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Abstract. We discuss an extension of our method Image Inpainting Based on Coherence Transport. For the
latter method the pixels of the inpainting domain have to be serialized into an ordered list. Up till now, to
induce the serialization we have used the distance to boundary map. But there are inpainting problems
where the distance to boundary serialization causes unsatisfactory inpainting results. In the present work
we demonstrate cases where we can resolve the difficulties by employing other distance functions which
better suit the problem at hand.
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1. Introduction. Non-texture image inpainting, also termed image interpola-
tion, is the task of determining the values of a digital image for a destroyed, or con-
sciously masked, subregion of the image domain.

The simple idea of the generic single pass method – which forms the basis for our
method Image Inpainting Based on Coherence Transport published in [4] – is to fill the in-
painting domain by traversing its pixels in an onion peeling fashion from the bound-
ary inwards and thereby setting new image values as weighted means of given or
already calculated ones.

Telea has been the first to use such an algorithm in [12]: the pixels are serialized
according to their euclidean distance to the boundary of the inpainting domain and
the weight is such that image values are propagated mainly along the gradient of the
distance map. By his choices of the weight and the pixel serialization, the method of
Telea is not adapted to image.

In [4], we addressed the adaption of the weight: our method uses an image de-
pendent weight such that image values are propagated along the estimated tangents
of color lines which have been interrupted by the inpainting domain. That way we
could improve the quality of the inpainting results compared to Telea (see figure
1.1). Beyond that, we have illustrated in [4] that our method matches the high level
of quality of the methods by [3], [10], [9], and [13] while being considerably faster.

But serializing the pixels by their distance to the boundary, as Telea and we in
[4] did, is not always a good idea as figure 1.2 illustrates. The image in the middle
shows the result which we obtain by using our method with distance to boundary
serialization. The diagonal is not restored and the contours of the distance to bound-
ary map indicate that this is due to the bad location of the skeleton which consists
of the ridges of the distance map. Before reaching the skeleton, however, the perfor-
mance is good and the diagonal is continued tangentially. The right image of figure
1.2 shows the result which we get if we use another distance function (for pixel seri-
alization) that suits the problem at hand better (see §3.1, figure 3.1).

The way of serializing the pixels is an important degree of freedom and in this
paper we use this freedom to resolve some obstructions which the distance to bound-
ary serialization entails. The pixel serializations that we discuss are all induced by a
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2 T. MÄRZ

FIG. 1.1. Scratch removal. Left: vandalized image (courtesy of Telea [12, Fig 8.i]), the white scratches are the
inpainting domain. Middle: result of Telea’s method. Right: result of our method

FIG. 1.2. A broken diagonal ? Left: data image with inpainting domain in white. Middle: result of our method,
pixel serialization by distance to boundary, levels of the distance to boundary map are overlaid. Right: result of our
method, pixel serialization by another distance function.

more general type of distance function, so the new parameter of the method is in fact
the user’s choice of the distance function.

Outline of the Paper. In section 2 we summarize the existing results and give a
complete description of the basic algorithm. In section 3 we turn to concrete distance
functions which are used to serialize the pixels of the inpainting domain. We describe
three approaches: distance by harmonic interpolation (§3.1), modified distance to
boundary (§3.2), and distance to skeleton (§3.3). Section 4 closes with a discussion.

2. Summary of Existing Results. Our starting point is the generic algorithm
for gray tone images. We assume that all gray tone images, seen as functions, take
values in the real interval [0, 255] and we assume that gray tones are mapped onto
[0, 255] such that the natural order on the interval reflects the order of the shades
of gray by their brightness from black (= 0) to white (= 255). Moreover, we will
distinguish between discrete (digital) notions by using the index h and continuous
(analog) notions where we omit the index. Continuous notions are thought of as the
high-resolution limit of the corresponding discrete ones. Finally, we identify pixels
with their midpoints.

Notation.
a) Ω0,h is the image domain, the matrix of pixels for the final, restored image uh :

Ω0,h → [0, 1].
b) Ωh ⊂ Ω0,h is the inpainting domain whose values of uh have to be determined.
c) Ω0,h\Ωh is the data domain whose values of uh are given as uh|Ω0,h\Ωh

= u0,h.
d) ∂Ωh ⊂ Ωh is the discrete boundary, i.e., the set of inpainting pixels that have at

least one neighbor in the data domain.
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Continuous quantities are defined correspondingly. Finally, we define discrete and
continuous ε-neighborhoods by

Bε,h(x) := {y ∈ Ω0,h : |y− x| ≤ ε} , Bε(x) := {y ∈ Ω0 : |y− x| ≤ ε} .

