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MODULES WITH 1-DIMENSIONAL SOCLE AND COMPONENTS OF

LUSZTIG QUIVER VARIETIES IN TYPE A

JOEL KAMNITZER AND CHANDRIKA SADANAND

1. Introduction

For any simply-laced Kac-Moody Lie algebra g, Lusztig [L] has constructed canonical bases
for its representations using the geometry of quiver varieties. In particular, Lustzig considered
the variety Rep(w)v of representations of the preprojective algebra Λ on a fixed vector space of
dimension v and having dimension of socle bounded by w. The irreducible components of this
variety index Lusztig’s canonical basis for a particular weight space of a highest weight repre-
sentation of g. The components of Rep(w)v are also in natural bijection with the components
of Nakajima’s Lagrangian quiver varieties. This is shown in the work of Saito [Sai, section 4.6],
who also studied a crystal structure on these components jointly with Kashiwara [KS].

Because the components of Rep(w)v index the canonical basis, it would be interesting to
descibe them in an explicit fashion using known combinatorics. In certain special cases (including
g = sln), this has been done by Savage [Sav], using ad-hoc methods. In a forthcoming paper
[BK], Pierre Baumann and the first author will use module-theoretic means to give a uniform
description of the components using the theory of MV polytopes [K]. In our description, a key
role is played by certain Λ-modules with one dimensional socle.

In the current paper, we focus on the case g = sln. Using elementary means, we classify
Λ-modules with one dimensional socle and explain how these modules can be used to describe
components of Rep(w)v. Similar results (and more) will be formulated and proved for general g
in [BK].

More specifically in section 3, we classify Λ-modules with one dimensional socle by showing
that they are all isomorphic to certain Maya modules introduced by Savage [Sav]. These Maya
modules are in bijection with subsets of {1, . . . , n} (other than {1, . . . , i}). Next, we compute
the space of homomorphisms between two such modules, obtaining an explicit combinatorial
formula. We show that this formula is related to a truncated permutahedron, which is the MV
polytope for this situation.

In section 4, we show how Maya modules can be used to describe the components of Rep(w)v.
We begin by computing the space of homomorphisms between certain Maya modules and modules
associated to tableaux by Savage [Sav]. We use this to rephrase Savage’s description of the
components in a module-theoretic fashion.
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2. Background

2.1. Notation. Let Q denote the root lattice of SLn. So

Q = {(x1, . . . , xn) ∈ Z
n :

∑

xi = 0}.

For i = 1, . . . , n − 1, let αi = (. . . , 0, 1,−1, 0, . . . ) denote the simple roots (the 1 is in the
ith position). Let Q+ be the subset of Q given by non-negative sums of the αi. Let ωi =
(1, . . . , 1, 0, . . . , 0) denote the fundamental weights (the first i entries are 1s).

If A and B are i element subsets of {1, . . . , n}, then we define

A−B := 1A − 1B ∈ Q

where 1A is the n-tuple which is 1 in positions indexed by numbers in A and 0 in the other
positions. We write A ≥ B if A−B ∈ Q+.

2.2. The preprojective algebra. Let Ω be a simply-laced Dynkin quiver (that is a Dynkin
diagram with orientation) with edge set Ω and vertex set I. Let Λ denote the preprojective
algebra of the quiver Ω. By definition Λ is the quotient

P (Ω⊕ Ω)/(
∑

τ∈Ω

ττ − ττ)

of the path algebra of the doubled quiver Ω⊕ Ω by the preprojective relation.
For this paper, we will work exclusively with the type An−1 quiver with the leftward orienta-

tion.

1 2 · · · n− 1

• •oo · · ·oo •oo

For this quiver we have vertex set I = {1, . . . , n− 1} and edge sets

Ω = {2→ 1, 3→ 2, . . . , n− 1→ n− 2} Ω = {1→ 2, 2→ 3, . . . , n− 2→ n− 1}

So a Λ-module M consists of an I-graded vector space M = ⊕i∈IMi with linear maps

(i→ i+ 1) :Mi →Mi+1 (i→ i− 1) :Mi →Mi−1

such that the preprojective relations

(i+ 1→ i)(i→ i+ 1) = (i− 1→ i)(i→ i− 1) for i = 1, . . . , n− 1

are satisfied. Here and later, we adopt the convention that (1→ 0) : M1 → 0 and (n− 1→ n) :
Mn−1 → 0 are 0.

