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Geometric continuity and compatibility conditions
for 4-patch surfaces

Bo | Johanssaih

Abstract

When considering regularity of surfaces, it is its geom#tat is of interest. Thus, the con-
cept of geometric regularity or geometric continuity of &gific order is a relevant concept. In
this paper we discuss necessary and sufficient conditiosras4epatch surface to be geometrically
continuous of order one and two or, in other words, beingeahglane continuous and curvature
continuous respectively. The focus is on the regularitjhatgoint where the four patches meet
and the compatibility conditions that must appear in thisecaln this article the compatibility
conditions are proved to be independent of the patch paremaigdn, i.e., the compatibility con-
ditions are universal. In the end of the paper these resdtagplied to a specific parametrization
such as Bezier representation in order to generalize achpatface result by Sarraga.

Keyword: 4-patch surface; tangent plane continuity; curvatureinaity; compatibility conditions,
Bezier patch.

1 Introduction

In many applications in Computer-Aided Geometric DesigA®D) and Computer Graphics a sur-
face is composed of several patches, where a patch usuabipriesented by a Bezier polynomial,
B-spline or NURBS. In particular, each patch is as regulaisaseeded. Thus, when considering
smoothness of a surface such as tangent plane continuitynatare continuity, the lack of regularity
may only occur somewhere at a common boundary curve betweaeartmore patches.

Regularity for a surface constituting of two adjacent pagckharing the same common boundary
curve, see Figure 1, is a well studied problem. Generaltefud such a 2-patch surface in the case of
G as well asG? continuity, i.e., tangent plane continuity and curvatusatinuity respectively, were
given by Juergen Kahmann in a paper from 1983, [see [7]. Inaim=gaper he applies these results to
the case of Bezier patches. Other authors such as Degeriy3ntd Hoschek [10], Liu [9], DeRose
[4], have also treated tangent plane continuity in the 2fpatse. In the case of curvature continuity
of 2-patch surface we refer to articles by Kiciak [8], Ye, hggand Nowackil[20].

A more complicated situation is regularity of a surface éstivgy of four patches where every
pair of adjacent patches meet at a common boundary curvellahé patches intersect at a common
vertex, see Figurel 2. Among the many authors that have dreagilarity problem in this 4-patch
surface case are Béziér [1], Sarraga [16]) [17] and [18]arve Nowacki[211]. Further references and
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an overview can be found in the book by Hoschek and Lassel{6gfered articles so far there have
only been considered certain cases of parametric patchea,general parametrization as is done in
this paper. A general approach has also been done by Peterthesarticles by Peters [12]-[15] and
by Ye [19].

A general approach to study regularity for a 4-patch surfeasgbeen to restrict the patch parametri-
zation to a certain explicit polynomial or rational basis. this paper we consider 4-patch surfaces
where the patches are given by any function of the féun) — r(u,v) € R3, u,v € [0,1]. We
present necessary and sufficient compatibility conditinrsder to have tangent plane continuity and
curvature continuity respectively for “such surfaces. fidseilts we achieve in this paper are indepen-
dent of the patch parametrization. Thus, these resultsfargeneral nature and can be applied to any
parametrization.

In the last section of this paper we apply our results by d@rsig the Sarraga case of filling a
hole of aG'-surface in such a way that the extended surface presemwés! thegularity, see Sarraga
[16]. Compared to Sarragas result we reduce the bi-degi@sSpof the created interior patch. More
generally, we give necessary and sufficient conditions deioto create such an interior patch.

2 Geometric continuity of order 1

When discussing regularity of a surface our focus is on trergry of the surface and not on its
actual parametrization. Thus the notation of geometridioaity is the concept used in this context.
The lowest order of regularity i&°, which means that the surface is connected. Another way to
put it is to require that its representation is continuouke fext level of regularity is tangent plane
continuity, denoted by, which is defined here.

Definition 1 A continuous surface is said to be tangent plane continudespted byG', if every
point on the surface has a unique tangent plane, which varbedinuously on the surface. Such a
surface is also said to be geometrically continuous of omtes.

Consider Definitiori 11 in the case of a 2-patch surfaceHere we use the notatian € C;# for
a patch described by a continuous differential functiom) +— r(u,v) € R3 with 0 < u,v < 1
satisfyingr,, x r,, # 0 for 0 < u,v < 1. Let the two patches be described(asv) — (! (u, v) with
0 < wu,v <1, and(s,t) — r®(s,t) with 0 < s,¢ < 1. Suppose further that each patch is regular
enough, i.e.r,r® e CL. In order for the surfacé to be tangent plane continuous the only
points that do not automatically fulfill thé'-condition are those along the common boundary curve
of the two patches, see Figure 1. On this boundary curve we pauticularly havey — r(V(1,v) =
r(0,t(v)) for 0 < v < 1, wherev — t(v) is a regular reparametrization of the inter{@l1].

Thus, at a particular boundary point with parameter valtlee tangent plane must fulfill

spar(r(D(1,v), x{D (1,v)} = spar{r® (0, (v)), r{” (0, ¢(v))}.
Let us formulate this in an alternative way, where we use titationr®) (u, v) = r® (u,t(v)) for
0 < wu,v < 1. The statement can be found in e.[g.l[20] and is summarizdteingxt Lemma.

Lemma 1 A necessary and sufficient condition for two adjacétt-patchesr™) and r(®) joining

G'-continuously along its common boundary cuwve— r()(1,v) = r(?(0,v) is that there exist
continuous functiong; » andx; » such that

rﬁf) (0,v) = A12(v) rq(})(l,v) + K12(v) rg})(l,v), 0<v<1. (2.1)
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Figure 1: Two patches connected by a common boundary curve

In this paper we will consider the problem of a surface caumttig of four patches where every
two adjacent patches have a common boundary curve, seeeBiguMoreover, the four patches
intersect at a common vertédx. In the case of a 4-patch surface beii§ we will prove that there
must exist compatibility conditions at the intersectionnpd’. The compatibility conditions can be
rephrased in such a way that we formulate necessary andisotfaonditions on the functions; ;
andk;; at the intersection poirit’.

First, by using the relatiori (2.1) we get the next four relasi between the patchés)—(2), (2)—
(3), (4)—(3) and(1)—(4). We use the same parameterandu for all the patches, whefe< u,v < 1.
Thus

r(2(0,v) = A2 (0)rl) (1, 0) 4+ K12 (0)rD (1, 0) 2.2

r(3)(0,v) = A s(0)r® (1, v) + kas(w)rl® (1,0) '
and

rl® (u,0) = A a(u)rlV (u, 1) + rya(w)rldD (u, 1) 23

() (u,0) = Aos(u)rl? (u, 1) + ko z(w)r? (u,1).

We have here used a patch numbering as is indicated in Higure 2

Figure 2: Four patches connected in a common vertex

Considering a tangent plane continuous 4-patch surfacmudt satisfy that every pair of its
patches with a common boundary curve coincide along thatecufhe same must be true of its
derivatives along the same boundary curve.



Thus
ri(1,0) = 117 (0,v) 2
r(4)(1,v) = rg,?’)(O,v), v e [0,1] .
and
ri (u, 1) = ri (u,0) 25

r&z)(u, 1) = r&?’)(u, 0), u € [0,1].

