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INTERSECTION THEORY FOR GENERIC DIFFERENTIAL
POLYNOMIALS AND DIFFERENTIAL CHOW FORM

XIAO-SHAN GAO, WEI LI, CHUN-MING YUAN

ABSTRACT. In this paper, an intersection theory for generic differential poly-
nomials is presented. The intersection of an irreducible differential variety of
dimension d and order h with a generic differential hypersurface of order s is
shown to be an irreducible variety of dimension d — 1 and order h + s. As a
consequence, the dimension conjecture for generic differential polynomials is
proved. Based on the intersection theory, the Chow form for an irreducible
differential variety is defined and most of the properties of the Chow form in
the algebraic case are extended to its differential counterpart. Furthermore,
the generalized differential Chow form is defined and its properties are proved.
As an application of the generalized differential Chow form, the differential
resultant of n + 1 generic differential polynomials in n variables is defined and
properties similar to that of the Sylvester resultant of two univariate polyno-
mials are proved.
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1. INTRODUCTION

Differential algebra founded by Ritt and Kolchin aims to study algebraic differ-
ential equations in a similar way that polynomial equations are studied in algebraic
geometry. Therefore, most of the results in differential algebra can be considered as
generalizations of their algebraic counterparts to the differential case [29, 18] 23].
However, for many algebraic properties, the differential counterparts are much more
difficult to prove and some of them are still open. An excellent survey on this sub-
ject can be found in [4].

In this paper, two naturally connected problems in differential algebra are stud-
ied: the differential dimension conjecture for generic differential polynomials and
the differential Chow form.

The first part of the paper is concerned with the differential dimension conjec-
ture which is one of the problems proposed by Ritt in his classic book Differential
Algebra: Let Fy,...,F, be differential polynomials in F{y1, ...,y,} with r < n,
where F is a differential field. If the differential variety of the system {F1,..., F,}
is nonempty, then each of its component is of dimension at least n — r [29] p.178].

Ritt proved that the conjecture is correct when r = 1, that is, any component of
a differential polynomial equation in F{yi, ..., yn} is of dimension n —1 [29] p.57].
The general dimension conjecture is still open. In [9], it is shown that the dimen-
sion conjecture is closely related with Jacobi’s bound for the order of differential
polynomial systems, which is another well-known conjecture in differential algebra.

In this paper, we consider the dimension and order for the intersection of a
differential variety with generic differential hypersurfaces. A differential polynomial
f is said to be generic of order s and degree m, if f contains all the monomials
with degree less than or equal to m in yi,...,y, and their derivatives of order up
to s, and the coefficients of f are differential indeterminates. A generic differential
hypersurface is the set of solutions of a generic differential polynomial. We show
that for generic differential hypersurfaces, we can determine the dimension and
order of their intersection with an irreducible differential variety explicitly. More
precisely, we will prove

Theorem 1.1. Let T be a prime differential ideal in F{y1,...,yn} with dimen-
sion d and order h and f a generic differential polynomial with order s and de-
gree greater than zero. If d > 0, then Iy = [Z, f] is a prime differential ideal in
Flap){yi,...,yn} with dimension d — 1 and order h + s, where uy is the set of
coefficients of f. And if d =0, Iy is the unit ideal in F{ur){y1,...,Yn}-

As a direct consequence of this result, we show that the dimension conjecture
is valid for a system of generic differential polynomials. Furthermore, the order of
the system is also given explicitly.

Another purpose of studying the intersection of an irreducible variety with
generic differential hypersurfaces is to establish the theory of the differential Chow
form, which is the concern of the second part of the paper consisting of Sections 4
to 6.
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The Chow form, also known as the Cayley form, is a basic concept in algebraic
geometry [37, [16]. More recently, the Chow form also becomes a powerful tool
in elimination theory. This is not surprising, since the Chow form is a resultant
in certain sense. The Chow form was used as a tool to obtain deep results in
transcendental number theory by Nesterenko [24] and Philippon [26]. Brownawell
made a major breakthrough in elimination theory by developing new properties of
the Chow form and proving an effective version of the Nullstellensatz with optimal
bounds [3]. Gel'fand et al and Sturmfels started the sparse elimination theory
which is to study the Chow form and the resultant associated with toric varieties
[13, 36]. Eisenbud et al proposed a new expression for the Chow form via exterior
algebra and used it to give explicit formulas in many new cases [I1]. Jeronimo et
al gave a bounded probabilistic algorithm which can be used to compute the Chow
form, whose complexity is polynomial in the size and the geometric degree of the
input equation system [I7]. Other properties of the Chow form can be found in
B, 25, 27, [34]. Giving the fact that the Chow form plays an important role in
both theoretic and algorithmic aspects of algebraic geometry and has applications
in many fields, it is worthwhile to develop the theory of the differential Chow form
and hope that it will play a similar role as its algebraic counterpart.

Let V be an irreducible differential variety of dimension d in an n-dimensional
affine space and

P = w0 +unyi + - + winyn (1 =0,...,d)

d + 1 generic primes in variables y1,. .., yn, where u;; (i =0,...,d;j=1,...,n)
are differential indeterminates. The differential Chow form of V' is roughly defined
to be the elimination differential polynomial in u;; by intersecting V' with P; =
0(¢ = 0,...,d). More intuitively, the differential Chow form of V' can be roughly
considered as the condition on the coefficients of IP; such that these d+ 1 primes will
meet V. We will show that most of the properties of the Chow form in the algebraic
case presented in [I6] B7] can be generalized to the differential case. Precisely, we
will prove

Theorem 1.2. Let V be an irreducible differential variety with dimension d and or-
der h over a differential field F and F(ug,uy,...,uq) € F{ug,uy,...,uy} the Chow
form of V where u; = (uip, ts1,...,uin) (1 =0,1,...,d). Then F(ug,uy,...,uy)
has the following properties:

1. F(ug,uy,...,uq) is differentially homogenous of the same degree in each u;
and ord(F,u;;) = h for all u;j occurring in F.

2. F(ug,uy,...,uq) can be factored uniquely into the following form

g

F(ug,uy,...,uy) = A(ug,uy,...,uq H“oo +Zu §Tp—|—t
g
= A(ug,uy, ..., ug) H uoo + ZUOpfrp
T7=1 p=1

where g = deg(F, u(()g)) and &, are in an extension field of F. The first “ =7
is obtained by factoring F(ug,uy,...,uq) as an algebraic polynomial in the vari-

(p)  (h) (R)

ables ugyy , Ugy s - - - > Uy, » while the second one is a differential expression by defining
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derivatives of &, to be
(m) _ (m—1)
TP (5U€Tp )|u(()’5):7 EZ:I u[()’;)ngitT (m Z 1)

recursively, where &, is the natural derivation over F(ug,ui,...,uq).

3. E; = (&1, &) (T = 1,...,9) are generic points of V. And they are
the only elements of V' lying on the primes P, = 0(c = 1,...,d) as well as on
a]P)él) =0(=0,...,h—1), where a]P)él) =0 are algebraic equations.

4. Suppose that u;(i = 0,...,d) specialize to sets v; of specific elements in an
extension field of F and P; (i = 0,...,d) are obtained by substituting w; by v; in
P;. If P, = 0(i = 0,...,d) meet V, then F(vo,...,vq) = 0. Furthermore, if
F(vo,...,vq) = 0 and Sp(vo,...,vq) # 0, then the d + 1 primes P; = 0 (i =
0,...,d) meet V, where Sp = %.

Uoo

The number g in the above theorem is called the leading differential degree
of V. From the third statement of the theorem, we see that V intersects with
P,=0(c=1,...,d) and “IP’((JZ) =0(=0,...,h—1) in exactly g points.

Furthermore, we prove that the four conditions given in Theorem are also
the sufficient conditions for a differential polynomial F(ug,uy,...,us) to be the
Chow form for an irreduicble differential variety. As a consequence of this result,
we define the Chow quasi-variety for a special class of differential varieties in the
sense that each point in the Chow quasi-variety represents a differential variety V in
that class via the Chow form of V. This is clearly a generalization of the algebraic
Chow variety.

In [26], Philippon considered the intersection of a variety of dimension d with
d + 1 homogeneous polynomials with generic coefficients and developed the theory
for an elimination form which can be regarded as a type of generalized Chow form.
In [2], Bost, Gillet, and Soulé further generalized the concept to generalized Chow
divisors of cycles and estimated their heights. In this paper, we will introduce the
generalized differential Chow form which is roughly defined to be the elimination
differential polynomial obtained by intersecting an irreducible differential variety
V' of dimension d with d + 1 generic differential hypersurfaces. We show that
the generalized differential Chow form satisfies similar properties to that given in
Theorem

As an application of the generalized differential Chow form, we can define the
differential resultant. The differential resultant for two nonlinear differential poly-
nomials in one variable was studied by Ritt in [28] p.47]. General differential re-
sultants were defined by Carra’ Ferro [6] [7] using Macaulay’s definition of algebraic
resultant of polynomials. But, the treatment in [6] is not complete because a key
fact, “the differential resultant is not identically zero for generic differential poly-
nomials”, is not established. Differential resultants for linear ordinary differential
polynomials were studied by Rueda and Sendra in [32]. In this paper, a rigorous
definition for the differential resultant of n + 1 generic differential polynomials in
n variables is given as the generalized differential Chow form of the prime ideal
I = [0]. In this way, we obtain the following properties for differential resultants,
which are similar to that of the Sylvester resultant for two algebraic univariate
polynomials.

Theorem 1.3. Let P;(i = 0,...,n) be generic differential polynomials in n vari-
ables y1, ..., yn with orders s;, degrees m;, and constant terms u;y respectively. Let
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R(ug,uy,...,uy,) be the differential resultant of Py, ..., P,, where u; is the set of
coefficients of P;. Then

a) R(ug,uy,...,uy,) is differentially homogeneous in each w; and is of order
hi=s—s;inu; (i=0,...,n) withs =3 ,s.

b) There exist &-p(T = 1,...,t0;p = 1,...,n) in an exstension field of F such
that

to
R(U.O, ug,... ,U.d) = A(U-Ou ug,..., ud) H PO(§T17 e 7§Tn)(h0)
T=1

where A(ug,uy, ..., uq) is a differential polynomial inu;, to = deg(R, ué}éo)), Po(ér1,

o, 57.")(}“’) is the (ho)-th derivative of Po(&r1, « -+, &), and (Er1, ..., &) (T =

1,...,to) are certain generic points of the zero dimensional prime ideal [Py,...,P,].

