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Abstract

Generating sets for closed surfaces are either reducible or Nielsen

equivalent to a standard generating set.

1 Introduction

Let G be a finitely generated group and let S = {s1, . . . , sn} ⊂ G ⊔G ⊔ · · ·
be a set of generators for G. Let FS = 〈xi, . . . , xn〉 be a free group with one
generator for each element of S and denote the natural map FS → G by ϕS.
Two generating sets S and S ′ of the same cardinality are Nielsen equivalent

if there is an isomorphism ε : FS → FS′ such that ϕS′ ◦ ε = ϕS. If S contains
the identity element then it is reducible. If, for all S ′ equivalent to S, S ′ does
not contain the identity element then S is irreducible.

Theorem 1 ([Zie70]). Sei F die Fundamentalgruppe einer orientierbaren

geschlossenen Fläche vom Geschlecht g 6= 31, und es seien {t1, u1, . . . , tg, ug}
kanonische Erzeugende mit der definierenden Relation Πg

i=1 [ti, ui] = 1. Ist
{x1, . . . , x2g} ein anderes Erzeugendensystem für F, so gibt es einen freien

Übergang von {t1, . . . , ug} zu {x1, . . . , x2g}.

Translation: any minimal generating set for a closed, orientable, surface
of genus not 3 is equivalent to a standard generating set. According to
Zieschang, his method does not apply for genus 3 surfaces. We generalize
Zieschang’s theorem to all closed surfaces and generating sets:

1Die Einschränkung g 6= 3 ist nur durch unseren Beweis bedingt. Die Aussage ist wohl

auch für g = 3 richtig.
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Theorem 2 (Generating sets are either standard or reducible). Let S be

a generating set for the fundamental group of a closed surface Σ. Then S
is either reducible or equivalent to a standard generating set. Equivalently,

Aut(Fn) acts transitively on Epi(Fn, π1(Σ)).

The theorem is obvious for S2 and RP
2, and so we ignore these cases.

Rather than work with generating sets for π1(Y ) algebraically, we con-
sider pairs (X,ϕ), where X is a compact, aspherical, two-dimensional CW–
complex, π1(X) is free, and ϕ : X → Y is a continuous, π1–onto map. A
morphism ε : (X,ϕ) → (X ′, ϕ′) is a continuous map ε such that ε∗ is surjec-
tive and ϕ′ ◦ ε is homotopic to ϕ. The rank of X is the rank of π1(X).

A morphism is an equivalence if it is a homotopy equivalence, and is a
reduction if it is surjective but not injective on fundamental groups. If (X,ϕ)
factors through a lower rank (X ′, ϕ′) then (X,ϕ) is reducible: Let {xi} be a
minimal generating set for a reducible (X,ϕ), and let S = {ϕ∗(xi)}. Then S
is Nielsen equivalent to some S ′ containing the identity element.

Let Σ be a closed surface. The standard generating set for a surface may
be represented by Σ \D◦ →֒ Σ, where D is an embedded closed disk: If Σ is
orientable, there is the standard presentation

π1(Σ) = 〈x1, y1, . . . , xg, yg | [x1, y1] · · · [xg, yg]〉

and if Σ is nonorientable, there is the standard presentation

π1(Σ) = 〈x1, . . . , xn | x21 · · ·x
2
n〉

Consider the presentation 2–complex homeomorphic to Σ associated to the
above presentation. There is an embedded subgraph Γ →֒ Σ representing the
standard generating set {xi, yi} (or {xi}) with the property that if D ⊂ Σ\Γ
is a closed disk then Σ \ D◦ deformation retracts to Γ. We may therefore
consider the “standard” generating systems for surfaces to be represented by
the maps Σ \ D◦ → Σ. All standard generating systems for a fixed surface
are clearly equivalent by a homeomorphism, with the homotopy provided by
the point, or rather disk, pushing map.

Our approach to Theorem 2 is a variation on the Dunwoody-Stallings
folding sequences for morphisms of graphs of groups. For the most part we
ignore the group theoretic interpretations, except in Lemma 6 and Theorem 9,
and construct a class of spaces with maps to a closed surface and a family
of “moves” on these spaces. The moves are either homotopy equivalences or
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reductions. A theorem of Stallings/Dunwoody and an elementary proposition
about surfaces with boundary (concealed in Lemma 14) will guarantee that
the moves can be applied. First, we review one dimensional spaces.

