 20 ? ? ? ? ? ? 6 7 8

10 10 11 12 13 14 15 16 17 18 19 20 ? ? ? ? ? ? 6 7 8 9

11 11 12 13 14 15 16 17 18 19 20 ? 3 0 5 4 2 6 7 8 9 10

12 12 3 14 15 16 17 18 19 20 ? ? 0 5 4 13 6 7 8 9 10 11

13 13 14 15 16 17 18 19 20 ? ? ? 5 4 1 6 7 8 9 10 11 12

14 14 15 16 17 18 19 20 ? ? ? ? 4 13 6 7 8 9 10 11 12 5

15 15 16 17 18 19 20 ? ? ? ? ? 2 6 7 8 9 10 11 12 13 14

16 16 17 18 19 20 2 ? ? ? ? ? 6 7 8 9 10 11 12 13 14 15

17 17 18 19 20 1 0 ? ? ? ? 6 7 8 9 10 11 12 13 14 15 16

18 18 19 20 1 0 3 ? ? ? 6 7 8 9 10 11 12 13 14 15 16 17

19 19 20 1 2 3 4 ? ? 6 7 8 9 10 11 12 13 14 15 16 17 18

20 20 13 3 0 2 1 ? 6 7 8 9 10 11 12 5 14 15 16 17 18 19

Figure 3: The template; n = 21.

Reasoning as in the case k = 2, it is easily verified that 〈3〉 = 〈4〉 = 〈5〉 = G.
In the central triangle we observe [p+1, p+1] = 3, [p+2, p+2] = 5, [p+3, p+3] = 1;
therefore, 〈p+ 1〉 = 〈p + 2〉 = 〈p+ 3〉 = G.
Next, we show 〈n− 1〉 = G. This follows from the observation that [n, j] = j − 1
for every p + 5 ≤ j ≤ n − 1, that [n − 1, p + 4] = 5 and [n − 1, 5] = 1. Since
[p, p] = n− 1, we also have 〈p〉 = G.
We deal with the other k ∈ G by induction. Since [k, k] < k for every k ≥ p+ 4,
we only have to consider the case 6 ≤ k ≤ p − 1. We have [k, j] = k + j for all
1 ≤ j ≤ n − k − 1, which means that every tk ≤ n − 1 is generated by k; let
sk denote the largest such multiple of k. Also, observe that the content of cells
[k, n−k] to [k, n−1] is a permutation of the set {0, . . . , k−1}. Therefore, [k, sk] ∈
{0, . . . , k − 1}. If n is a multiple of k, which means sk = n − k, then position
[k, n − k] is in the undefined zone, and is subject to the condition [k, n − k] 6= 0
of the lemma’s statement: this yields [k, n − k] ∈ {1, 2, 3, 4, 5}. Otherwise k
does not divide n, i.e. n = (s + 1)k − t with 0 < t < k, and [k, sk] is either
nonzero, in which case we are done by induction hypothesis and our reasoning
on k ≤ 5, or [k, sk] = 0 and we move on to consider the value [sk, sk]: since
2sk > n, we have [sk, sk] = 2sk (mod n) = r for some r not a multiple of k.
Then [k, (j−1)k+r] = jk+r belongs to 〈k〉 for every j ≥ 1 such that jk+r < n;
let ℓk + r be the largest such value: we have [k, ℓk + r] ∈ {1, . . . , k − 1}. �

The problem of generating the symmetric or the alternating group with a pair of
permutations was studied exhaustively by Piccard. We quote from her work the
following definition and result (Proposition 5, page 20 in [15]); then we proceed
to show that in every commutative loop built from the template we can find in
M(G) two permutations which satisfy the conditions of Proposition 3.3.
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L2 =

(

0 1 2 3 4 · · · n− 4 n− 3 n− 2 n− 1
2 0 4 5 6 · · · n− 2 n− 1 1 3

)

L3 =

(

0 1 2 3 · · · n− 5 n− 4 n− 3 n− 2 n− 1
3 4 5 6 · · · n− 2 n− 1 1 2 0

)

Figure 4: Permutations L2 and L3

Definition 3.2 Let n ≥ 2 be an integer and a, b ∈ {0, 1, . . . , n − 1} with a 6= b.
The distance between a and b, denoted ab, is the unique solution of a + ab ≡
b (mod n) which lies in {0, 1, . . . , n− 1}.

Proposition 3.3 Let n ≥ 5 be an odd integer and a, b, c ∈ {0, 1, . . . , n − 1} be
pairwise distinct. Let ϕ,ψ ∈ Sn with ϕ = (0 1 · · · n − 1) and ψ = (a b c). The
pair {ϕ,ψ} generates An if, and only if the largest common divisor of a, b and c
(i.e., gcd(a, b, c)) is 1.

Lemma 3.4 If the Cayley table of an order-n loop G is consistent with the tem-
plate, then An is a subgroup of M(G).

Proof. Consider the left actions L2 and L3 of 2 and 3, respectively, in a loop
consistent with the template; they are totally defined by the template and are
represented, in matrix notation, on Figure 4. The reader can verify that both
permutations consist of a unique cycle of length n, that L2(x) = x + 2 for all
x 6∈ {1, n− 2, n− 1}, and that L3(x) = x+3 for all x 6∈ {n− 3, n− 2, n− 1}. The
compositions α = L2 ◦L3 and β = L3 ◦L2 differ only on elements 2, 3 and 6, and
γ = α−1◦β = (2 3 6). Let f be the automorphism of Sn which satisfies f(L2) = ϕ

and verify that f(γ) = (1 p+1 3) can play the role of ψ in Proposition 3.3. �

We prove finally that for most loop elements, testing whether their actions are
even permutations is actually quite simple.

Lemma 3.5 For every i ∈ {6, . . . , n− 2} other than p+ 2 and p+ 4, the action
Li is an even permutation iff the table entries [i, n− i] to [i, n− i+ 5] constitute
an even permutation of {0, 1, 2, 3, 4, 5}.