If M is a Λ-module, then it has a dimension vector v = (vi)i∈I ∈ N
I , where vi = dim(Mi). It

will be convenient to encode this as an element of Q+ as αv =
∑

i viαi.

2.3. Socle of modules. The only simple Λ-modules are the one-dimensional modules Si, which
have dimension 1 in the ith slot and 0 elsewhere.

IfM is any Λ-module, then the socle ofM is defined to be the maximal semisimple submodule
of M . The Sith isotypic component of the socle of M is called the i-socle of M and is denoted
soci(M).

More explicitly, soc(M) is the submodule of M whose ith graded piece is

soci(M) = {w ∈Mi : (i→ i+ 1)(w) = 0 and (i→ i− 1)(w) = 0}

All arrows act by 0 in soc(M).



MODULES WITH 1-DIMENSIONAL SOCLE 3

2.4. Lusztig quiver varieties. If v ∈ NI , then we may consider the variety Repv of repre-
sentations of Λ on a fixed I-graded vector space of dimension v. By the work of Lusztig [L],
the irreducible components of Repv index the canonical basis for (Un)αv

, where Un denotes the
universal envelopping algebra of the upper triangular subalgebra of g. In particular, the number
of irreducible components of Repv is equal to the Kostant partition function of αv.

For each point x ∈ Repv, we can consider the corresponding abstract Λ-module Mx. For w ∈
NI , we consider the variety Rep(w)v of consisting of those points x ∈ Repv with dim soci(Mx) ≤
wi for all i. Under Lusztig’s construction the components of these varieties are related to the
irreducible representations as follows. Let λ = λw :=

∑

iwiωi and µ = λw −αv (here ωi are the
fundamental weights). The irreducible components of Rep(w)v index the canonical basis for the
µ weight space of the irreducible representation V (λ) of SLn.

3. Modules with one-dimensional socle

3.1. The Maya modules. Let A be a proper subset of {1, . . . , n} of size i, other than {1, . . . , i}.
The Maya module N(A) has the following description. If A = {a1 < · · · < ai}, then N(A)

has basis

w1,1, . . . , wa1−1,1, . . . , wk,k, . . . , wak−1,k, . . . , wi,i, . . . , wai−1,i

where wj,k ∈ N(A)j .
We define

(1)
(j → j − 1)(wj,k) = wj−1,k

(j → j + 1)(wj,k) = wj+1,k+1

Note that N(A) has a 1-dimensional socle Si, spanned by wi,i.
Let us call the span of wk,k, . . . , wak−1,k the kth “row” of N(A) and let us call N(A)j the jth

“column”. So the kth row starts at column k and extends to column ak − 1. This can be seen
in the following picture of the module N({3, 6, 7}).

1 2 3 4 5 6
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Lemma 3.1. Let v = dim(N(A)). Then αv = {1, . . . , i} −A.

Proof. Since we have an explicit basis for N(A) it is easy to see that

dimN(A)j = |{r ∈ {1, . . . , i} : r ≤ j < ar}|

From this, the desired result follows immediately. �

3.2. The uniqueness theorem. We will now show that every Λ-module with 1-dimensional
socle is isomorphic to a Maya module.

We start by characterizing the dimension vectors of modules with 1-dimensional socle. If v is
a dimension vector, we will extend v by defining v0 = 0 = vn (this will eliminate some special
cases below).
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Lemma 3.2. Let M be a module with socle Si. Let v = dim(M). Then

vj = vj+1 or vj + 1 = vj+1, for all j < i(2)

vj−1 = vj or vj−1 = vj + 1, for all j > i(3)

Proof. Suppose that (2) does not hold for some j < i. Then either vj > vj+1 or vj + a = vj+1

for some a > 1.
Suppose that vj > vj+1. Then dim ker(j → j + 1) > 0.
Consider a non-zero element w ∈ ker(j → j + 1). Then

(j + 1→ j) ◦ (j → j + 1)(w) = 0⇒ (j − 1→ j) ◦ (j → j − 1)(w) = 0

But, (j → j − 1)(w) 6= 0, since M has no j-socle. Hence

dimker(j − 1→ j) > 0.

Continuing in this manner we see that dimker(1 → 2) > 0. This means that M has 1-socle, a
contradiction.