Acknowledgments

Thanks to Juan Souto for suggesting the problem.

2 Graphs

An oriented graph in a category C is a category G with two sets of objects
E and V from C, the edges and vertices of G, respectively, for each e ∈ E
morphisms τe : e → τ(e) ∈ V and ιe : e → ι(e) ∈ V, and a fixed point free
involution : E → E such that : e→ e is an isomorphism. We usually drop,
without introducing any ambiguity, the subscripts from τ and ι. If e is an
edge then τ = ι ◦ and ι = τ ◦ . The orbits of (on elements of E) are the
unoriented edges of G. If e is an edge of V then τ(e) and ι(e) are the terminal

and initial endpoints of e, respectively.
If the elements of V and E are points, then G is an ordinary graph. If,

for instance, the elements are topological spaces, then G is a description of a
graph of spaces. Graphs of groups are also graphs in this sense: The vertex
and edge spaces are groups, and the morphisms are injective homomorphisms.
To avoid ambiguity we always include the modifier when the graph under
consideration is not an ordinary graph. A graph X in some category always
has an underlying graph, ΓX , the graph obtained by regarding all edge and
vertex spaces as points.

A link in a category C is a category (V, EV , τV ) where

• V and the members of E are objects in C. We call V the core.

• for each E ∈ EV there is τE ∈ τV such that τE : E → V is a morphism
in C.

The spaces E ∈ EV are incident edges or incident edge spaces. Let V =
(V, EV , τV ) and W = (W, EW , τW ) be links. A morphism ϕ : V → W consists
of a morphism ϕ : V → W, and maps of incident edge spaces respecting
the peripheral structure: for each E, there is some ϕ(E) ∈ EW and a map
ϕE : E → ϕ(E) such that

ϕ ◦ τE = τϕ(E) ◦ ϕE
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The link of a vertex V in a graph is the tuple lk(V ):= (V, EV , τV ) where EV
is the set of edges E such that τ(E) = V, and τV is the associated collection
of maps.

A morphism of graphs in C is a functor V → V ′ carrying vertices to
vertices and edges to edges, such that maps of objects are morphisms in C. A
map V → V ′ induces both a map of underlying graphs ΓV → ΓV ′ and maps
ϕv : lk(v) → lk(ϕ(v)) for each vertex v ∈ V.

3 Graphs of graphs

A graph of graphs is a finite graph in the category of finite graphs.
A link V in the category of finite graphs is decomposable if π1(V ) admits

a free product decomposition

π1(V ) = (∗E∈EGE) ∗H

with GE a conjugate of Im(τE) and H a complementary free factor. Given
ϕ : V → W, the type of an incident edge E is the image ϕ(E) ∈ EW , the type
of a vertex v or edge e of E is the image ϕE(v). Two incident edges E and
E ′ intersect if they have the same type and there are vertices v ∈ E and
v ∈ E ′ of the same type and image in V. An edge E self-intersects if two
vertices in E of the same type have the same image in V. Likewise, two edges
E and E ′ intersect in an edge if they have the same type and there are edges
f ⊂ E and f ′ ⊂ E ′ with the same type and image in V. Similarly for self
intersections.

An edge f of V is traversed by E ∈ E if there is an edge f ′ of E such
that τE(f

′) = e.
If two incident edges in a link intersect then we may fold them together.

Suppose E and E ′ intersect. Let v and v′ be vertices such that τE(v) = τE′(v′);
ϕ factors through the link

V ′ = (V, E \ {E,E ′} ∪ E ∨v=v′ E
′, τ \ {τE , τE′} ∪ τE ∨v=v′ τE′)

obtained by folding E and E ′ along v and v′.
Let V be a link. Suppose e is an edge of V traversed exactly once by E .

Suppose that E traverses e, and that τE(e
′) = e. Denote the link obtained

by removing e, e, e′, and e′ by Ve.
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A morphism of graphs of graphs induces, at each vertex, a morphism of
links. Let ϕ : X → Y, and let ϕv : lk(Xv) → lk(Yϕ(v)) be a morphism of
vertex spaces: if τ : Xe → Xv we have, by definition, ϕv ◦ τ = τ ◦ ϕe.

