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Extending Landau’s Theorem on Dirichlet Series with

Non-Negative Coefficients

Brian N. Maurizi

Abstract

A classical theorem of Landau states that, if an ordinary Dirichlet series has
non-negative coefficients, then it has a singularity on the real line at its abscissae of
absolute convergence. In this article, we relax the condition on the coefficients while
still arriving at the same conclusion. Specifically, we write an as |an|e

iθn and we
consider the sequences { |an| } and { cos θn }. Let M ∈ N be given. The condition
on { |an| } is that, dividing the sequence sequentially into vectors of length M , each
vector lies in a certain convex cone B ⊂ [0,∞)M . The condition on { cos θn } is
(roughly) that, again dividing the sequence sequentially into vectors of length M ,
each vector lies in the negative of the polar cone of B. We attempt to quantify the
additional freedom allowed in choosing the θn, compared to Landau’s theorem. We
also obtain sharpness results.

1 Introduction

A (ordinary) Dirichlet series is a function of the following form, with an ∈ C:

f(s) =

∞
∑

n=1

ann
−s s ∈ C (1)

For s = σ+ it ∈ C, we denote the real part of s by ℜs. The standard region on which a
Dirichlet series might be expected to converge is a right half plane, we denote these by

Ωσ = {s ∈ C : ℜs > σ}

and its closure will be written Ωσ. Unlike a power series, a Dirichlet series can converge
in an open region without converging absolutely anywhere in that region, for example.
A Dirichlet series has several different “regions of convergence” Ωσ, with several different
abscissae σ accordingly. The abscissae most often considered are:

σa = inf{σ :
∑

ann
−s converges absolutely for s ∈ Ωσ}

σu = inf{σ :
∑

ann
−s converges uniformly on Ωσ}

σb = inf{σ :
∑

ann
−s converges to a bounded function on Ωσ}

σc = inf{σ :
∑

ann
−s converges for all s ∈ Ωσ}
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From the definitions, it is evident that σc ≤ σb ≤ σu ≤ σa. It is also a basic result that
the function f defined by (1) is holomorphic on the open region Ωσc . Further relations
among these abscissae, the coefficients {an}, and the function f are of considerable
interest. Some of the standard results are the following:

• σa − σc ≤ 1 (a basic result), and this is sharp (ex. the alternating zeta function
∑

(−1)n+1n−s)

• σu = σb ([6]), henceforth we will denote this abscissa by σb

• σa − σb ≤ 1/2 ([5]), and this is sharp ([3])

For other standard results in analytic number theory and Dirichlet series, we refer the
interested reader to [1].

There has been recent interest in applying tools from modern analysis to Dirichlet
series (see the survey of Hedenmalm [9]). A short list (non-exhaustive in both topics and
articles within those topics) includes the interpolation problem within Hilbert spaces of
Dirichlet series ([15]), the multiplier algebras of Hilbert spaces of Dirichlet series ([10],
[14]), Carleson-type theorems for Dirichlet series ([11], [4]), and composition operators
on spaces of Dirichlet series ([2]).

We mention the above results for contrast, because our result will be “classic” in
both statement and proof, and we will investigate Dirichlet series which (among other
things) satisfy

σa = σc (2)

Specifically, we are interested in extending the following theorem of Landau (we will find
it convenient to translate and assume σa = 0 for all functions we consider):

Theorem 1 (E. Landau [13]). Suppose that f(s) =
∑

ann
−s has abscissa of absolute

convergence equal to 0. If an ∈ R, an ≥ 0 for all n then f does not extend holomorphically
to a neighborhood of s = 0.

Logically, the property that must account for the situation σc < σa is cancellation
among the coefficients {an}. Therefore, once we strictly limit cancellation among the
{an}, (2) should follow. A straightforward way to do this is to require an ≥ 0, and the
above theorem confirms this (note that the absence of a holomorphic extension about
s = 0 is stronger than (2) ).

It is a natural question to ask whether we could impose less strict conditions on the
{an} and still arrive at the same conclusion. One would expect that our freedom in
choosing the coefficients {an} will be substantially limited, but can these limitations be
quantified in some sense? Our purpose in this article is to explore these questions.

We wish to mention that there are many interesting conclusions which follow from
the assumption “an ≥ 0,” the above theorem being but one. We recall a few of them
here. Define AN =

∑N
n=1 an.

Suppose an ≥ 0,
∑

an = ∞, and
∑

ann
−s converges for s ∈ Ω0 (together, these

imply σa = 0). For arbitrary tn ∈ C, consider
∑

antnn
−s. To conclude that

∑

antnn
−s
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converges in Ω0, by a basic result applicable to any Dirichlet series it suffices to assume
that

∑

antn converges. In [7], this is improved in this specific situation; he proves it
suffices to show that

(1/AN )
N
∑

n=1

antn

converges as N → ∞.
Suppose an ≥ 0 and f(s) =

∑

ann
−s has σa = 0. This implies f is log-convex on

(0,∞) (this is due to the log-convexity of each term n−s, see the discussion in [8] ). It is
also proved in [12] that ‖f‖Lp(0,∞) can be estimated above and below by a weighted lp

norm of (modified) dyadic blocks of the {an}, and that ‖f‖BMO(0,∞) can be estimated
above and below by another “dyadic block”-type quantity involving the {an}.

We will obtain an extension of the theorem of Landau, it is an interesting question
whether there is perhaps a common thread among more than one of the results mentioned
above that would extend the requirement “an ≥ 0.”

Let us write an = |an|e
iθn . In section 3 we examine the proof of Landau’s theorem,

and one notes that the proof can be extended in a straightforward way to obtain

Theorem 2 (Landau’s Theorem, First Extension). Suppose that f(s) =
∑

ann
−s has

abscissa of absolute convergence equal to 0. If there exists γ > 0 such that cos(θn) ≥ γ
for all n then f does not extend holomorphically to a neighborhood of s = 0.

