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EXTREMAL SPECTRAL PROPERTIES OF LAWSON TORI AND

THE LAMÉ EQUATION

ALEXEI V. PENSKOI

Abstract. Extremal spectral properties of the Lawson tori are studied. A Law-
son torus carries an extremal metric for some eigenvalue λj of the Laplace-
Beltrami operator. We prove that the metric on a Lawson torus τm,k is ex-

tremal for j = 2
([√

m2 + k2
]

+m+ k
)

− 1.

Introduction

Let M be a closed surface equipped with a Riemannian metric g. Let us consider
the associated Laplace-Beltrami operator ∆ : C∞(M) −→ C∞(M),

∆f = − 1
√

|g|
∂

∂xi

(

√

|g|gij ∂f

∂xj

)

,

and its eigenvalues

0 = λ0(M, g) < λ1(M, g) 6 λ2(M, g) 6 λ3(M, g) 6 . . . .

The functional

Λi(M, g) = λi(M, g)Area(M, g)

is invariant under rescaling transformations g 7→ tg because for t > 0 we have

λi(M, tg) =
1

t
λi(M, g), Area(M, tg) = tArea(M, g).

It turns out that the question about the supremum supΛi(M, g) of the functional
Λi(M, g) over the space of Riemannian metrics g on a fixed manifold M is very
difficult and only few results are known.

It was proven in the paper [1] by Yang and Yau that for an orientable surface
M of genus γ the following inequality holds,

Λ1(M, g) 6 8π(γ + 1).

Korevaar proved in the paper [2] that there exists a constant C such that for any
i > 0 and any compact surface M of genus γ the functional Λi(M, g) is bounded,

Λi(M, g) 6 C(γ + 1)i.

However, Colbois and Dodziuk proved in the paper [3] that for a manifold M of
dimension dimM > 3 the functional Λi(M, g) is not bounded on the space of
Riemannian metrics g on M.

The functional Λi(M, g) depends continuously on the metric g, but this func-
tional is not differentiable. However, Berger proved in the paper [4] that for ana-
lytic deformations gt the left and right derivatives of the functional Λi(M, gt) with
respect to t exist. This is motivation for the following definition, see the paper [5]
by Nadirashvili and the paper [6] by El Soufi and Ilias.
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Definition 1. A Riemannian metric g on a closed surface M is called extremal

metric for the functional Λi(M, g) if for any analytic deformation gt such that

g0 = g the following inequality holds,

d

dt
Λi(M, gt)

∣

∣

∣

t=0+
6 0 6

d

dt
Λi(M, gt)

∣

∣

∣

t=0−
.

Only few examples of maximal or extremal metrics are known.
Hersch proved in the paper [7] that supΛ1(S

2, g) = 8π and the maximum is
reached on the canonical metric on S2. This metric is the unique extremal metric for
the functional Λ1(S

2, g).Nadirashvili proved in the paper [8] that supΛ2(S
2, g) = 16π

and maximum is reached on a singular metric which can be obtained as the metric
on the union of two spheres of equal radius with canonical metric glued together.

Li and Yau proved in the paper [9] that supΛ1(RP
2, g) = 12π and the maximum

is reached on the canonical metric on RP 2. This metric is the unique extremal metric
for the functional Λ1(RP

2, g).

Nadirashvili proved in the paper [5] that supΛ1(T
2, g) = 8π2

√
3
and the maximum

is reached on the flat equilateral torus. El Soufi and Ilias proved in the paper [6]
that the only extremal metric for Λ1(T

2, g) different from the maximal one is the
metric on the Clifford torus.

Jakobson, Nadirashvili and Polterovich proved in the paper [10] that the metric
on a Klein bottle realized as the Lawson bipolar surface τ̃3,1 is extremal. El Soufi,
Giacomini and Jazar proved in the paper [11] that this metric is the unique extremal
metric and the maximal one.

Let r, k ∈ N, 0 < k < r, (r, k) = 1. Lapointe studied in the paper [12] Lawson
bipolar surfaces τ̃r,k and proved the following result.

(1) If mk ≡ 0 mod 2 then τ̃m,k is a torus and it carries an extremal metric for
Λ4m−2(T

2, g).
(2) If mk ≡ 1 mod 4 then τ̃m,k is a torus and it carries an extremal metric for

Λ2m−2(T
2, g).