We think of X as a description of a square complex, also called X, which
is the realization of X as a topological space:

X = ((⊔vXv) ⊔ (⊔eXe × I))/{(x, 1) ∼ τ(x), (x, 0) ∼ (x, 0)}

Similarly, let V be a link. Define the mapping cylinder

MV := V ⊔F∈F (F × I)/(x, 1) ∼ τF (x)

and its boundary
∂MV := ⊔F∈FF × {0} ⊂MV

The realization of a graph of graphs is obtained by gluing the realizations of
links along their boundaries via .

If V → W is a morphism of links then there is a natural mapMV →MW ,
and ifX → Y is a morphism of graphs of graphs there is a natural continuous
map of realizations X → Y obtained by gluing maps on links.

For ordinary graphs, a fold is a surjective morphism ϕ : V → V ′ such that
ϕ only identifies two edges which share a common endpoint. A morphism
injective on all links is an immersion. Immersions of graphs are π1–injective.

Theorem 3 ([Sta83]). A morphism of finite graphs ϕ : V → V ′ factors as

V = V0
φ0
−→ V1

φ1
−→ V2 → · · · → Vk # V ′

where φi is a fold and Vk # V ′ is an immersion.

Let Y be a graph of graphs. Of special interest in this paper is the
collection of graphs of graph over Y, that is, the collection {(X,ϕ) | ϕ : X →
Y }, such that if ϕ : X → Y and ψ : (X,ϕ) → (X ′, ϕ′), then ϕ′ ◦ ψ = ϕ.

3.1 Moves on graphs of graphs

We define some elementary transformations of graphs of graphs. These are
all standard (un)foldings adapted to the setting of graphs of graphs.

Let (X,ϕ) be a graph of graphs over Y. The vertex map ϕv : Xv → Yϕ(v),
by Theorem 3, factors through a folding sequence

Xv = W0
φ0
−→W1

φ1
−→ W2 → · · · →Wk # Yϕ(v)
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By replacing Xv by Wi and composing maps, we obtain a sequence of graphs
of graphs (X i, ϕi) over Y. At each stage, there is a morphism εi : X

i → X i+1

induced by φi. If εi is a homotopy equivalence then φi is, and vice-versa. The
last map ϕk : X

k → Y is an immersion at v.
Let (X,ϕ) be a graph of graphs over Y. Let V = lk(Xv) and let W =

lk(Yϕ(v)). Suppose that two edges Xe and Xf incident to Xv intersect at a
and b. Fold Xe and Xf together along a and b, identify ι(a) and ι(b) in Xι(e)

and Xι(f), and identify a and b in Xe and Xf . If ι(a) = ι(b) then the induced
map X → X ′ is not a homotopy equivalence, though if either Xe or Xf is
contractible the map is simple on the level of fundamental group: π1(X) has
a free splitting as G ∗ 〈x〉 such that the homomorphism π1(X) → π1(X

′)
simply kills the generator x. In this case the map X → X ′ is a reduction.

The following three moves are collapsing free faces/removing valence one
vertices (or the reverse), hence are homotopy equivalences. The letter X
always represents a generic graph of graphs.

Suppose that f is an edge of Xv traversed exactly once by incident edges,
without loss τ(f ′) = f, f ′ an edge of Xe. Let X

′ be the graph of graphs ob-

tained by removing f, f ′, f , and f
′
. There is a natural homotopy equivalence

X →֒ X ′. The graph of spaces X is said to be obtained from X ′ by unpulling

Xe. There may some ambiguity in that Xe may be unpulled in multiple ways,
but it should be clear from the context which one we mean.