Proof. Consider the permutation Li, i ∈ {6, . . . , n− 2} \ {p+2, p+4}. To count
the inversions in Li, we distinguish three regions in row i of the Cayley table:

• the leftmost n−i positions contain Li(x) = x+i (mod n) for 0 ≤ x ≤ n−i−1;
this is the increasing sequence i, i + 1, . . . , n− 1;

• the six positions [i, n − i] to [i, n − i+ 5] constitute the intersection of line
i with the undefined zone ; they contain a permutation of {0, 1, 2, 3, 4, 5};

• the remaining i− 6 positions contain Li(x) = x+ i (mod n) for n− i+6 ≤
x ≤ n− 1, that is, the increasing sequence 6, . . . , i− 1.
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From this, we see that an inversion in Li either involves a position x ≤ n− i− 1
and a position y ≥ n − i, or two positions between n − i and n − i + 5. There
are i(n− i) of the former; because n is odd, this is always an even number. The
latter constitute the inversions in a permutation of {0, 1, 2, 3, 4, 5}. �

This reasoning can be adapted to L4 and L5; they are totally specified by the
template and the reader can verify that both are even permutations. Meanwhile,
we already know that L2 and L3 consist of a unique cycle of odd length. Mean-
while, the largest two cycles in L1 = (0 1 2) (3 4 · · · p+2) (p+3 p+4 · · · n−1)
have the same parity.
Finally, each of the three actions not considered so far is one transposition away
from a decomposition in three regions as in the proof of Lemma 3.5. Indeed, in
the matrix representations of (5 p+3)◦Ln−1, (3 p+3)◦Lp+2 and (5 p+3)◦Lp+4,
the elements of {0, 1, 2, 3, 4, 5} occur in six consecutive positions, where they are
organized as an odd permutation.

3.2 Loops with M(G) = Sn

Lemma 3.6 For every odd n ≥ 21, there exists a commutative unbreakable loop
G which satisfies M(G) = Sn.

Proof. Given the Lemmas of the previous subsection, it suffices to show for each
n ≥ 21 how to build from the template a commutative loop which contains at
least one odd permutation, and such that [i, n − i] 6= 0 for all i 6= 0.
Defining a loop from the template amounts to filling the undefined zone with
elements of {0, 1, 2, 3, 4, 5} in order to obtain a symmetric latin square. We show
how to do this, starting at the central triangle and working upwards until we
reach the top right region. We start with positions [p, p + 1] to [p, p + 6] on row
p of the Cayley table; we have to fill them with a permutation of {0, 1, 2, 3, 4, 5}.
When we place an element in a given position, we must make sure that it does
not occur elsewhere on the corresponding column. Let Ri denote the set of values
already present on column p+i; the constraints on row p are: R1 = {0, 2, 3, 4, 5},
R2 = {0, 3, 4, 5}, R3 = {1, 4, 5}, R4 = {4, 5}, R5 = {2} and R6 = ∅. Consider
now the pattern

1 3 0 5 4 2
3 2 0 4 1 5

1 2 0 5 3 4
1 2 0 3 4 5

.

The bottom line in this pattern can be used to fill positions [p, p+1] to [p, p+6]
and the next three rows, moving upwards, to complete rows p− 1 to p− 3. Once
this is done, the constraints on row p − 4 are identical to those which existed
on row p, that is, we end up with the same sets R1 to R6. Therefore, the same
pattern can be placed on rows p − 4 to p − 7, and so on four rows at a time.
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p ≥ 10 and p ≡ 2 (mod 4)

6 3 1 2 5 0 4
7 2 1 0 3 4 5
8 3 1 0 4 5 2
9 1 2 0 5 3 4
10 1 2 0 3 4 5

p ≥ 11 and p ≡ 3 (mod 4)

6 3 1 2 5 0 4
7 1 2 0 3 4 5
8 1 5 0 3 4 2
9 3 2 0 1 4 5
10 1 2 0 3 4 5
11 1 2 0 3 4 5

p ≥ 12 and p ≡ 0 (mod 4)

6 3 1 2 5 0 4
7 2 1 0 3 4 5
8 1 3 0 4 5 2
9 1 5 0 2 3 4
10 3 2 0 1 4 5
11 1 2 0 3 4 5
12 1 2 0 3 4 5

p ≥ 13 and p ≡ 1 (mod 4)

6 3 1 2 5 0 4
7 3 1 0 4 2 5
8 1 2 0 5 3 4
9 1 2 0 4 3 5
10 2 0 3 1 5 4
11 3 1 5 0 4 2
12 1 2 0 3 4 5
13 1 2 0 3 4 5

Figure 5: Final patterns for the proof of Lemma 3.6.
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Eventually, the proximity of the upper right block makes it impossible to use this
pattern, and the remaining rows must be completed using another method. This
can be done with one of the four ”final patterns” represented on Figure 5; the
appropriate pattern is selected depending on the value of p mod 4.
Observe that the action L6 is the same in every final pattern and that the content
of positions [6, n−6] to [6, n−1] is the odd permutation (0 3 5 4) of {0, 1, 2, 3, 4, 5};
therefore, by Lemma 3.5 L6 is an odd permutation of {0, . . . , n− 1}. Notice also
that none of the patterns locates 0 at a position [i, n − i]; therefore Lemma 3.1
applies on the loops built with this set of patterns. �

The smallest loop constructible by this method has size 21; its Cayley table is
displayed in the Appendix.

3.3 Loops with M(G) = An

In this section, we show how to build from the template a loop in which the
action of every element is an even permutation of {0, . . . , n− 1}.

Lemma 3.7 For every odd n ≥ 43, there exists a commutative unbreakable loop
G which satisfies M(G) = An.