Generic Algorithm. The basic idea is to fill the inpainting domain from its bound-
ary inwards by using weighted means of given or already calculated image values.
We assume that the pixels which are to be inpainted have already been serialized, i.e.
Ωh = (x1, x2, . . . , xN) is an ordered list. The following set

B<
ε,h(xk) := Bε,h(xk)\{xk, . . . , xN} , k = 1, . . . , N,

denotes the neighborhood of the pixel xk consisting only of known or already in-
painted pixels. Then, the algorithm reads as follows:

uh|Ω0,h\Ωh
= u0,h ,

uh(xk) =

∑
y∈B<

ε,h(xk)

w(xk, y)uh(y)

∑
y∈B<

ε,h(xk)

w(xk, y)
, k = 1, . . . , N.

(2.1)

Here, w(x, y) ≥ 0 are called the weights of the algorithm and we assume that

∑
y∈B<

ε,h(x)
w(x, y) > 0 , x ∈ Ωh .

Pixel Serialization. In the generic algorithm, any serialization of the pixels can
be used which geometrically goes from the boundary inwards in an onion peeling
fashion. Now, let T : Ω → [0, Tmax] be a map with T|Γ = 0, Γ ⊂ ∂Ω, and which
strictly grows into the interior of Ω. We define the onion peels to be the level lines
of T. Using such a map T or rather a discretized version Th : Ωh → [0, Tmax], we
serialize the pixels of Ωh by

Th(xj) < Th(xk) ⇒ j < k

into an ordered list Ωh = (x1, x2, . . . , xN).
Clearly, there are different possible choices of a suitable T, but in the article [4]

this degree of freedom has been fixed by setting T = d, where d is the euclidean
distance to the boundary ∂Ω,

d(x) = dist(x, ∂Ω) , x ∈ Ω .

As pointed out in the introduction T = d is not always a good choice and in the next
section we will use generalized distances T .



4 T. MÄRZ

Weights. Here again, different choices for the weights are possible. We consider
weights of the form

w(x, y) =
1

|x− y| k
(

x, (x− y) · ε−1
)

(2.2)

with a kernel k(x, η):
a) Normal Transport (Telea’s method). Telea, in [12], uses the kernel

k(x, η) =
| 〈N(x), η〉 |
|η| , with N(x) =

∇T(x)
|∇T(x)| .

Tough Telea has taken T = d, the kernel carries over to more general T.
b) Coherence Transport (our method of [4]). For a given guidance field called g we use

the kernel

kµ(x, η) =

√
π

2
µ exp

(
−µ2

2

〈
g⊥(x), η

〉2
)

. (2.3)

The guidance vector g(x), supposed to be an approximate tangent, is computed
by employing structure tensor analysis. The set-up of the structure tensor Sσ,ρ(x)
is as follows:

ασ(y, x) =
∫

Ω(x)

Kσ(y− h) dh

vσ(y, x) =
1

ασ(y, x)
·
∫

Ω(x)

Kσ(y− h) · u(h) dh

Sσ,ρ(x) =
1

αρ(x, x)
·
∫

Ω(x)

Kρ(x− y) · ∇yvσ(y, x) · ∇yvT
σ (y, x) dy

where Ω(x) := {y ∈ Ω : T(y) ≤ T(x)} ∪Ω0\Ω and Kσ is a Gaussian kernel. The
coherence vector g(x) which enters kµ as guidance is the eigenvector of Sσ,ρ(x)
w.r.t. the minimal eigenvalue. Since g depends on the image u, the weight does
here, too.
For more details on the usage of the structure tensor w.r.t. coherence transport
inpainting see [4] and [6]. For other applications of structure tensor analysis and
the related scale space theory see e.g. [1], [14] and [2].

A Note on the Theory Behind. Because continuous theory is not an issue of this
paper, we want at least make some comments. For weights of the form (2.2) we have
shown in [4] and [6] that the high-resolution (h → 0) vanishing-viscosity (ε → 0)
limit yields transport/advection PDEs of the form:
a) Normal Transport.

〈N(x),∇u(x)〉 = 0 in Ω\Σ , u|∂Ω = u0|∂Ω .

b) Coherence Transport.〈
cµ(x),∇u(x)

〉
= 0 in Ω\Σ , u|∂Ω = u0|∂Ω ,

〈
cµ(x), N(x)

〉
≥ βµ > 0 .