Suppose that Xe is a point. Let ρ : E → Xτ(e) be a morphism of graphs,
and suppose that ρ(v) = τ(Xe). Let X

′ be the graph of spaces obtained
by replacing Xe and Xe by E and Xι(e) by Xι(e) ∨ι(Xe)=v E. If ϕ : X → Y
and there is a map ψ : E → Yϕ(e) such that ψ(v) = ϕ(Xe) then there is an
extension of ϕ to ϕ′ : X ′ → Y. The space X ′ is obtained by pulling E across

e.
For each edge space Xe, if Xe is not contractible, let X ′

e be the graph
obtained by trimming all trees, and if Xe is contractibile, let X

′
e be a vertex

of Xe. There is an inclusion map from the graph of spaces X ′ obtained by
replacing Xe by X

′
e into X. Let X

′
v be a vertex space of X ′, and let X ′′

v be the
union of all non-backtracking paths with endpoints in the images of incident
edge spaces. Let X ′′ be the space obtained by replacing each vertex space
X ′

v by X
′′
v . Then X deformation retracts to the image of X ′′.We say that X ′′

is obtained from X by trimming trees. Note that X ′′ has the same number
of edge spaces as X, and that if X is a graph of graphs over Y, then the
inclusion X ′′ →֒ X is a homotopy equivalence of graphs of graphs over Y.
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4 Links over surfaces with boundary

A surface with boundary Σ will be thought of as a link in the following
way: let Γ ⊂ Σ be an embedded subgraph in Σ◦ such that complementary
components of Γ in Σ are half-open annuli. There is a deformation retraction
Σ → Γ immersing the boundary components of Σ as closed paths in Γ. Each
edge of Γ is traversed exactly twice. Subdivide.

Definition 4. Let Σ be a surface with boundary and let (V, ϕ) be a link over
Σ. If ϕE is an immersion for all E, no two circular incident edges intersect in
an edge, and no incident edge self-intersects in an edge, then V is surfacelike.

Definition 5. A graph with peripheral structure (V, ϕ) over Σ is a pseu-

dosurface with boundary if it is surfacelike and every edge traversed by a
circular incident edge is traversed by another circular incident edge.

A pseudosurface with boundary V over a surface with boundary Σ is
never decomposable. If the map of core graphs is an immersion then, after
forgetting incident edge spaces that are not circles, V is a finite sheeted cover
of Σ.

Let ϕi : Vi → W, i = 1, 2, be immersions. The pullback of V1 and V2 is the
graph {(x, y) ∈ V1 × V2 | ϕ1(x) = ϕ2(y)}. Suppose that V → Σ is surfacelike.
Let p ∈ E be a vertex, and let q = ϕE(p) be the type of E. Consider the
maps ϕ : V # Γ and τϕ(E) : ϕ(E) # Γ. Let ∂E be the connected component
of the pullback containing (p, q). Since V is surfacelike, if E is a circle then
∂E = E, and otherwise ∂E is a point, an interval, or a circle. If ∂E and ∂E ′

intersect, then ∂E = ∂E ′, furthermore, if E is a circle and ∂E ′ = ∂E, then
surfacelikeness of V guarantees that E ′ is not a circle. The degree of E is the
degree of the map ∂E # ϕ(E).

Lemma 6. ϕ : V → Σ be a surfacelike immersion. Suppose that if ∂E is a

circle then E = ∂E. If

ϕ∗ : π1(Mτ , ∂Mτ ) → π1(Σ, ∂Σ)

is not injective then there are two incident edges E and E ′ of the same type,

∂E = ∂E ′, and at least one of E or E ′ is not circular.

Proof. By pulling we may assume that for all E, E = ∂E. Suppose that ϕ∗

is not injective. Let α be a shortest edge path in the one skeleton ofMV such
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that ϕ ◦α is homotopic rel endpoints into ∂Σ. Since α is shortest, it consists
of a path from E to V , a path β in V , which we may assume is an immersion,
and a path from V to E ′. The path β intersects E and E ′, and, since it is an
immersion, factors through the pullback of MV and ϕ(E) (or, equivalently,
ϕ(E ′)). Since β and E intersect, they correspond to the same component
of the pullback, likewise for β and E ′. Since E and E ′ factor through the
same component of the pullback, they intersect, hence ∂E = ∂E ′. Since V is
surfacelike, one of E or E ′ is not circular.

Lemma 7. Let Σ be a surface with boundary and let ϕ : V → Σ be decompos-

able and surfacelike. If there is a circular incident edge then there is an edge

of V traversed only once by circular incident edges. If e is the edge traversed

only once then Ve is decomposable.