¢) The differential resultant can be written as a linear combination of P; and
their derivatives up to the order s — s; (i =0,...,n). Precisely, we have

R(up,uy,...,uq) = Z Z hijpl(-j)-
i=0 j=0

In the above expression, hi; € F(W[Y1,---,Yny---, y%s), . ,y,(f)] have degrees at

most (sn + n)2D*™+" + D(sn + n), where u = U yu; \ {uoo, - . ., uno}, 47 is the
j-th derivative of y;, and D = max{mqg,m1,...,mu}.

d) Suppose that u;(i = 0,...,n) specialize to sets v; of specific elements in an
extension field of F and P; (i = 0,...,n) are obtained by substituting w; by v; in P;.
IfP; =0(i = 0,...,n) have a common solution, then R(vo,...,v,) = 0. On the
other hand, if R(vo,...,v,) =0 and Sr(vo,...,vn) #0, then P; = 0(i = 0,...,n)
have a common solution in an extension field of F, where Sp = %.

00

Properties a) and b) of differential resultants are first proved in this paper.
Properties similar to ¢) and d) were proved in |28 p.47] and in [6] [7].

As a prerequisite result, we prove a useful property of differential specializations,
which roughly says that if a set of differential polynomial functions in a set of inde-
terminates are differentially dependent, then they are still differentially dependent
when the indeterminates are specialized to any concrete values. This property plays
a key role throughout this paper. The algebraic version of this result is also a key
result in algebraic elimination theory ([I5], p.168], [38 p.161]).

It is not straightforward to extend the intersection theory for generic polynomials
and the theory of Chow forms from the algebraic case to the differential case. Due to
the complicated structure of differential polynomials, most proofs in the algebraic
case cannot be directly used in the differential case. In particular, we need to
consider the orders of differential polynomials, which is not an issue in the algebraic
case. For instance, the second property of the differential Chow form in Theorem
has a different form as its algebraic counterpart.

One of the main tools used in the paper is the theory of characteristic set de-
veloped by Ritt [29, p.47]. The algorithmic character of Ritt’s work on differential
algebra is mainly due to the usage of characteristic sets. Properties of characteristic
sets proved more recently in [T, 8, 12} 10} B8] will be also used in this paper.

The rest of this paper is organized as follows. In Section 2, we will present the
notations and preliminary results used in this paper. In Section 3, the intersection
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theory for generic differential polynomials is given and Theorem [[T] is proved. In
Section 4, the Chow form for an irreducible differential variety is defined and its
properties will be proved. Basically, we will prove Theorem In Section 5,
necessary and sufficient conditions for a differential polynomial to be the Chow
form of an differential variety is given and the Chow quasi-variety for a class of
differential varieties is defined. In Section 6, we present the theory of the generalized
differential Chow form and the differential resultant. Theorem [[.3] will be proved.
In Section 7, we present the conclusion.

2. PRELIMINARIES

In this section, some basic notations and preliminary results in differential al-
gebra will be given. For more details about differential algebra, please refer to
[29] [18], 23] [35].

2.1. Characteristic set of a differential polynomial set. Let F be an ordinary
differential field of characteristic zero, with derivation 6. Let © denote the free
commutative semigroup with unit (written multiplicatively) generated by 0. Let S
be a subset of a differential ring R which contains F. We will denote respectively
by F[S] and F{S} the smallest subring and the smallest differential subring of R
containing F and S. If we denote ©(S) to be the smallest subset of R containing S
and stable under ¢, we have F{S} = F[O(S5)]. A differential ideal Z of a differential
ring is an ordinary algebraic ideal closed under derivation, i.e. 6(Z) C Z. A prime
differential ideal is a differential ideal distinct from the unit ideal, which is prime as
an ordinary algebraic ideal. And a differential ideal is perfect(radical) if whenever
some power of a differential polynomial f belongs to Z, f itself belongs to Z.

Now suppose Y = {y1,¥2,...,Yn} is a set of differential indeterminates. Let
F{Y} = F[O(Y)] be the ring of differential polynomials over F, where O(Y) =
(By;)oco,y ey is the set of derivatives of y;. Throughout the paper, we also use nk)
to represent 0*7. Let f be a differential polynomial. We define the order of f w.r.t.

yi to be the greatest number k such that ygk)

, ~ appears effectively in f, which is
denoted by ord(f,y;). And if y; does not appear in f, then we set ord(f,y;) = —oo.
The order of f is defined to be max;ord(f,y;), that is, ord(f) = max;ord(f, y;).

A ranking Z is a total order over O(Y), which is compatible with the derivations
over the alphabet:

1) 60y; > Oy; for all derivatives Oy; € O(Y).

2) 91yi > Hgyj — 691yi > 56‘2yj for 91yj,92yj € @(Y)

By convention, 1 < fy; for all y; € O(Y).

Two important kinds of rankings are the followings:

1) Elimination ranking: y; > vy; = 6Fy; > d'y; for any k,1 > 0.

2) Orderly ranking: k > | = §*y; > &ly;, for any i,j € {1,2,...,n}.

Let p be a differential polynomial in F{Y} and # a ranking endowed on it. The
greatest derivative w.r.t. Z which appears effectively in p is called the leader of p,
which will be denoted by u, or ld(p). The two conditions mentioned above imply
that the leader of fp is Ou,, for € ©. Let the degree of p in u, be d. We rewrite p
as an algebraic polynomial in u,. Then

p= Iduz + Id,luffl + -4 1.

We call I; the initial of p and denote it by I,,. The partial derivative of p w.r.t. u,
is called the separant of p, which will be denoted by S,. Clearly, S, is the initial
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of any proper derivative of p. The rank of p is ug, and we denote it by rk(p). For
any two differential polynomials p, ¢ in F{Y}\F, p is said to be of lower rank than
q if either u, < uq or u, = uqy = u and deg(p,u) < deg(q,u). By convention, any
element of F is of lower rank than elements of F{Y}\F. We denote p < ¢ if and
only if either p is of lower rank than ¢ or they have the same rank. Clearly, < is a
totally ordering of F{Y}.

Let p and ¢ be two differential polynomials and ug the rank of p. ¢ is said to be
partially reduced w.r.t. p if no proper derivatives of u, appears in g. ¢ is said to be
reduced w.r.t. p if ¢ is partially reduced w.r.t. p and deg(q, u,) < d. Let A be a set
of differential polynomials. A is said to be an auto-reduced set if each polynomial
of A is reduced w.r.t. any other element. Every auto-reduced set is finite.

Let A be an auto-reduced set. We denote H 4 to be the set of all the initials and
separants of A and HY to be the minimal multiplicative set containing H4. The
saturation ideal of A is defined to be sat(A) = [A] : HY = {p:3h € HYs.t.hp €
[A]}.

Let A=Ay, As,...,As and B = By, Bs, ..., B; be two auto-reduced sets with the
A;, B; arranged in nondecreasing ordering. A is said to be of lower rank than B,
if either 1) there is some &k (<min{s,l}) such that for each i < k, A; has the same
rank as B;, and A, < By or 2) s > 1 and for each i € {1,2,...,l}, A; has the same
rank as B;. It is easy to see that the above definition introduces really a partial
ordering among all auto-reduced sets. Any sequence of auto-reduced sets steadily
decreasing in ordering A; > Ag > --- A > - -+ is necessarily finite.

Let A = A, As,..., A, be an auto-reduced set with S; and I; as the separant
and initial of A;, and f any differential polynomial. Then there exists an algorithm,
called Ritt’s algorithm of reduction, which reduces f w.r.t. A to a polynomial r
that is reduced w.r.t. A, satisfying the relation

P
[Tsé1e - f =7, mod[A],
=1

for nonnegative integers d;,e; (i = 1,2,...,p). We call r the pseudo remainder of f
w.r.t. A

Definition 2.1. For an auto-reduced set A = Ay, As, ..., A, with 1d(4;) = ygfi),
P
the order of A is defined to be ord(A) = }_ 04, and the set Y\{yc,,. .., ¥, } is called
i=1

a parametric set of A.

An auto-reduced set C contained in a differential polynomial set S is said to
be a characteristic set of S, if S does not contain any nonzero element reduced
w.r.t. C. All the characteristic sets of S have the same and minimal rank among
all auto-reduced sets contained in S. A characteristic set C of an ideal J reduces
to zero all elements of 7. If the ideal is prime, C reduces to zero only the elements
of J and we have J = sat(C) ([18, Lemma 2, p.167]).

In ordinary differential algebra, we can define an auto-reduced set to be ir-
reducible if when considered as an algebraic auto-reduced set in the underlying
polynomial ring, it is irreducible. We have ([29, p.107])

Theorem 2.2. Let A be an auto-reduced set. Then a necessary and sufficient
condition for A to be a characteristic set of a prime differential ideal is that A is
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irreducible. Moreover, in the case A is irreducible, sat(A)=[A] : HY is prime with
A being a characteristic set of it.

Remark 2.3. A set of differential polynomials A = {A; ..., A,} is called a differ-
ential chain if the following conditions are satisfied,

1) the leaders of A; are differentially auto-reduced,

2) each A; is partially reduced w.r.t. all the others,

3) no initial of an element of A is reduced to zero by A.

Similar properties to auto-reduced sets can be developed for differential chains
[10]. In particular, we can define a differential characteristic set of a differential
ideal Z to be a differential chain contained in Z of minimal rank among all the
differential chains contained in Z. So, in this paper we will not distinguish auto-
reduced sets and differential chains. Note that we can also use the weak differential
chains introduced in [§].

2.2. Dimension and order of a prime differential ideal. A subset X of a
differential extension field G of F is said to be differentially dependent over F if the
set (Ba)geo,acx is algebraically dependent over F, and is said to be differentially
independent over F, or to be a family of differential indeterminates over F, in
the contrary case. In the case X consists of one element «, we say that « is
differentially algebraic or differentially transcendental over F respectively. The
maximal subset €2 of G which are differentially independent over F is said to be a
differential transcendence basis of G over F. We use d.tr.degG/F (see [I8, p.105-
109]) to denote the differential transcendence degree of G over F, which is the
cardinal number of ). Considering F and G as ordinary algebraic fields, we denote
the transcendence degree of G over F by tr.degG/F.

Let £ be a universal extension field of F [18 p.107]. In this paper, by differ-
ential indeterminates, we mean they are differentially independent over £ unless
mentioned otherwise. Let ¥ be a subset of differential polynomials and D a differ-
ential polynomial in F{Y} respectively. A point n = (n1,...,n,) € E™ is called a
differential zero of ¥ if f(n) = 0 for any f € 3. The set of differential zeros of ¥ is
denoted by V(X), which is called a differential variety. And V(X/D) = V(X)\ V(D)
is called a differential quasi-variety. By convenience, we also call U™, V(X;/D;) a
differential quasi-variety, where ¥; and D; are differential polynomial sets and dif-
ferential polynomials respectively.

For a differential variety V, we denote I(V') to be the perfect differential ideal
corresponding to the differential variety V. Let Z be a prime differential ideal and
& = (&,...,&) a generic point of Z [18, p.19]. Then F(&1,...,&,) is called a
differential function field of Z. The dimension of Z or of V(Z) is defined to be the
differential transcendence degree of its differential function field of Z over F, that
is, dim(Z) = d.tr.deg F (&1, ..., &n)/F.