We will develop conditions on the {an} which are expressed as certain restrictions on
the sequence |an|, and related restrictions on the sequence {cos(θn)}. We will see that
as the restrictions on |an| are relaxed, the restrictions on cos(θn) become more strict.
The above theorem falls on one end of this spectrum, with no requirements on |an| and
strict requirements on cos(θn).

For ρ ∈ (0,∞), let us define Bρ ⊂ [0,∞)M by

Bρ = Bρ,M =
{

β = (β1, . . . , βM ) ∈ [0,∞)M : β1 ≤ ρβ2 ≤ ρ2β3 ≤ · · · ≤ ρM−1βM
}

(3)

Note that “B0 = {(0, 0, . . . , 0,R≥0)}”, and “B∞ = [0,∞)M”; as ρ proceeds from 0 → ∞,
Bρ grows to fill [0,∞)M .

The standard inner product in Euclidean space will be denoted x · y. We denote the
polar cone of a convex cone C ⊂ R

M by

C♯ = {x ∈ R
M : x · c ≤ 0 ∀c ∈ C}

We obtain the following result:

Theorem 3. Suppose that f(s) =
∑

ann
−s has abscissa of absolute convergence equal

to 0. Write an = |an|e
iθn , and fix M ∈ N. Suppose that there exists ρ > 0 and γ > 0

such that, for all l = 0, 1, . . ., we have

(|aMl+1|, |aMl+2|, . . . , |aMl+M |) ∈ Bρ (4)

(cos(θMl+1), cos(θMl+2), . . . , cos(θMl+M ) ) ∈ − (Bρ)♯ + γ(1, 1, . . . , 1) (5)

Then f does not have a holomorphic extension to a neighborhood of s = 0.
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Some comments on this result. First, note that condition (4) is not a “global” growth
or decay condition; with M = 2 it is satisfied by ρ, 1, ρ, 1, . . .. Second, noting that

C1 ⊂ C2 =⇒ C♯
2 ⊂ C♯

1

we see that if ρ increases then Bρ becomes larger and therefore (Bρ)♯ becomes smaller.
In this sense, (4) and (5) are “dual” to one another; the amount of restriction on |an| is
inversely proportional to the restriction on cos(θn).

In theorem 2, we saw that with no restrictions on the |an| we are free to choose θn
with cos(θn) ∈ [γ, 1]; taking a group of M terms, we are free to choose

(cos(θMl+1), cos(θMl+2), . . . , cos(θMl+M) ) ∈ [γ, 1]M

i.e. the M -dimensional volume of the set of admissable values of cosines is less than or
equal to 1M = 1.

In theorem 3, we have placed restrictions on the sequence |an|. Therefore, theorem
3 is only interesting if we can considerably increase the freedom in choosing θn, beyond
the amount in theorem 2. The following volume estimates demonstrate that this is the
case. We need to consider ρ ≥ 1 and ρ < 1 separately, because different constraints will
bind in the formation of the set − (Bρ)♯ ∩ [−1, 1]M .

Proposition 4.

V olR
M
(

− (Bρ)♯ ∩ [−1, 1]M
)

≥

[

1 +

(

1− 1/M

4ρ+ 1/M

) ]M

for ρ ≥ 1 (6)

V olR
M
(

− (Bρ)♯ ∩ [−1, 1]M
)

≥ 2M−1 [1− ρ/2(1 − ρ) ] for ρ < 1 (7)

Note that (7) is only useful if ρ < 2/3; it may seem that values of ρ near 1 have been
missed by this proposition. However, for ρ < 1 the set (Bρ)♯, and therefore the volume
of the set above, is larger than in the case ρ = 1, and so for all ρ < 1 we have

V olR
M
(

− (Bρ)♯ ∩ [−1, 1]M
)

≥

[

1 +

(

1− 1/M

4 + 1/M

) ]M

This suffices, because the only points we want to make are the following:

• For any M ≥ 2 and any ρ ∈ (0,∞), the amount of “freedom” in choosing θn is
strictly greater than that afforded in theorem 2. Indeed, although there is not
some a > 0 such that we can freely choose each cos(θn) in the interval (−a, 1], the
amount of freedom we are afforded is equivalent to this.

• As ρ → 0, the amount of “freedom” we are afforded approaches 2M−1. This is an
“amount” of freedom equivalent to the following (although the following is not the
choice we actually have): Choose a single cos(θMl+j) ∈ (0, 1] and then θMl+j′ can
be arbitrary for j′ 6= j, j′ ∈ {1, . . . ,M}.
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We also obtain the following sharpness result:

Proposition 5. (I) (γ > 0 is sharp): For any M and any ρ ∈ (0,∞), there exists {an}
such that

•
∑

ann
−s has σa = 0

• (|aMl+1|, |aMl+2|, . . . , |aMl+M |) ∈ Bρ

• (cos(θMl+1), cos(θMl+2), . . . , cos(θMl+M ) ) ∈ − (Bρ)♯ [This is (5) with γ = 0]

•
∑

ann
−s has a holomorphic extension past s = 0

(II) (Bρ, (Bρ)♯ is sharp): For any M and any 0 < ρ′ < ρ there exists {an} and γ > 0
such that

•
∑

ann
−s has σa = 0

• (|aMl+1|, |aMl+2|, . . . , |aMl+M |) ∈ Bρ

• (cos(θMl+1), cos(θMl+2), . . . , cos(θMl+M ) ) ∈ −
(

Bρ′
)♯

+ γ(1, 1, . . . , 1)

•
∑

ann
−s has a holomorphic extension past s = 0

In section 2, we review the proof of Landau’s theorem. In section 3, we examine
the proof and broaden the hypotheses. In section 4, we obtain conditions on {an}
which imply that these broadened hypotheses are satisfied and thus prove theorem 3. In
section 5, we prove the volume estimates in proposition 4, and in section 6 we prove the
sharpness result in proposition 5.

2 Proof of Landau’s Theorem

Our result will build on a standard proof of Landau’s theorem, so we begin by reviewing
this proof.

Proof of Theorem 1. We begin by supposing only that f(s) =
∑

ann
−s has abscissa of

absolute convergence equal to 0. The condition an ≥ 0 is not yet assumed; when it is
used, we will indicate this explicitly.