Using the equation$ (2.2)—(2.5), we prove the next theowenich is the main result in this section.
In the case where the patches are described by polynontiesesult has already been published by
Bézierin 1986. Seé [1], p 44-46. Here we formulate and ptheeesult for a general parametrization.

Theorem 1 Let S be a 4-patch surface consisting ﬁféﬁ—patcheSr("), i =1,...,4. LetV be the
intersection point of the four patches. Then, necessary saffficient conditions in order for the
surfaceS to be tangent plane continuous are that there exist contistfanctions\;; and «;;, i =
1,7 =2,4andi = 2,4, j = 3, satisfying the equations(2.2) arid (2.3), and the follgviglations

K12 = A14 K43 (2.6)

K14 = M2 K23
and

A2 — Ay3 = K14 K43 @.7)

AL4— A23 = K12 K23
at the verteX/.

Remark. The notations:; 2, A1 4, k4,3, €tC, are to be interpreted ag2 (1), A1.4(1), £4,3(0), etc. i.e.,
as the value of the functions at the vertéx

Proof. In order to prove the above statement, we must see under whaditions the equations (2.2)
and [2.8) are all satisfied at the vertex We use here the short notatioff’ for I'q(})(u,v)|v =
rV(1,1), etc.

We start by eIiminating*f), r?, Y andrl? in the equationd (2]2) and (2.3) by usig {2.4) and
(2.8) to get

Aort) 4 rport! —rt) =0

>\4,3F5}) P 4 H4,3I“z()3) =0 2.8)

f<&1,4rz(}) + )\1,41"1(;1) - =0 .
)\2,31"1(;1) + f<&2,31‘£¢3) —rP =o.

With the use of[(Z8) we replace the second and fourth equatithe above system by eliminating
rﬁf’) andr§,3) to get

(Mg = A2+ sraras)rl) + (nakas — m12)rs) =0

(A1,2k2,3 — %1,4)1“5}) + (X3 — Mg+ H1,2%2,3)1“z(;1) =0.



Since the vectors&l),rg}) span the tangent plane, it follows from the above equatibas(2.6) and
(2.2) must hold. This concludes the proof. O

Let us look at some simple consequences of Theorem 1. Olbyidhe functions);; are not
allowed to be zero if tangential continuity is to be satisfi€tus, if e.9x43(0) # 0 thenx; 2(1) # 0,
which follows from [2.6). On the other hand, #f 4(1) = 0 then alsok 3(0) = 0. This situation
is exemplified in Figure 3. In general, it follows from equati(2.6) that the pair of;;'s in each
equality must both be zero or non-zero.

=<

Figure 3: Four patches connected in a common veitewith x;4(1) = k23(0) = 0 and
k1,2(1)ka,3(0) # 0

Another observation that can be done frém|(2.6) (2. haisthe next relations are true
Mgz = Aa(A2 — K1,4R4,3) = MM 14 — A\ aKa3k14
= AM2A14 — K121 4
and

AM2A23 = A1 2(A1a — K12M23) = A12A14 — K121 2K23

= A2A14 — K1,2K1,4-

In particular, we have
A12M23 = A1 ady 3, (2.9)

which will be useful in the next section.

3 Geometric continuity of order 2

In this section we consider 4-patch surfaces of higher exggyl Therefore we introduce the following
concept.

Definition 2 A tangent plane continuous&;!, surface is said to be curvature continuous, denoted by
G?, if every point on the surface has a unique Dupin indicatviziich varies continuously on the
surface. Such a surface is also said to be geometricallyimontis of order two.



Another equivalent way to describe the notation of cunattontinuity is to say that the normal
curvature at each point and in each tangential dirdlities to be unigue, or the principal curvatures
are unique. These differential geometric notations amditced and explained in any book about
differential geometry, e.g. [2]. First we consider a 2-pagarface, where the patches are of regularity
C% = C, N C? Thus, lack ofG*-regularity for the surfaces can only occur at the common
boundary of the two patches. A necessary and sufficient tondor a 2-patch surface to be curvature
continuous can be found in a paper by Juergen Kahniann [7].08f @f this well-known result can
also be found in[[20]. The result is summarized in the next inem

Lemma 2 LetS be a 2-patch surface consisting of tﬁ@—patches(u, v) = rM(u,v) and (u,v) —

r® (u,v), 0 < u,v < 1, satisfying equatiof {211) along their common boundaryeurA necessary
and sufficient condition for the surfaceto be curvature continuous is that the following relation is
fulfilled

£ (0,v) = A 5 (0)rl) (1,0) + 221 2(0)R1 2 (0)r) (1,0) + K1 5 (0)rl) (1,0)

(3.10)
+ Ml,z(v)rul (1,0) + v12(w)r(1,0), 0<v <1,

where the functiong o, x1 2, /11,2 andvy o are continuous.

We now continue to consider a 4-patch surface as shown inéfguThe first and most obvious
conditions to have geometric continuity of order two are tha equations if (212) and (2.3) are still
satisfied when differentiated with respect to the pararsetandwv respectively. We assume here that
the functions)\;; andx;; are differentiable. Thus

£ (0,0) = Mo(0) e (L,0) + A a(v) 20 (1,0) + K 5 (0) £V (1,0) + R p(0) £ (1,0)

’ (3.11)
r(3)(0,v) = N 3(0) ) (1,0) + Aga(v) vl (1,0) + £ 5(v) 18 (1,0) + ka3 (v) £l (1,0)
and
r(2) (u,0) = N 4 (w) r8P (u, 1) + Apa(w) v (u, 1) + K] 4 () v (u, 1) + 14 () v (u, 1) (3.12)
r(3) (u,0) = Ny g(u) v{P (1, 1) + Mg () v (u, 1) + r g(u) 8P (u, 1) + Ko 3(u) 1) (u, 1)

must hold. From Lemm@l 2, we know that curvature continuitplies that the next four relations
must be fulfilled

ri) (0,v) = A?,z(v)rq(}u( v) + 2A1,2(0)m1 2 (V) (L, 0) + w1 5 (0)rl) (1,0)

3.13
+ p12(0)rP (1,0) + v (v)rV (1,0) -
r()(0,0) = Af 5(0)rl) (1,v) + 2X,3(v)kas(0)rly) (1,0) + 3 5(v)rly) (1,0) (3.14)
+ paz(w)ri? (1,0) + vy 3(v)riP (1,v)
and
el (u,0) = A3 5(w)r) (u, 1) + 200,3(u) k2,3 (w)rE) (u, 1) + K3 5 (u)rZ) (u, 1) (3.15)

+ p23(w)r® (u, 1) 4 vo 3(u)r® (u, 1)

In fact, it is enough that it holds for 3 pairwise linearly mkndent tangential directions by the 3-Tangent Theorem,
see Pegna & Wolter [11] or Hoschek & Lasdelr [6], p 333.




I‘z(qu;) (U7 O) = )\%,4(u)r1()1)) (u, 1) + 2)\174(u)/€174(u)1‘1(}y) (U7 1) + K%A(u)rz(}u) (u7 1)
+ pra(w)r (u, 1) + vy a(w)rld (u, 1).