Proof. We fix the content of a further set of positions in the template in order to
obtain what we call the augmented template; the top right part of the resulting
table is displayed on Figure 6 for n = 43.
i. In the top right region, working downwards, let

[6, n− 6] = 3; [6, n− 5] = 1; [6, n− 4] = 5; [6, n− 3] = 2; [6, n− 2] = 0;
[6, n − 1] = 4;
[7, n− 7] = 1; [7, n− 6] = 2; [7, n− 5] = 0; [7, n− 4] = 3; [7, n− 3] = 4;
[7, n − 2] = 5;
[8, n − 4] = 4; [8, n − 3] = 5; [9, n − 4] = 2.

ii. Immediately above the central triangle, working upwards, let
[p, p+ 1] = 1; [p, p+ 2] = 2; [p, p+ 3] = 0; [p, p+ 4] = 3; [p, p+ 5] = 4;
[p, p + 6] = 5;
[p− 1, p+2] = 1; [p− 1, p+3] = 2; [p− 1, p+4] = 0; [p− 1, p+5] = 3;
[p − 1, p + 6] = 4; [p− 1, p + 7] = 5;
[p − 2, p + 3] = 3; [p− 2, p + 4] = 1; [p− 2, p + 5] = 5;
[p − 3, p + 4] = 2; [p− 3, p + 5] = 0; [p− 4, p + 5] = 1.

In the augmented template, each row and column which intersects the central
triangle is completely specified. Furthermore, on Figure 6 we highlight two regions
by surrounding them with a borderline; they consist of 15 positions each, and their
shape and content are identical. We call them butterflies. Observe that both ends
of the undefined zone are delimited with a butterfly.
We define a special type of patterns which we call blocks. A block of index m
is an array of 6(m + 1) + 9 cells located on six consecutive antidiagonals; there
are m+1 complete rows (six cells each) and 9 cells placed on 5 incomplete rows.
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· · · 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

0 · · · 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

1 · · · 23 3 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 24

2 · · · 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 1 3

3 · · · 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 1 2 0

4 · · · 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 1 0 3 2

5 · · · 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 2 0 3 4 1

6 · · · 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 3 1 5 2 0 4

7 · · · 29 30 31 32 33 34 35 36 37 38 39 40 41 42 1 2 0 3 4 5 6

8 · · · 30 31 32 33 34 35 36 37 38 39 40 41 42 ? ? ? ? 4 5 6 7

9 · · · 31 32 33 34 35 36 37 38 39 40 41 42 ? ? ? ? ? 2 6 7 8

10 · · · 32 33 34 35 36 37 38 39 40 41 42 ? ? ? ? ? ? 6 7 8 9

11 · · · 33 34 35 36 37 38 39 40 41 42 ? ? ? ? ? ? 6 7 8 9 10

12 · · · 34 35 36 37 38 39 40 41 42 ? ? ? ? ? ? 6 7 8 9 10 11

13 · · · 35 36 37 38 39 40 41 42 ? ? ? ? ? ? 6 7 8 9 10 11 12

14 · · · 36 37 38 39 40 41 42 ? ? ? ? ? ? 6 7 8 9 10 11 12 13

15 · · · 37 38 39 40 41 42 ? ? ? ? ? ? 6 7 8 9 10 11 12 13 14

16 · · · 38 39 40 41 42 ? ? ? ? ? ? 6 7 8 9 10 11 12 13 14 15

17 · · · 39 40 41 42 1 ? ? ? ? ? 6 7 8 9 10 11 12 13 14 15 16

18 · · · 40 41 42 2 0 ? ? ? ? 6 7 8 9 10 11 12 13 14 15 16 17

19 · · · 41 42 3 1 5 ? ? ? 6 7 8 9 10 11 12 13 14 15 16 17 18

20 · · · 42 1 2 0 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

21 · · · 1 2 0 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

22 · · · 3 0 5 4 2 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

23 · · · 0 5 4 24 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

24 · · · 5 4 1 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

25 · · · 4 24 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 5

26 · · · 2 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
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Figure 6: Augmented template for the alternating group; n = 43

The content of every cell is defined, every complete row and column is an even
permutation of {0, 1, 2, 3, 4, 5}, and the ends of this array constitute two disjoint
copies of the butterfly. Two blocks can be combined to build a larger block, by
making the top right butterfly of one block overlap with the bottom left butterfly
of the other, as illustrated in Figure 7. Combining two blocks of orders m and q,
respectively, creates a block of order m+ q.
Thus, we can turn the augmented template into the Cayley table of a loop with
M(G) = An simply by inserting a block which fits the undefined zone. Rows 7
to p − 1 in the table coincide with the m+ 1 fully defined rows in the block, so
that its order is m = p− 8, or conversely n = 2m+ 17.
Experimentally, we found that the collection of blocks

B10, B13, B14, B15, B16, B17, B18, B19, B21, B22,

depicted in the Appendix, enables us to define a loop withM(G) = An for n = 37
(built from B10) and for every odd n ≥ 43. Each full row and column in these
blocks is an even permutation of {0, 1, 2, 3, 4, 5}. Also, since 0 never occurs at a
position [i, n−i], the loops built from these blocks satisfy the condition of Lemma
3.1. In other words, a loop built from the augmented template and our list of
blocks is unbreakable, commutative, and such that M(G) = An. �
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1

2 0

3 1 5

1 2 0 3 4 5

2 0 1 3 4 5

B13 1 0 3 4 5 2

ց 3 0 1 2 5 4

2 1 5 3 4 0

3 1 0 2 4 5

2 1 0 4 3 5

1 0 2 3 5 4

1 3 4 0 5 2

3 2 0 1 5 4

1 2 0 5 3 4

2 0 1 3 4 5

3 1 5 0 4 2

1 2 0 3 4 5

B10 1 2 0 3 4 5

ց 3 0 4 1 5 2

1 2 3 0 5 4

1 0 5 2 3 4

1 3 2 0 4 5

3 2 0 4 1 5

1 2 0 5 3 4

2 0 1 3 4 5

3 1 5 0 4 2

1 2 0 3 4 5

4 5

2

Figure 7: Concatenation of blocks B10 and B13
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0 1 2 3 4 5 6 7 8 9
0 0 1 2 3 4 5 6 7 8 9
1 1 5 6 7 8 0 9 4 3 2
2 2 9 5 6 7 8 1 0 4 3
3 3 8 9 5 6 7 2 1 0 4
4 4 7 8 9 5 6 3 2 1 0
5 5 6 7 8 9 4 0 3 2 1
6
7
8
9

Figure 8: Partially filled Cayley table for n = 10

4 Unbreakable loops of even size

In this section we prove the part of Theorem 1.1 which concerns the loops of even
order.