In [29], Ritt gave another definition of the dimension of Z. An independent set
modulo Z is defined to be a variable set U C {Y} such that ZNF{U} = {0}, and in
this case U is also said to be differentially independent modulo Z. And a parametric
set of 7 is a maximal independent set modulo Z. Then Ritt defined the dimension
of 7 to be the cardinal number of its parametric set. Clearly, the two definitions
are equivalent.

Definition 2.4. [2I] Let Z be a prime differential ideal of F{Y} with a generic
point 7 = (1, ...,7,). Then there exists a unique numerical polynomial wz(¢) such
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that wz(t) = tr.deg}'(ngj) ci=1,...,n;5 < t)/F for all sufficiently large ¢t € N.
wz(t) is called the differential dimension polynomial of Z.

Theorem 2.5. [30, Theorem 13] Let Z be a prime differential ideal of dimension
d. Then the differential dimension polynomial has the form wz(t) = d(t + 1) + h,
where h is defined to be the order of T or of V(Z), that is, ord(Z) = h. Let A be a
characteristic set of T under any orderly ranking. Then, ord(Z) = ord(A).

In [29], Ritt introduced the concept of relative order for a prime ideal w.r.t. a
particular parametric set.

Definition 2.6. Let Z be a prime differential ideal of F{Y}, .4 a characteristic set
of Z w.r.t. any elimination ranking, and {u1,...,uqs} C Y the parametric set of A.
The relative order of T w.r.t. {u1,...,uq}, denoted by ordy, .. u,Z, is defined to be
ord(A).

The relative order of a prime ideal Z can be computed from its generic points as
shown by the following result ([20]).

Corollary 2.7. Let Z be a prime differential ideal in F{Y} with a generic point
(&1,...,&). It {y1,...,ya} is a parametric set of Z, then ord,, .. ,,(Z) = tr.deg F (&,

s €a)Cavrs - 6n) [F(Ers s a)-

.....

Ritt’s definition of relative order is based on the elimination ranking. Hubert
proved that all characteristic sets of Z admitting the same parametric set have the
same order [10].

Theorem 2.8. [10] Let A be a characteristic set of a prime differential ideal T in
F{Y} endowed with any ranking. The parametric set U of A is a mazimal indepen-
dent set modulo Z. Its cardinal gives the differential dimension of Z. Furthermore,
the order of I relative to U is the order of A.

Corollary 2.9. Let Z be a prime differential ideal with dimension zero, and A a
characteristic set of Z w.r.t. any ranking #. Then ord(Z) = ord(.A).

The following result gives the relation between the order and relative order for
a prime ideal.

Theorem 2.10. Let T be a prime differential ideal in F{Y}. Then ord(Z) is the
mazimum of all the relative orders of I, that is, ord(Z) = maxyordy(Z), where U
is a parametric set of T.

Proof: Let C be a characteristic set of Z w.r.t. some orderly ranking. Firstly,
we claim that any relative order of Z is less than or equal to ord(C). Let U =
{u1,...,uq} be any parametric set of Z, {y1,...,yp}(p + ¢ = n) the set of the
remaining variables, and B any characteristic set of Z w.r.t. the elimination ranking
U < ... < Uy <Y1 < ... < Yp. By Theorem 2§ it suffices to prove ordy(Z) <
ord(C).
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Letn = (u1,...,Uq, U1, - - -, Yp) be a generic point of Z. Then for sufficiently large

t, the differential dimension polynomial of 7 is
wz(t)

= wyF(t)

= tr.degf(55u_i,5ky_j s, k<ti=1,...,¢;5=1,...,p)/F

= tr.deg F(6°w; : s < t)(0"y5 : k < t)/F(6°W : s < t) + tr.deg F(6°w; : s < t)/F

= q(t+ 1) +tr.deg F(6°w; : s < t)(0"75 : k < t)/F(6°W; : s < t)

Since wz(t) = q(t + 1) +ord(C), tr.deg F(6°u; : s < t) (6575 : k < )/ F(5°W; : s <
t) = ord(C). By Corollary 27 we have
ordy(Z)
tr.deg F (T, . .., ) (0"71 : k > 0)/F (T, . .., Ug)
tr.deg F (w1, ..., ug) (67 : k < t)/F(un,...,ug) (for t > ord(B))
tr.deg F(0°; : s < t)(0"75 : k < t)/F(6°W; : s < t)
= ord(C).

IN

Thus, the claim is proved.

Now, let U* be the parametric set of C. Then, by Theorem 2.8 ord(Z) =
ord(C) = ordy~(Z). That is, for any parametric set U of Z, we have ordy(Z) <
ord(Z) and there exists one parametric set U* of Z such that ordy-(Z) = ord(Z).
As a consequence, ord(Z) = maxyordy(Z).

The following well known result about the adjoining indeterminates to the base
field will be used in this paper [29, p.18].

O

Lemma 2.11. Let U = {us,...,u,} be a set of differential indeterminates over
F, Iy a prime differential ideal of dimension d and order h in F{Y}, and I the
differential ideal generated by Zo in F{U){Y}. Then T is a prime ideal of dimension
d and order h.

2.3. A property on differential specialization. The following lemma is a key
result in algebraic elimination theory, which is also used to develop the theory of
Chow form ([15, p.168-169], [38] p.161]).

Lemma 2.12. Let P, € F[U,Y] (i = 1,...,m) be polynomials in the indeterminates
U= (u1,...,ur) and Y = (y1,...,yaq). Let YO = (y9,...,99), with y? elements of
some extension field of F. If P;(U,Y°) (i = 1,...,m) are algebraically dependent
over F(U), then for any specialization U° of U over F, P;(U°,Y?) (i = 1,...,m)
are algebraically dependent over F.

To generalize the above result to the differential case, we need the following
lemma [29, p35].

Lemma 2.13. Suppose F contains at least one nonconstant element. If G € F{u}
is a nonzero differential polynomial with order r, then for any nonconstant n € F,
there exists an element co + c1n + can® + - - + ¢,n" which does not annul G, where
co, - - -, Cr are constants in F.

Now we prove the following result, which is crucial throughout the paper.



DIFFERENTIAL CHOW FORM 11

Theorem 2.14. Let U = {uy,...,u,} be a set of differential indeterminates, and
P (U,Y) € F{U,Y} (i = 1,...,m) differential polynomials in the differential in-
determinates U = (u1,...,u,) and Y = (y1,...,yn). Let YO = (y9,49,...,49),
where y? are in some differential extension field of F. If P,(U,Y%) (i =1,...,m)
are differentially dependent over F(U), then for any specialization U to U° in F,
P, (U YO (i =1,...,m) are differentially dependent over JF.

Proof: Tt suffices to prove the case r = 1. Denote u; by u. Firstly, we suppose F
contains at least one nonconstant element.

Since P;(u,Y%) (i = 1,...,m) are differentially dependent over F(u), there exists
anonzero G(z1,. .., zm) € F(u){z1, ..., zm} such that G(P(u,Y°),..., Pn(u,Y?))

= 0. We can take G € F{u, z1,...,2m} by clearing the denominators when neces-
sary.

Since G(u, z1,...,2m) # 0, by Lemma 213 for any nonconstant n € F, there
exist constants cg,..., ¢s (s = ord(G,u)) of F, such that G(w,z21,...,2m) # 0

where u = Zf:o c;in'. Now regarding the ¢; as arbitrary constants over 7, then G =
G igemn' 21, 2m) # 0and G(P (7, Y?),..., P,(u,Y%)) = G(u, P (4, Y°),. ..,
P (@, Y%) = 0. Regarding G as an algebraic polynomial in ¢; (i = 0,...,s) and

©)

2’ (i=1,...,m;j > 0) which appear effectively, we have

6(00,...,cs,...,zi(j),...)750

and

G(co,. . Csr s (Pi(@, Y)W, ) =0.

So P;(w, Y°))) (i = 1,...,m;j > 0) are algebraically dependent over F(cy, ..., cs),
by Lemma [ZI2] when the ¢; specialize to constants ¢ in F, the correspond-
ing P;(@’,Y°)U) (i = 1,...,m) are algebraically dependent over F, where @’ =
> o cdnt. That is, P;(u® Y°) (i = 1,...,m) are differentially dependent over F.
To complete the proof, if u° is a nonconstant, as above we take n = u°, and spe-
cialize ¢c; — 1 and other ¢; to zero; else we take i as an arbitrary nonconstant and
specialize cg — u° and other ¢; to zero. Then in either case, u specializes to u°, and
we have completed the proof in the case that F contains at least one nonconstant
element.

If F consists of constant elements, take a differential indeterminate v independent
over F(U° Y?). Now we consider in the differential field F(v). Following the first
case, for any specialization U to U’ C F, we can show that P;(U°, Y°) (i = 1,...,m)
are differentially dependent over F(v). Since v is differentially independent with
P,(UO Y% (i = 1,...,m), P,(U°% Y% (i = 1,...,m) are differentially dependent
over F. (|

From the proof above, we can obtain the following result easily:

Corollary 2.15. Let U = {uy,...,u,} be a set of differential indeterminates, and
P (U,Y) € F{U,Y} (¢ = 1,...,m) differential polynomials in the indeterminates
Uand Y = (y1,...,9n). Let YO = (49,49,...,92), where ¢! are in some differ-
ential extension field of F. If the set (P;(U,Y%)(@) (i = 1,...,m;j = 1,...,n)
are algebraically dependent over F(U), then for any specialization U to U° in F,
(P(U°, YN i) (i =1,...,m;j = 1,...,n;) are algebraically dependent over F.

For convenience, we will assume that F contains at least one nonconstant element
in the rest of this paper.
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3. INTERSECTION THEORY FOR GENERIC DIFFERENTIAL POLYNOMIALS

In this section, we will develop an intersection theory for generic differential
polynomials by proving Theorem [Tl As a consequence, the dimension conjecture
is shown to be true for generic differential polynomials. These results will also be
used in Sections 4 and 6 to compute the order of the differential Chow form.

3.1. Generic dimension theorem. In this section, we will show that the di-
mension conjecture is valid for certain generic differential polynomials. To prove
the dimension conjecture in the general case, one simple idea is to generalize the
following theorem ([I8] p.43]) in algebra to the differential case.

Theorem 3.1. Let Z be a prime ideal of dimension d > 0 and f € F[Y]. If
(Z, f) # (1), then every prime component of (Z, f) has dimension not less than d—1.
Moreover, if f is not in I, then every prime component of (Z, f) has dimension

d—1.

Unfortunately, in the differential case, the above theorem does not hold. Ritt
gave a counter example.