For contradiction, we assume that f does extend holomorphically to a neighborhood
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of 0; suppose that f is holomorphic on D(0, 2ǫ), ǫ > 0. We have

f(s) =

∞
∑

n=1

ann
−ǫn−(s−ǫ)

=
∞
∑

n=1

ann
−ǫ exp(−(s − ǫ) log n)

=

∞
∑

n=1

ann
−ǫ

{

∞
∑

k=0

(−1)k(log n)k(s− ǫ)k

k!

}

=
∞
∑

n=1

{

∞
∑

k=0

ann
−ǫ (−1)k(log n)k(s− ǫ)k

k!

}

This double series converges absolutely for |s − ǫ| < ǫ, since the sum of the absolute
values can be re-arranged to equal

∞
∑

n=1

|an|n
−(ǫ−|s−ǫ|)

which is finite by assumption. Therefore, we re-arrange the double series to obtain

f(s) =
∞
∑

k=0

{

(−1)k

k!

∞
∑

n=1

ann
−ǫ(log n)k

}

(s− ǫ)k

We see that this is the power series for f about the point s = ǫ. We have only asserted
the convergence of this power series for |s− ǫ| < ǫ. However, by the assumption that f
is holomorphic on D(0, 2ǫ), it must be the case that this power series in fact converges
absolutely for |s − ǫ| < 2ǫ (since D(ǫ, 2ǫ) ⊂

(

D(0, 2ǫ) ∪ RHP
)

). Therefore, we have
finiteness of the expression

∞
∑

k=0

∣

∣

∣

∣

∣

(−1)k

k!

∞
∑

n=1

ann
−ǫ(log n)k

∣

∣

∣

∣

∣

|s− ǫ|k (8)

for |s− ǫ| < 2ǫ.
We could complete the proof if we could obtain finiteness of the expression

∞
∑

k=0

∞
∑

n=1

|an|n
−ǫ (log n)

k|s− ǫ|k

k!
(9)

for |s− ǫ| < 2ǫ. This is because, if (9) were finite, then we could re-arrange (9) to obtain

∞
∑

n=1

|an|n
−(ǫ−|s−ǫ|) <∞

6



for |s − ǫ| < 2ǫ. This would mean that
∑

ann
−s converges absolutely at s = −ǫ/2 (for

example), a contradiction.
It is here that we use the assumption an ≥ 0. With this requirement on the an, we

note that

∞
∑

k=0

∣

∣

∣

∣

∣

(−1)k

k!

∞
∑

n=1

ann
−ǫ(log n)k

∣

∣

∣

∣

∣

|s− ǫ|k =
∞
∑

k=0

∞
∑

n=1

|an|n
−ǫ (log n)

k|s− ǫ|k

k!

Therefore, we obtain finiteness of (9) and the proof is complete.

3 Examining The Proof

Examining this proof, we see that if we only assume:

• f has abscissa of absolute convergence equal to 0

• f extends holomorphically to D(0, 2ǫ)

then (8) is finite for all s ∈ D(ǫ, 2ǫ). We will re-write (8) as

∞
∑

k=0

1

k!

∣

∣

∣

∣

∣

∞
∑

n=1

ann
−ǫ(log n)k

∣

∣

∣

∣

∣

|s− ǫ|k (10)

We obtain a contradiction if we can show that (9) is finite for some s, |s − ǫ| > ǫ. We
will re-write (9) as

∞
∑

k=0

1

k!

[

∞
∑

n=1

|an|n
−ǫ(log n)k

]

|s− ǫ|k . (11)

We can prove that f fails to have a holomorphic extension about s = 0 if, for all
sufficiently small ǫ, the finiteness of (10) for all s ∈ D(ǫ, 2ǫ) implies the finiteness of (11)
for some s, |s− ǫ| > ǫ. In other words, we can prove the theorem if the implication (12)
below is true for all sufficiently small ǫ:

∞
∑

k=0

1

k!

∣

∣

∣

∣

∣

∞
∑

n=1

ann
−ǫ(log n)k

∣

∣

∣

∣

∣

|s− ǫ|k <∞ for all s ∈ D(ǫ, 2ǫ)

=⇒

∞
∑

k=0

1

k!

[

∞
∑

n=1

|an|n
−ǫ(log n)k

]

|s− ǫ|k <∞ for some s, |s − ǫ| > ǫ (12)

We will investigate a very specific way in which (12) will be true for all sufficiently
small ǫ. Specifically, we seek conditions on the {an} which imply that the “key” set of
inequalities

∞
∑

n=1

|an|n
−ǫ(log n)k ≤ Cǫ

∣

∣

∣

∣

∣

∞
∑

n=1

ann
−ǫ(log n)k

∣

∣

∣

∣

∣

∀k ≥ 0, Cǫ independant of k . (13)
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holds for all sufficiently small ǫ. In principle, one could obtain “(12) for all sufficiently
small ǫ” in other ways, but we will focus on obtaining “(13) for all sufficiently small ǫ”.

To summarize, we have

Theorem 6 (Landau’s Theorem, Re-formulated). Suppose that f(s) =
∑

ann
−s has

abscissa of absolute convergence equal to 0. If

∞
∑

n=1

|an|n
−ǫ(log n)k ≤ Cǫ

∣

∣

∣

∣

∣

∞
∑

n=1

ann
−ǫ(log n)k

∣

∣

∣

∣

∣

∀k ≥ 0, Cǫ independant of k

holds for all sufficiently small ǫ, then f does not have a holomorphic extension to a
neighborhood of 0.

4 Extending Landau’s Theorem: Conditions on Groups of Terms

In order for (13) to hold, it is evident that the arguments of the an must be “aligned” to
some degree. Our main tool for detecting this alignment will be to examine the real part
of
∑∞

n=1 ann
−ǫ(log n)k. This will detect alignment that is “oriented towards the positive

real axis” (by rotation, this is equivalent to alignment that is “oriented” in any given
direction in the same manner). One clear extension of Landau’s theorem is obtained in
this way.