Now, suppose that vj + a = vj+1 for some a > 1. Assume j + 1 < i. In this case,

dimker(j + 1→ j) ≥ a > 1

Let w ∈ ker(j + 1→ j), then

(j → j + 1) ◦ (j + 1→ j)(w) = 0⇒ (j + 2→ j + 1) ◦ (j + 1→ j + 2)(w) = 0

But (j + 1→ j + 2)(w) 6= 0, since M has no j + 1-socle. Therefore (j + 1→ j + 2) gives us an
injective map from ker(j + 1→ j) to ker(j + 2→ j + 1) and so

dim ker(j + 2→ j + 1) ≥ a

Continuing in this manner, when we reach i, we see that since the socle is one-dimensional, it
must be the case that dimker

(

(i→ i+ 1)|ker(i→i−1)

)

= 1 and hence we find

dimker(i+ 1→ i) ≥ a− 1 > 0

Again, we consider an element w ∈ ker(i + 1→ i). Then

(i→ i+ 1) ◦ (i+ 1→ i)(w) = 0⇒ (i+ 2→ i+ 1) ◦ (i+ 1→ i+ 2)(w) = 0

Again, since M does not have i+ 1-socle,

dimker(i+ 2→ i+ 1) > 0

Continuing in this manner, we see that dimker(n − 1 → n− 2) > 0, which implies that M has
(n− 1)-socle. This is a contradiction.

The proof of (3) follows similarly. �

Lemma 3.3. Suppose that v ∈ NI satisfies the condition (2) and (3). Then αv = {1, . . . , i}−A
for some i element subset of {1, . . . , n}, A 6= {1, . . . , i}.

Proof. Let αv =
∑n−1

j=1 vjαj , and let xj be the jth coordinate of αv. Then for each j = 1, . . . , n,
we have

xj = 1 ⇐⇒ vj = vj−1 + 1,

xj = −1 ⇐⇒ vj + 1 = vj−1,

xj = 0 ⇐⇒ vj = vj−1.

Also note that xj = 1⇒ j ≤ i and xj = −1⇒ j > i. So define

A := {j ≤ i : xj = 0} ∪ {j > i : xj = 1}

and then it is easily seen that A has the desired properties. �
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Now we formulate and prove the uniqueness statement.

Theorem 3.4. Let M be a module with socle Si and dimension v. Let A be such that αv =
{1, . . . , i} −A. Then M ∼= N(A).

This result is well-known to experts. For example, it follows from the fact that certain
Nakajima quiver varieties are 0-dimensional. It can also be proved using the crystal structure
on components of quiver varieties (due to Kashiwara-Saito [KS]). Here we prefer to give an
elementary argument.

Proof. Our goal is to find a basis for M whose module structure matches the Maya module
structure (1). Let A = {a1 < · · · < ai}.

Let wi,i ∈ Mi be a basis for the socle of M . Assume that ai > i + 1. We claim that there
exists wi+1,i ∈Mi+1 such that (i + 1→ i)(wi+1,i) = wi,i.

Suppose that no such wi+1,i exists. From the proof of Lemma 3.2, we see that wi,i spans the
kernel of (i→ i+1). Hence if wi,i is not in the image of (i+1→ i), then (i→ i+1)◦ (i+1→ i)
is an isomorphism. By the preprojective relations, this means that (i+2→ i+1)◦(i+1→ i+2)
is an isomorphism. From the proof of Lemma 3.2, we know that (i + 2 → i+ 1) is injective, so
both (i+2→ i+1) and (i+1→ i+2) are isomorphisms. Hence (i+1→ i+2) ◦ (i+2→ i+1)
is an isomorphism. Continuing in this fashion, we find that all (j → j+1) are isomorphisms for
j ≥ i and so we see that vi+1 = · · · = vn = 0. This contradicts ai > i+ 1.

By a similar argument, there exist wi+2,i, . . . , wai−1,i such that

wi,i
i+1→i
←−−−− wi+1,i

i+2→i+1
←−−−−−− . . .

ai−1→ai−2
←−−−−−−−− wai−1,i.

Since (i→ i − 1)(wi,i) = 0, from the preprojective relations we find that (k → k + 1)(wk,i) = 0
for all k. Thus wi,i, . . . , wai−1,i spans a submodule which we denote by N . Note that N ∼=
N({1, . . . , i− 1, ai}).