(3) If mk ≡ 3 mod 4 then τ̃m,k is a Klein bottle and it carries an extremal
metric for Λm−2(K, g).

It is shown in the paper [13] by Jakobson, Levitin, Nadirashvili, Nigam and
Polterovich that the maximal metric on the surface of genus two is the metric on
the Bolza surface P induced from the canonical metric on the sphere using the
standard covering P −→ S2. In fact, the authors state this result as a conjecture,
because a part of the argument is based on a numerical calculation.

The goal of the present paper is to continue investigation of extremal spectral
properties of metrics on Lawson tori τm,k started in the paper [14].

Definition 2. Lawson surface τm,k ⊂ S3 is defined by the doubly-periodic immer-

sion Ψm,k : R2 −→ S3 ⊂ R4 given by the following explicit formula,

(1) Ψm,k(x, y) = (cosmx cos y, sinmx cos y, coskx sin y, sinkx sin y).

This family of surfaces is introduced by Lawson in the paper [15]. He proved
that for each unordered pair of positive integers (m, k) with (m, k) = 1 the surface
τm,k is a distinct compact minimal surface in S3. If both integers m and k are odd
then τm,k is a torus. If one of integers m or k is even then τm,k is a Klein bottle
(both m and k cannot be even due to the condition (m, k) = 1 ). The torus τ1,1 is
the Clifford torus.

Since τm,k
∼= τk,m, let us suppose that always m > k > 0 except the spe-

cial case of the Clifford torus τ1,1. We deal only with Lawson tori, hence m and
k are odd positive integers such that (m, k) = 1. When it is necessary to have
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uniquely defined coordinates of a point on a Lawson torus, we consider coordinates
(x, y) ∈ [0, 2π)× [0, 2π).

The main result of the paper [14] is the following Proposition.

Proposition 1. Let τm,k be a Lawson torus such that

(2)
k

m
>

1√
20 +

√
21

= 0.11044 . . .

Let p(y) =
√

k2 + (m2 − k2) cos2 y. Let

λ0(l) < λ1(l) 6 λ2(l) < λ3(l) 6 λ4(l) < λ5(l) 6 λ6(l) < . . .

be eigenvalues of a family of periodic Sturm-Liouville problems

(p(y)ϕ′(y))′ +

(

λp(y)− l2

p(y)

)

ϕ(y) = 0,(3)

ϕ(y + 2π) ≡ ϕ(y),(4)

where l = 0, 1, 2, 3, . . . . Let J = #{λ0(l)|λ0(l) < 2} = min{l ∈ Z|λ0(l) > 2}.
Then the induced metric on τm,k is an extremal metric for the functional Λj(T

2, g),
where j = 2(J +m+ k)− 3.

The important component of the proof of Proposition 1 is a beautiful result
relating extremal metrics to minimal immersions in spheres proved by El Soufi and
Ilias in the paper [16]. This result reduces calculating j to counting the eigenvalues
of the Laplace-Beltrami operator ∆ on the Lawson torus τm,k. In Proposition 1
we reduce this counting to counting the fundamental tones λ0(l) of the family of
auxiliary periodic Sturm-Liouville problems (3), (4).

Several methods for estimating J were proposed in the paper [14]. Using these
methods an explicit answer was found for several Lawson tori including τ1,1 (the
Clifford torus), τ3,1, τ9,7 etc. The metric on τ1,1 is an extremal metric for the
functional Λ5(T

2, g), the metric on τ3,1 is an extremal metric for the functional
Λ13(T

2, g) etc. However, these methods based on estimates were insufficient to find
J as an explicit function of m and k. We also remarked in the paper [14] that
numerical experiments shows that condition (2) could possibly be dropped.

An explicit formula for J is obtained in the present paper. We also show that
we do not need condition (2). The main result of the present paper is the following
Theorem.

Theorem. Let τm,k be a Lawson torus. Then the induced metric on τm,k is an

extremal metric for the functional Λj(T
2, g), where

(5) j = 2
([

√

m2 + k2
]

+m+ k
)

− 1,

and [z] denotes the integer part of z.