Proof of Theorem 2. Observe that

∣

∣

∣

∣

∣

∞
∑

n=1

ann
−ǫ(log n)k

∣

∣

∣

∣

∣

≥ ℜ

∞
∑

n=1

ann
−ǫ(log n)k

=
∞
∑

n=1

(ℜ an)n
−ǫ(log n)k

We write an = |an|e
iθn . If we had some γ > 0 such that cos(θn) ≥ γ ∀n, then we would

have ℜ an = |an| cos(θn) ≥ γ|an| and therefore

∞
∑

n=1

(ℜ an)n
−ǫ(log n)k ≥ γ

∞
∑

n=1

|an|n
−ǫ(log n)k

or
∞
∑

n=1

|an|n
−ǫ(log n)k ≤ (1/γ)

∣

∣

∣

∣

∣

∞
∑

n=1

ann
−ǫ(log n)k

∣

∣

∣

∣

∣

We see that 1/γ is independant of k, and therefore we apply Theorem 6 and the proof
is complete.
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To obtain Theorem 3, we employ this method, but apply it to groups of terms instead
of single terms. Fix M ≥ 2 and write

∞
∑

n=1

ann
−ǫ(log n)k =

∞
∑

l=0

M
∑

j=1

aMl+j(Ml + j)−ǫ(log(Ml + j) )k

which yields

ℜ

∞
∑

n=1

ann
−ǫ(log n)k

=
∞
∑

l=0

M
∑

j=1

ℜaMl+j(Ml + j)−ǫ(log(Ml + j) )k

=

∞
∑

l=0

M
∑

j=1

|aMl+j| cos(θMl+j)(Ml + j)−ǫ(log(Ml + j) )k

We develop a condition on the group of coefficients aMl+1, . . . , aMl+M that will imply
the existence of some cǫ > 0 (independant of k, l, and in fact it will be independant of
ǫ) such that

M
∑

j=1

|aMl+j | cos(θMl+j)(Ml + j)−ǫ(log(Ml + j) )k

≥ cǫ

(

M
∑

j=1

|aMl+j|(Ml + j)−ǫ(log(Ml + j) )k
)

(14)

for all sufficiently small ǫ > 0. Once (14) holds with cǫ independant of k, l, for all
sufficiently small ǫ, we have

ℜ

∞
∑

n=1

ann
−ǫ(log n)k ≥ cǫ

∞
∑

n=1

|an|n
−ǫ(log n)k

and the proof of theorem 3 is complete.
We begin with the RHS of (14). By Taylor expansion, we write

(Ml + j)−ǫ = (Ml)−ǫ +A , |A| ≤ ǫ(Ml)−ǫl−1

and therefore we have

M
∑

j=1

|aMl+j|(Ml + j)−ǫ(log(Ml + j) )k

≤ (Ml)−ǫ
(

1 + ǫl−1
)

M
∑

j=1

|aMl+j |(log(Ml + j) )k (15)

9



Suppose that the following inequality held for γ independant of l, k:

M
∑

j=1

|aMl+j|(log(Ml + j) )k ≤ γ−1
M
∑

j=1

|aMl+j| cos(θMl+j)(log(Ml + j) )k (16)

Applying the Taylor expansion to the LHS in (14) (estimating cos(θ) ≤ 1), we define

Ã = ǫ(Ml)−ǫl−1
M
∑

j=1

|aMl+j |(log(Ml + j) )k

and we have

M
∑

j=1

|aMl+j| cos(θMl+j)(Ml + j)−ǫ(log(Ml + j) )k

≥ (Ml)−ǫ
M
∑

j=1

|aMl+j| cos(θMl+j)(log(Ml + j) )k − Ã

≥ (Ml)−ǫγ

M
∑

j=1

|aMl+j|(log(Ml + j) )k − Ã [by (16) ]

= (Ml)−ǫ
[

γ − ǫl−1
]

M
∑

j=1

|aMl+j |(log(Ml + j) )k

≥
[

γ − ǫl−1
] (

1 + ǫl−1
)−1

M
∑

j=1

|aMl+j |(Ml + j)−ǫ(log(Ml + j) )k [by (15) ]

With ǫ < 1 we have
[

γ − ǫl−1
] (

1+ǫl−1
)−1

≥
[

γ − l−1
] (

1+l−1
)−1

. We may assume that
an = 0 for all small n (since

∑∞
n=1 ann

−s has a holomorphic extension iff
∑∞

n=N ann
−s

does), and therefore we may assume that we are concerned only with large l. For l large

(depending only on γ) we have
[

γ − l−1
] (

1 + l−1
)−1

≥ γ/2, and therefore (14) holds
(with cǫ = γ/2) for all sufficiently small ǫ, independant of k, l and we are finished.

Therefore, to prove the theorem, it suffices to show that (16) holds for some γ > 0,
independant of k, l. We focus now on (16). Let

βj = β
(k,l)
j = |aMl+j|(log(Ml + j) )k (17)

and
β = β(k,l) = (β

(k,l)
1 , . . . , β

(k,l)
M )

We abbreviate

ψ = ψ(l) = (cos(θMl+1), cos(θMl+2), . . . , cos(θMl+M ) )

ψ̃ = ψ − γ(1, 1, . . . , 1)

10



We re-write (16) as β · ψ ≥ γ(β · (1, 1, . . . , 1) ) or

β(k,l) · ψ̃(l) ≥ 0 ∀k, l (18)

Our strategy is as follows: Develop a condition on the |an| which implies that β(k,l) lies
in a particular subset B of [0,∞)M for all k, l (i.e. B does not depend on k, l). Then,
the condition on the θn is simply ψ̃(l) ∈ −B♯ and (18) is satisfied.