The main result of this section is a general result. It cameg@arameterized patches of any kind and
it is formulated next.

(3.16)

Theorem 2 Let S be aG! 4-patch surface consisting «if;g—patcheSr(i), i=1,...,4. LetV be
the intersection point of the four patches. Then, necessadysufficient conditions in order for the
surfacesS to be curvature continuous are that there exist continupdgferentiable functions,;; and
i; and continuous functiong;; andv;;, 7 = 1,j = 2,4 andi = 2,4, j = 3, satisfying the equations
(3.13){3.16) and that the following relations

2X1,3M\] 4k4,3 — V12 + VasAig + 14kt s =0
2023\ ok2,3 — V14 + V23A12 + 12653 = 0
2\ 3K43K] 4 — 1,2 + Ha3 + Va3k1a + I/1,4f@2173 =0 (3.17)
2X2,3K2,3K1 9 — 1,4 + P23 + Vo gk + vi2K3 3 =0 .
Npg = A23N 9 + A3k g — Aiakn g + Kidkys — fi12K2,3 + V1aka3 = 0

/ / / / /
Ao — Aa Al 4 + Ao 3Ky 9 — ARy 3 + K12Kp 3 — f1,4ka,3 + 1,2K2,3 =0
hold at the verteX’.

Remark. We use here the same short notations as in Theorem L\i.&.x1 2, (11,2, V1,2 €tc, are to
be interpreted a&; »(1), x1.2(1), 11,2(1), v1,2(1), etc, i.e., as the value of the functions at the vertex
V.

Proof The idea inthe proof is to study the equation system congisti (3.11)-{(3.16) and to reduce,
as far as possible, the number of equations including dergof second order. To simplify the
notations in the proof we use for rS})(u, )|y = rq(})(l, 1), etc.

First, we know that the equatioris (3111) ahd (8.12) must.Hdking the relationd (214) and (2.5)
in order to replace the vectoré4 andr(2) with r&) aner() ) respectively. Combining this with (2.2)

and [Z2.B) in order to eliminatel” andr" we get

Mar®) — e+ Ny or® 4 e 4 e = 0

A4 31'( ) () 4 A, sl 4 /@2173()\1741?( )+ k1 41'( ) + Ky 31"1(3)) =0
Aar® = @ 4t e a0 el

A2 31"1(,12 -0 4 k) 3()\1 oM + Qr( ) + Aj 3T ril) + Ky 3r(2) 0.

In the above equation system we multiply the first equationdy; the second one with 1, the third
one with—\4 3 and add them to the fourth equation. We get

(—)‘21,3 + >‘2,3X1,2 - >‘4,3’f/1,4 + 1,255 3 ki1 4“2‘,3)1"21) + (A 3t A2 3”’1,2 — A3\ 4 (3.18)

+h12k9 3 — )\1,4/‘621,3)1“1(, ) — Msr1artl) + Aozror(l) + ko sr) — gy arld) =

Considering the last part in the equatibn (3.18) and usieg@tjuationd (3.13) and (3]16) it follows



that

1 1 2 4
— Miar1ariy + Aok orly) + ko ar(s) — rgsrly

= —Aash1arl) + Aok orly
+hro (AT 2rSLu) + 2X1 o1 o1 + /‘@1 r) + ppor) + v or()
—rg,3(A] 41"1(;@) + 2\ ak1ar) + K] 41°(1) + piard) + vy ar())
= ra3(p, 21“( )+ 21°(1)) - /*64,3(#1,41”1() )+ V1,41“z(}))
+(k23A] o — Kaakt g — Aaskia)rhy
+(K2,3K] 9 — KagA] 4 + Ao 3k12)rsy)
+2(K2,3A1,2K1,2 — ﬁ4,3A1,4ﬂ1,4)r511,)-
In order to further reduce the above formula, we use theioels{Z.6) and[(2]7) to get
ff2,3)\i2 - /€4,3/€%,4 — M 3K14 = K1aA12 — /€4,3f€i4 — Ay 3K14
K1,4(M2 — A3 — Kiakaz) =0,

2 2 2
K23kl o — K434 T A23K12 = K23Ki 2 — K12A14 + A23K12

= Ki12(X23 — Aia + Ki2k23) =0
and
K23A12K1,2 — K43A14Kk14 = Ki14K12 — K12K1,4 = 0.

Thus, it follows that

— M\4,3K1 411(”2 + A2 3K1 21“1()1)) + Ko 31°(3) ff4,3rz()?§;)

= (ko312 — Kagv1a)t) + (23012 — Kaspra)rd).

Input the above equality into the equatidn (3.18). As beftire independence of the two vectcm%>
andrg,l) gives
—Ni3 = M3l + Aol + Makh g — B4Ry g + K230, — Kaglig =

Ny 3 — AgsN) 4 + Aok b3 — A4k =0 (3-19)
2,3 — A43A1 4 T A23K] 9 T K12K0 3 — AlaKy 3 + K23V1,2 — K431,4 =

The equations i (3.19) are necessary in order to fulfill thedition of geometric continuity of order
2.

Let us next study the equatioris (3.18)—(3.16) more closelg.rewrite two of these equations.
Start with the equatio_(3.14) by adding to it the first eqprain (3.11) multiplied by2A4 3 x4 3 and
equation[(3.113) multiplied by)\473/)\172. We get the new equation

(a3 + 2M\43K43K7 4 — p127— ) 4 (2M43K43X] 4 — 11 2—’)1‘1(,1) + vy a1

)\ 1,2

A A
+ ()\?12’ + 2)\473164,31‘6174 — )\1,2)\473)1'1(}12 — /{%72 )\‘112 1(}1)) (1 — #)r(g’) + /@2173['1()::’)) = 0.

We continue with the equatiof (3]15). To this one we add tts¢ diquation in[(3.12) multiplied by
22 3 k2,3 and equation (3.16) multiplied by s 5/\1 4. We have

)

A2.3 A
(2X\] 2 A23K2,3 — 11 S 4) r(D) 4 (u23 + 2} 2A23K2,3 — 1 4)\2i) i) + vy e
3.21
2 A23 (1) (1) (3) _ (1 223y, 821
- 174mruu + (>\273 + 2K12A2,3K2,3 — A1,4A2.3)Ty,) + %2 ry) — (1 — E)rw =0

) )



Let us now consider the equatidn (3.20). We want to rewriie élquation in order to make it
easier to handle. Using the relatiohs {2.8)4(2[4),] (2Z&¥)(combined with[(3.13) an@ (3]16), we get

(1a3A1,2 + 2X1 24 3K4 3] 4 — J1,224,3) rl) + Ay 3(2A12k430] 4 — V1 2)Ty W 4y, 31, ord
+ Modis(Mas 4 2614k43 — Ao)rll) — Agsk? 21“(1) (A2 — Aa3)r® 4\ ok2 31“(4)

= (pa,3M1,2 + 2X1 204 3K4,3K1 4 — 11,2043)T, D 4 Ay 3(271 2k4 30 4~ V12)Ty (1)
+ va3A12(K1, i)+ 41"( )+ A1,2A43K1 4K4 31"&12 A4 3K7 21‘7(,%,) — K1 4ka3(\] 21‘(1)