Proof. If every edge traversed once by a circular incident edge is traversed
twice by circular incident edges then the union of edges traversed by circular
incident edge spaces along with the traversing edge spaces is a pseudosurface
with boundary and there is a relation in homology, contradicting decompos-
ability of V.

5 Surfaces

We need to show that closed surfaces are graphs of graphs.

Theorem 8. Let S be a closed surface with χ(S) ≤ 0. Then S is a graph of

graphs. The links of vertices are surfaces with boundary. We may assume

that no link is a Möbius strip.

Proof. See Figure 1.

For the remainder of the paper, “surface” will mean a graph of graphs such
that every link has at least two boundary components, and whose topological
realization is homeomorphic to a surface.

Let ϕ : F → π1(S) be a homomorphism. We represent ϕ as a map of
graphs of graphs as follows. Let R be a rose with fundamental group F, and
identify the petals of R with the generators of F. After identifying funda-
mental groups appropriately, there is a map from R to the one-skeleton of S
inducing ϕ. We may assume, by subdividing, that this map is a morphism

8



Figure 1: Writing a surface, χ ≤ 0, as a graph of graphs. The top figure is
for even Euler characteristic, and the bottom is for odd Euler characteristic.
The odd Euler characteristic surfaces are all nonorientable.

of graphs. We regard R as a graph of graphs over S by declaring the con-
nected components of preimages of vertex spaces of S to be vertex spaces.
Midpoints of edges mapping to edge spaces of S are the edge spaces.

Let Σ be a closed surface written as a graph of graphs, and consider an
edge space Σe. Let v be a vertex of Σe, and let Σ′ be the graph of graphs
obtained by restricting Σe and Σe to v and v, respectively. Then Σ′ ⊂ Σ is a
deformation retract of Σ \D◦, for some embedded closed disk D ⊂ Σ; Σ′ is
a minimal generating set.

5.1 Surfacelike graphs of graphs

A graph of graphs X over Σ is surfacelike if all links of vertex spaces of X
are surfacelike and π1(X) is free. A morphism ϕ : X → Σ of a surfacelike X
is locally injective if, for all v, ϕv∗ is injective. If, for all v, ϕv : Xv → Σϕ(v)

9



is an immersion, then ϕ is a local immersion. Suppose ϕ : X → Σ is locally
injective. Then folding in vertices yields a homotopy equivalent surfacelike
local immersion of graphs of graphs over Σ.

Theorem 9 (cf. [Dun98]). Let ϕ : X → Σ be a local immersion of a surface-

like X. If ϕ∗ is not injective then either

• there is a vertex space Xv of X and two incident edge spaces, one of

which is not a circle, Xe, Xe′ → Xv such that ∂Xe = ∂Xe′ , or

• there is Xe such that Xe is not a circle but ∂Xe is a circle.

Proof. Consider the map ϕ : X → Σ of topological realizations. Suppose
that the second bullet doesn’t hold. Let α be a reduced edge path in the one
skeleton of X , with nullhomotopic image in Σ, and least intersection with
edge spaces of X. Let η : D → Σ be a continuous map of a disk such that
η|∂D lifts to α. Homotope η on the interior of D so that η is transverse to the
collection edge curves C of Σ. Since Σ is aspherical, we may assume, after
homotopy, that Λ = η−1(C) consists of arcs connecting ∂D to itself. Let D′

be an innermost disk bounded by an arc β of ∂D and an arc of Λ. Then
D′ represents a nullhomotopy of ϕ ◦ β in (MXv

, ∂MXv
) → (MΣϕ(v)

, ∂MXv
) =

(Σϕ(v), ∂Σϕ(v)). Suppose β connects the incident edge spaces Xe and Xe′. If
e = e′ then either α may be homotoped to have smaller intersection with
Xe or Xe is not a circle and ∂Xe is a circle. If e 6= e′ then, by Lemma 6,
∂Xe = ∂X ′

e.

Rather than work with arbitrary graphs of graphs over a surface, we
restrict our attention to the following special classes. Let Σ be a closed
surface, and define

• SΣ, the collection of surfacelike graphs of graphs over Σ,

• LIΣ ⊂ SΣ, the subcollection of local immersions,

• FDΣ ⊂ SΣ, the subcollection such that each vertex map is either a
finite sheeted cover or is decomposable, and

• PPΣ ⊂ LIΣ ∩FDΣ, the subcollection such that there is an edge space
Xe such that Xe is a point and ∂Xe and ∂Xe are both circles.
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Let |X| be the number of edges in ΓX and |X|c be the number of circular
edge spaces of X . The complexity of a surfacelike graph of graphs (X,ϕ)
over Σ is the pair c(x):= (|X|, |X|c), ordered lexicographically.