Example 3.2. [29, p.133] F = y§ — 45 + y3(v1v5 — v2v1)* € F{y1,92,93} and
f = ys, where F is the field of complex numbers. Then sat(F') is a prime ideal of
dimension two. But, {sat(F), f} = [y1, Y2, y3] which is a prime ideal of dimension
Z€ro.

It could also happen that when adding a differential polynomial to a prime ideal,
the dimension is still the same.

Example 3.3. Let F' = yjyy — yYyh. Then sat(F) = [F] : ™ is a prime ideal of
dimension one. It is clear that y5 & sat(F) and [sat(F),y5] = [y5] is still a prime
ideal of dimension one.

In this section, we will prove that Theorem [3.1]is valid for certain generic differ-
ential polynomials, which will lead to the solution to the dimension conjecture in
these generic cases.

A generic primal of degree m in an algebraic polynomial ring Flz1,...,x,] is of
the form

Zuilminlel . 3::1" =001+ +i,<m)

where u;, . ;, are indeterminates.

n

Definition 3.4. A differential polynomial f is said to be a generic differential
polynomial over F{Y} of order s and degree m, if

1) f is a differential polynomial in y1,...,y, of order s with differential indeter-
minates as coefficients.

2) Regarded as an algebraic polynomial in y;,v/,. .., ygs) (i=1,...,n),itis a
generic primal of degree m.

A generic differential hypersurface is the set of solutions of a generic differential
polynomial. Throughout this paper, a generic differential polynomial is assumed
to be of degree greater than zero. We use uy to denote the set of coefficients of a
generic differential polynomial f.

Lemma 3.5. Let Z be a prime differential ideal in F{Y} with dimension d and f
a generic differential polynomial of degree greater than zero. Then Iy = [Z, f] is a
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prime differential ideal in F{Q){y1,...,Yn,uo} with dimension d, where ug is the
constant term of f and u = uy \ {uo}. Furthermore, Zo N F(u){uo} = {0} if and
only if d > 0.

Proof: Let (&1, .,&n) be a generic point of Z and f = uo+> ;" D7 uijygj) + fo,
where f denotes the nonlinear part of f in yl(j ), Clearly, (&1, ., &n, — >y Z;:o Usj

@U) — fo(&1,...,&n)) is a generic point of Zy, so Zy is a prime differential ideal. By
Lemma 2.11]

dimZy = dtrdegF@) (€. 6n — Y O u€? — fol€r,.... &)/ F (@)
i=1 j=0
= d.trdegFu)(&, ..., )/ Fa)
= ditrdegF(&,... &)/ F =d.

Now consider the second part of the lemma. If d = 0, then dimZy; = 0, so
To N F{u){uo} # {0}. Thus, if Zo N F(u){uo} = {0}, then d > 0. It re-
mains to show that if d > 0, then Zp N F(u){uo} = {0}. Suppose the contrary,
then there exists a nonzero differential polynomial p(u,ug) € Zo N F{u,up}. So
p(E, =0 g ui€? — fol€r, .. €2)) = 0. Then, ¢ = — Y0 320 uie) —
folé1,...,&,) is differentially algebraic over F(u). So for any fixed i when wu;g
specializes to —1 and all the other u € u specialize to zero, by Theorem 214 we
conclude that ¢ = & (i = 1,...,n) is differentially algebraic over F, which contra-
dicts to the fact that Z has a positive dimension. So Zo N F(u){uo} = {0}. O

We will prove the first key result of this paper. The following result shows that by
adding a generic differential polynomial to a prime ideal, the new ideal is still prime
and its dimension decreases by one. This is generally not valid if the polynomial is
not generic as shown in Examples and 3.3

Theorem 3.6. Let T be a prime differential ideal in F{Y} with dimension d and
f a generic differential polynomial with degree greater than zero. If d > 0, then
I, = [Z, f] is a prime differential ideal in F{us){Y} with dimension d — 1, where
uy is the set of coefficients of f. Andif d =0, then I, is the unit ideal in F{uys){Y}.

Proof: Firstly, we consider the case d > 0. Let (&1,...,£,) be a generic point of
I, f=w+ Yy Z;:O uijygj) + fo where fy denotes the nonlinear part of f in

v Let Ty = [T, f] in F(@{y1.- .., yn,tio} where T = us \ {ug}. By Lemma
Bo Zo n F(u){uo} = {0}. So I = [Zo] in F{us){Y} is not the unit ideal and
consequently Z; is prime with Z; N F(@){y1, .., Yn, uo} = Zo.

Suppose &1, ..., &q are differentially independent over F. Then, {yi1,...,y4} is
a parametric set of Z. Thus each yq4:(i = 1,...,n — d) is differentially depen-
dent with ¥, ...,yq modulo Zy, since Z C Z;. By Lemma 35 dimZy = d. Then
Ug, Y1, - - -, yq are differentially dependent modulo Zy, so {y1,...,yq} is differentially

dependent modulo Z;. Thus dimZ; < d—1. Now we claim y, ..., yq—1 are differen-
tially independent modulo Z;, which proves dimZ; = d — 1. Suppose the contrary:
Y1, -..,Yq—1 are differentially dependent modulo Z;. Thus there exists a nonzero

differential polynomial p(y1,...,ya—1) € Z1. Take p € F{u,y1,...,Yd—1,uo0}, then

p(]-N17§17" '7§d—17_zzuij§i(j) - fo(glw' 7577,)) =0.

i=1 j=0
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That is, &1, ..., &a-1, = iy Yoio wisls” — fol&1,-.. &) are differentially depen-
dent over F(u). Now we specialize uqo to —1, and the other v € u to zero.
Then — 370" 370 uijgi(]) — fol&1, ..., &) specializes to &;. By Theorem 214
&1, ..., &g are differentially dependent over F, which is a contradiction. So in this
case dim7Z; = d — 1.

Now, it remains to show the case d = 0. Since d = 0, by Lemma 3.5 Zy N
F(ay{uo} # {0}. So Zop N F(uy) # {0}, and consequently Z; = [Zo] in F(us){Y} is
the unit ideal. (]

A special case of Theorem is particularly interesting and its algebraic coun-
terpart is often listed as a theorem in algebraic geometry textbooks [16, p.54, p.110].

Theorem 3.7. Let T be a prime differential ideal in F{Y} with differential di-
mension d > 0. Let ug,u1,...,u, be differential indeterminates. Then I =
[Z,u0 + w1y + -+ + unyn] is a prime differential ideal in F{ug,u, ..., un){Y}
with dimenston d — 1.

Theorem [B.0]is also valid for a wider class of polynomials. A differential polyno-
mial f is said to be quasi-generic in F{Y}, if 1) the coefficients of f as a differential
polynomial in y1,...,y, are differential indeterminates and 2) in addition to the
constant term, for each 1 < ¢ < n, f also contains at least one differential monomial
in F{y;} \ F. For instance, f = ug + u1y1 + u2y1y2 is not quasi-generic, because f
contains no monomials in F{y2} \ F.

The proof for Theorem can be easily adapted to prove the following result.

Corollary 3.8. Let Z be a prime differential ideal in F{Y} with differential dimen-
sion d and f a quasi-generic differential polynomial with uys as the set of coeflicients.
If d > 0, then Zy = [Z, f] is a prime differential ideal in F(us){Y} with dimension
d—1. And if d = 0, then Z; is the unit ideal in F(u;){Y}.

As a direct consequence, we can show that the dimension conjecture is valid for
quasi-generic polynomials.

Theorem 3.9 (Generic Dimension Theorem). Let fi,..., f, be quasi-generic dif-
ferential polynomials in F(u){Y} with r < n and u the set of coefficients of all f;.
Then [f1,..., fr] is a prime ideal with dimension n —r. And if r > n, [f1,..., fr]

15 the unit ideal.

Proof: We prove the theorem by induction. When r = 1, let Z = [0]. Then by
Corollary B8] [f1] is prime with dimension n — 1. Supposing this holds for r — 1,
now consider the case r < n. By the hypothesis, [f1,..., fr—1] is a prime ideal
with dimension n — r + 1. Note that the coefficients of f, are new indeterminates.
Using Corollary B8 again, [f1, ..., f.] is a prime ideal with dimension n —r. When
r > n, since [f1,..., fn] is of dimension zero, by Corollary B8, [f1,..., f.] is the
unit ideal. O

3.2. Order of a system of generic differential polynomials. In this section,
we consider the order of the intersection of a differential variety by a generic dif-
ferential hypersurface. Before proving the main result, we give a series of lemmas
and theorems.

Lemma 3.10. Let Z be a prime differential ideal in F{Y} with dimension n — 1.
Suppose { f} is a characteristic set of T w.r.t. some ranking Z and f is irreducible.
Then for any other ranking %, {f} is also a characteristic set of T.
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Proof: Denote f to be f under the ranking %. By Theorem 2} T = sat(f) and
T = sat(f) are prime ideals with f and f as characteristic sets respectively. We
need to show that Z = Z. Let S be the separant of f. Then for g € sat(f), we
have S™g = hf 4+ hif' + ...+ hof® for m,s € N. Then, S™g € sat(f). Since
sat(f) is prime, we need only to show that S is not in sat(f). Suppose the contrary,
S € sat(f). Since S is partially reduced w.r.t. f, we have S = hf for a differential

polynomial h, which is impossible since S = ac?uff . So Z C Z. Similarly, we can

prove that Z O Z, thusZT =T. O
The following lemma generalizes a result in [9] p.5] to the case of positive dimen-
sions.

Lemma 3.11. Let the variety of a system S of differential polynomials in F{Y}
have a component V of differential dimension d and order h. Let S be obtained from
S by replacing yik) by y§k+1)(k =0,1,...) in all of the polynomials of S. Then the
variety of S has a component V of dimension d and order h < ord(V) < h + 1.
Moreover, if there exists a parametric set U not containing y1 such that the relative
order of I(V') w.r.t. U is h, then the order of V is h+ 1; otherwise, the order of V
is h. In particular, if d = 0, then ord(V) = h + 1.