(2.4)
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In both cases the set Σ denotes the set where N(x) = ∇T(x)/|∇T(x)| is singular.
The side condition

〈
cµ(x), N(x)

〉
≥ βµ is the continuous counterpart of the pixel

serialization: the function T here plays the role of a Lyapunov function and this
condition says that the characteristics of the advection PDE evolve strictly into the
interior of Ω and stop at Σ. The general existence and well-posedness theory for such
type of equations can be found in [8] and [7]. This theory is applied to the analog
inpainting model above in [6, chapter 6].

Finally, in order to better understand the role of the parameter µ of the kernel
kµ, we cite two results of [4]. Firstly, according to [4, theorem 1] every weight w of
the form (2.2) corresponds to a transport field c. Secondly, in [4, theorem 2], when
using the coherence transport kernel kµ, we have proved an asymptotic expansion
of cµ(x), w.r.t. µ→ ∞, which implies the following limit behavior

lim
µ→∞

cµ(x) =


g(x) , 〈g(x), N(x)〉 > 0
−g(x) , 〈g(x), N(x)〉 < 0
N(x) , 〈g(x), N(x)〉 = 0

. (2.5)

That means the coherence vector g(x) guides in fact the coherence transport (2.4) and
µ is the strength of this guidance.

Interface of the Algorithm. In the next section the algorithm will be performed
only in its coherence transport version. That is, the weight function w has the form
of (2.2) with the kernel kµ given by equation (2.3). The execution of the coherence
transport algorithm depends on the choice of four parameters:

• ε, the averaging radius,
• µ, the guidance strength of kµ,
• σ and ρ, the scale parameters of the smoothing operations in the structure

tensor Sσ,ρ.
Finally, the algorithm is supplied with the data image u0 and a sorted list of the pixels
which are to be inpainted. Any item of this list has the form

[i j Th(i, j)] ,

whereas (i, j) are the pixel coordinates. The list is sorted in ascending order of the
Th(i, j) values.

3. Concrete Distance Functions. The generic algorithm of section 2 depends on
a prescribed pixel serialization, which orders the pixels from the boundary inwards.
In all previous experiments of [4] the pixels were serialized by their euclidean dis-
tance to boundary. The advantage in practice is that for all types of domains the
approximate distance to boundary map is easy to generate by the Fast Marching
Method (see [11] and [5]). But the disadvantage is that it is not always the best choice
if one wants to get a nice looking inpainting result. Here, we present three other ways
of setting up a generalized discrete distance function Th. We show a few synthetic
examples where they yield better inpaintings than the distance to boundary.

3.1. Distance by Harmonic Interpolation. The broken diagonal is our first ex-
ample. Figure 3.1 (b) shows the result when using the distance to boundary dh. The
desired inpainting result would be the restored diagonal but the diagonal is only
partly continued correctly. Figure 3.1 (c) – with the contours of dh overlaid – demon-
strates that the undesired effect is due to the wrong location of the stop set. Figure 3.1
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(a) damaged image (b) inpainted image (c) with contours of dh

(d) damaged image (e) inpainted image (f) with contours of Th

FIG. 3.1. Broken diagonal. In the first row we have (a) the damaged image with the inpainting domain Ωh in
white, (b) the result inpainted using euclidean distance to boundary dh, and (c) the result with contours of dh. In
the second row we have (d) the same damaged image with a specified stop set Γh in red, (e) the result inpainted using
distance by harmonic interpolation Th, and (f) the result with contours of Th.

(e) shows the result when using Th which we obtain by prescribing a better located
stop set and harmonic interpolation. Here, the algorithm is able to restore the diago-
nal. For both cases we have used the same set of parameters [ε, µ, σ, ρ] = [3, 50, 0.5, 5].

Now, we describe the construction of the discrete distance function Th. Here, we
can prescribe the location of the stop set arcs and their distance values.

Because the boundary is the start set, the discrete distance function Th shall
equal zero on ∂Ωh. In addition, we take at least one or more discrete curves Γk

h,
k ∈ {1, . . . , n} , which are contained in Ωh and should belong to the stop set Σh.
Moreover, for every Γk

h we specify a distance value tk > 0. The remainder of Th
then, is calculated by harmonic interpolation. That is, we solve the discrete Laplace
equation

∆hTh = 0 in Ωh\Σh , Σh =
n⋃

k=1

Γk
h ,

Th = 0 on ∂Ωh , Th = tk on Γk
h , k = 1, . . . , n .