Lemma 10 (cf. [She55]). Let (X,ϕ) ∈ SΣ. Then (X,ϕ) ∼= (X ′, ϕ′) ∈ LIΣ,
such that |X ′| ≤ |X| and |X ′|c = 0.

Proof. By trimming trees we may assume that all edge spaces ofX are points
or circular. IfX has a circular edge space then, since π1(X) is free, there must
be a vertex space Xv of X with an edge f traversed by exactly one incident
edge, otherwise π1(X) contains a surface subgroup. Suppose Xe traverses f.
Unpull Xe and trim trees to produce X ′ →֒ X. Since Xe is a circle, X ′

e is
connected, andX ′ has the same number of edges spaces asX. Since unpulling
and trimming trees are homotopy equivalences, the fundamental group of X ′

is free. The vertex spaces of X ′ are still surfacelike. Repeat until there are
no circular edge spaces remaining. Now fold in vertex spaces.

Lemma 11. Let X ∈ SΣ. Suppose X is irreducible and has a vertex where

two incident edges, one of which is not circular, intersect. Then X is equiv-

alent to Y ∈ LIΣ such that |Y | < |X|.

Proof. Suppose that Xe, Xe′ → Xv intersect. Let X ′ be the result of folding
Xe and Xe′ and trimming trees. Since one of Xe or Xe′ is not circular, all
edge spaces of X ′ are either circular or points. There is a morphism X → X ′

over Σ, |X ′| < |X|, and since X is irreducible, X → X ′ is an equivalence.
Let Y be the result of applying Lemma 10 to X ′. Since Y has no circular

edges and X is irreducible, the map X → Y is an equivalence. Clearly
|Y | < |X|.

Lemma 12. Let (X,ϕ) ∈ LIΣ. Suppose that X is irreducible, that ϕ∗ is not

injective, and that for all edges e, if Xe is not a circle then ∂Xe is not a

circle. Then X is equivalent to Y such that |Y | < |X|.

Proof. By Theorem 9 there is an edge e such that Xe is not a circle and ∂Xe

intersects another incident edge space Xe′. Suppose that Xe′ is a circle. Since
ϕv is an immersion, Xe′ and Xe intersect. If neither Xe nor Xe′ is a circle,
adjust X by pulling ∂Xe across e. In either case Xe and Xe′ intersect and
one is not circular. Apply Lemma 11.

Local immersions over surfaces can be transmuted to maps which are not
injective at some vertex. Once this is done, Lemma 14 guarantees that every
generating set is equivalent to one with some obvious relations.
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Lemma 13. Let (X,ϕ) ∈ LIΣ. Suppose that X is irreducible. Then either

• X is equivalent to X ′ ∈ SΣ such that X ′ has strictly fewer edges than

X, or

• X is equivalent to X ′ ∈ FDΣ such that X ′ has the same number of

edges as X and there is a decomposable vertex X ′
v such that the map

ϕv : X
′
v → Σϕ′(v) is not π1–injective.

Proof. Suppose that case one doesn’t hold. By Lemma 12 there is an edge
e such that Xe is a point or an interval, and ∂Xe is a circle. By trimming
trees, we may assume that Xe is a point.

Suppose Xι(e) is not decomposable. Then Xe and Xf , for some f 6= e,
τ(f) = ι(e), intersect. By Lemma 11 the first bullet holds. We may therefore
assume that Xι(e) is decomposable.

Let X ′ be the space obtained by pulling ∂Xe across e. Then X ′ is free,
surfacelike, and X ′

ι(e) is also decomposable. If ϕ′ is injective at ι(e) fold
X ′

ι(e) → Σϕ(ι(e)) to an immersion. Then X ′ is irreducible, X ′ ∈ LIΣ, and

|X|c < |X ′|c ≤ |X|. Repeat using X ′ as the initial data.