Proof: Let (&1, ...,&,) be a generic point of V and Z = I(V) € F{Y}. Let {z' =&}
be a prime differential ideal in F{(&1,...,&,){z} and n a generic point of it. Then
(n,&2,...,&n) is a point of S. Suppose this point lies in a component V of S, which
has a generic point (11,...,7,). Then (n1,72,...,n,) specializes to (n,&a,...,&)
and correspondingly (0}, n2, ..., nn) specializes to (£1,&2,...,&y). Since (&1,...,&n)
is a generic point of V' and (1}, 72,...,7m,) is a zero of S, the latter specialization
is generic, that is, (n},72,...,7n) is a generic point of V. We claim that any

parametric set U of Z is a parametric set of I(V'), and ordyZ < ordyl(V) < ordyZ +

1, which follows that dim(V') = d and by Theorem ZT0 » < ord(V) < h + 1. Let
U be any parametric set of Z. We consider the following two cases.
Case 1: y1 ¢ U. Suppose U is the set of ya,...,y4+1. By Corollary 2.7 we have

ordy, ... yg L = tr.degF (&1, ..., €a, Cat1s - 6n) [ F &2y -, €ag1)-
Since &a,...,&q+1 are differentially independent over F, n9,...,n441 must be dif-

ferentially independent over F, i.e. I(V) N F{U} = {0}.
tr'deg]:<nlun27 cee 777n>/]:<7727 e 777d+1>
> tr'deg‘/—:<777§25'"7§n>/]:<§27"'7§d+1>
(for (m,m2, . . ., nn) specializes to (1, &a, ..., &n))
= tr.degF{(&1,...,&n)/F &2y Ear1) +tr.degF (&1, .., En) MY/ F (&1, En)

Ordy2;~~~7yd+1I + 1
and
tr'deg]:<7717 ) 777n>/]:<7727 SRR 77d+1>
< 1+ trdegF (g, m2 - mn) /Fln2, -y Mat1)
= 1+4ordy,, ., yar L
So tr.degF(ni,...,mn)/Fm2,...,may1) = 1+ ordy, . y,.,Z < oo. Thus V is of
dimension d and {ya,...,ya+1} is a parametric set of (V). Moreover, the relative

order of I(V) w.r.t. ya,...,ydt+1 is ordy,
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Case 2: y; € U. Suppose U = {y1,...,y4}. Then by Corollary 27, ordyZ =
ordy, . y,Z = tr.degF(&1,..., &)/ F (1, ..., Ea). We have seen that (n],n2,...,7m)
is a generic point of V. Since tr.degF(&1,. .., &) (n)/F (&, .., &) =1 and (91,12,

.., M) can specialize to (1, &2, . . ., &), 71 is algebraically independent over F(n], 12,

s TMn). SO

tr.degF(m1, ..., )/ F (N1, - Na)

tr.degF (1) (1,2 -y ) /F (M) (s 12, - -5 1)

tr.degF (11, M2, - s M) [ F (115025 - - -5 a)
(fortr.deg F(my, - - -, M) () /F (s - smn) = 1)

= ordy,,. . y.T

Since (11, . ..,7n4) can specialize to (1, &a, .. .,&4) over F, we have d > d.tr.degF (n1,
coyna)/F > ditrdegF(n, &, ..., Eq)/F > ditr.degF(&1,&,...,&4)/F = d. Since
tr.degF (n1, .. n)/F (M, - - . ma) < oo, we have d.tr.degF(n1, ..., 0d, .-, n)/F =
d. Thus in this case, dim(V) = d and U = {y1,...,y4} is a parametric set of I(V)
with ordy, . ,,1(V) =ordy, . ,.Z.
Consider the two cases together, we can see dim(V) = d. And by Theorem 2.10,
h < ord(V) < h + 1. Moreover, if there exists a parametric set U not containing
y1 such that the relative order of I(V) w.r.t. U is h, then the order of V is h + 1;
otherwise, the order of V is h. In particular, if d = 0, then 3, ¢ U = (). From case
Lord(V)=ord(V)+1=h+1. O
Let G be a differential extension field of F. By a differential isomorphism of G
w.r.t. F, we mean a differential isomorphic mapping of G onto a differential field
G’ such that (a) G’ is an extension of F, (b) the differential isomorphic mapping
leaves each element of F invariant, and (c) G’ and G have a common extension. By
means of well-ordering methods, it is easy to show that an isomorphism of G w.r.t.
F can be extended to an automorphism of a common extension of G and G’. We

will use the following result about differential isomorphism.

Theorem 3.12. [19] Let G be a differential extension field of F and v € G. A
necessary and sufficient condition that -y be a primitive element of G, i.e. G = F(v),
is that no isomorphism of G w.r.t. F other than the identity leaves 7y invariant.

.....

The following theorem as well as Theorem prove Theorem [I.1]

Theorem 3.13. Let Z be a prime differential ideal with dimension d > 0 and order
h, and f a generic differential polynomial of order s. Then I; = [Z, f] is a prime
differential ideal in F(us){Y} with dimension d — 1 and order h + s, where uy is
the set of coefficients of f.

Proof: By Theorem [3.6] Z; is prime with dimension d — 1. Now we prove the order
of 77 is h + s.

Let &7 be a characteristic set of Z w.r.t. an orderly ranking #Z with y1,...,yq as
a parametric set. By Theorem 2.5 ord(«/) = h. Suppose (&1,...,&,) is a generic
point of Z. Let f = uo + 1L, >0 uijyfj) + fo where fo is the nonlinear part
of fin ygj) and Zy = [Z, f] in F@){y1,...,Yn,uo}, where 0 = uy \ {uo} and ug
is the constant term of f. By Lemma B3] 7y is a prime ideal of dimension d with
a generic zero (§1,...,8n, — D121 D5 uijﬁi(g) — fo(&1,...,&n)), and ug is differen-
tially independent modulo Zy. Zy and Z; have such relations: Any characteristic
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set of Zy with ug in the parametric set is a characteristic set of Z;, and conversely,
any characteristic set of Z; is a characteristic set of Zy with ug in the parametric
set. By Theorem 210, we have ord(Z;) < ord(Zy).

We claim that ord(Zy) < h 4+ s. As a consequence, ord(Z;) < h+s. To

prove this claim, let Z\" = [Z,u{” + D el 250 uiy? + fo] (i = 0,...,s) in

F\{y1,...,yn,uo}. Let f be the pseudo remainder of ués)—kz?:l D0 WijY; @ 4 fo
w.r.t. A under the ranking #. Clearly, ord(f,ug) = s. It is obvious that for

(s)

some orderly ranking, {A, f} is a characteristic set of Iy’ with y1,...,yq as a

parametric set. So ord(IéS)) = h + s. Using Lemma BTII s times, we have
ord(Zo) < ord(ZV) < -+ < ord(Z{Y) = h + 5.

Now, it suffices to prove ord(Z1) > h+s. Let w = ug + Zle >0 uijygj)
be a new differential indeterminate. We denote F; = F(u,), where u, is the set

of coefficients of g = w + 37" ;.4 ZJ Ou”yz( + fo as a differential polynomial

in w and yi,...,yn. Then Zo = [Z,g] in Fi{y1,...,Yn,w} is a prime differen-
tial ideal with a generic point (&1,...,&y,7y) where vy = =37 | Z;:o uijgi(ﬂ) -
folé1, ..., &,). We claim that v is a primitive element of F1{&1, ..., &) (€av1, .-, &n)
over Fi{&1,...,&). By Theorem 312 it needs only to show that no isomorphism
of Fil&y, . &a)(€ar1s- -5 &n) wrt. F1(&1, ..., &) other than the identity leaves
~ invariant. Let ¢ be any differential isomorphism of Fi (&1, ..., a0 (€av1,- -, &n)
w.r.t. F1{&1,...,&4) which leaves 7 invariant, and ¢(€4+i) = M4+ (i = 1,...,n—d).
Since each 44; (i = 1,...,n —d) is differentially algebraic over F(&1,...,&) and ¢
is an isomorphism leaving each element of F{(&1,...,&y) invariant, we can see that
each ng4+i (¢ = 1,...,n — d) is also differentially algebraic over F({1,...,&q). So,
Nayi (1 =1,...,n — d) are also in the universal field £. From ¢(v) = 7, we have

E =d+1 E] 0 Uzﬂh - f0(§15 B 7§d7 Nd+15 - - - 57771) = - Z?:d—i—l Z;:O uljgl(]) -

fol&1, .. €4, €a41, - - -, &n) = 0 which can be rewritten as:

Z Zul](gfj _771(])) +f0(§l7" 7577,) - fo(glu' .. 7§d7nd+17" 77711) =0.

i=d+1 j=0

Since the coefficients wu;;, uq of f are differential indeterminates and the coefficients
of u;j, uq in the above equation are in &, we have & —n; =0(i =d+1,...,n). So
o must be the identity map, which proves the claim.

Since Fi{1,.--,&a, a1, &n) = Fillr,...,€a){y), v is differentially alge-
braic over F1(1,..., &) and each gty € F1(&1,...,&a)(7)(i =1,...,n —d). Let
R(y1,--.,yd4,w) € Iy be a characteristic polynomial of 4. Then there exist A; € T,
with the form A; = Pi(y1, - .., Yd, W)Yd+i+Qi(y1, - -, ya,w) (¢ = 1,...,n—d), which
are reduced w.r.t. R. Since Zo N F1{y1,...,yd, w} is a d-dimensional prime differ-
ential ideal, by Lemma B.10, { R} is its characteristic set w.r.t. any ranking. So for
the elimination ranking y; < ... < yd < W < Y41 < ... < Yn, a characteristic set
of Iy is {R(y1,- - Yd,w), A1,..., Ap_q}. Since F1(&1,. ., &n,y) = F1{&1, -, &n),
by Corollarym ordy, .. ydIg = ordyh () = ord(A) = h. Thus, ord(R,w) = h.

Let ug = {us; : ¢ = 1,...,d;5 = 0,...,s}. In Fr{ug){w,y1,...,yn}, T2 is
also prime with R(y1,...,y4,w), A1,... ,An,d as a characteristic set w.r.t. the
elimination ranking y1 < ... < Y4 < W < Yd41 < ... < Yn. Let
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¢ Frlua){yi, s Yn,w} —> .7-'1<ud>{y1, s Yn, U0 b
w U0+Zz 12; ouwyz( 7
Yi Yi
be a differential homomorphism over Fi(uy). Clearly, this is a differential isomor-
phism which maps 7, to Zy. It is obvious that Zy has ¢(R), d(A1),...,d(An—q) as a
characteristic set w.r.t. the elimination ranking y; < ... <yqs < up < Y41 < ... <
yn with tk(¢(4;)) = yari(i = 1,...,n — d). We claim that ord(¢(R),y1) > h + s.
If ord(R,y1) > h + s, rewrite R in the form R = Zw Y1 Po (Y1, - ya) by (w) +
p(Y1,--.,ya) where 1, (w) are monomials in w and its derwatwes Then

P(R) = Zpu(yl,---,yd¢yuO+ZZu”yl )+ DY, Ya)

P, #1 i=1 j=0
= Zpl/ Yiy---5Yd ¢V(u0)+p(y17"'7yd)
Yo #l
+terms involvingu;; (i = 1,...,d;j =0,...,s) and their derivatives.

Clearly, in this case we have ord(¢(R), y1) > max{ord(p,,y1),ord(p, y1)} = ord(R,
y1) > h+s. If ord(R,y1) < h + s, rewrite R as a polynomial in w(®, that is, R =

L (w4 Iy (w14 .4 Ty. Then ¢(R) = ¢(Il)[(uO+Ef:1 Py Ouzij(J))(h)]l+

Oli-1)[(uo + iy g wigyy”) ! -+ ¢(Io). Since ord(¢(Tk), y1) < h+ s
(k=0,...,1), we have exactly ord(¢(R),y1) = h + s. Thus, consider the two cases
together, ord(¢(R),y1) > h + s.