We have
β
(k,l)
j

β
(k,l)
j+1

=
|aMl+j |

|aMl+(j+1)|

(

log(Ml + j)

log(Ml + (j + 1))

)k

Suppose we assume that

|aMl+j |

|aMl+(j+1)|
≤ ρ ∀l, ∀j = 1, . . . ,M − 1, for some ρ ∈ (0,∞)

Recalling definition (3), this can be written (|aMl+1|, |aMl+2|, . . . , |aMl+M |) ∈ Bρ. This
implies βj/βj+1 ≤ ρ for all k, l, or

β(k,l) ∈ Bρ ∀k, l

The set Bρ meets the requirement of being a proper subset of [0,∞)M not depending
on k, l, therefore this is the condition we seek. We can now prove theorem 3. Suppose
(|aMl+1|, |aMl+2|, . . . , |aMl+M |) ∈ Bρ; this means β(k,l) ∈ Bρ. By definition, the set of ψ̃
which satisfy ψ̃ · β ≥ 0 for all β ∈ Bρ equals −(Bρ)♯. For ψ̃(l) ∈ −(Bρ)♯, we therefore
have ψ̃(l) · β(k,l) ≥ 0, ∀k, l. In other words, (18) holds, thus (16) holds, and the proof of
Theorem 3 is complete.

5 Volume Calculation

As we mentioned, theorem 3 is only interesting if the restrictions on θn are broad enough
to be a measurable improvement over the requirement cos θn ≥ γ. We require ψ̃ ∈
−(Bρ)♯, i.e.

(cos(θMl+1), . . . , cos(θMl+M ) ) ∈ −(Bρ)♯ + γ





1
. . .
1





We want to answer the question

“How much freedom do we have in choosing cos(θMl+1), . . . , cos(θMl+M) ?”

One way to answer this is to measure the volume

V olR
M







−(Bρ)♯ + γ





1
. . .
1







 ∩ [−1, 1]M





11



Since this in continuous in γ, we will estimate

V olR
M
[

−(Bρ)♯ ∩ [−1, 1]M
]

(19)

First, we obtain a more direct description of (Bρ)♯, by writing Bρ as the convex cone
generated by a finite point set.

Proposition 7. Let x(r) ∈ R
M , r = 1, . . . ,M be defined by

x(r) = (0, . . . , 0, ρ−r, ρ−(r+1), . . . , ρ−M )

Then Bρ equals the positive linear span of the {x(r)}.

Corollary 8.

(Bρ)♯ =







y = (y1, . . . , yM ) :

M
∑

j=r

ρ−jyj ≤ 0 ∀r = 1, . . . ,M







(20)

Proof of Proposition. We see that x(r) ∈ Bρ is clear. If β ∈ Bρ then

β = ρ1β1x
(1) + ρ2(β2 − ρ−1β1)x

(2) + · · ·+ ρM (βM − ρ−1βM−1)x
(M)

Each coefficient is positive, so we have written Bρ as a positive linear combination of
the x(r).

Now, we wish to estimate the expression in (19). The cases ρ ≥ 1, ρ < 1 are treated
separately (since different constraints will bind to form the set −(Bρ)♯∩[−1, 1]M in these
two cases).

The case ρ ≥ 1

The idea is to exhibit a certain disjoint union of rectangles contained in −(Bρ)♯∩[−1, 1]M ,
using the description of −(Bρ)♯ given in (20). This is obtained by bisecting a subinterval
of [−1, 1] in each coordinate (so we will have 2M rectangles), but the location where the
jth coordinate is bisected in a particular rectangle will depend on the “location” of that
rectangle in the coordinates j′ > j. The natural order in which to consider the indices
will be “M,M − 1, . . .,” as we shall see. An example will clarify this; consider M = 2.
We have the set

−(Bρ)♯ =
{

(y1, y2) : ρ
−2y2 ≥ 0 , ρ−1y1 + ρ−2y2 ≥ 0

}

(In the following discussion we use 2−1 to denote 1/2, our aim is to minimize the number
of parentheses and improve readability, we apologize for any confusion.)

We divide the y2 coordinate into the ranges (0, 2−1) , (2−1, 1). If y2 ∈ (0, 2−1), the
“worst case” estimate for the range of values of y1 is the trivial one, y1 ≥ 0, so we divide

12



the range for y1 into (0, 2−1) , (2−1, 1) as well. If y2 ∈ (2−1, 1), we can estimate the
range of values of y1 to always contain the interval

(−2−1ρ−1, 1)

and we evenly divide this interval into two pieces:
(

− 2−1ρ−1 , −2−1ρ−1 + 2−1(1 + 2−1ρ−1 )
)

(

− 2−1ρ−1 + 2−1(1 + 2−1ρ−1 ) , −2−1ρ−1 + 2 2−1(1 + 2−1ρ−1 )
)

To summarize, we obtain

−(Bρ)♯ ∩ [−1, 1]2 ⊃

(0, 2−1)× (0, 2−1)

∪ (2−1, 1)× (0, 2−1)

∪
(

− 2−1ρ−1 , −2−1ρ−1 + 2−1(1 + 2−1ρ−1 )
)

× (2−1, 1)

∪
(

− 2−1ρ−1 + 2−1(1 + 2−1ρ−1 ) , −2−1ρ−1 + 2 2−1(1 + 2−1ρ−1 )
)

× (2−1, 1)

(a disjoint union of four rectangles). Using the set-addition notation
(

a+ (b+ c), a+ 2(b+ c)

)

= a+ (b+ c)

(

1, 2

)

(with large delimiters to distinguish the actual interval from parentheses), this can be
written

−(Bρ)♯∩ [−1, 1]2 ⊃

1
⋃

j1,j2=0

−2−1ρ−1j2+2−1(1+2−1ρ−1j2)

(

j1, j1+1

)

×2−1

(

j2, j2+1

)

The expressions above will soon become cumbersome, so we define the function P , for
x1, . . . , xn ∈ R, by

P [x1, . . . , xn] = x1(1 + x2(1 + x3(. . . + xn−1(1 + xn)) · · · )

(Use of square brackets in the definition of P is again for readability). We will use the
convention that, if x1, . . . , xn is an “empty list,” then P [x1, . . . , xn] = 0. In addition, we
write the set (a1, b1)× (a2, b2)× · · · × (an, bn) as

{y : yi ∈ (ai, bi), i = 1, . . . , n}

At last, we can write the following for the case M = 2:

− (Bρ)♯ ∩ [−1, 1]2 ⊃

1
⋃

j1,j2=0

{

y : yk ∈ −P
[

2−1ρ−1jk+1

]

+ P
[

2−1, 2−1ρ−1jk+1

]

(

jk, jk + 1

)

, k = 1, 2

}

13



Note that, if k = 2 then k + 1 = 3 and “2−1ρ−1j3” is an empty list (there is no j3), so

P
[

2−1ρ−1jk+1

]

= 0 , P
[

2−1, 2−1ρ−1jk+1

]

= P
[

2−1
]

= 2−1

Applying this idea in dimension M , we obtain the following.