+ 2X1 21 o) + :‘il,grq(w) + p1,or D+ v or(Y) + Ay o 3()\1 41"(1) + 2X1 akipary)
+ K1 4r( )+ u1,4r§)1) + V1,4I"1(}))

= (pa,3M1,2 + 2X1 204 364,361 4 — f1,200,3 + Va3 A1 2Kl 4 — K14K43001,2 + )\1,2&21,3’/1,4)1“1(})
+ (2M12M3R4,3X] 4 — V12Aa3 + Va3 214 — K1k 3V + )\1,2/@373;11,4)1"1(})
+ A ok1aka3(Aa3 — A2 + /‘61,4/‘64,3)1“52 - K%,Q(M,s + K1,4K4,3 — >\1,2)1“1()1))
— 2\ 2k14k4,3(K12 — A1 aka )Tl

= (pa,3M1,2 + 2X1 200 3K4,3K1 4 — 1,203 + Va3 A1 2R14 — K14K4300,2 + )\1,2”2,3”1,4)1.1(})

+ (2M12M3R4,3X] 4 — V12Aa3 + Va3Ai 214 — K1k 3V + )\1,2/@373;1174)1«1(}1) —0.
The independence of the tangential vecté}g andrq(,l) combined with the first relation ih_(4.7) gives

A2(pas + 2X\13K4,3K1 4 — 12 + Vaskia + viak] ) =0 (3.22)
A12(2M4,3K43N1 4 — V12 + vasdia + ,U1,4:‘<6421,3) =0.

We end our examination by simplifying the equatibn (B.21imifrly as above, we usé (2.2), (2.5),
(2.8)-2.T), combined with (3.13) and (3116). We have
A23(2X] 9 A1 ak2 3 — V1,4)I"1(L1) + (H2,3M1,4 + 267 9A14 A0 3K03 — M1,4)\2,3)r1(,1) + V2,3)\1,4I‘1(f)
— )\2,3/%,41‘1(1112 + Aada3( Ao + 261 0k2,3 — ATl + )\1,4%6%,31‘(2) — (Mg — Agg)rly

uu
= X232\ 9 A akns — V)T + (p2,3M14 + 28] oA ae3k23 — pi1ade,3)T Y
+va3Aa(A2rl) 4 k1 or)) — Mg gkt () + ALada sk 2m2,3r0 + Apak3 5 (AF el

+ 2X1 ok o) + Ko () + pigorl + v orll) — 51,2/‘@2,3()\1,41"1(,1,) +2X1 a1 a1l
+ k3 4l 4 par) + v grl)

p 1
= (2X23M] 9 A14k23 — V143 + v23A1 a2 + 1214k 3 — V1,451,2%2,3)F5L) + (p2,3M1.4
/ 2 1 2
+ 26 oM ado k23 — 14023 + Vo 3N a1 2 + V1o kG g — p1akt2k2,3)TS) + K4 (Mg

1 1
— Ao 3 — K1 2%2,3)1“5”2 + A ak12k2,3(A23 + K12k2,3 — >\1,4)I“q(w) + 2A14k1,2K2,3(K2,3A1,2

— k1)l (1)

= (2X2,3M] 9A14k2,3 — V1423 + v23A a2 + 12 K3 3~ V14K12K23)Ty, W+ (g 3ha

!/
+ 2] oA ad3k2,3 — H14M23 + V23N 4K + V12 AL aKS 3 — f1 k1 2k2,3)TS) = 0.

Using the same argument as before, i.e., the independenite ¢dngential vectors” andr{”
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together with the second relation [n(R.7), it implies

Aa(2X2,3N] oo 3 — V14 + v23hi2 + ,u1,2fi%,3) =0 (3.23)
A a(p23 + 2%'172)\2,3%2,3 — 1,4+ V2 3K12 + V1,2:‘€§,3) =0.

Combining the results i (3.19), (3]122) and (3.23) with tet that);; # 0, we get the compatibil-
ity conditions [3.1F7) foilG?, which are necessary and sufficient for having a simultasieatisfaction
of the equationd (3.11)=(3.16). This ends the proof. O

4  An algorithm

In the previous part of this article we have achieved gemesallts about regularity of 4-patch surfaces.
In this section we will apply those results in tli8 -case to a particular patch parametrization such
as Bezier representation. Our goal is to make the connebgébiween two patches more flexible,
which will make it easier to handle geometrical and other aleds. The way to handle this will
be done by letting the functions and « in (2.1) be suitable polynomials. We start this section by
studying the consequences for the relations between theotpoints from a 2-patch surface in such
a case. This result will then be used in creating a smoothtehurface from an uncomplete such
surface consisting of three patches. Here the compaibibinditions in Theorem| 1 are of fundamental
importance. The next step is to solve the problem of fillingkelin a surface in a smooth way, more
precisely, we consider an uncomplete regular 9-patch cida in Figure 5. To create the interior
patch we use the same technique as in creating a 4-patcleesufanally, what we have done so far
will be used in creating a fillet surface, see Figure 6, whadether with its surrounding becomes a
smooth surface.

r
v
oy
Figure 4: Two patches connected along a common boundary

We begin by considering the well-knové@' -relation [2.1) between two patches, see Fi@lire 4. Let
the two patches be given iy, v) — r(u,v) and(u,v) — ¥(u,v), whereu,v € [0, 1] and with the
common boundary curve — T(u,0) = r(u, 1) foru € [0,1]. Then

Ty(u,0) = Au)ry(u, 1) + k(u) ry(u, 1), 0<u<l. (4.24)
We restrict ourselves in using Bezier representation opttehes as follows
3 3
r(u,v) = S0, Xy ai B (w) By (v)

and .
F(u,v) = Y0 o ST o @iy BLY (u) BY™ (v),
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where the parameteis v € [0, 1] with m = 4,5,6. The functionsB(”) fori =0,1,...,n, are the

Bernstein polynomials of degreg i.e. B(")( )= (1) (1 —w)""u' foru € [0,1].
Let the functions\ andx be polynomials satisfying

Mu) = Ao (1 —u)? +2a (1 — w)u + A\ u?

4.25
r(u) = ko (1 —u)® + 380 (1 — u)?u+ 383 (1 —wu® + r1 w?, (4.29)

wherelg, A1, ko, k1 @, 51 and3?) are constants and the parametet [0, 1]. From formula[[4.24)
we get

5 3

m > (@1 — Gi0) B (1) = (Mo(1 —u)? + 2a(1 —wyu + \u?) Y 3 (i3 — i) B ()
=0 1=0
2

+ (ko(1 —u)® +38W (1 — u)?u + 38 (1 — w)u? + k1 u?) Z 3(Qi+1,3 — Qi 3) Bi(Q) (u)
=0

(o (1= 91 = D) (qis — qin) + 20 (1 — 9 (@13 — qi12)

||
.MU‘

P 5 4 54
11— 1
+ A ZT (Qi—2,3 — Qi—2,2)) BZ@ (u)
’L' (1) Z Z ’L
+ 32 (0 ( )1 = —)(1 —3)(@it1,3 —ai3) +38°7 (1 — o)1 — 2)5 (A3 — Qi-1,3)
4 3 5 473
@ 1,11 —1 11 —11—2 (5)
+382 (1 - B)Z 3 (Qi—1,3 — Qi—2,3) + K1 = E 1 3 (Ai—2,3 — qi—33)) B;” (u).