Since Zo N F1 < ug > {y1,.-.,Yd, uo} is a d-dimensional prime differential ideal,
by Lemma BI0, {¢(R)} is its characteristic set w.r.t. any ranking, in particular,
for the elimination ranking ug < y2 < ... < yg < y1. So w.r.t. the elimination
ranking uo < ¥2 < ... < ¥a <Y1 < Yar1 < ... < Yn, {O(R), d(A1), ..., d(An—a)}
is a characteristic set of Zy, thus a characteristic set of Z;. By Theorem 210,
ord(Zy) > ordy,,. .. 4,1 > h+s.

Thus, the order of 7 is h + s. O

As a consequence, Theorem [3.7] can be strengthened as follows.

Theorem 3.14. Let T be a prime differential ideal in F{Y} with differential di-
mension d > 0 and order h. Let ug,uy, ..., uy, be differential indeterminates. Then
Th = [Z,uo+uryr + ... +unyn] is a prime dzﬁerentzal ideal in F{ug,u1,...,un){Y}
with dimension d — 1 and order h.

As another consequence, the dimension theorem for generic differential polyno-
mials can be strengthened as follows.

Theorem 3.15. Let F, ..., F.(r <n) be generic differential polynomials with each
F; of order s;. Then V(Fy,...,F.) is an irreducible variety with dimension n —r
and order Y _, ;.

Remark 3.16. When f is a quasi-generic differential polynomial, Theorem B I3 may
not be true. A counter example is as follows. Let Z = [y2,...,yn] € F{R} and
f = uo+uryr+uzyy +- - -+unyl . Clearly, f is a quasi-generic differential polynomial
and [Z, f] is a prime differential ideal of dimension 0. But ord([Z, f]) = ord(Z) =
0 # ord(Z) + ord(f) =
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4. CHOW FORM FOR AN IRREDUCIBLE DIFFERENTIAL VARIETY

In this section, we define the differential Chow form and establish its properties
by proving Theorem

4.1. Definition of differential Chow form. Let V be an irreducible differential
variety of dimension d over F with (&1,...,&,) as a generic point. We adjoin a set
of differential indeterminates

u={u;(i=0,...,d;j=1,...,n)}
to F and define d + 1 elements (o, (1, .., Cq of F{u,&1,...,&):

(4.1) Co == Ugplp(0=0,....,d).
p=1
The following result shows that the differential transcendence degree of (p,...,(y

over F(u) is d.

Lemma 4.1. d.tr.degF(u){(Co, ..., Cqs)/F{u) = d. Furthermore, ifd >0, (1,...,Cq
are differentially independent over F(u).

Proof: By Lemma 211} d.tr.degF(u){&1,...,&,)/F{u) = d. Since the d + 1 ele-
ments (o, ...,{s belong to F{u,&,...,&,), they are differentially dependent over
F(u). Then, we have d.tr.deg F(u)(Co,...,C(q)/F(u) < d. Thus, if d = 0, we have
d.tr.deg F{(u)(Co, - .., Ca)/ F{u) = 0.

Now, suppose d > 0. We claim that (3,..., (4 are differentially independent over
F(u), thus it follows that d.tr.degF(u)(Co, ..., (q)/F(u) = d. Suppose the contrary.
Since ¢; € F{u,&1,...,&n}, when we specialize u;; to —0k,; (j = 1,...,n, k; €
{1,...,n}), ¢; will be specialized to &,. Then from Theorem[2.14] we conclude that

&kyy - - - €k, are differentially dependent over F. Since we can choose ki, ..., kq so
that &, , . . ., &, are differentially independent over F, it amounts to a contradiction.
Thus the claim is proved. ([

Let I¢ be the prime differential ideal in R = F(u){zo,..., 24} having ¢ =
(Co,---,Ca) as a generic point. By Lemma (1] the dimension of I¢ is d. By The-
orem [2.8] the characteristic set of I w.r.t. any ranking consists of an irreducible

differential polynomial f(zo, ..., z4) in R and

(4.2) Ic = sat(f).

Since the coefficients of f(zo,...,zq) are elements in F(u), without loss of gener-
ality, we assume that f(u;zo,...,24) is irreducible in F{u;zq,...,24}. We shall
subsequently replace zg, ..., zq by differential indeterminates ugg, - . ., uqgo, and ob-
tain

(43) F(uo,ul,...,ud) :f(u;’u,oo,...,udo),

where u; = (uip, ..., un) for i =0,...,d.

Definition 4.2 (Differential Chow form). The differential polynomial defined in
[@3) is called the Chow form of V or the prime ideal I(V).

Intuitively, by Lemma [} there exists an irreducible differential polynomial
G(z0,-..,2q4) in F(u){zo, ...,za}, which satisfies G((p,...,{qs) = 0 and has the
smallest order w.r.t. a given ranking. The differential Chow form can be obtained
from G by clearing denominators of its coefficients.
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Example 4.3. If V is an irreducible variety of dimension n — 1 and its corre-
sponding prime ideal is Z = sat(p) C F{R}. Then its differential Chow form is

F(ug,uy,...,up_1) = Dmp(%, A D[;l), where
uo1 U2 ... Uon
p— | un U12 S Ulp
Up—-1,1 Un—-1,2 --- Un—-1n
and D;(i = 1,...,n) is the determinant of the matrix formed by replacing the i-
th column of D by the column vector (—ugg, —u10,---, —Un—1,0), and m is the
minimal integer such that Dmp(%, e %) € F{u;ugo,---,Udo}-

Example 4.4. Let V be the general component of (y')? — 4y in Q(¢){y}. It has
dimension 0 and the differential Chow form of V' is F(ug) = u?(uf)? — 2uiujuouf +

(u/1)2u(2J + 4’(},%'[1/07 where ug = (an uy).

Example 4.5. Let V be the irreducible variety corresponding to [y] + 1,y5] €
Q(®){y1,y2}- Tt is of dimension 0 and the differential Chow form of V is F(ug) =
uguh uf +u ugus —2ug (u))? —ugul uf — uhuguf —ufud —ufulug+2ubug vl +ufuiul+
ufubug, where ug = (ug, u1, uz).

A generic differential prime is of the form ug + uiy1 + - -+ + upy, = 0 where u;
are differential indeterminates. The following result shows that the Chow form can

be obtained by intersecting I with d + 1 generic primes.
Lemma 4.6. Using the notations introduced above, let T =1(V') and
Pi =ujo + upnyr + -+ uinyn (i =0,...,d).

Then I e = [Z,Po,P1,...,Pq] is a prime ideal in F{u){uoo, w10, - - -, Ud0s Y15 - - -y Yn }
and ]IC-,E N ]'—<u>{’u,00, U0,y - - - ,udo} = sat(F).

Proof: It is easy to show that I.¢ is a prime ideal with a generic zero ((,§).
Then, I ¢ N F(u){uoo, u10, - - ., Udo} is a prime ideal with a generic zero ¢, which is
I, = sat(F). O

Remark 4.7. From Lemma [£.6] we have three observations. Firstly, the Chow form
for a differential variety is independent of the generic point used in ([@I]). Secondly,
we can see that the Chow form is roughly the condition for the d+1 primes to meet
V. This property will be further explored in Section 4.5. Thirdly, we can compute
the differential Chow form of V' with the characteristic set method if we know a
set of finitely many generating differential polynomials for V. Furthermore, given a
characteristic set A of I(V'), we can also compute its differential Chow form. Indeed,
from Lemma [L.6] it suffices to compute a characteristic set of I ¢ w.r.t. a ranking
U << Y (elimination ranking between elements of U = {ugg, ..., uq0} and Y). It
is clear that I¢ ¢ has a characteristic set {A,Py,...,Pq} w.r.t. aranking Y << U.
Then using the algorithms given by Boulier et al [I] and Golubitsky et al [14] for
transforming a regular or characteristic decomposition of a radical differential ideal
from one ranking to another, we can obtain the Chow form.

4.2. Order of differential Chow form. In this section, we will show that the
order of the differential Chow form is the same as that of the corresponding differ-
ential variety. Before this, we give the following lemmas.
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Lemma 4.8. Let (o,(1,-..,Cq be defined in (1), and f(u;ugo,-..,udo) the Chow
form of V. Then for any p(u;ugo, ..., udq) € F{u){ugo,-..,udqo} with ord(f) =
ord(p), such that p(u; (o, - ..,Cq) = 0, we have p(u;ugg, - . -, ugo) = f(0;ugo, - - -, Udo)
h(u; ugo, - - -, udo), where h(uw;ugo, .. ., udo) s in F{u){ugo, ..., udo}-

Proof: Since {f} is the characteristic set of I w.r.t. an orderly ranking, and p € I,
with ord(f) = ord(p), so I'f'p = fh for some m € N. Since f is irreducible, we can
see that f divides p. (I

The differential Chow form f(u;uqo, ..., udo) has certain symmetric properties
as shown by the following results.

Lemma 4.9. Let F(ug,uy,...,uq) be the Chow form of an irreducible differential
variety V and F*(up, uy,..., ug) obtained from F by interchanging u, and u,.
Then F* and F' differ at most by a sign. Furthermore, ord(F,w;;) (i =0,...,d;j =
0,1,...,n) are the same for all u;; occurring in F'. In particular, u,o (i =0,...,d)
appear effectively in F. And a necessary and sufficient condition for some u;; (j >
0) not occurring effectively in F is that y; € I(V).

Proof: Consider the differential automorphism ¢ of F (&1, ..., &, ) (u) over F(&1,. ..

)

Uijy i#p,r Civ ZI#/)?T
&)t Blu) =ui; =4 urj, i=p . Ofcourse, §(G)=(F =4 G i=p

Upj, ©=T Cpy 1=T
Then ¢(f(w;Co,---,Cps--3CryevnyCa)) = fF(U5C0, .3 Cry ooy Cpy oo, Cq) = 0. In-
stead of f(u;zo, ..., z4), we obtain another differential polynomial p(u; zo, . .., 24) =
fu*s20, ...y 2y, 2p, ..., 2q) € I¢. Since the two differential polynomials f and
p have the same order and degree, and as algebraic polynomials they have the
same content, by Lemma B8 f(u*;z0,..., zr, ..., %p,...,24) can only differ by
a sign with f(u;zo,...,%,..., 27,...,2a). So we conclude that F'(up,u1,...,uq)
produces at most a change of sign if we interchange u, with u,. In particular,
each u;o appears effectively in F' and ord(F, u;o) are the same for all i = 0,1,...,d.