Hereby, the discretization ∆h of the Laplacian is due to the five-point-stencil

∆hTh(i, j) = Th(i− 1, j) + Th(i, j− 1)− 4Th(i, j) + Th(i, j + 1) + Th(i + 1, j) .

Since harmonic interpolation provides a minimum and maximum principle, our
construction of Th can be imagined as the setting up a tent roof over the domain Ωh
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(a) white: Ωh , red: Γ1
h with t1 = 127 (b) contours of Th

FIG. 3.2. Single Γh yields a valid Th

where Γk
h are the locations of the tent poles, and every tent pole of Γk

h has the length
tk.

Unfortunately, not every choice of curves Γk
h, with time values tk, results in a

valid distance function: Th might have local minima and so would not strictly in-
crease into the interior of Ωh. In the case of a single curve Γh the resulting Th is a
valid distance because of the minimum and maximum principle, see figure 3.2. If
there are two or more curves Γk

h, the question whether the resulting Th is valid or not
depends on the location of the curves in relation to each other and the differences of
their prescribed values tk . Figure 3.3 (b) shows an example with three curves Γ1

h, Γ2
h

and Γ3
h with

t1 = t2 = 250 > t3 = 50 .

Here, all points of Γ3
h are local minima of Th. But, if we keep the geometry of Γ1

h, Γ2
h

and Γ3
h, and change the prescribed distances to

t1 = t2 = 250 > t3 = 249 ,

then Th does not have any minima (see figure 3.3 (c)). So, the resulting Th is admissi-
ble. Generally speaking, if we have two or more curves Γk

h, with different prescribed
distances tk, and if the values tk are chosen unfavorably, then the resulting Th might
possess local minima on some of the Γk

h.
Let us review our first example. Figure 3.1 (e) illustrates that our Th – which

is that shown in figure 3.2 (b) – works fine. More generally, if we think of Σh as
an initial scratch, which has been dilated to all of Ωh over the time Th, then the
backward filling-in process, if Σh is well located, makes the matching opposite sides
come together. Clearly, if we deliberately place Σh badly, then the method must fail
(see figure 3.4, the parameters are [ε, µ, σ, ρ] = [3, 50, 0.5, 5], as before).

Now, we discuss two further examples. Figure 3.5 (a) shows two broken diag-
onals with the same inpainting domain as in figure 3.1 (a). We emphasize here that
the appearance of an undesired effect depends on how the edge that needs to be
continued is located in relation to the inpainting domain. In figure 3.5 (b) – which
is inpainted using distance to boundary – the bottom-left-to-top-right diagonal is
continued as desired, while the continuation of the top-left-to-bottom-right diagonal
suffers from a badly located stop set. In Figure 3.5 (d) we have the damaged image
with the single curve Γh, t1 = 127 shown in red. Figure 3.5 (e) shows the result in-
painted using Th, the distance by harmonic interpolation. Again, a good location of
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(a) white Ωh (b) non-valid Th (c) valid Th

FIG. 3.3. (a) shows the domain Ωh and the desired stop arcs, red: Γ1
h and Γ2

h, blue: Γ3
h. For (b) the distances

on Γk
h have been set to t1 = t2 = 250, t3 = 50 and we can see that the resulting Th has Γ3

h as local minimum and is
thus not valid. For (c) the distances on Γk

h have been set to t1 = t2 = 250, t3 = 249 and resulting Th is valid.

(a) damaged image (b) inpainted image (c) with contours of Th

FIG. 3.4. Broken diagonal; method must fail if the stop set is deliberately placed badly. (a) the damaged image
with the inpainting domain Ωh in white with a single stop arc Γh in red, (b) the result inpainted using distance by
harmonic interpolation Th, and (e) the result with contours of Th.

Σh makes for a good result. For both cases we have used the same set of parameters
[ε, µ, σ, ρ] = [3, 50, 0.5, 5].

Figure 3.6 (a) shows a damaged cross junction. A cross junction would, in any
case, geometrically be the simplest object for completion. Using the distance to
boundary we obtain the result shown in figure 3.6 (b). Here, the stop set which is
the central arc of the skeleton (see figure 3.6 (c)), has an unfavorable location because
the bar coming from the right-hand side can never reach its counterpart. Setting Γh as
the center of the cross junction (see figure 3.6 (d)) and using the distance by harmonic
interpolation, we are able to restore the cross junction (see figure 3.6 (e)). Which of
the bars is closed in the end depends on the coherence strength. The brighter bar
has the higher contrast w.r.t. the black background and is thus of stronger coherence.
This is the reason why this bar is closed. For both cases we have used the same set
of parameters [ε, µ, σ, ρ] = [5, 100, 0.5, 10].