Using the above identity we see that the control points matsfg the next relations. We have
m(do,1 — do,0) =3 (Mo (0,3 — do,2) + ko (A1,3 — do,3))

_ _ 3o 2q
m(qu,1 — q1,0) =3 (T (91,3 —q1,2) + — (90,3 — qo,2)

5
2k 33501
+ TO (923 —q1.3) + 65 (d1,3 — q03))
_ _ 3 A\
m(Q2,1 — G2,0) =3 ( 100 (d2,3 — qz,2) + 0 (q1 3—dq12) + 0 (90,3 — do,2)
Ko 6 3L 332
+ 70 (a33 —dz3) + f—O (@23 —q1.3) + f—o (a1,3 — 903))
Ao 6o 3 (4.26)
m(gs,1 — G3,0) =3 (10 (933 —qg32) + 10 (q2,3 — az2) + 5T (91,3 — q1,2)
38M 652
+ 0 (a33 —dz3) + 10 (92,3 —qi3) + 10 L (a13 — qo 3))
2 3\
m(Qa,1 — Qa,0) =3 (? (933 —asz2) + & (92,3 — a2,2)
383 2k
+— (a33 —dz3) + T (q2,3 — q1,3))

m(@s,1 — G5,0) =3 (M1 (as3 — as2) + w1 (a33 — 92,3))-



12

Since the two patches andt coincide along their common boundary curve we also have the
following identity

ZqZOB qugB(B

=0
° i i i . o

=2 (=5 =7)ais+2(1 = S B! .
Zz:;(( 5)( 4)q2,3+ ( 5)4q2 13+5 1 q;— 23) p (u)7 ue[07 ]7

which, by identification, implies that

do,0 = 90,3

_ 3 + 2

q1,0 = 5 q1,3 5 q0,3

0= Qo o st

q2,0 = 10 92,3 10 q1,3 10 90,3 @.27)
ool 6. 3 |
qs3,0 = 10 q3,3 10 q2,3 10 q1,3

_ 2 n 3

q4,0 = 5C13,3 5C12,3

ds5,0 = 93,3-

Thus, from theG!-condition between the two patchesind¥, wherer is known, the control points
Qi;, 1 =0,1,...,5,5 = 0,1, are forced to satisfy the relatioris (4.26) and (#.27). Keetess, first
we have to decide the value of the paramelgrs\;, o, %1, @, 5 andS?. In the later applications
it will be obvious how to choose certain of these parameters.

In order to define the patch completely, the other control pointg; ;, ¢ = 0,1,...,5, 5 =
2,...,m, must also be defined but not from the above regularity cmmdifThere must be any other
way to define them.

The result we have achieved so far in this section will be used, where we consider 4-patch
surfaces.

4.1 A 4-patch surface

In the introduction of this section we considered a 2-patetiase. There we achieved relations
between the control points of the two patchedin (#.26) afi{4 We will use this when creating a
4-patch surface. Looking at Figuré 2, we assume that we havesurface consisting of the three
Bezier patches®, r() andr(?). Our goal is to create the fourth patef?) in such a way that we get
aG'-regular 4-patch surface.

Since the patchr® must have a common boundary curve witR) andr® respectively, the
second equation in(2.2) arld (R.3) respectively must bel&afiWe have

r(® (u,0) = Xo3(w)r$ (u, 1) + ko (w)r(? (u, 1)
r(0,v) = Ays(0)rl) (1,0) + kas(0)riP (1,0),

where the parameteis v € [0, 1]. We continue with the next two equations which we get from the
the second equation in(2.4) and (2.5) respectively. Thqeat®ns are the boundary conditions, i.e.,

(4.28)

r® (u,0) = r®(u,1)

(4.29)
r®(0,v) = r¥(1,v).
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To be more specific, we exemplify by letting the patches, r(® andr® all be Bezier patches of
bi-degree(3, 3), while the patch-(® is of bi-degree (5,5), i.e.,

whereu, v € [0,1].

Since the the patches!), r® andr(¥) have the same bi-degree the functions, A1 4, #1.2 and
k1.4, defined in the first equation df (2.2) arid (2.3) respectivielyst satisfy that\; » and \; 4 are
identically constant ans; » andx 4 are polynomials of first degree. In fact these polynomialstmu
satisfyr 2(v) = k1,2(0)(1 — v) andry 4(u) = k1.4(0)(1 — w), but here we consider the case where
the functionsx; » andx 4 are identically zero. There is in principle no differencévien the two
cases.

Combining the above with the compatibility conditios (2a@d [2.7) we get

(4.30)

Let the functionsh\y 3, A4 3, k2,3 andky 3 be defined as in(4.25). Using (4]130) we have

Ag,g(u) = )\174 (1 — u)2 +2 Qg3 (1 — u)u + )\2,3(1) u?
A =A2(1—v)2+2 1 —v)v+ Ay 3(1) 02
4,3(v) 1,2(1() v) g3 ((2) v)v + A 3(1) v (4.31)
Kkos(u) =384 (1 —u)?u+ 3853 (1 —w)u? + Ko z(1)u?
(v) =3

3

Bi (1= v)%0+ 385 (1 - v)o? + Kaa(1) %,

where\; 3(1), x;,3(1) andﬁf? fori = 2,4, are any constants, while the coefficients; andﬁi(lg) for

1 = 2,4 need to fulfill certain compatibility conditions given inglend of this subsection, s@.%).
The solutions of the system of differential equations_(#\@8h boundary conditiond (4.29) to-

gether with the compatibility conditions (4)30) include et of all possible patches that will result in

aG'-regular4-patch surface. In order to get such a solutiGh we start by solving the first equation

in (4.29). From[(4.277) it follows that

B3 _ 2
90,0 = 90,3
3) 3 (2 2
ay == a}+ = i
5 5
3 3 (@ 6 (2 1
a¥y = —aii + —a + — a)
10 10 10 (4.32)
q) = iq@) L a2 + 3 q2
3,0 10 3,3 10 2,3 10 1,3
3) 2 (2 3
=2+ Lol
3 _ 2
950 = d33-
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Considering next the first equation [n_(4.28) combined WiBQ), it follows from [4.26) in the
previous subsection that

3 3) _3Aa, (2 2
a6 — dio == (a3 — a5)
(1)
3 3) 3 ,3Aa, (2 2 2003 , (2 2 3823 , (2 2
af’) - af == (Z5 (e — aiD) + =22 (a6 — a62) + —== (4} — ai)
3 3) 3 ,3Ma, (2 2 6azsz , (2 2 Ao3(1) (2 2
a5 — 4 == (1o (a3 — a52) 10 (at) —at) + 10 (a3 — a62)
1 2
N 655,32 (@) — q@) 355,32 (@) — (2)))
o \d23 i3 0 \di3 3
3 3) 3, 14, (2 2 6ags (2 2 3x23(1) (2 2
q:(a% - q:(a,g =5 (1— (qg}, - q:(a,%) + 0 (qg,g, - qg,;) + 0 (qg,:z, - qg,%) (4.33)
3551:2 2 2 6 52:2 2 2 ka3(1) , (2 2
I g O e mealt)
3 3) 32003, (2 2 3x23(1) (2
o — il =5 (T2 (a3 — ays) + e (A — ab)
(2)
3p 2 ko 3(1
+ 2 (g - a2 g )
3
a5 — aso = (Maa(l) (@53 — ay) + r2a(1) (a3 — ay3)