The corresponding value of the functional is

(6) Λj(τm,k) = 16πmE

(√
m2 − k2

m

)

,

where E is the complete elliptic integral of the second kind,

E(k) =

1
∫

0

√
1− k2α2

√
1− α2

dα.

The proof is based on the properties of the Lamé equation (7), see Section 1.
The developed approach could also be used for the Lawson Klein bottles. This

is the subject of a subsequent paper.
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1. The Lamé equation

In this Section we recall some properties of the Lamé equation usually written
as

(7)
d2ϕ

dz2
+ (h− n(n+ 1)[k̂ sn(z)]2)ϕ = 0.

see e.g. the book [17] or the book [18]. We denote the modulus of the elliptic

function sn z by k̂ since we already use k in τm,k.

The Lamé equation could be written in different forms, we will use the trigono-
metric form of the Lamé equation

(8) [1− (k̂ cos y)2]
d2ϕ

dy2
+ k̂2 cos y sin y

dϕ

dy
+ [h− n(n+ 1)(k̂ cos y)2]ϕ = 0.

The equation (8) could be obtained from (7) using the change of variable

(9) sn z = cos y.

We are interested in the 2π-periodic solutions of the Lamé equation (8). Usually

0 < k̂ < 1 and n are fixed parameters and h plays the role of an eigenvalue. The
following Proposition holds.

Proposition 2. Given 0 < k̂ < 1 and n, there exist an infinite sequence of values

h0 < h1 6 h2 < h3 6 h4 < . . .

of the parameter h such that if h = hi then the the Lamé equation (8) has a 2π-
periodic solution ϕi(y) 6= 0.

For h = h0 a solution ϕ0(y) is unique up to a multiplication by a non-zero

constant.

If h2i+1(l) < h2i+2(l), then solutions ϕ2i+1(y) and ϕ2i+2(y) are unique up to a

multiplication by a non-zero constant.

If h2i+1(l) = h2i+2(l), then there exist two independent solutions ϕ2i+1(y) and

ϕ2i+2(y) corresponding to h = h2i+1 = h2i+1.

The solution ϕ0(y) has no zero on [0, 2π). For i > 0 both solutions ϕ2i+1(y) and
ϕ2i+2(y) have exactly 2i+ 2 zeroes on [0, 2π).

Our main interest is the case n = 1. In this case three wonderful solutions of the
Lamé equation (7) are known,

Ec01(z) = dn z, Ec11(z) = cn z, Es11(z) = sn z

where we use the notation used by Ince in the paper [19]. Using standard properties
of the Jacobi elliptic functions and change of variable (9) we obtain three solutions
of the Lamé equation in the trigonometric form (8),

Ec01(y) =

√

1− k̂2 cos2 y, Ec11(y) = sin y, Es11(y) = cos y.

Proposition 3. If n = 1 then we have

ϕ0(y) = Ec01(y) =

√

1− k̂2 cos2 y, h0 = k̂2,(10)

ϕ1(y) = Ec11(y) = sin y, h1 = 1,

ϕ2(y) = Es11(y) = cos y, h2 = 1+ k̂2.

Proof. The function Ec01(y) =

√

1− k̂2 cos2 y has no zeroes, hence by Proposition 2

it is ϕ0(y). Direct check by substitution shows that h0 = k̂2. The same argument
works for ϕ1(y) and ϕ2(y). �
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We should remark that in general hi are roots of a very complicated transcen-

dental equation with parameters n and k̂ and cannot be found explicitly.
Using the same approach as in Proposition 25 from the paper [14] we can prove

the following Proposition 4.

Proposition 4. Let us fix n = 1 and consider h3 as a function of k̂2, where

0 < k̂2 6 1. Then h3(k̂
2) is a decreasing function.

When k̂ = 1 the Lamé equation (7) is called degenerate because in this case we
have sn z = tanh z.

Proposition 5. Let n = 1 and k̂ = 1. Then we have

h0 = h1 = 1, h2 = h3 = 2.

Proof follows from the formulae in [19].
Propositions 4 and 5 implies the following Proposition 6.

Proposition 6. Let n = 1. Then for 0 < k̂2 < 1 we have

h3 > 2.