3.2. Modified Distance to Boundary. Figure 3.7 (a) shows a damaged stripe pat-
tern. Performing the algorithm with distance to boundary and the set of parameters
[ε, µ, σ, ρ] = [5, 100, 0.5, 10] yields the result shown in figure 3.7 (b). The difficulty,
is that the coherence vector which is tangent to the edges is orthogonal to the lower
left and the upper right segment of ∂Ωh. Thus, the transport vector c switches to the
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(a) damaged image (b) inpainted image (c) with contours of dh

(d) damaged image (e) inpainted image (f) with contours of Th

FIG. 3.5. Two broken diagonals. In the first row we have (a) the damaged image with the inpainting domain
Ωh in white, (b) the result inpainted using euclidean distance to boundary dh, and (c) the result with contours of dh.
The result in (b) demonstrates that the undesired effect depends on how edges are located in relation to the inpainting
domain. In the second row we have (d) the same damaged image with a specified stop set Γh in red, (e) the result
inpainted using distance by harmonic interpolation Th, and (f) the result with contours of Th.

normal N as in the exceptional case of equation 2.5. Figure 3.7 (c) confirms the switch
of the transport to N.

To combat this we suggest a modification of the distance map set-up. The eu-
clidean distance to boundary map d is the viscosity solution of

|∇d| = 1 in Ω , d|∂Ω = 0 .

The modification is that we search for the euclidean distance d∗ to a subset Γ of the
boundary ∂Ω, i.e.,

|∇d∗| = 1 in Ω , d∗|Γ = 0 .

We classify the points which shall not belong to Γ. Assume x ∈ ∂Ω satisfies
d∗(x) = 0, then the boundary normal is given by N(x) = ∇d∗(x). Now, if we have
at x

〈g(x), N(x)〉2 = 0 ,

whereas g is the guidance vector, then either there is no guidance (|g(x)| = 0) or the
guidance vector does not point inwards. Such a boundary point shall not belong to
Γ. In fact, we use the stronger condition

0 ≤ 〈g(x), N(x)〉2 ≤ γ
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(a) damaged image (d) damaged image, red Γh

(b) inpainted image (e) inpainted image

(c) with contours of dh (f) with contours of Th

FIG. 3.6. Broken cross junction. In the first column we have (a) the damaged image with the inpainting domain
Ωh in white, (b) the result inpainted using euclidean distance to boundary dh, and (c) the result with contours of
dh. In the second column we have (d) the same damaged image with the stop set Γh being a single point in red (at the
center of the cross junction), (e) the result inpainted using distance by harmonic interpolation Th, and (f) the result
with contours of Th.

with a threshold parameter 0 < γ ≤ 1. Complementarily, the set of active boundary
points Γ is given by

Γ = {x ∈ ∂Ω : 〈g(x), N(x)〉2 > γ} .

Clearly, the new parameter γ must be chosen such that Γ is not empty.
We have applied this idea to the stripe pattern: the red lines in figure 3.7 (d) are

the active boundary points and the result is shown in figure 3.7 (e). Our standard
parameters are [ε, µ, σ, ρ] = [5, 100, 0.5, 10], while the additional parameter is set to
γ = 0.1. The discrete approximation d∗,h was computed using the fast marching
method. The overlaid contour plot of d∗,h in figure 3.7 (f) shows that the guidance
vector always points inwards.

3.3. Distance to Skeleton. The third approach to obtaining a serialization is to
use the distance to a prescribed stop part of the skeleton. Let Sk, k ∈ {1, . . . , n} be
curves in the image domain Ω0. Those curves Sk which are contained in Ω will later
belong to the skeleton S . Let, then, T∗ be the viscosity solution of

|∇T∗| = 1 in Ω0 , T∗ = 0 on Sk , k ∈ {1, . . . , n} ,
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(a) damaged image (b) inpainted image (c) with contours of dh

(d) red active boundary Γ (e) inpainted image (f) with contours of d∗,h

FIG. 3.7. Stripe pattern. The difficulty is that the damage is aligned with the pattern. In the first row we have
(a) the damaged image with the inpainting domain Ωh in white, (b) the result inpainted using euclidean distance to
boundary dh, and (c) the result with contours of dh. In the second row we have (d) the same damaged image with
the active part Γ of the boundary in red, (e) the result inpainted using d∗,h which is the euclidean distance to Γ, and
(f) the result with contours of d∗,h.

and let

T∗,max = max
x∈Ω

T∗(x) .