When considering the second equation[in (#.28), using symgnre (4.33) we immediately get the
following relations

di10 — Y,0 = 5 3,0 2,0
0
3 3) 3 ,3M2, @ 4 2043 , (4 4 3Bis  (a 4
a8 ol =2 (P02 () 2292 (gt it 3 g _ o)
3 3) 3 ,3N2, @ 4 6ags , (4 Aa3(l) @ 4
qﬁ,%—qé,%j( 10 (a5 — a5) 10 (a5 — ds) + 10 (d30 — d50)
(1) (2)
6513 @ 4 383 4
o (a5 —a) + =307 (@l — ay)
3 3) 3 M2, (4 4 6ouz , (4 4 3M3(1) , @ 4
ai’s —aby =5 (o (55— aby) + 307 (s —ap) + =0 (@) —ay))  (4.34)
1) (2)
3813 @ 4 65,3 (@ 4 Ka,3(1 4 4
+ 208 (g gl 20 (qff) — af) + 8 (g i)
3 3) 32043, (4 4 3M3(1) , @ 4
qg,i—qé,ZZE( 5 (a5 — ab) + . IR
3@(‘2?2 4 4 2k13(1), (4 4
L PRI PR
3 3 3 4 4 4
ai’s —ang = (Maa(l) (a3 — a53) + ras(l) (53 — a53)
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Finally, from the second equation in_(4129), similarly aq4m32) combined with symmetry, we
get

3 4
dio = 950
3) 3 @, 2 @
q((),% =5 qé} TE qé,é
3 3 4 6 4 1 4
divy = 7oA+ 70 di + 70 950
10 10 10 (4.35)
@ =lqwy 8@ 3 @
0,3 10 3,3 10 3,2 10 3,1
3 9 3 @
dii = A+ = A
5 5
(B3) _ L@
o5 = 43,3
A conclusion from the result above is that the control poqft;% fori =2,...,5,j=0,1, and

i =20,1,7 = 2,...,5, are uniquely defined. Far; = 0,1, on the other hand the control points

q§3> are deflned in two different ways above. Concernqﬁ there is obviously no problem. The

fact that we have used the compatibility COﬂdItlm BWlies equality in the two different ways
defining q(3) and q(3) The last control pomtlL1 must be chosen in such a way that the relations

@4.28) are fulfilled and consequently it is uniquely defin@therefore, let us calculatq(3) in terms
of {q j , in the two different ways that this control point has beenraefiin [4.38) and (4.34)

respectlvely, in order to see what conditions are needefilifiling uniqueness. First, it follows
Q23 =25(a;) — 4y - é |+ dip) = 9 (a3 — ar) + Gazs (b} — af)
+ 952 3 (Ch 3 ) 1514 (Q(():Z, q(OZ%)
=914 (@) - q(023, +agy — ais — (ai — afy))
+ (6az3 — 15A14) (af
=914+ 9559) M2(al!

- 9)\1,4)\1,2((1:(»,3 - q(Q%)

2 2
% %) + 952 ( ) q(o,%)
1 1
) - qg )+ (6azs — 6>\1,4) (qé}, —aly)

Second, we consider the same expression as above gileB4).(We have

Qus =25(a) —ay] — ar’y +a5p) = 92 (a5 — a3}) + Boues (a — sy

+ 9643 (a5 — agp) — 15M12 (a5p — a30)
(@) _ g | g _ @ _ @
3,1 2,0

=912 (q —9g30td30—d d3,1 —qg ())))
+ (6aus — 15A12) (aly — as) + 989 (a5 — aly)

7

=(9A12 +9659) Aa(als — aly) + (6as — 6A12) (a3 — ab)

) 7

- 9A1,2A1,4(q§§ - qg %)

)
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Finally, using [[2.9) we get

Q2,3 — Q43 =(9>\1,25§,1:2 -

+ (6(c2,3 — A1) —
(1)

6(aa3 — Mi2)) (qéf% - qgg)

9\ 454 3) (CI?, :3. Q:(slg)

+ 914212 (a3 3 qé{%) — 91 2A14 ( §,
% q(l)) + 91 21 4 (ay (1

— 91412 (qé
=(9>\1,25§,1§ 6(ca3 — A1 2)) (qg(»,lg, qé?%)

+ (6(a23 — A14) — 9)\1,454,3) (qs,:z, - qg2) = 0.

)

1
() — as

is uniquely defined if and only |f the coefficients s, 5@(,13)

The fact that the vectorq(l) qg sandqy 3

pomtqgg

are linearly independent implies that the control
for i = 2,4, satisfy

3)\1,2557132 = 2043 — 2)\12

0 (4.36)
3)\1,454’3 = 20[2,3 — 2)\1,4.

With the above criteria fulfilled the control pointéi) fori =0,1,...,5,j=0,1, and fori = 0,1,
j = 0,1,...,5, are uniquely defined by (4.82)—(4135). Concerning the rotioatrol pointng?,
i,j = 2,3,4,5, there is no criteria given here how to choose these. Use aitgbe method to
determine those control points. The same is true for thenpﬂmsﬁg) with i = 2,4, while there
may be certain restrictions concerniigs(1), x; 3(1) fori = 2, 4.

In the case, referred to on page 13, where(0) # 0 or k1 4(0) # 0, then the coefficient relations

in (4.38) are replaced by
3>\1,25§1§ 20043 — 212 — A2 k1,4(0)
3>\1,45i,;2 20093 — 2A1,4 — A1,4 K1,2(0).

Our goal so far has been to createé’agatch in a non-complete 4-patch surface in such a way that
the new surface i&!-regular in spite of the fact that the functiohs; and\4 3 are non-constant. We
have a further goal with this construction, which will be isée the next subsection, but for the just
mentioned purpose we can in fact choesg of bi-degree (4,4). Let

1
52(713) = 5(252‘,3 + £i,3(0))
1
52(723) = 5(252‘,3 + ri3(1))
1
;3= 5()\2‘,3(0) + Ai3(1)),

for i = 2,4. Then we get the polynomials

Aog(u) = Aa(l—u)+A3(l)u
M3(v) = A2 (1—v)+A3(1)v
ka3(u) = 2P23(1 —uw)u+ Ka3(1) u?
ka3(v) = 2@(‘71?2 (1 —v)v+ kas(l) V2.
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In this case necessary and sufficient conditions in {4.36)eplaced by the next conditions

2M 2023 = Aa3(1) — A2 = Aa3(1) — Mg 3(0)

(4.37)
224843 = A23(1) — Ara = A2 3(1) — A2;3(0),
which combined with[{4.30) imply uniqueness of the conthqu’{. On the other hand, this later
solution is not flexible enough in the sense that it can notdeel in the next application. This follows
from (4.37) in the context of the following subsection.
In the next subsection we will use the result we just receimaatder to fill a hole in a surface.