Lemma 14. Suppose (X,ϕ) ∈ FDΣ is irreducible and that ϕ is not locally

injective. Then either

• X is equivalent to X ′ ∈ SΣ such that X ′ has strictly fewer edges than

X, or

• X is equivalent to X ′ ∈ PPΣ, |X
′| ≤ |X|, and |X ′|c ≤ |X|c.

Associated to an element of PPΣ is the obvious relation that ∂Xe∨Xe
∂Xe

has abelian image in Σ. Failure of this lemma for arbitrary groups that split
over Z is partially responsible for the existence of nonequivalent generating
sets.

Proof of Lemma 14. Since ϕ is not locally injective, there is a decomposable
vertex space Xv such that ϕ : Xv → Σϕ(v) is not π1–injective. Let

Xv = V0 → V1 → · · · → Vk

be a folding sequence for ϕv : Xv → Σϕ(v) maximal with respect to the prop-
erty that Vi is surfacelike for all i, that for i < k, Vi−1 → Vi is a homotopy
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equivalence. The last map Vk−1 → Vk may or may not be a homotopy equiv-
alence. Let X i be the space obtained by replacing Xv by Vi.

Suppose that for all i, and at all vertices, there are no pairs of incident
edges that intersect or incident edges that self intersect. Let e and f be
the two edges identified under Vk−1 → Vk. Suppose that one of e or f is
not traversed by a circular incident edge. Then Xk−1 → Xk simply kills a
primitive element and the map X → Xk is a reduction. Suppose that both
e and f are crossed by a circular incident edge. Then neither is crossed by
two, otherwise there is an (self) intersection of incident edges. Suppose that
Xk−1

g traverses e and that Xk−1
h traverses f. Since e is traversed exactly once,

we may write Xk−1
g → Xk−1

v as composition of paths S · e. The path S · f is
indivisible, intersects Xk−1

g , and has the same image as Xk−1
g in Σ. Unpull

Xk−1
g at e (collapse a free face) to obtain X ′. If ϕ′

v is injective, fold to an
immersion. Then both ∂X ′

g and ∂X ′
g have positive degree and X ′ has lower

complexity than X . Start over if ϕ′
v∗ is not injective.

Suppose, for some i < k, a circular pair of incident edges X i
e and X i

e′

intersect, say at a ∈ X i
e and b ∈ X i

e′. Let f be the edge in Vi traversed by
exactly one circular incident edge, and let X i

g be the incident edge space
traversing f. Unpull Xk

g and call the resulting space X ′. If g 6= e, e′, then X ′

is surfacelike, free, and not injective at v: X ′
e ∨a=b X

′
e′ has nonabelian image

in X ′
v, but abelian image in Σ. Furthermore, lk(X ′

v) is decomposable and
surfacelike. Thus X ′ satisfies the hypothesis of the lemma, but |X ′|c < |X|c.
Repeat. If g = e or e′, suppose, by relabeling, that g = e. Then X ′

e and X ′
e′

intersect and X ′
e is not a circle. By Lemma 11 X ′ is equivalent to X ′′ ∈ LIΣ

with strictly fewer edge spaces than X.
Suppose, for some i < k, there is an incident edge X i

e that self intersects.
If X i

e traverses f, then unpull X i
e to obtain X ′. If X ′

v → Σϕ(v) is π1–injective
then fold to an immersion.

Let S be the segment of X i
e from a to b that doesn’t traverse f. The closed

curve obtained by identifying the endpoints of S intersects X i
e at b, immerses

in Σϕ(e), is sent to the same boundary component of Σϕ(v) that X i
e is, and

covers ∂X ′
e, which is therefore a circle. In X ′, both X ′

e and X ′
e are circles.

Start over if ϕ′
v is not injective.

If X i
e doesn’t traverse f, unpull X i

g. Suppose that X i
e self intersects at

a and b. The edge map X i
e → X i

v factors through X i
e/a ∼ b. The image of

X i
e/a ∼ b in X i

v(:= Vi) is nonabelian but its image in Σ is, hence ϕ′
v is not

injective. Repeat, using X ′ as the initial data. Since |X ′|c < |X|c the process
stops in finitely many steps.
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If ϕ∗ is not injective at some other vertex repeat the entire process.