Suppose ord(F,u;0) = s. For j # 0, we consider ord(F,u;;). If ord(F,u;;) =

[ > s, then we differentiate f(u;(p,...,Cq) = 0 on both sides w.r.t. ug) Thus

%(u;(o,...,cd) = 0, which amounts to a contradiction by Lemma [£8 If
ui,

J

ord(F,u;;) =1 < s, then we differentiate f(u;{o,...,(q) = 0 on both sides w.r.t.

uz(;) Thus 83{3) (=&;) = 0. Since % = ai—{g)(u; Cos---,Ca) # 0, we have & = 0.
of

Andy; € (V) <= & = 0 <= (i is free of uij <= = = 0 forall k € Z <= uij

does not appear in F'. From the above, if u;; occurs effectively in F', ord(F, u;;) = s,
which completes the theorem. (Il
The order of the Chow form is defined to be ord(f) = ord(F) = ord(f, us0) for
any ¢ € {0,...,d}. By Lemma [0 ord(f) is equal to ord(F,u;;) for those w;;
occurring in F'.
The following lemma gives another property for the ideal I+ ¢ defined in Lemma,
4.6l

Lemma 4.10. Let F(ug,uy,...,uq) = f(u; ugo, 10, - -, udo) be the Chow form of
a prime differential ideal T and s = ord(f). Then

of of
Oug; ouy,,
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is a characteristic set of the prime ideal I¢ ¢ = [Z,Po,P1,...,Pq] in F(u){uoo, uio,
S Udo, Y} w.r.t. the elimination ranking ugo < ... < ugo < Y1 < ... < Yn, where
Sy =2

Bugf)) ’

Proof: From Lemma [AG] I;¢ is a prime differential ideal of dimension d with a

generic point (o, ..., Cd, &1, -+ -, &n). From Lemma [Tl wqo, ..., uqo is a parametric
set of HC 5 If we differentiate f( 'CO, ooy Ca) = 0 wart. uésp) (p=1,---,n), then we
have —%L5 a —&,57 =0, where » (S) and Sy are obtained by replacing (uoo, ey Udo)

Op

with (CO, ...y Cq) in W and Sy respectively. So T, = Syy, — W € It ¢. Since

f is irreducible, we have S ¢t & I ¢. Also note that T; is linear in y;. A must be

a characteristic setﬂ of I¢ ¢ w.r.t. the elimination ranking ugo < ... < ugo < y1 <
- = Yn- O
Now we give the first main property of the differential Chow form.

Theorem 4.11. Let Z be a prime differential ideal with dimension d, and F(ug,uy,
S ug) = f(u; uoo, 10, - - -, udo) its differential Chow form. Then ord(f) = ord(Z).

Proof: Use the notations such as P;, &;,(; as above in this section. Let Z; =
[Z,P1,...,P4] C F(uy,...,ug){Y}. By Theorem 314l Z,; is a prime ideal with
dimension 0 and the same order as 7.

Let Z; = [I, Py, ... ,]P)d] = [Id,Po] C ]-"<u1, ..., Ug;UpL, - - u0n>{u00,y1, o ,yn}
From Lemma 10, A = {f, Sfy1 — aa(f) sy SEYn — 86(5) } is a characteristic set

of I¢ ¢. From Lemma [Tl w10, ..., uqo is a parametric set of I¢,¢. Since uqg, - . ., Udo
is a parametric set of I ¢, A is also a characteristic set of Z; w.r.t. the elimination
ranking ugp < y1 < ... < Yn. Since dim(Z;) = 0, from Corollary 2.9, we have
ord(Zy) = ord(A) = ord(f).

On the other hand, if (n1,...,7n,) is a generic point of Zy, then (n1,...,7,,() is
a generic point of Z; with ¢ = — Y77 | ug;n; and dim(Z;) = 0. Clearly, uox(k =
1,...,n) are differentially independent over F(uy,...,uq,m,...,Mn) . So for a
sufficiently large ¢,

wr, (t) = ord(Z4)
= tr.deg]—'(ul,...,ud,um,...,u0n>(n£j),§(j) ci=1,...,n;5 < t)/

Fl{ui, ..., Ud,u01,- -, Uon)

= tr.deg}'(uh...7ud7u017...7u0n>(m(3) 17...7n;j§t)/
Fui,...,uq,uot,. ..7u0n>

= tr.degf<u17...7ud>(m(3) =1,...,n;5 <t)/Flus,...,uq)

= wg,(t) =ord(Zq)

Thus, ord(Z;) = ord(Zy) = ord(Z), and consequently, ord(Z) = ord(f). O
As a consequence, we can give an equivalent definition for the order of a prime
differential ideal using Chow forms.

Definition 4.12. Let Z be a prime differential ideal in F{Y} with dimension d
and F(ug,uy, ..., ug) its Chow Form. The order of Z is defined to be the order of
its differential Chow form.

Here A is a differential chain. See Remark 231
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The following result shows that we can recover the generic point (&1, ...,&,) of
V from its Chow form.

Theorem 4.13. Let F(ug,uy,...,uq) = f(u;uo,- .-, ud0) be defined as above and
h the order of V.. Then we have

of
§p = a(h/sfp_l

where % and Sy are obtained by replacing (uoo, - - -, udo) by (Co, - - -,Ca) in » (h)
op
and % respectively.
Quyg

Proof: Tt follows directly from Lemma .10 and Theorem A.TT1 O

4.3. Differential Chow form is differentially homogenous. Following Kolchin
[22], we introduce the concept of differentially homogenous polynomials.

Definition 4.14. A differential polynomial p € F{yo,y1,...,yn} is called differ-
entially homogenous of degree m if for a new differential indeterminate A\, we have
PAY0, Ay1 -, Ayn) = A" (Yo, Y1, - -+ Un)-

The differential analog of Euler’s theorem related to homogenous polynomials is
valid.

Theorem 4.15. [I8, p.71] A differential polynomial p € F{yo,y1,.-.,Yn} is dif-
ferentially homogenous of degree m if and only if

iz<k+r>y(k)8f(yo,...,yn):{ mf r=0
SN T J ayj(_k”) 0 r#£0
For the differential Chow form, we have the following result.

Theorem 4.16. Let F(ug,uy,...,uq) = f(u;ugo,- .-, ud0) be the differential Chow
form of a differential irreducible variety V' of dimension d and order h. Then

1)
3f 0 oFT
Z“”a +Z ”a’. Z (h) _{ rf e

where TS a nonnegatwe mteger.
2) F(ug,uy,...,uy) is a differentially homogenous polynomial of degree r in each
set u; of indeterminates and F is of total degree (d + 1)r.

Proof: Let (&1, ...,&,) be a generic point of V and ¢; = — 37 ;&5 (i = 0,...,d)

defined in (&1]). From [@2), f(u;uqo,--.,udo) is the characteristic set of the prime
differential ideal I¢. Since f(u;{o,C1,-..,¢a) = 0, we have

E + 6(}0( &)+ ac/ F(—¢)) + ac//(_(é)%‘/) tot %[—(g)@(‘h)] =0 (0%)
2+ 0+ HF )+ HEOD o+ 2DV =0 (1w
aauéj + 0+ 0 4+ a@( (&) +- -+ a?g*"’) [— (g)ga(‘him] =0 (24
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of
2u®)

In the above equations, and (l) ~ (I=0,...,h;j =1,...,n) are obtained by

substituting ¢; to u; (i = O, ..., d) in each o (l) and (l) respectively.

(k) _8f

Now, let us consider the differential polynomlal ZJ 02 k>0 (k“)ugj PRGIR
Ui

In the case i = 0, firstly, let (0%) X ur; + (1%) X ul; + -+ + (h*) X US-};) and add
them together for j from 1 to n. We obtain

(h af f of (ny_9f
Zu” Z Urj » et e TG TG DR
3 : = guln OGO ac
So the polynomial Z Urj 8'u,f + Z u 8u - + Z u;’J au” -+ E u'” J W
=
vanishes at (ugo, - - ., ud0) = (Co,-- -, Qd) Thus in the case T = 0, it can be divisible
n h
by f,ie. > > gz) aa(fk) = rf. By Euler’s theorem, f is an algebraic homogenous
=0 k=0
polynomial of degree r in each set of indeterminates u; = (uj,. .., u;) and their

derivatives. But in the case 7 # o, since this polynomial is of order not greater
than f and can not be divisible by f, by Lemma g it must be identically zero.

Thus, we have proved 1) of the Theorem.
In the case i # 0,

(i) x (:) tog + (4 1) X (it’1>“§u + o+ () x C)uff;ﬂ)

= C)u“j%+ (lt1>u;]% I (?)ug}}—i)ﬁ
it (- () i (- (o= (1))
o (= Qe = () () == (D () 47)

= C)“w%+ (it.l)u;j Bui‘il) T (Z> (i) B(fh)

N O ey (PO eV 4 hﬂ, PENCED)
+<z) 2 ¢ “"JffH( , )a<<z+1)( uoi&s) + +<i)8<§’”( uos€s)

0

Therefore, 327, (;) torj 5 o (w) +351 (Hi_l)uaj a <w+1> o (G )ug—};‘_i)a ™ +

i+1 —1)
()CO’ ac(z) +( " ) <08<(1+1) +- (')CU ag(h) =0.
Thus, the polynomial ZJ o ( )u,Ua g +E] - (Hgl)uma TFD +- —i—E] —0 ( )
g’; 2 88(fh) is identically zero, for it vamshes at (uoo, - .. ,udo) = (€0, ---,Ca) and

can not be divisible by f.
From the above, we conclude that

z":z ki w Of _ [0 i#0
7 oj au(k"ri) ) orf =0

=0 k>0 oj

From Theorem and the symmetry property of F(uo,...,uq), the theorem is
obtained. (|

Lemma [£.9] Theorem .11l and Theorem together prove the first property
of Theorem
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Definition 4.17. Let Z be a prime differential ideal in F{Y} of dimension d and
F(up,uy, ..., uy) its differential Chow form. The differential degree of T is defined
to be the homogenous degree r of its differential Chow form in each u; (i = 0,...,d).

The following result shows that the differential degree of a variety V is an in-
variant of V' under invertible linear transformations.

Lemma 4.18. Let A = (a;;) be an n X n invertible matriz with a;; € F and

F(ug,uy,...,uq) the Chow form of an irreducible differential variety V with dimen-

sion d. Then the Chow form of the image variety of V under the linear transforma-
1 0...0

tion Y = AX is FA(vy,...,vq) = F(voB,...,vqB), where B = 0 A

and w; and v; are regarded as row vectors.