4.2 Filling a hole in a surface

In this subsection we consider a surface with an interioe holore specific an incomplete 9-patch
surface. By that we mean a surface like the one in Figure 5evifer part denoted by® is not
included in the surface. We assume that the incompletegairface i€ -regular. We also assume
that each of the original 8 patches are represented by arBedisnomial of bi-degre€3, 3) and that
along the boundary curve between any two of the patches hioddshe function) is constant and
the functions = 0. See[(4.24). The problem to consider here is to create anoneatchr(® with

as low bi-degree as possible keeping @eregularity of the complete surface. This is the situation
Sarraga considered in the pager![16]. With his assumptiamekeed bi-degree (6,6) fof>). In this
subsection we construct a patcfi) of bi-degree (5,5).

In order to create a Bezier patel?) of bi-degree(5, 5) we start by considering it as part of the
4-patch surface consisting of!), r®, r(®) andr(?). From the assumption above we have, as in the
previous subsection, that the functioRss, A; 4 are constant and; » = x4 = 0. We know that
there exist compatibility conditions which are necessaysufficient in order to get a unique solution

for the control pointsqgi) fori =0,1,...,5,j =0,1,andi = 0,1, j = 0,1,...,5. Next we do
the same withr®), r® | r(9 andr®. We start by defining the missing pateft) as part of the first
4-patch surface. We have to solve

r((0,v) = A5 (0)rP) (1,0) + ka5 (0)rP (1,0), 439
and
r® (u,0) = r®(u,1) (4.39)
r®(0,v) = r¥(1,v),
with
Aas(u) = Aa5(0) (1 — u)? 4+ 2045 (1 — w)u+ Ay 5(1) u?
A25(v) = X25(0) (1 —0)2 4+ 2025 (1 — v)v + Ao 5(1) v (4.40)
k() = ra5(0) (1 —w)® + 3809 (1 —w)?u + 3872 (1 — upu? + ras(1) u?
o5(v) = R2,5(0) (1= 0)% + 3853 (1 — 0)20 + 3 85 (1 — v)0? + ka5(1) 0P,

where the parametets v € [0, 1].
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From the previous subsection we know that in order to get @uansolution for the control points

qf’j) fori =0,1,...,5,j=0,1,andi = 0,1, j = 0,1,...,5, necessary and sufficient conditions
are
A15(0) = A2, Ao5(0) = Arg (4.41)
k45(0) =0,  K25(0)=0
and
314 5&2 =2 (a5 — Ai,4)
(’1) (4.42)
3A12855 =2 (s — A12)

u

Figure 5: Filling a hole in a surface

As in the previous subsection, compdre (#.32) and [4.35hexeget the solution of the boundary

control points for the patch(®

asy = ag’ afy = af)

af =2d+ 2al) ay) = 2af) +2 qg%
q% =1 qg% + 10 q(4) + 10 q(4) qg’% =1 q3% +

qé‘?()) = % :(5?)) + 10 q(4) + 16 q(4) qgf% = % Q§2§ + (2)
aip = 2ays + a) ap) = Fai+ 2 ai)
al) = af} ais = af.

(2)
10 a3+ 10 30

1oq32+1oq31

(4.43)
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We get, comparé (4.833) arid (4134), part of its interior aargpints

5 5 3A2, 4 4
R CTE R ie)
(1)
5 5 3 ,3M2, @4 4 2045 , (4 4 3Bis , (4 4
ai} —aty = (T2 (a3 — ai5) + 2 (s — a03) + 5 (at’s — ap )
5 5 3 ,3M2, @4 4 6ass (4 4 A78 (4 4
dy) — ayp =7 (o7 (b — ab2) + 3o (arh — aid) + T (ahs — apy)
(1) (2)
65815 (1 4 385 4
o (e — ai) + o () - a6)
(4.44)
NOBNG) :é(Mz(q@)_qu)) 604475( (1) _ gl 3%8( (@) _ gl
31~ d30 =5 (g (@33 — d32 10 \d23 ~ 922 0 \d13 12
(1) 2)
3Bis 4 65855 4
o (@5 — as) + o (abh — ai%)
(2)
5 5 32045, @4 4 3A78 , (4 4 385, (a 4
) -5y =3 (2282 o _ gy B g _ g 3R
5 5 3A78, (4 4
a4} —afy =" (a5 — a5);
and
5 5 3A4, (2 2
aip — Ao =5 (a0 — ds)
(1)
5 5 3 ,3Aa, (2 2 2005 , (2 2 Bas (2 2
o) - o) =2 (Pt gty 20 g g I
5 5 3 ,3Aa, 2 2 6ags (2 2 A36 , (2 2
) o =2 (P ) 5025 )y os o
By @ o, 308 @ o
+ o (ds — af) + T (@) - ai))
3.2 6 3\ (4.45)
5 5 14, (2 2 25 , (2 2 36 , (2 2
Ay — s =5 (Fo (@53 — ab) + 2107 (ai) — as) + S0 (e - as)
305 @ @ 043 o e
+ o (s - i) + 0 (0 - ai)
(2)
5 5 3,205, (2 2 336, (2 2 Bas , (2 2
ais - ais =5 (T2 (a8 - asd) + =20 (a5 - agy) + 7 (aih — ai2)
5 5) 3A36 , (2 2
Ay — dny =5 (di — a53).

where we also have used the fact that (1) = A7 g andks5(1) = 0 as well ashy 5(1) = A3 and
k2,5(1) = 0, which all follow from (4.51).

Let us continue with creating the next 4-patch surface ¢oinig the 4 patches®, r(®) (%)
andr®, see Figure 5. With the natural change of indices we have thersame equations as in

(4.38)H4.39) together with (4.40). Thus, using the follagvcompatibility conditions

(4.46)
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and
36 ﬁéi—?

38 ﬁéi—?
combined with\g 5(0) = A32, k6,5(0) = 0 andAg5(0) = 74, kg 5(0) = 0 from (4.51), we easily

=2(ag5 — Agg) (4.47)

=2(ag5 — Ngg),

achieve the next control pointqt(.? fori =0,1,...,5,j =4,5,andi = 4,5, 7 =0,1,...,5,ina
similar way as before. We have
5 6 5 8
o) =aly a) = afiy
5 5 8 8
ai) = 2al) + 2af) af’l = 2ap) + 2ag,
5 6 6 6 5 8 8 8
q;%:%qgg%-mqg%%-mq() qé,%:%qé%+1oq(()%+1oq(()()) (4.48)
5 6 6 6 5 8 8 8 )
qz(s,%:%oqég"‘mqg())"‘loq() qg,:i:%q()ﬂoq()ﬂoq()
5 6 6 5 8
o — 20+ 3 ol - 23+ o)
5 6 5 8
al’) = aff) al) = af,
and
5 5 3A32, (6 6
)~ Ao =2 (dho — do1)
(1)
5 5 3 ,3X32, (6 6 2065 , (6 6 3B65 . (6 6
a’) —ai’) = (= (af’ - ai’) = (afy — ai) = (ai’y — i)
5 5 3 ,3A32 , (6 6 6ass (6 6 A8 , (6 6
o) =2 (3252 g8 gi9) 1 883 (g0} g9 1 08 gl o)
1 2
66&5) © _(6) Bég 6 (6)
10 (QQ,O - 1,0) 10 (ql,o - 0,0))
3. 6« 3A (4.49)
5 5 32, (6 6 65 , (6 6 98 , (6 6
q:(a,z); - qg% =3 (1—0 (q:(a,g - qgj) + 10 (qgg - qg,%) + 0 (qg,()) - qﬂ)
1 2
3ﬂé,g (@® — o) ég (a® — (6)))
10 3,0 2,0 10 2,0 1,0
2)
5 5 33,2065, (6 6 38 , (6 6 Bes (6 6
)~ di =7 (727 (asp — ai)) + 2 (dyo — @) + 2 (dp — ap)
5 5 3o, (6 6
o) —ai) = (asp —af)
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and