Let n = 2p, with p ≥ 5; let G = {0, 1, . . . , n − 1}. We often use the notation 2p
instead of n. We specify the first p+ 1 rows of a n× n table, as follows.
i. Row 0: for every j ∈ G, [0, j] = j.
ii. Row 1: besides [1, 0] = 1, we have

• for every j, 1 ≤ j ≤ p− 1, [1, j] = p+ j − 1;
• [1, p] = 0 and [1, p + 1] = 2p− 1;
• for every k, 2 ≤ k ≤ p− 1, [1, p + k] = p+ 1− k.

iii. Row i, for 2 ≤ i ≤ p− 1: besides [i, 0] = i, we have
• for every j, 1 ≤ j ≤ i− 1, [1, j] = 2p− (i− j);
• for every j, i ≤ j ≤ p, [1, j] = p+ (j − i);
• for every k, 1 ≤ k ≤ i, [1, p + k] = i− k;
• for every k, i+ 1 ≤ k ≤ p− 1, [1, p + k] = i+ (p− k).

iv. Row p: besides [p, 0] = p, we have
• for every j, 1 ≤ j ≤ p− 1, [p, j] = p+ j;
• [p, p] = p− 1 and [p, p + 1] = 0;
• for every k, 2 ≤ k ≤ p− 1, [1, p + k] = p− k.

The resulting partially filled table is represented on Figure 8 for n = 10. The
reader can verify that the above specifies a p+1×2p latin rectangle on 2p objects;
there always exists a way to extend it into a 2p × 2p latin square [10], and the
bottom p − 1 lines can be permuted in order to have [j, 0] = j for every j, and
thus obtain the Cayley table of a loop.

We now show that this loop is unbreakable. First, we verify that 〈p〉 = G by
observing p ∗ p = p− 1, p ∗ (p− 1) = 2p− 1, and p ∗ (2p− 1) = 1; then for every
i, 1 ≤ i ≤ p − 2, i ∗ (2p − 1) = i + 1; meanwhile 1 ∗ j = p + j − 1 for every j,
2 ≤ j ≤ p − 1. Next, we have i ∗ i = p for every i, 1 ≤ i ≤ p − 1. There remains
the case j ≥ p+1: for every such j, its left inverse (k such that k ∗ j = 0) belongs
to the set {1, . . . , p}, and is a generator of G.
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Finally, we prove that the actions L1 and Lp generate Sn. In the permutation
L1, two cycles are of length three, namely (0 1 p) and (2 p + 1 2p − 1). If p is
odd (p = 2q−1 for some integer q), then the remaining n−6 elements are evenly
divided into 4-cycles of the form

(k p+ k − 1 p− k + 2 2p− k + 1)

for 3 ≤ k ≤ p; if p is even, however, there is a cycle (q + 1 3q) and the remaining
n− 8 elements belong to 4-cycles of the above form. Meanwhile, in permutation
Lp there is a unique 6-cycle,

(0 p p− 1 2p − 1 1 p+ 1);

if p is even, there is also a 2-cycle (q 3q). The other elements of G belong to
4-cycles of the form

(k p+ k p− k 2p− k),

2 ≤ k ≤ p − 2. Globally, L1 and Lp contain the same number of 2-cycles and
4-cycles; the n−6 elements not located in these cycles build up either one (in Lp)
or zero (in L1) cycle of even length; therefore, L1 and Lp are always of opposite
parity.
We again refer to a result by Piccard ([15], Proposition 23, page 53) and proceed
to show that L1 and Lp generate permutations which have exactly the same form
as stipulated in the following.

Proposition 4.1 Let n ≥ 10 be an even number and a, b, c, d, e ∈ {0, . . . , n− 1}.
Permutations ϕ = (0 1 2 · · · n − 1) and ψ = (a b c d e) generate the group Sn

if, and only if, the largest common divisor of ab, ac, ad, ae and n is 1.

Consider R = L3
1 ◦ Lp:

• R(0) = p; R(1) = p+ 1;
• for every k, 2 ≤ k ≤ p− 2, R(k) = k + 1;
• R(p− 1) = 2p − 1; R(p) = p+ 2; R(p+ 1) = 0;
• for every k, 2 ≤ k ≤ p− 3, R(p+ k) = p+ k + 1;
• R(2p − 2) = 2; R(2p− 1) = 1.

This permutation consists in a unique n-cycle. Next, let
• P = L4

1, whose cyclic representation is (0 1 p) (2 p+ 1 2p− 1),
• Q = L4

p, whose cyclic representation is (0 1 p− 1) (p p+ 1 2p− 1), and
• S = P ◦Q2, whose cyclic representation is (0 p− 1 p 2 p+ 1).

The automorphism of Sn which maps R to ϕ is defined by:
• 0 7→ 0; 1 7→ 2p − 2; p− 1 7→ 2p − 4; p 7→ 1; p+ 1 7→ 2p − 1 and
• for every k, 2 ≤ k ≤ p− 2, k 7→ p+ k − 3 and p+ k 7→ k.

This automorphism maps permutation S to (0 2p − 4 1 p − 1 2p − 1), which
satisfies the conditions of Proposition 4.1. �

5 Conclusion

In this article, we proved that unbreakable loops exist for every order n ≥ 5; we
did this with a combination of careful experiments on a computer and of fairly
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simple mathematical techniques. We also gathered evidence that these loops are
abundant and that certain of them can have interesting or useful additional prop-
erties. An obvious and tantalizing extension for our work would be to look for
unbreakable loops whose multiplication group is neither of Sn or An; coming up
with examples of such loops is likely to be a challenging problem, however. It
would also be interesting to look for loops with combinatorial properties other
than commutativity, or to evaluate how the proportion of unbreakable loops ver-
sus the total evolves as the order n increases. The algebraic and combinatorial
properties of the variety generated by the unbreakable loops (i.e., their closure
under homomorphism, quotient and finite direct product) also deserve to be in-
vestigated.