Lemma 9. For Bρ = Bρ,M (ρ ≥ 1), we have,

− (Bρ)♯ ∩ [−1, 1]M ⊃

1
⋃

j1,...,jM=0

{

y : yk ∈ −P
[

2−1ρ−1jk+1, 2
−1ρ−1jk+2, . . . , 2

−1ρ−1jM
]

+ P
[

2−1, 2−1ρ−1jk+1, 2
−1ρ−1jk+2, . . . , 2

−1ρ−1jM
]

(

jk, jk + 1

)

, k = 1, . . . ,M

}

This is a disjoint union.

Proof. We wish to consider just one rectangle from the RHS, so fix j1, . . . , jM . By
picking the left endpoint from (jk, jk + 1), and noting that

aP
[

x1, . . . , xn
]

= P
[

ax1, . . . , xn
]

we have

yk ≥ −P
[

2−1ρ−1jk+1, . . . , 2
−1ρ−1jM

]

+ P
[

2−1jk, 2
−1ρ−1jk+1, . . . , 2

−1ρ−1jM
]

(21)

Plugging this estimate into the sum
∑M

j=r ρ
−jyj, the result telescopes to give just the

positive term for j = r and the negative term for j = M (and this j = M term is itself
an “empty list”):

M
∑

j=r

ρ−jyj ≥ρ
−rP

[

2−1jr, 2
−1ρ−1jr+1, . . . , 2

−1ρ−1jM
]

− ρ−MP
[

2−1ρ−1jM+1, . . . , 2
−1ρ−1jM

]

=ρ−rP
[

2−1jr, 2
−1ρ−1jr+1, . . . , 2

−1ρ−1jM
]

We see that this is positive, since each expression 2−1ρ−1jn is positive, and therefore by
(20) the rectangle is contained in −(Bρ)♯.

Next, we prove containment in [−1, 1]M . Note that, because ρ ≥ 1, we have 0 ≤
2−1ρ−1jn ≤ 2−1, and because P is monotone increasing in each coordinate (as long as
all coordinates are positive), we have

P
[

2−1ρ−1jk+1, . . . , 2
−1ρ−1jM

]

≤ P
[

2−1, 2−1, . . . , 2−1
]

≤ 1

and therefore, by (21), we have yk ≥ −1.
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Picking the right endpoint from the interval (jk, jk + 1) in lemma 9, we have

yk ≤ −P
[

2−1ρ−1jk+1, . . .
]

+ (jk + 1)P
[

2−1, 2−1ρ−1jk+1, . . .
]

= −P
[

2−1ρ−1jk+1, . . .
]

+ (jk + 1)2−1
(

1 + P
[

2−1ρ−1jk+1, . . .
]

)

≤ −P
[

2−1ρ−1jk+1, . . .
]

+
(

1 + P
[

2−1ρ−1jk+1, . . .
]

)

= 1

Lastly, we show the union is disjoint. Let (j1, . . . , jM ) 6= (j′1, . . . , j
′
M ) and denote the

respective rectangles by R,R′. Let K be the largest value i between 1 and M such that
ji 6= j′i. WLOG, suppose jK = 0, j′K = 1 (and we have ji = j′i for i > K). Consider
the Kth coordinate. We see that, by definition of the rectangles in lemma 9, the above
information on ji implies that, ∀y ∈ R,∀y′ ∈ R′ we have

yK < y′K

and this proves disjointness.

Having lemma 9, we can prove the estimate (6) from proposition 4.

Proof of (6). To obtain the estimate in (6), it remains to sum the volume of the rectan-
gles from lemma 9. Let R be the rectangle corresponding to (j1, . . . , jM ), and let V be
its volume. We have

V =

M
∏

k=1

P
[

2−1, 2−1ρ−1jk+1, 2
−1ρ−1jk+2, . . . , 2

−1ρ−1jM
]

and we have

P
[

2−1, 2−1ρ−1jk+1, 2
−1ρ−1jk+2, . . . , 2

−1ρ−1jM
]

≥ 2−1(1 + 2−1ρ−1jk+1)

Noting the value of this expression when k = M (namely 2−1), V is greater than or
equal to 2−M

∏M−1
k=1 (1 + 2−1ρ−1jk+1). By binomial expansion, this is

2−M
∑

ǫ=(ǫ1,...,ǫM−1)

(2ρ)−
∑

ǫi jǫ11 · · · j
ǫM−1

M−1

Summing this over the index set, the total volume of all the rectangles is greater than
or equal to

1
∑

j1,...,jM=0

2−M
∑

ǫ=(ǫ1,...,ǫM−1)

(2ρ)−
∑

ǫi jǫ11 · · · j
ǫM−1

M−1

= 2−M
∑

ǫ=(ǫ1,...,ǫM−1)

(2ρ)−
∑

ǫi

1
∑

j1,...,jM=0

jǫ11 · · · j
ǫM−1

M−1
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We have

1
∑

j1,...,jM=0

jǫ11 · · · j
ǫM−1

M−1 =





1
∑

j1=0

jǫ11









1
∑

j2=0

jǫ22



 · · ·





1
∑

jM−1=0

j
ǫM−1

M−1









1
∑

jM=0

1





= 21−ǫ121−ǫ2 · · · 21−ǫM−12

= 2M2−
∑

ǫi

Thus

V ≥ 2−M
∑

ǫ=(ǫ1,...,ǫM−1)

(2ρ)−
∑

ǫi 2M 2−
∑

ǫi

=
∑

ǫ=(ǫ1,...,ǫM−1)

(4ρ)−
∑

ǫi

= (1 + (4ρ)−1 )M−1

It is an elementary exersize to show that

ǫ ≤
1− 1/M

4ρ+ 1/M
=⇒ (1 + (4ρ)−1 )M−1 ≥ (1 + ǫ)M

and therefore

V ≥

(

1 +
1− 1/M

4ρ+ 1/M

)M

which completes the proof of (6).