If M = N , then we are done. Suppose that N 6= 0 and consider the quotient module M/N .
Since dimM/N = dimM − dimN , we see that if v′ = dimM/N , then

αv′ = {1, . . . , i− 1} − {a1, . . . , ai−1}.

We claim that soc(M/N) = Si−1. As above, there exists w ∈Mi−1 such that (i−1→ i)(w) = wi,i

and as above (i− 1→ i− 2)(w) = 0. Hence [w] ∈ soc(M/N).
To see that there is no other socle, note that if [u] ∈ soc(M/N)j , then (j → j − 1)(u) ∈ N

and (j → j + 1)(u) ∈ N . Suppose that j < i − 1, then (j → j + 1)(u) ∈ N implies that
(j → j + 1)(u) = 0 which implies that u = 0 since (j → j + 1) is injective (as in the proof of
Lemma 3.2). Suppose that j = i− 1, then the injectivity of (j → j + 1) forces u = w. If j = i,
then the [u] = 0, since the kernel of (i → i − 1) is spanned by wi,i. Similarly if j > i, then
[u] = 0, since (j → j − 1) is injective (as in the proof of Lemma 3.2), so u must be a multiple of
wj,i.

Thus, we have shown that soc(M/N) = Si−1. Thus by the induction hypothesis, we see that
M/N ∼= N({a1, . . . , ai−1}) and we obtain a short exact sequence of Λ-modules

0→ N →M → N({a1, . . . , ai−1})→ 0.

Let us pick a vector space splitting. Thus combining the standard basis of N({a1, . . . , ai−1})
with the above basis of N , we obtain a basis wk,l for M with l = 1, . . . , i and k = l, . . . , al − 1.
This module structure with respect to this basis does not match (1), since extra terms involving
the basis for N may enter into the result of applying quiver arrows to the basis elements of
N({a1, . . . , ai−1}). Hence we will now adjust our basis.
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In particular, for each l = 1, . . . , i − 1 and k = i + 1, . . . al − 1, we see that there is a scalar
ck,l such that

(k → k − 1)(wk,l) = wk−1,l + ck,lwk−1,i

We may eliminate this scalar by setting w′
k,l = wk,l − ck,lwk,i for these (k, l) and w′

k,l = wk,l

otherwise.
Next, note that (i−1→ i)(wi−1,i−1) = 0 inN({a1, . . . , ai−1}) and thus (i−1→ i)(w′

i−1,i−1) =

cw′
i,i in M for some scalar c. Since M has no i − 1 socle, c is non-zero. Scaling all w′

k,l by 1/c

(for l < i), we may assume that c = 1. It then follows from the preprojective relations that

(k → k + 1)(w′
k,i−1) = w′

k+1,i for all k = i, . . . , ai−1 − 1.

Now consider some w′
k,l for l < i− 1 and k ≥ i− 1. Then

(k → k + 1)(w′
k,l) = w′

k+1,l+1 + clw
′
k+1,i

for some scalar cl. By the preprojective relations cl depends only on l. Then we make the
adjustment w′′

k,l = w′
k,l − clw

′
k,i−1 for all k = i − 1, . . . , al−1 − 1 and w′′

k,l = w′
k,l for all other

(k, l).
After all these adjustments, we see that w′′

k,l satisfy the Maya module structure (1). Thus

M ∼= N(A) as desired. �

3.3. Computation of hom spaces. Now we compute the space of homomorphisms between
Maya modules.

Theorem 3.5. Let A, B be i, j element subsets respectively. Then we have

dimHom(N(A), N(B)) = # of r ∈ {1, . . . , i}, such that r ≤ j < ar,

and ar−l ≤ bj−l for l = 0, . . . , r − 1

where A = {a1 < · · · < ai} and B = {b1 < · · · < bj}.

Proof. Let

R :=
{

r ∈ {1, . . . , i} : r ≤ j < ar, and ar−l ≤ bj−l for l = 0, . . . , r − 1
}

We construct a map ϕ : R → Hom(N(A), N(B)), and then show that it gives a bijection
between R and a basis for Hom(N(A), N(B)). This will yield the desired result.