The first author extends his thanks to Markus Holzer, who made him aware of
the existence of Piccard’s work on the generators of the symmetric groups [15].
This research was supported by NSERC of Canada and FQRNT of Québec.
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Appendix

A Small unbreakable loops

In this section, we display the Cayley tables of unbreakable loops of orders be-
tween 5 and 13. Starting at order 9, we restrict ourselves to loops such that
M(G) = An.

Loop of order 5; M(G) = S5.

0 1 2 3 4
0 0 1 2 3 4
1 1 2 0 4 3
2 2 3 4 0 1
3 3 4 1 2 0
4 4 0 3 1 2

Loop of order 6; M(G) = S6.

0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 0 4 5 3
2 2 0 1 5 3 4
3 3 5 4 1 0 2
4 4 3 5 2 1 0
5 5 4 3 0 2 1

Commutative loop of order 7; M(G) = S7.

0 1 2 3 4 5 6
0 0 1 2 3 4 5 6
1 1 2 3 4 5 6 0
2 2 3 1 5 6 0 4
3 3 4 5 6 0 1 2
4 4 5 6 0 3 2 1
5 5 6 0 1 2 4 3
6 6 0 4 2 1 3 5

Commutative loop of order 7; M(G) = A7.

0 1 2 3 4 5 6
0 0 1 2 3 4 5 6
1 1 2 0 4 3 6 5
2 2 0 3 5 6 4 1
3 3 4 5 6 1 2 0
4 4 3 6 1 5 0 2
5 5 6 4 2 0 1 3
6 6 5 1 0 2 3 4
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Loop of order 8; M(G) = S8.

0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7
1 1 2 3 4 5 0 7 6
2 2 3 5 6 7 1 4 0
3 3 5 0 7 6 2 1 4
4 4 6 1 2 3 7 0 5
5 5 7 6 0 1 4 2 3
6 6 4 7 1 0 3 5 2
7 7 0 4 5 2 6 3 1

Loop of order 8; M(G) = A8.

0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7
1 1 2 3 4 5 0 7 6
2 2 3 5 6 7 1 0 4
3 3 5 0 7 6 2 4 1
4 4 6 7 0 1 3 5 2
5 5 7 6 1 3 4 2 0
6 6 4 1 2 0 7 3 5
7 7 0 4 5 2 6 1 3

Loop of order 8 with M(G) 6= S8 and M(G) 6= A8.

0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7
1 1 2 3 0 5 6 7 4
2 2 4 7 6 1 3 0 5
3 3 6 1 5 2 7 4 0
4 4 0 5 7 6 2 3 1
5 5 7 0 4 3 1 2 6
6 6 5 4 2 7 0 1 3
7 7 3 6 1 0 4 5 2

Commutative loop of order 9; M(G) = A9.

0 1 2 3 4 5 6 7 8
0 0 1 2 3 4 5 6 7 8
1 1 2 0 4 5 3 7 8 6
2 2 0 6 1 3 7 8 4 5
3 3 4 1 5 7 8 0 6 2
4 4 5 3 7 8 6 1 2 0
5 5 3 7 8 6 1 2 0 4
6 6 7 8 0 1 2 4 5 3
7 7 8 4 6 2 0 5 3 1
8 8 6 5 2 0 4 3 1 7
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Commutative loop of order 11; M(G) = A11.

0 1 2 3 4 5 6 7 8 9 10
0 0 1 2 3 4 5 6 7 8 9 10
1 1 2 0 4 5 6 3 8 9 10 7
2 2 0 3 7 8 1 5 9 10 4 6
3 3 4 7 8 1 2 9 10 5 6 0
4 4 5 8 1 7 9 10 2 6 0 3
5 5 6 1 2 9 10 8 3 0 7 4
6 6 3 5 9 10 8 4 0 7 2 1
7 7 8 9 10 2 3 0 6 4 1 5
8 8 9 10 5 6 0 7 4 1 3 2
9 9 10 4 6 0 7 2 1 3 5 8
10 10 7 6 0 3 4 1 5 2 8 9

Commutative loop of order 13; M(G) = A13.

0 1 2 3 4 5 6 7 8 9 10 11 12
0 0 1 2 3 4 5 6 7 8 9 10 11 12
1 1 2 0 4 5 6 7 3 9 10 11 12 8
2 2 0 3 5 6 7 1 9 10 11 12 8 4
3 3 4 5 1 7 9 8 10 11 12 6 2 0
4 4 5 6 7 8 1 10 11 12 3 2 0 9
5 5 6 7 9 1 10 11 12 4 8 0 3 2
6 6 7 1 8 10 11 12 2 5 0 4 9 3
7 7 3 9 10 11 12 2 6 0 4 8 5 1
8 8 9 10 11 12 4 5 0 7 2 3 1 6
9 9 10 11 12 3 8 0 4 2 5 1 6 7
10 10 11 12 6 2 0 4 8 3 1 9 7 5
11 11 12 8 2 0 3 9 5 1 6 7 4 10
12 12 8 4 0 9 2 3 1 6 7 5 10 11

B Example of a loop built from the template

To illustrate the method of Lemma 3.6, we display in this section the full Cay-
ley table of a commutative loop of order 21 built from the template, such that
M(G) = A21.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 1 2 0 4 5 6 7 8 9 10 11 12 3 14 15 16 17 18 19 20 13