The case ρ < 1

This proof will be somewhat simpler, we look at the set

[−1, 1]M−1 × [0, 1]

and prove that −(Bρ)♯ has large intersection with this set. This is done by taking the
firstM−1 coordinates and splitting each into the cases [−1, 0] and [0, 1], giving a division
of [−1, 1]M−1 into 2M−1 cubes of dimension M − 1 (all side lengths being 1). Then, on
each cube we find the range of values for the Mth coordinate which will remain within
−(Bρ)♯.

Lemma 10. For ρ < 1,

− (Bρ)♯ ∩ [−1, 1]M ⊃

1
⋃

j1,...,jM−1=0

{

y : yk ∈ (−jk,−jk + 1) for k < M, yM ∈

(

M−1
∑

k=1

jkρ
M−k, 1

) }
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We allow for the possibility that the interval
(

∑M−1
k=1 jkρ

M−k, 1
)

(and thus the cor-

responding rectangle) is empty.

Proof of Lemma. Suppose y is a member of one of the rectangles on the RHS. (We
index by d to avoid jj). Using (20), we calculate: for r ∈ {1, . . . ,M}, we have

M
∑

d=r

ρ−dyd =

M−1
∑

d=r

ρ−dyd + ρ−MyM

≥

M−1
∑

d=r

ρ−d(−jd) + ρ−M
M−1
∑

d=1

jdρ
M−d

≥
M−1
∑

d=1

ρ−d(−jd) +
M−1
∑

d=1

jdρ
−d

= 0

Here, disjointness of these rectangles, and containment in [−1, 1]M is clear, so the
volume of −(Bρ)♯ ∩ [−1, 1]M can be bounded below. The volume of the rectangle corre-
sponding to (j1, . . . , jM−1) is greater than or equal to

1−

M−1
∑

k=1

jkρ
M−k

(note that this is true when
∑M−1

k=1 jkρ
M−k > 1 and therefore the rectangle is empty).

So, the volume of all the rectangles together is greater than or equal to

1
∑

j1,...,jM−1=0

(

1−

M−1
∑

k=1

jkρ
M−k

)

= 2M−1 −

M−1
∑

k=1

ρM−k
1
∑

j1,...,jM−1=0

jk

= 2M−1 −
M−1
∑

k=1

ρM−k(2M−2)

= 2M−1 − 2M−2ρ

(

1− ρM−1

1− ρ

)

= 2M−1

[

1− 2−1ρ

(

1− ρM−1

1− ρ

) ]

≥ 2M−1
[

1− 2−1ρ/(1− ρ)
]

and (7) is proved.
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6 Sharpness

We prove proposition 5, by constructing counterexamples. Let ρ ∈ (0,∞) and M ≥ 2
be fixed. All the counterexamples will be of the following form:

|aMl+j| = l−1ρ−j

cos(θMl+j) = cosj = λδj + γ

sin(θMl+j) = (−1)l
√

1− cos2(θMl+j) (22)

where λ > 0, δj ∈ [−1, 1], and γ are yet to be determined (subject to the requirement
λδj + γ ∈ [−1, 1]). We see that our construction already has the following properties:

•
∑

ann
−s has σa = 0 [This is due to the factor l−1]

• (|aMl+1|, |aMl+2|, . . . , |aMl+M |) ∈ Bρ

We now develop a sufficient condition on λ, δj , γ under which the sequence of partial

sums
∑N

n=1 ann
ǫ is a Cauchy sequence for some ǫ > 0, this proves that

∑

ann
−s has a

holomorphic extension past s = 0.
Consider

J
∑

n=N

ann
ǫ

Let N =Ml0 + j0, J =Ml1 + j1 for l0, l1 ≥ 0, j0, j1 ∈ {1, . . . ,M}. This gives

J
∑

n=N

ann
ǫ =

M
∑

j=j0

aMl0+j(Ml0 + j)ǫ +

j1
∑

j=1

aMl1+j(Ml1 + j)ǫ +

l1−1
∑

l=l0+1

M
∑

j=1

aMl+j(Ml + j)ǫ

= (I) + (II) + (III) (23)

We see that (I) and (II) are bounded in size by a constant times l
−(1−ǫ)
0 , which converges

to zero as N → ∞, so we concentrate on (III). Note that

(Ml + j)ǫ = (Ml)ǫ +Al,j , |Al,j | ≤ ǫ(Ml)ǫl−1

We have

l1−1
∑

l=l0+1

M
∑

j=1

aMl+j(Ml + j)ǫ =

l1−1
∑

l=l0+1

l−1
M
∑

j=1

ρ−jeiθMl+j((Ml)ǫ +Al,j)

=

l1−1
∑

l=l0+1

l−1
M
∑

j=1

ρ−jeiθMl+jAl,j +

l1−1
∑

l=l0+1

l−1(Ml)ǫ
M
∑

j=1

ρ−jeiθMl+j

= (IIIa) + (IIIb) (24)
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The first sum, (IIIa), is bounded in size by

l1−1
∑

l=l0+1

l−1ǫ(Ml)ǫl−1
M
∑

j=1

ρ−j ≤ ǫM ǫ





M
∑

j=1

ρ−j





l1−1
∑

l=l0+1

l−(2−ǫ)

and
∑l1−1

l=l0+1 l
−(2−ǫ) is (part of) the tail of a convergent sum, so it converges to 0 as

N → ∞.
We have

(IIIb) =

l1−1
∑

l=l0+1

l−1(Ml)ǫ
M
∑

j=1

ρ−j [cos(θMl+j) + i sin(θMl+j)]

and since cos(θMl+j) depends only on j, this can be written

(IIIb) =M ǫ





M
∑

j=1

ρ−j cosj





l1−1
∑

l=l0+1

l−(1−ǫ)

+ iM ǫ





M
∑

j=1

ρ−j
√

1− cos2j





l1−1
∑

l=l0+1

(−1)ll−(1−ǫ)

= (IIIb1) + (IIIb2) (25)

We see that
∑l1−1

l=l0+1(−1)ll−(1−ǫ) is (part of) the tail of an alternating series, so (IIIb2)

converges to 0 as N → ∞. Therefore, if we have
∑M

j=1 ρ
−j cosj = 0, i.e.