For simplicity of notation, we will use wk,l for the basis for N(A) and w′
k,l for the basis for

N(B).
For each r ∈ R, let us define ϕ(r) = φr to be the homomorphism which takes the rth row of

N(A) to the bottom row of N(B) and then extended to higher rows in the obvious way. More
explicitly, we define φr by

φr(wk,r−l) =

{

w′
k,j−l , if l ≥ 0, and k ≥ j − l

0, otherwise

Such a w′
k,j−l will always exist since j− l ≤ k < ar−l ≤ bj−l. A simple check using the structure

of Maya modules (1) shows that φr is a homomorphism.
Now, suppose that ψ in any element of Hom(N(A), N(B)). Since we have explicit bases for

N(A) and N(B) we may consider the matrix coeffients involving w′
j,j , the generator of the socle

of N(B). ψ takes N(A)j to N(B)j so for each r ∈ {1, . . . , i} such that r ≤ j < ar, we get a
matrix coefficient sr, such that

ψ(wj,r) = srw
′
j,j + · · · .
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Note that if all the sr are zero, then ψ = 0. This is because every submodule of N(B) must
contain w′

j,j (since w
′
j,j spans the socle of N(B)) and so any non-zero homomorphism from N(A)

to N(B) must hit w′
j,j . Thus, the collection sr completely determines ψ.

Also note that if r /∈ R, then ar−l > bj−l for some l. This means that we can find some
non-zero w ∈ N(A) and p ∈ Λ such that pw = wj,r but ψ(w) = 0 (in fact we can choose
w = war−l−1,r−l). Hence for r /∈ R, we see that sr = 0.

Combining these observations, we see that ψ =
∑

r∈R srφr. Thus the φr span Hom(N(A), N(B)).
These φr are linearly independent since φr vanishes on aj,r′ for r > r′. Thus the φr form a basis
for Hom(N(A), N(B)) as desired. �

3.4. Connection with MV polytopes. We now make the connection between Theorem 3.5
and MV polytopes.

For each subset B of {1, . . . , n} of size i, we may consider the truncated permutahedron P (B)
which is defined as

P (B) := conv({1C − 1{1,...,j} : C is a subset of {1, . . . , n} of size j and C ≤ B })

These polytopes P (B) are relevant since Naito-Sagaki [NS] have shown that these are the MV
polytopes associated to the vertices of the crystal corresponding to the minuscule representation
ΛiCn. These vertices are precisely labelled by subsets B of size i.

Corollary 3.6. For each subset B of {1, . . . , n}, the max value of 〈1A, 〉 on the polytope P (B)
is given by dimHom(N(A), N(B)).

Proof. Assume for simiplicity that i ≤ j. A similar proof holds in the i > j case.
By Theorem 3.5, dimHom(N(A), N(B)) = r− s where r is the maximal element of {1, . . . , i}

such that ar−l ≤ bj−l for j = 0, . . . , r − 1 and s = |{1, . . . , j} ∩ A|.
Now, we claim that r = maxC≤B |C ∩ A|. First note that if we choose C to be the smallest

possible j element subset of {1, . . . , n} such that {a1, . . . , ar} ⊂ C, then C ≤ B and |C ∩A| ≥ r.
On the other hand, for any C ≤ B, we claim that |C ∩A| ≤ r. To see why this is the case, note
that by the definition of r, not all the inequalities

(4) ar+1 ≤ bj , ar ≤ bj−1, . . . , a1 ≤ bj−r.

can hold. So now suppose that C ≤ B and C ∩A contains at least r+1 elements. Let us choose
r + 1 of these elements and order them ai1 < · · · < air+1

. Then since C ≤ B, we find that

air+1
≤ bj , . . . , ai1 ≤ bj−r.

But since ail ≥ al for all l, this implies that all the inequalities (4) hold — a contradiction.
Hence we conclude that r = maxC≤B |C ∩ A|.

Thus

dimHom(N(A), N(B)) = r − s = max
C≤B

|C ∩ A| − |{1, . . . , j} ∩ A|

= max
C≤B
〈1A, 1C − 1{1,...,j}〉

as desired. �

4. Description of irreducible components

4.1. Savage’s description of the components. Alistair Savage has given a description of the
components of Rep(w)v in terms of tableaux. We would like to reformulate his description in
terms of Hom spaces.
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Let Tabµ(λ) denote the set of semistandard Young tableaux (SSYT) of shape λ and content
µ. If X is a box in a SSYT T , then we will write r(X) for the row of X and c(X) for the content
of X .