2 2 0 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 3

3 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 0

4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 0 3 2

5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 2 0 3 4 1

6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 3 1 2 5 0 4

7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 2 1 0 3 4 5 6

8 8 9 10 11 12 13 14 15 16 17 18 19 20 3 1 0 4 5 2 6 7

9 9 10 11 12 13 14 15 16 17 18 19 20 1 2 0 5 3 4 6 7 8

10 10 11 12 13 14 15 16 17 18 19 20 1 2 0 3 4 5 6 7 8 9

11 11 12 13 14 15 16 17 18 19 20 1 3 0 5 4 2 6 7 8 9 10

12 12 3 14 15 16 17 18 19 20 1 2 0 5 4 13 6 7 8 9 10 11

13 13 14 15 16 17 18 19 20 1 2 0 5 4 1 6 7 8 9 10 11 12

14 14 15 16 17 18 19 20 2 3 0 3 4 13 6 7 8 9 10 11 12 5

15 15 16 17 18 19 20 3 1 0 5 4 2 6 7 8 9 10 11 12 13 14

16 16 17 18 19 20 2 1 0 4 3 5 6 7 8 9 10 11 12 13 14 15

17 17 18 19 20 1 0 2 3 5 4 6 7 8 9 10 11 12 13 14 15 16

18 18 19 20 1 0 3 5 4 2 6 7 8 9 10 11 12 13 14 15 16 17

19 19 20 1 2 3 4 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18

20 20 13 3 0 2 1 4 6 7 8 9 10 11 12 5 14 15 16 17 18 19

C Blocks

We display in this section Blocks B10 to B22, which can be combined with the
augmented template to construct a commutative unbreakable loop with M(G) =
An for any order n ≥ 43; see the proof of Lemma 3.7. In the figures, the numbers
in italics are the numbers of inversions in the corresponding row or column; they
confirm that all permutations of {0, 1, 2, 3, 4, 5} are even.