The desired distance function is defined by

T(x) = T∗,max − T∗(x) , x ∈ Ω .

Warning: as in the case of harmonic interpolation (see §3.1) one must check if T is
admissible, i.e., if T is free of local minima.

Figure 3.8 shows the result for the example of the broken diagonal. The red
curve in figure 3.8 (a) defines S1

h (discrete) which shall belong to the skeleton. The
discrete approximation T∗,h was computed using the fast marching method and the
set of parameters is [ε, µ, σ, ρ] = [3, 50, 0.5, 5], the same as we used for figure 3.1
(e). The inpainted result here (figure 3.8 (b)) is the same as in figure 3.1 (e), but
the distance function has changed (compare figures 3.8 (c) and 3.1 (f)). If there is
only one curve S1

h which is completely contained in Ω, then distance by harmonic
interpolation (with Γ1

h = S1
h ) and distance to skeleton will yield very similar results.

If there are two or more curves, then distance by harmonic interpolation allows for
different distance values on Γk

h, while distance to skeleton has exactly one distance
value on all of the curves Sk

h . In contrast to distance to skeleton, the distance by
harmonic interpolation method requires Th|∂Ωh

= 0.
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(a) damaged image (b) inpainted image (c) with contours of Th

FIG. 3.8. Broken diagonal. (a) shows the damaged image, white Ωh, with the prescribed skeleton arc S1
h in

red. (b) is the result inpainted using distance to skeleton Th. (c) is the result with contours of Th.

(a) damaged image (b) inpainted image (c) with contours of Th

FIG. 3.9. Stripe pattern. (a) shows the damaged image, white Ωh, with the red arc S1
h outside Ωh. (b) is the

result inpainted using Th, the distance to ”skeleton” S1
h . (c) is the result with contours of Th.

Moreover, since T∗ is defined on Ω0, we can place Sk outside of the inpainting
domain Ω. We use this possibility to restore the stripe pattern in figure 3.9. The
parameters are [ε, µ, σ, ρ] = [5, 100, 0.5, 10], the same as we used for figure 3.7. It is
obvious from the level lines of Th (see 3.9 (c)) that the guidance vector always points
inwards. Thus, we get the desired result again here.

Remark: The construction here, as well as that of §3.2 produces distance func-
tions whereas not the whole boundary belongs to the start set. Besides that, it is
possible that parts of the boundary belong in fact to the stop set.

4. Discussion. In the previous section we have demonstrated that there are in-
painting problems where a distance to boundary induced serialization of the pixels
is not favorable and we have constructed other distances which are able to resolve
the difficulties which appear.

So far we have considered synthetic images, because their image geometry is
easy to understand. Thus, we were able to construct distances which are adapted to
the image or rather to an expected result. When we face natural inpainting problems,
as shown in figures 1.1 (left) and 4.1 (a), it is not as easy to set up an adapted distance
function. This is because

• the geometry of the image is harder to understand,
• the damaged region is complicated.
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(a) original image (courtesy of [3, figure 6]) (b) inpainted: [ε, µ, σ, ρ] = [4, 25, 2, 3]

FIG. 4.1. Removal of superimposed text. The letters in (a) are the inpainting domain Ωh

Moreover, if the damaged region Ω consists of many connected components and one
wants to use our distance by harmonic interpolation technique (§3.1 ), one must pre-
scribe arcs Γk

h for every single component of connectivity; for the example of figure
4.1 (a) that means for every single letter. This can be time consuming (for the user,
not for the computer).

In contrast, the distance to boundary map can be computed fast and easily for
every type of inpainting domain. And, inpainting using distance to boundary often
produces results of high quality when applied to natural inpainting problems (see
figures 1.1 (right) and 4.1 (b)). This is because for natural inpainting problems the
damage often is such that color lines have been broken by scratches (By scratches we
mean rather thin and lengthy damages). If the damage is of this type, the skeleton
of Ω, being a simplified version of the scratch, is well placed and so the filling-in
process makes the matching opposite sides come together. The images shown in
figures 1.1 (right) and 4.1 (a), like many other natural inpainting problems, have this
type of damage. Thus, our inpainting method using distance to boundary is able to
produce results pleasing to the eye.

5. Acknowledgements. The author would like to thank Folkmar Bornemann
for his advice and the inspiring discussions.
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