For each T ∈ Tab(λ)µ, Savage has identified a component CT of Rep(w)v.
Let T ∈ Tab(λ)µ. A Λ-module is said to be of type T if there exists a basis for M with the

following properties. For each box X in T , there are vectors

wX
r(X), . . . , w

X
c(X)−1 ∈M

and the collection of all these vectors (over all boxes X) forms a basis for M . Moreover, we have

(5) (j → j − 1)(wX
j ) = wX

j−1, (j → j + 1)(wX
j ) =

∑

Y

dXY w
Y
j+1

for some scalars dXY , where the sum varies over all those boxes Y such that r(Y ) < r(X) ≤
c(Y ) < c(X).

Let CT = {x ∈ Rep(w)v :Mx is of type T } denote the closure of the locus of those modules
of type T .

Theorem 4.1 ([Sav, Section 5]). CT is a component of Rep(w)v and this provides a bijection
between the components of Rep(w)v and Tab(λ)µ.

4.2. Description of components by Hom spaces. We would like to reformulate Savage’s
description. The key will be the following generalization of Theorem 3.5. A connnected subset
of {1, . . . , n} is one of the form {t− i+ 1, t− i+ 2, . . . , t}.

Theorem 4.2. Let M be a module of type T and let A = {t− i+1, . . . , t} be a connected subset
of {1, . . . , n}. Then

dimHom(M,N(A)) = # of boxes X in T , such that r(X) ≤ i < c(X) ≤ t.

Proof. The idea is similar to the proof of Theorem 3.5.
To each box X of T in the above set, we can define a homomorphism φX : M → N(A) by

taking the row indexed by X to the bottom row of N(A). We then extend to all of M .
More explicitly, we define

φX(wX
k ) = w′

k,i

for k ≥ i (note that such w′
k,i exists since i ≤ k < c(X) ≤ t = ai). We define φX(wX

k ) = 0 for

k < i. We also define φX(wY
k ) = 0 for all Y 6= X with r(Y ) ≥ r(X) or c(Y ) ≥ c(X).

Now we proceed to define φX(wY
k ) for those boxes Y with r(Y ) < r(X) and c(Y ) < c(X).

We do so by an inductive procedure on r(Y ). Suppose that Y is a box with r(Y ) = r(X) − 1
and c(Y ) < c(X). Then we define

φX(wY
k ) = dXY w

′
k,i−1.

Note that such w′
k,i−1 exists since k < c(Y ) < c(X) ≤ t and so k < t− 1 = ai−1.

Next, suppose that Y is a box with r(Y ) = r(X)− 2 and c(Y ) < c(X). Then we define

φX(wY
k ) = dXY w

′
k,i−1 +

∑

Z

dZY d
X
Zw

′
k,i−2,

where the sum ranges over all those boxes Z such that r(Z) = r(X)−1 and c(Y ) < c(Z) < c(X).
Continuing in this fashion, we define φX on all of M . The structure of the module as given

in (5) ensures that φX is a Λ-module homomorphism.
The fact that these φX form a basis for Hom(M,N(A)) follows along the same lines as in the

proof of Theorem 3.5. �
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We now combine this result and Savage’s theorem. For each A = {t− i+ 1, . . . , t}, we define
a constructible function

fA : Rep(w)v → N

x 7→ dim(Hom(Mx, N(A))

Since this is a constructible function it takes a constant value on a constructible dense subset of
each component of Rep(w)v. For each component Z ⊂ Rep(w)v, let fA(Z) denote this constant
value.

Also, for each T ∈ Tab(λ)µ, let gA(T ) denote the number of boxes X in T such that r(X) ≤
i < c(X) ≤ t. Note that the collection {gA(T )} (where A ranges over all connected subsets)
determines T .

Theorem 4.3. For each component Z ⊂ Rep(w)v, there exists a tableau T ∈ Tab(λ)µ such that
fA(Z) = gA(T ) for all connected subsets A ⊂ {1, . . . , n}. This provides a bijection between the
components of Rep(w)v and the SSYT of shape λ and filling µ.

Proof. Theorem 4.2 shows that ifM is of type T , then fA(M) = gA(T ). Theorem 4.1 shows that
for each component Z, there exists a unique tableau T such that there is a dense subset of Z
consisting of modules of type T . Combining these two results, we obtain the desired result. �
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