1

2 0

3 1 5

2 → 1 2 0 3 4 5

2 → 1 2 0 3 4 5

6 → 3 0 4 1 5 2

B10 4 → 1 2 3 0 5 4

4 → 1 0 5 2 3 4 ↑
4 → 1 3 2 0 4 5 ↑ 6

6 → 3 2 0 4 1 5 ↑ 4

4 → 1 2 0 5 3 4 ↑ 6

2 → 2 0 1 3 4 5 ↑ 4

8 → 3 1 5 0 4 2 ↑ 2

2 → 1 2 0 3 4 5 ↑ 8

4 5 ↑ 2

2 ↑ 6

↑ 2

↑ 6

6
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1

2 0

3 1 5

2 → 1 2 0 3 4 5

2 → 2 0 1 3 4 5

4 → 1 0 3 4 5 2

B13 4 → 3 0 1 2 5 4

8 → 2 1 5 3 4 0 ↑
4 → 3 1 0 2 4 5 ↑ 6

4 → 2 1 0 4 3 5 ↑ 4

2 → 1 0 2 3 5 4 ↑ 8

6 → 1 3 4 0 5 2 ↑ 2

6 → 3 2 0 1 5 4 ↑ 2

4 → 1 2 0 5 3 4 ↑ 4

2 → 2 0 1 3 4 5 ↑ 6

8 → 3 1 5 0 4 2 ↑ 4

2 → 1 2 0 3 4 5 ↑ 6

4 5 ↑ 4

2 ↑ 6

↑ 2

↑ 6

6

1

2 0

3 1 5

2 → 1 2 0 3 4 5

2 → 1 2 0 3 4 5

6 → 3 0 4 1 5 2

B14 4 → 1 2 3 0 5 4

4 → 1 2 0 5 3 4 ↑
4 → 1 3 0 4 2 5 ↑ 6

6 → 2 3 0 5 1 4 ↑ 4

4 → 1 4 0 2 3 5 ↑ 6

4 → 1 3 0 2 5 4 ↑ 4

2 → 1 0 2 3 5 4 ↑ 4

8 → 3 2 5 0 1 4 ↑ 6

2 → 1 2 0 3 4 5 ↑ 4

2 → 2 0 1 3 4 5 ↑ 4

8 → 3 1 5 0 4 2 ↑ 4

2 → 1 2 0 3 4 5 ↑ 6

4 5 ↑ 4

2 ↑ 6

↑ 2

↑ 6

6
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1

2 0

3 1 5

2 → 1 2 0 3 4 5

2 → 2 0 1 3 4 5

4 → 1 0 3 4 5 2

B15 4 → 3 0 1 2 5 4

8 → 2 1 5 3 4 0 ↑
4 → 3 1 0 2 4 5 ↑ 6

4 → 2 1 0 4 3 5 ↑ 4

4 → 2 1 0 3 5 4 ↑ 8

6 → 3 1 0 4 5 2 ↑ 2

4 → 2 1 0 3 5 4 ↑ 2

6 → 3 1 0 4 5 2 ↑ 4

4 → 1 2 0 5 3 4 ↑ 6

4 → 1 0 4 3 2 5 ↑ 4

4 → 2 0 3 1 5 4 ↑ 6

8 → 3 1 5 2 0 4 ↑ 4

2 → 1 2 0 3 4 5 ↑ 4

4 5 ↑ 6

2 ↑ 4

↑ 8

↑ 2

6

1

2 0

3 1 5

2 → 1 2 0 3 4 5

2 → 1 2 0 3 4 5

6 → 3 0 4 1 5 2

B16 4 → 1 2 3 0 5 4

4 → 1 2 0 5 3 4 ↑
4 → 1 3 0 4 2 5 ↑ 6

6 → 2 0 5 3 1 4 ↑ 4

4 → 1 3 2 0 4 5 ↑ 6

4 → 1 3 0 4 2 5 ↑ 4

4 → 1 2 0 5 3 4 ↑ 4

6 → 3 2 0 4 1 5 ↑ 6

6 → 1 5 0 3 2 4 ↑ 2

2 → 1 2 0 3 4 5 ↑ 6

2 → 1 0 3 2 4 5 ↑ 2

4 → 2 0 3 4 1 5 ↑ 6

8 → 3 1 5 2 0 4 ↑ 4

2 → 1 2 0 3 4 5 ↑ 2

4 5 ↑ 2

2 ↑ 8

↑ 4

↑ 2

6
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1

2 0

3 1 5

2 → 1 2 0 3 4 5

2 → 1 2 0 3 4 5

6 → 3 0 4 1 5 2

B17 4 → 1 2 3 0 5 4

4 → 1 2 0 5 3 4 ↑
6 → 4 0 3 1 2 5 ↑ 6

6 → 3 1 2 0 5 4 ↑ 4

4 → 2 1 0 3 5 4 ↑ 6

4 → 2 1 0 3 5 4 ↑ 4

6 → 3 1 0 5 2 4 ↑ 4

4 → 1 0 4 3 2 5 ↑ 6

6 → 2 3 1 0 5 4 ↑ 4

4 → 1 3 0 2 5 4 ↑ 2

4 → 1 2 0 4 5 3 ↑ 6

4 → 1 0 3 5 2 4 ↑ 6

4 → 2 0 3 4 1 5 ↑ 4

8 → 3 1 5 2 0 4 ↑ 6

2 → 1 2 0 3 4 5 ↑ 4

4 5 ↑ 4

2 ↑ 6

↑ 4

↑ 2

6

1

2 0

3 1 5

2 → 1 2 0 3 4 5

2 → 1 2 0 3 4 5

6 → 3 0 4 1 5 2

B18 4 → 1 2 3 0 5 4

4 → 1 2 0 5 3 4 ↑
6 → 4 0 3 1 2 5 ↑ 6

6 → 3 1 2 0 5 4 ↑ 4

2 → 1 0 2 3 5 4 ↑ 6

2 → 1 0 2 3 5 4 ↑ 4

4 → 2 0 3 1 5 4 ↑ 4

8 → 3 1 2 5 4 0 ↑ 6

4 → 1 0 4 3 2 5 ↑ 4

6 → 2 3 1 0 5 4 ↑ 2

4 → 1 3 0 2 5 4 ↑ 8

4 → 1 2 0 4 5 3 ↑ 4

4 → 1 0 3 5 2 4 ↑ 4

4 → 2 0 3 4 1 5 ↑ 2

8 → 3 1 5 2 0 4 ↑ 6

2 → 1 2 0 3 4 5 ↑ 4

4 5 ↑ 4

2 ↑ 6

↑ 4

↑ 2

6
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1

2 0

3 1 5

2 → 1 2 0 3 4 5

2 → 2 0 1 3 4 5

4 → 1 0 3 4 5 2

B19 4 → 3 0 1 2 5 4

8 → 3 1 2 5 4 0 ↑
4 → 2 1 0 4 3 5 ↑ 6

6 → 5 1 0 2 3 4 ↑ 4

2 → 1 0 3 2 4 5 ↑ 8

6 → 3 2 1 0 4 5 ↑ 2

2 → 1 0 3 2 4 5 ↑ 4

4 → 1 3 2 0 4 5 ↑ 2

4 → 1 2 0 4 5 3 ↑ 4

4 → 1 3 0 2 5 4 ↑ 4

6 → 2 3 0 4 5 1 ↑ 4

4 → 1 3 0 2 5 4 ↑ 6

4 → 1 2 0 4 5 3 ↑ 4

4 → 1 0 3 5 2 4 ↑ 6

4 → 2 0 3 4 1 5 ↑ 4

8 → 3 1 5 2 0 4 ↑ 4

2 → 1 2 0 3 4 5 ↑ 4

4 5 ↑ 4

2 ↑ 6

↑ 4

↑ 2

6

1

2 0

3 1 5

2 → 1 2 0 3 4 5

2 → 2 0 1 3 4 5

4 → 1 0 3 4 5 2

B21 4 → 3 0 1 2 5 4

8 → 2 1 5 3 4 0 ↑
4 → 3 1 0 2 4 5 ↑ 6

4 → 2 1 0 4 3 5 ↑ 4

4 → 2 1 0 3 5 4 ↑ 8

6 → 3 1 0 4 5 2 ↑ 2

4 → 2 1 0 3 5 4 ↑ 2

6 → 3 1 0 4 5 2 ↑ 4

4 → 1 0 5 2 3 4 ↑ 6

6 → 3 2 1 0 4 5 ↑ 4

4 → 2 1 0 4 3 5 ↑ 6

6 → 1 5 0 3 2 4 ↑ 4

2 → 1 0 3 2 4 5 ↑ 4

4 → 1 3 2 0 4 5 ↑ 4

6 → 3 2 0 4 1 5 ↑ 6

4 → 1 2 0 5 3 4 ↑ 4

2 → 2 0 1 3 4 5 ↑ 2

8 → 3 1 5 0 4 2 ↑ 4

2 → 1 2 0 3 4 5 ↑ 8

4 5 ↑ 2

2 ↑ 6

↑ 2

↑ 6

6
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1

2 0

3 1 5

2 → 1 2 0 3 4 5

2 → 1 2 0 3 4 5

6 → 3 0 4 1 5 2

B22 4 → 1 2 3 0 5 4

4 → 1 2 0 5 3 4 ↑
4 → 1 3 0 4 2 5 ↑ 6

6 → 2 0 5 3 1 4 ↑ 4

4 → 1 3 2 0 4 5 ↑ 6

4 → 1 3 0 4 2 5 ↑ 4