6 Proof of main theorem

Let (Y, ψ) ∈ SΣ, and suppose that Y is irreducible. Choose, out of all (Z, ρ)
equivalent to (Y, ψ), (X,ϕ) ∈ PPΣ, the existence of which is guaranteed by
Lemmas 13 and 14, with minimal complexity. We may assume, by trimming
trees, that if Xe is not a circle then it is a point.

Since X has as few circular edge spaces as possible, if f is an edge of a
vertex space traversed by only one incident edge space, then f is traversed
either by ∂Xe or ∂Xe, otherwise the number of circular edge spaces can be
reduced by unpulling. Hence the links other than lk(Xι(e)) and lk(Xτ(e)) are
surfaces with boundary and are finite sheeted covers of the associated vertex
spaces of Σ. Suppose that ∂Xe traverses an edge f of Xτ(e) exactly once, and
that no other incident edge traverses f. Form X ′ by pulling ∂Xe, and then
unpulling X ′

τ(e) at f. Then, since both ∂Xe and ∂Xe were circles, X ′

ι(e) is
decomposable and X ′

ι(e) → Σϕ(ι(e)) is not π1–injective. By Lemma 14, either
X ′ is reducible, or X was not of minimal complexity.

Every edge traversed by ∂Xe is then either traversed twice by circular
incident edges, ∂Xe, and ∂Xe. Since ϕ is a local immersion, Xτ(e) → Σϕ(τ(e))

is a finite sheeted cover. Likewise for ι(e). Furthermore, since ϕ is a local
immersion, there are no foldable pairs of edges at any vertex. In conclusion,
every edge of X except for Xe(= Xe) is circular.

There are two cases to consider, depending on the degrees of ∂Xe and
∂Xe. Suppose that ∂Xe and ∂Xe have different degrees. One of them, say
∂Xe, is smaller. Let ι : Xe → Xι(e) and τ : Xe → Xτ(e) be the two edge maps
associated to Xe.

Lemma 15. ∂Xe traverses some edge of Xι(e) that is traversed either by

some other circular incident edge or by ∂Xe.

Proof. Suppose that every edge traversed by ∂Xe is traversed by ∂Xe twice.
Then lk(Xι(e)) is a finite sheeted cover of lk(Σϕ(ι(e))) having only one boundary
component, hence lk(Σϕ(ι(e))) has only one boundary component, contrary to
hypothesis.

If lk(Σϕ(ι(e))) is orientable then we may, by Riemann-Hurwitz, drop the
assumption that it have only one boundary component, since the number of
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critical points of a nontrivial branched cover of an orientable surface is at
least two.

Let f be an edge of Xι(e) traversed by ∂Xe and either by some other inci-
dent edge space or ∂Xe. Pull ∂Xe across e to form X ′. In X ′, f is traversed by
a circular incident edge space X ′

g, and it is possible that g = e. Unpull X ′
g to

form Z. By construction Z ∈ FDΣ, c(Z) = c(X), and Zι(e) is decomposable.

Lemma 16. The vertex map ϕι(e) : Zι(e) → Σϕ(ι(e)) is not injective.

Proof. Folding in the vertex Zι(e) yields after some stage a morphism of
graphs Zk

ι(e) → Σϕ(ι(e)) which is surjective on all links of vertices, but not
injective on at least one link.

Since ϕ : Z → Σ is not injective at ι(e), and Zg is not circular, folding
in the vertex ι(e), by Lemma 14, yields an equivalent surfacelike Y ′ → Σ
which either has fewer edges, is a reduction of X, or is in PPΣ. Since X was
irreducible and Y ′

g is not circular, |Y ′|c < |X|c and X was not the minimal
complexity element of PPΣ equivalent to (Y, ψ), contrary to hypothesis.

Thus ∂Xe and ∂Xe have the same degree. Let X ′ be the space obtained
by replacing Xe by the cover of Σϕ(e) associated to ∂Xe or, equivalently, since
the degrees are the same, ∂Xe. In X

′, every link is a surface with boundary
and the map X ′ → Σ is a finite sheeted cover. Since X generates π1(Σ),
X ′ → Σ must be an isomorphism. Since X is obtained by replacing X ′

e by a
vertex, X represents a minimal generating set.
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