2. Proof of the Theorem

Let us now consider not only integer values of l but also real values of l. We
proved in [14] that λ0(l) is a strictly increasing function of l. Let us denote by lc
the solution of the equation

λ0(l) = 2.

Then

J = min{l ∈ Z|λ0(l) > 2} = ⌈lc⌉,
where ⌈·⌉ denotes the ceiling function, i.e. ⌈x⌉ = min{a ∈ Z|a > x}.

Let us remark that after the shift y 7→ y + π
2
equation (3) could be written as

the Lamé equation in the trigonometric form (8) with

(11) k̂ =

√
m2 − k2

m
, h = λ− l2

m2
, n(n+ 1) = λ.

Let us recall that we need condition (2) in Proposition 1 because it was used in
the proof of Proposition 1 in the paper [14] in order to prove that λ3(0) > 2.

Let us show that λ3(0) > 2 for any m > k > 0. If this is true, we can drop
condition (2).

Let us suppose that λ3(0) 6 2. We proved in the paper [14] that

λ3(k) > λ2(k) = 2.

It follows that there exists some value l2 > 0 such that λ3(l2) = 2. We know that
λ = 2 corresponds to n = 1 and λ3 corresponds to h3 and we see from formulae (11)
and Proposition 6 that

2− l22
m2

= λ3 −
l22
m2

= h3 > 2.

This implies
l22
m2

< 0,

but this is impossible. Hence, λ3(0) > 2 and we do not need condition 2.
We know that λ = 2 corresponds to n = 1 and λ0 corresponds to h0. Hence we

obtain from (11) and Proposition 3 the identities

(12)
m2 − k2

m2
= k̂2 = h0 = λ0(l)−

l2

m2
, 2 = n(n+ 1) = λ0(l).
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But we denoted the solution of the equation λ0(l) = 2 by lc and we obtain from
identities (12) the equation

m2 − k2

m2
= 2− l2c

m2
.

It follows that

lc = m

√

2− m2 − k2

m2
=
√

m2 + k2.

This implies J = ⌈lc⌉ =
⌈√

m2 + k2
⌉

. It is easy to see that
√
m2 + k2 is not integer

since m and k are both odd. It follows that

J =
⌈

√

m2 + k2
⌉

=
[

√

m2 + k2
]

+ 1.

Substituting into Proposition 1, we obtain formula (5) from the statement of The-
orem.

We proved in the paper [14] that the induced metric on a Lawson torus is equal
to p2(y)dx2 + dy2 and λj(τm,k) = 2. This implies formula (6) from the statement
of Theorem because

Λj(τm,k) = λj(τm,k)Area(τm,k) = 2

∫ 2π

0

∫ 2π

0

p(y)dxdy =

= 2 · 2π · 4kE
(

i

√
m2 − k2

k

)

= 16πk
m

k
E

(

−
√
m2 − k2

m

)

= 16πmE

(√
m2 − k2

m

)

.

�
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[12] H. Lapointe, Spectral properties of bipolar minimal surfaces in S4. Differential Geom. Appl.

26:1 (2008), 9-22. Preprint arXiv:math/0511443.
[13] D. Jakobson, M. Levitin, N. Nadirashvili, N. Nigam, I. Polterovich, How large can the first

eigenvalue be on a surface of genus two? Int. Math. Res. Not. 63 (2005), 3967-3985. Preprint
arXiv:math/0509398.

[14] A. V. Penskoi, Extremal spectral properties of Lawson tori. Preprint arXiv:1008.2954.
[15] H. B. Lawson, Complete minimal surfaces in S3. Ann. of Math. 92 (1970), 335-374.
[16] A. El Soufi, S. Ilias, Laplacian eigenvalues functionals and metric deformations on compact

manifolds. J. Geom. Phys. 58:1 (2008), 89-104. Preprint arXiv:math/0701777.
[17] A. Erdelyi, W. Magnus, F. Oberhettinger, F. Tricomi. Higher transcendental functions,

Vol. III. McGraw-Hill Book Company Inc., New York-Toronto-London, 1955.
[18] F. M. Arscott, Periodic differential equations. An introduction to Mathieu, Lamé and allied
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