4 → 1 2 0 5 3 4 ↑ 4

6 → 3 0 4 2 1 5 ↑ 6

4 → 1 2 3 0 5 4 ↑ 2

4 → 1 2 0 5 3 4 ↑ 6

4 → 1 3 0 4 2 5 ↑ 2

6 → 2 3 0 5 1 4 ↑ 6

4 → 1 4 0 2 3 5 ↑ 4

4 → 1 3 0 2 5 4 ↑ 4

2 → 1 0 2 3 5 4 ↑ 4

8 → 3 2 5 0 1 4 ↑ 6

2 → 1 2 0 3 4 5 ↑ 4

2 → 2 0 1 3 4 5 ↑ 4

8 → 3 1 5 0 4 2 ↑ 4

2 → 1 2 0 3 4 5 ↑ 6

4 5 ↑ 4

2 ↑ 6

↑ 2

↑ 6

6

D Blocks for loops of intermediate order

In this section, we display examples of commutative unbreakable loops of odd
order n, 15 ≤ n ≤ 41 and n 6= 37, which satisfy M(G) = An. For loops of these
orders, the method of Lemma 3.7 cannot be applied; it is nevertheless possible to
build a Cayley table in an analogous manner, starting with a simplified template
and completing its undefined zone with a suitable array of entries.
In the template used for orders 15 to 23, all positions [i, j] except those for which
n ≤ i+ j ≤ n+ 5 are filled exactly as in the original template. Since the specifi-
cation for rows 1 and 2 leaves and the constraint that L2 be an even permutation
leave no flexibility for [1, n − 1], [2, n − 2] and [2, n − 1], all positions [i, j] such
that i ≥ 3, j ≥ 3 and n ≤ i+ j ≤ n+5 remain undefined. A suitable loop can be
built from the simplified template with the data displayed below, which specify
the intersection of rows 3 to p + 3 and columns p to n − 1 with the undefined
zone.
Starting with n = 25, it is possible to add the further constraint that the central
triangle (i.e. positions [i, j] such that p+ 1 ≤ i, j ≤ p+ 5 and n ≤ i+ j ≤ n+ 5)
is specified exactly as in the original template. Therefore, for orders n ≥ 25, it
is enough to display the intersection of rows 3 to p and columns p to n− 1 with
the undefined zone.
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n = 15 2 0 1
1 3 2 0

3 0 1 4 2
0 1 2 5 3 4

1 2 0 3 4 5
3 5 2 4 0
5 1 4 10
2 4 5

n = 17 1 2 0
1 0 3 2

2 0 3 4 1
3 1 5 2 0 4

1 2 0 3 4 5
1 2 0 3 4 5
3 0 5 4 2
0 5 4 11
5 4 1

n = 19 1 2 0
2 3 0 1

0 1 2 3 4
1 3 0 5 4 2

2 3 1 4 0 5
5 1 0 2 3 4

1 0 3 2 4 5
3 2 0 4 5
2 1 4 12
0 4 5

n = 21 1 2 0
0 2 3 1

2 1 3 0 4
1 3 4 0 5 2

3 0 1 2 5 4
0 1 2 5 3 4

1 2 0 3 4 5
3 2 1 4 5 0
1 0 5 2 4
0 5 4 13
5 4 3

n = 23 1 2 0
2 3 0 1

0 1 2 3 4
0 1 3 5 4 2

3 1 2 4 0 5
1 0 2 3 5 4

2 3 1 5 4 0
0 1 4 2 3 5

1 2 3 0 5 4
3 5 0 2 4
5 1 4 14
0 4 3
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n = 25 1 2 0
1 0 3 2

2 0 3 4 1
1 3 2 5 0 4

1 3 0 4 2 5
5 0 2 1 3 4

2 1 3 0 4 5
3 1 0 2 4 5

1 2 0 3 4 5
1 2 0 3 4 5

1 3 0 5 4 2

n = 27 1 2 0
1 0 3 2

2 0 3 4 1
2 1 3 5 0 4

0 1 3 4 2 5
1 2 3 0 5 4

1 5 3 0 4 2
3 0 2 1 4 5

2 1 3 0 4 5
1 0 2 4 3 5

1 2 3 0 5 4
1 3 0 5 4 2

n = 29 1 2 0
1 0 3 2

2 0 3 4 1
1 5 3 2 0 4

1 0 3 2 4 5
1 3 2 0 4 5

3 2 0 4 1 5
1 2 0 5 3 4

2 0 1 3 4 5
3 1 5 0 4 2

1 2 0 3 4 5
1 2 0 3 4 5

1 3 0 5 4 2

n = 31 1 2 0
0 2 3 1

2 1 3 0 4
4 1 3 0 5 2

1 3 0 2 5 4
1 0 2 3 5 4

1 2 3 0 5 4
1 3 0 2 5 4

5 0 2 3 4 1
2 1 3 0 4 5

3 1 0 2 4 5
1 2 0 3 4 5

1 2 0 3 4 5
1 3 0 5 4 2
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n = 33 1 2 0
1 0 3 2

2 0 3 4 1
1 5 3 2 0 4

1 0 3 2 4 5
1 3 2 0 4 5

2 4 0 3 1 5
1 3 0 2 5 4

1 3 0 2 5 4
5 0 2 1 3 4

2 1 3 0 4 5
3 1 0 2 4 5

1 2 0 3 4 5
1 2 0 3 4 5

1 3 0 5 4 2

n = 35 1 2 0
1 0 3 2

2 0 3 4 1
3 1 5 2 0 4

1 2 0 3 4 5
1 2 0 3 4 5

0 4 3 1 5 2
3 1 2 0 5 4

3 1 2 0 5 4
2 1 0 3 5 4

1 0 2 5 4 3
3 0 1 4 2 5

2 1 3 5 0 4
1 0 2 4 3 5

1 2 3 0 5 4
1 3 0 5 4 2

n = 39 1 2 0
2 3 0 1

0 1 2 3 4
3 1 5 0 4 2

2 1 3 0 4 5
1 0 2 4 3 5

1 0 3 5 2 4
3 0 2 1 4 5

1 2 4 3 5 0
1 3 0 2 5 4

3 2 0 1 5 4
1 2 0 4 5 3

5 0 1 3 2 4
2 1 3 0 4 5

3 1 0 2 4 5
1 2 0 3 4 5

1 2 0 3 4 5
1 3 0 5 4 2
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n = 41 1 2 0
1 0 3 2

2 0 3 4 1
3 1 5 2 0 4

1 2 0 3 4 5
1 2 0 3 4 5

0 4 3 1 5 2
3 1 2 0 5 4

1 0 2 3 5 4
1 2 5 3 0 4

0 2 3 1 4 5
1 3 0 4 2 5

1 2 5 3 0 4
1 0 3 2 4 5

2 0 3 4 1 5
3 1 5 2 0 4

1 2 0 3 4 5
1 2 0 3 4 5

1 3 0 5 4 2
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