5 5 3M\4, 8 8 6ags , (8 8 A96 , (8 8
di’) —afy =5 (F7p7 (s — aiy) + 7o (ag) —ar’) + o (anp — aip)
6553 ® 5 ®®
10 (qo,z—qo,1) 10 (%,1‘%,0))
3 A 6 3\ (4.50)
5 5 7,4 8 8 8,5 8 8 9,6 8 8
d% —afy =5 (T (s — i) + 3o (a0s — at’y) + 15" (an — ai)
360w .. 682 ®
T (03 — an) + 75 (s — aq1))
2)
5 5 93,2085, (8 8 36, (8 8 3055 , (s 8
ai} —af) = (757 (a0s —ard) + 2 (s — ais) + 5 (dns — ap))
) (5) _3N6 , (8)  (8)

When collecting all the above control point we may have lostueness of the doubly defined
control pOintSqZ(?) fori = 4,5, j = 0,1, andi = 0,1, j = 4,5. Considering a 4-patch surface
around each of the other two vertices of the patCh, i.e., the two 4-patch surfaces constituting of
r@, r® r® @ andr@®, v r® r6) respectively, we have necessary and sufficient conditions
for uniqueness of the just mentioned control points. Theselitions are

Aa5(1) = Az As5(0) = A7a
K45(1) =0, ke =(0) =0
ol ol0) (4.51)
X6,5(0) = Az2, Aa5(l) = A3
K6,5(0) = 0, Ko 5(1) =0
and
3074 B8Y =2 (ags — A
" ﬁ?f; (255 = na) (4.52)
378 Bg5 =2 (s — A1),
3)‘36ﬁé15) =2(az5 — A3e)
o o (4.53)

33,2 55252 =2 (a5 — A3.2)-

First we need to fulfil the compatibility conditiors (414%4,47), (4.52) and (4.53), where we have
four degree of freedom for the parametess;, 52(’15) and 52(’25) with i = 2,4,6,8. After decided the

value of the parameters, we have partly defined an interitmhpd®, where the control points are

uniquely defined except for the undefined control potﬁfg with i, j = 2,3. Those points must be
chosen in some way. One way to chose the undefined interidrotqmoints is by defining a Coons’
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patch from the boundary curves combined with their derresti see [16], or use the next definition

5 5 5 5
qé,% = qé,i + qi% - qg,f
5 5 5
af) = o) +af) —a)
(5) (5) (5) (5) (4.54)
Qo3 =dos T3 14
5 5 5 5
A’ =a§) +a’ —df).

Thus, we have proved that it is possible to represent theidntpatchr(®) as a Bezier patch
of bi-degree (5,5) in such a way that the complete 9-patcfasairisG'-continuous. On the other
hand, the representation of°) with non-constant\; s-functions given above is very dependent of
non-trivial x; 5-functions, because, if, on the contrary, the-functions are identically zero, then the
Ai s-functions must be identically constant. This follows iaily from the compatibility conditions.

Suppose that the; 5-functions are identically zero, but the s-functions are non-constant, then
the patchr(®) must be of at least bi-degree (6,6). See also Sarraga [16)isicase\, 5 and A, 5 are
defined as

Ags(u) = A2 (1 —u)d + 30[2% (1 —u)?u + 3oz4(55)) (1 —w)u? + A7 gud
Aos(v) = A1a (1 —v)3 + 30&% (1—v)%v+ 3oz; 5)) (1 —u)u? + A3 0>.

)

The compatibility conditions will now be

Continuing around the other vertices in the patth we also get the following conditions
2 1
0ph =Aos, 0fd=Ars agh =as
2 2
045(37% = A9 6, 045(37 = A74, aéﬁ = A36.
The above conditions must be complemented with (4.41)6§4dAd [4.511). With these restrictions
we get the unique control points of°) except for the undefined poin 5]) i,j = 2,3,4. Those
interior points can be defined through a Coons’ patch as atwowea similar way as i (4.54), i.e.,

qé?% = qg’i + qf’% - qﬂ

af) =d) +a) — o)

af’) = as) + o) — o’}

af’} = ai) +a’) — o)

and

a¥) = a’) + $(aS) +af’)) — 3(al’) + o) = o + L@l + ofd) - (@) +a’)
af’) = af’} + 3(aP) + o) — $(aP] + o) = af’] + L(a’) + o) - $(a) + o)
af’) = af) + 3(a¥) + o) — $(af) + o)) = af) + L(a} + o) — S(al) + o)
a3 = a53 + 5(a + o) — 3afh +af) = af + §(a) + ai3) — j(ag) +a5y)
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and finally

5 () (5) ()

5 5 5 5 5
qg% = 5(ay3 + a4 + 435 +q§,731) — 5 o)+ af)+as) +ai).

Qoo T Q42T A4 Ty

Observe, the parametemé@ fori =2,4,6,8,andj = 1,2, are here completely decided from the
compatibility conditions. 7

A further observation is that if the patef) is of bi-degree (4,4) the compatibility conditions, see
(4.31), in this case are not flexible enough to solve our jmbl

We will use the main result of this subsection in the next,paliere we will study a way to create
fillet surfaces.

Figure 6: Creating a fillet

4.3 Creating a fillet surface

Consider two surfaces of regularify*, each consisting of the patcheld*3”) forn = 0,1,...,N—1
andr®+3") forn = 0,1,..., N —1. We want to connect these two surfaces by creating a fillaser
in such a way that altogether there will be one compietesurface. We assume that all the patches so
far are of bi-degree (3,3) and that the connection betwegtvampatches satisfies that thefunction
is constant and the-function is identically zero. See Figure 6.

Our first step is to create the patché$t®) forn = 0,1,...,[(N + 1)/2] — 1, where[N/2]
denotes the integer part 8f/2. Let the patchr(>+6) be defined as a Bezier patch of bi-degfge3)
connectingr 16" andr(3+67) in a G'-regular way. Furthermore, there are no non-zeffanction
towards the two neighboring patches. In the next step weectba patches in between, i.e{5+67)
forn =0,1,...,[N/2] — 1, as we did in the previous subsection. All together, this gletes the
construction of the fillet surface.

Acknowledgement.| like to thank Roger Andersson for valuable discussions.
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