λ

M
∑

j=1

ρ−jδj + γ





M
∑

j=1

ρ−j



 = 0 (26)

then we will have
∑J

j=N ann
ǫ = o(N); this is the sufficient condition under which our

construction will also satisfy

•
∑

ann
−s has a holomorphic extension past s = 0

Proposition 5 part (I)

Here, we want to find {an} which satisfy

•
∑

ann
−s has σa = 0

• (|aMl+1|, |aMl+2|, . . . , |aMl+M |) ∈ Bρ

• (cos(θMl+1), cos(θMl+2), . . . , cos(θMl+M ) ) ∈ − (Bρ)♯ [this is (5) with γ = 0]

•
∑

ann
−s has a holomorphic extension past s = 0
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We choose {an} as in (22), and furthermore we set γ = 0. In view of the discussion
above, it only remains to prove that we can choose λ, δj ∈ [−1, 1] such that the following
three properties hold:

λ
M
∑

j=1

ρ−jδj = 0 [this is (26) with γ = 0]

λ(δ1, . . . , δM ) ∈ −(Bρ)♯ [this is (5) with γ = 0]

λδj ∈ [−1, 1] [this is the requirement cos θ ∈ [−1, 1] ]

Evidently, λ is irrelevant to the first two properties, so we set it to 1 (and then the
third property is satisfied). Writing δ = (δ1, . . . , δM ), and recalling (20), the remaining
requirements are that there exists δ ∈ [−1, 1]M such that

δ · (ρ−1, . . . , ρ−M ) = 0

δ · (0, 0, . . . , ρ−r, . . . , ρ−M ) ≥ 0 ∀r = 1, . . . ,M

This is nothing more than the statement that, in the system of inequalities

x · (0, 0, . . . , ρ−r, . . . , ρ−M ) ≥ 0 : r = 1, . . . ,M

the inequality corresponding to r = 1 does bind at some point. This is true because the
vectors

(0, 0, . . . , ρ−r, . . . , ρ−M ) ≥ 0 : r = 1, . . . ,M

are linearly independant. For a specific example, we could choose

δj = c(−1)M−jρj [M even]

δ1 = 0, δj = c(−1)M−jρj j > 1 [M odd]

Proposition 5 part (II)

Fix M ≥ 2 and 0 < ρ′ < ρ. Here, we want to find {an} and γ > 0 which satisfy

•
∑

ann
−s has σa = 0

• (|aMl+1|, |aMl+2|, . . . , |aMl+M |) ∈ Bρ

• (cos(θMl+1), cos(θMl+2), . . . , cos(θMl+M ) ) ∈ −
(

Bρ′
)♯

+ γ(1, 1, . . . , 1)

•
∑

ann
−s has a holomorphic extension past s = 0
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We choose {an} as in (22). In view of the discussion above, it only remains to prove
that we can choose λ, δj ∈ [−1, 1], γ > 0 such that the following three properties hold:

λ

M
∑

j=1

ρ−jδj + γ





M
∑

j=1

ρ−j



 = 0

λ(δ1, . . . , δM ) ∈ −(Bρ′)♯

λδj + γ ∈ [−1, 1]

Evidently, if we find δ ∈ −(Bρ′)♯ such that

M
∑

j=1

ρ−jδj < 0

then we can find arbitrarily small values of λ, γ such that the first property is satisfied,
and therefore we can simultaneously satisfy the third property as well. Therefore, it
suffices to find δ such that

δ ∈ −(Bρ′)♯

δ · (ρ−1, . . . , ρ−M ) < 0 (27)

Intuitively, this is stating a certain “properness” of the containment relations

ρ1 < ρ2 =⇒ Bρ1 ⊂ Bρ2 =⇒ (Bρ1)♯ ⊃ (Bρ2)♯

The following example suffices: Define

x = (−ρ−(M−1), 0, 0, . . . , 0, 1)

We have
x · ( (ρ′)−1, . . . , (ρ′)−M ) = (ρ′)−M − (ρ′)−1ρ−(M−1)

which is greater than 0, and clearly

x · (0, . . . , 0, (ρ′)−r, . . . , (ρ′)−M ) > 0 ∀r > 1

so we have
M
∑

j=r

xj(ρ
′)−j > 0 ∀r ≥ 1

Therefore, there exists ǫ such that for any y, |y − x| < ǫ, we have

M
∑

j=r

yj(ρ
′)−j > 0 ∀r ≥ 1
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which implies y ∈ −(Bρ′)♯. We selected x to satisfy

x · (ρ−1, . . . , ρ−M ) = 0

This means (since a non-zero linear functional on R
M is an open mapping) we have δ,

|δ − x| < ǫ such that
δ · (ρ−1, . . . , ρ−M ) < 0

and thus δ satisfies (27), concluding the proof.
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the Wiener-Dirichlet algebra”, Journal of Operator Theory, 2008, volume 60 no.
1, 45-70

[3] H.F. Bohnenblust and E. Hille, “On The Absolute Convergence of Dirichlet Series”,
Annals of Mathematics, 1931, volume 32, 600-622

[4] F. Bayart and S. Konyagin and H. Queffélec, “Convergence almost everywhere and
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