Proof: Let & = (&1,...,&,) be a generic point of V. Under the linear transfor-
mation Y = AX, £ is mapped to n = (91,...,7,) with n; = E?Zl ai;&5. Under
this transformation V' is mapped to a differential variety V4 whose generic point is
n. Note that FA(vo,...,vq) = fA(vij;v00, - - -, Vd0) = FO o ik s Voo, - - - Vao)
and [ (vig; — Y p_y VoRTks - > — Doy VakTk) = f (Do py Vik@hjs — Do py VORTRs - - -
— 2ok Vak) = f (g vikangs — 2050 (kg Vok@k; )& -y = 251 (P Vak

ar;)&;) = 0. Since V4 is of the same dimension and order as V and F4 is irreducible,
from the definition of the differential Chow form, the claim is proved. O

Definition 4.19. Let p be a differential polynomial in F{Y}. Then the smallest
number r such that y{p(y1/Yo0,- -, Yn/Y0) € F{yo,Y1,-..,yn} is called the denom-
ination of p, which is denoted by den(p).

Example 4.20. In the cased = n—1andn > 1,if {f(y1,...,yn)} is a characteristic
set of Z w.r.t. any ranking, then the differential degree of Z cannot exceed the
denomination of f. So the denomination of f gives an upper bound of differential
degree of the variety. But, we do not know whether they are the same.

Example 4.21. In the case n = 1 and d = 0, if {f(y)} is a characteristic set
of Z w.r.t. any ranking, then the differential degree of 7 is exactly equal to the
denomination of f. Now we can give a bound for the differential degree of Z from
the original equation of f without computing its denomination.

For a differential monomial 8(y) = y' (y/) (y")2 ... ()b, define its weighted
degree to be lg+2l1 4 - -+ (s+1)ls, denoted by wdeg(0(y)) = lo+211 +- - -+ (s+1)Is.
For a differential polynomial f € F{y}, we can define its weighted degree to be
the maximum of the weighted degrees of all the differential monomials effectively
appearing in f. Clearly, the denomination of f cannot exceed its weighted degree.
And we have examples for which den(f) < wdeg(f). Let f = 2y"? — yy”. Then,
den(f) = 3 and wdeg(f) = 4. The differential Chow form of sat(f) is F(u) =
uourug — uduf — 2ufuy + 2uguhuy, where u = (ug,u1). So the differential degree
of Z = sat(f) is 3 which is less than wdeg(f).

Continue from Example 4l In this example F(u) = u?(u})? — 2uiujuouf +

(u})?u? + 4udup is a differentially homogenous polynomial of degree 4 in u =
(up, u1), and its order is 1. And the differential degree of V' is 4, which is equal to
the weighed degree of f = (y/)? — 4y.
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4.4. Factorization of differential Chow form. In the algebraic case, the Chow
form can be factored into the product of linear polynomials with the generic points
of the variety as coefficients. In this section, we will show that there is a differential
analog to this result.

Let Uy = {uz(f) i =0,...,d;j=0,....,n; k = O,...,h}\{ué}é)}, and Fg =
F(Up). We have

Theorem 4.22. Let F(ug,uy,...,uq) = f(w;ugo,...,udq) be the Chow form of
a differential variety of dimension d and order h. Then, there exist &x1,...,&m
(r=1,...,g9) in an extension field of F such that

n

g
(4.4)  F(ug,uy,...,ug) = A(ug, uy, ..., ug) H(Uoo + ZUOpfm)( )
T=1 p=1

where A(ug,uy,...,ug) is in F{ug,...,uq} and g = deg(f, ué}é)).

Proof: Consider the irreducible algebraic equation p(Uy, uég)) f(w;uo0, w10, - - -y
ugo) = 0 in ugé), where p is considered as a polynomial in Fq [“0]8 ]. In a suitable

algebraic extension field of Fy, this equation has g roots z1,...,z4. Thus
(4.5) f(;u00, ur0, - - - uao) = A H Uoo — 27).

Notice that z, are in an algebraic extension field Fy(z1,...,2,) of Fo. Since
we are studying differential polynomials over differential fields, we will define their

derivatives by making Fo(z1,...,2,) a differential field. This can be done in a very

natural way. Since f, regarded as an algebraic polynomial in u((fé), is a minimal

polynomial of z;, Sy = o (h) does not vanish at u( ) = zr. Now, we define the

derivatives of z. by induction. Firstly, f' = S uOOH) + T is linear in ugsﬂ). We

define §(z;) = z. to be _Si‘ . Supposing the derivatives of z, with order

(h)

Upg” =27
less than i have been defined, we now define §%(z,). Since f() = Sfuégﬂ) +T;
(h+i) i T -
is linear in wy, °, we define 6*(z;) to be TSy Lo Similarly, we can

define the derivatives of each element in Fo(z;) and obtain the differential field

Fo{z:). For convenience, by saying a differential polynomial vanishes at ugo) =z,

we mean that as a polynomial in F{uy,...,uq,uo1," - ,Uon){uoo}, it vanishes at
(h+i) (1)

Ugo (i >0).

Since f is irreducible, we have f.q = %
Uoo

. # 0. Let grp = pr/fTO(P =
00 —~T
of

1,...,n), where f,, = 3l | We will prove
P 0o —

-

Zr = —(U01§7-1 + up2éra + - + u(m{m)(h)

From f(u;¢p,C1,-.-,Cs) =0, if we differentiate this equality w.r.t. ué};), we have

of of

au((Jh 6C0h) ( gp)
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“of af . . . . . af
Bul™ and PR are obtained by substituting ¢; to u;o (i = 0,1,...,d) in m

and % respectively. Multiplying uo, to the above equation and for p from 1 to
oo

where
P

n, adding them together, we have

- 0 0 - - 0 0
ZUOpa—{;l)'i_—f(_ZUOpgp):Zqu%"'CO / =0

h h
p=1 Uop 8C(§ ) p=1 p=1 8uop 8C(§ )

Thus, ¢ = 22:1 uop% + Uoo% € sat(f). Since ¢ is of order not greater than
Uo oo

f, it must be divisible by f. Since ¢ and f have the same degree, there exists an
a € F such that ¢ = af. Setting u((fé) = z, in both sides of ¢ = af, we have
Z:}Zl Uop frp + oo fro = 0. Hence, as an algebraic equation, we have

(46) Ugo + Z ’U,ng-,—p =0

p=1
under the constraint ué’é) = z,. As a consequence, z; = —(Zzzl uopérp) M. The
theorem is proved. (I

In the proof of Theorem[.22] some equations are valid in the algebraic case only.
To avoid confusion, we introduce the following notations:

a]P’((JO) = Py := upg + uo1y1 + - - - + UonYn
B = Py =y + ugyys + uory + - + Uy Y + Uony

ampls) .__ S n s s k sk
]P)E) )= ugo) + 2 =1 2k=0 (k)u((Jj)yJ(‘ :

which are considered to be algebraic polynomials in F(uqg, - - -, Uon, - - - ,uéf)), ..

u((ﬁl))[yl, e Yny e ,y%s), . ,yff)], and ul(-;-c), ygj) are treated as algebraic indetermi-

nates. A point (71,...,7,) is said to be lying on “]P’ék) if regarded as an algebraic
point, (1,...,Mn, - - ,n%k), e ,m(f)) is a zero of a]P’ék). As a consequence of (46

in the proof of Theorem [£.22] we have

*

Corollary 4.23. (&,,..-,&mm, .- ,{5}{71), e ,fq(-};fl)) (r =1,...,9) are common
zeros of Py =0, °P| =0,..., “]P’(()h_l) = 0 under the constraint uég) = z,, where
zr is defined in ([@.5]).

Example 4.24. Continue from Example 4] again. In this example, F(u) =
u?(uh)? — 2ugufuouly +(uh)*ud + 4udug, so g = 2. And F(u) = ui(uf + &nuf +
2\/—1\/’&0’[},1)(11,6 —+ 52111,/1 — 2\/—1,/’&011,1) = u%(’UJO —+ gllul)/(’UJO —+ {21u1)’ Where
&11 = —up/uy with wug, uy satisfying uj, = Z—‘l’u’l — 2v/—=1/upur, £€21 = —up/uy with
up, w1 satisfying uf, = Z—‘l)u’l + 2v/—1,/uguy. Note that both & (i = 1,2) satisfy
Py = ug + u1&;1 = 0, but “]P’él) = ul + ui&in +wr gl # 0. Instead, from the Chow
form, we have &2 + 4ug/u; = 0.

Lemma 4.25. In equation {{-4)), A(ug,ui,...,uq) is free of u((jz) (i=1,...,n).
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Proof: Since f is homogenous in the indeterminates ug; and its derivatives up to
the order h, we have

i by 6{;) ((Jh) h>+22n: 0y 6f y=rfireN

= Upo k=0 p=0 UOp

In this equation, let uéo) = z,;, we obtain

n h—1 n
>ty frp+ 2 fro+ Y Zuop P (k)
p=1 k=0 p=0
Consequently,
n h—1 n
h k 8f
=== X3 e /e
p=1 k=0 p=0
Henceforth,
() LN 0 *) 8f
(47) f(u;uoo,ulo,...,udo) = AH (U’OO +Zu gq-p‘i‘zz fq-()
r=1 p=1 k=0 p=0
where 66{;) means replacing u((m) by 2z, in aa(jk)
Ug,

We claim that &, and Zk;o —0 ugl;) e (k) / fro are algebraically independent
of u((f;) (¢t =1,...,n). Firstly, since &, is algebramally independent of u(h)( =
1,...,n), and

¢ - of of of of
P o)/ 45 (h) =5 )/ oh)
duly) | 0l Vs oiso) o) Ouly)  OC
we have

0 o\ af _ _o of \_or
0,  oul) \ouf,) J o oul) \ ot ) oufy) 0
(hy — 9f 2 -
Ouy; ( BCéh’))

or equivalently

0 (6f>6f B (af)af € sat()
oud \oul” ) oull  oul” \oul) ) oul?) '

Set uég) = 2,, we have

0 0
ol i)

Thus,
ang 6(f‘rp/f7’0)
(4.8) = L0 o),
o Auyy;
Secondly, set (ugo, - .-, ud0) = (Co,---,Cq) in the equation

z”: () 8f (h) 8{@"‘22 (k) 8{k) rf,r € N.

= Op k=0 p=0 Op
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We have

p=1
By Theorem .13]

h—1 n
m Of <h> NORZ
U, + =
0p 8ué kzoz 0p 8u(()/;)

P p=0

) h—1 n " 8f
§ u §p+<0 +§:§: Opa(k) 8(h):O
k=0 p=0 CO

Then,

0};) (fii Op) af ) —(=&)=0

k=0 p=0 8
(k) _of \_of i uF) _of
<h> (Z p=0 U0y u <k>) 2¢™ T gul® ((%(h)) (Z p=0Y%0p 5, <k>)
5 .
of
(mé’”)
W _of of __ 0 ul®)
Thus, we have —— <h> (E p=0%0p 5, <k>) 2 Bl (a <h>) (E p=0 Y0p

of .
aué,;)) € sat(f). Equivalently,

h—1 n k) of
8( Zk:O p=0 u(gp) au—g:k)/fTO)

(4.9) . = 0.
au((Ji)

From (A8) and 9), &, and Z =0 ((J];) 8a(k) / fro are algebraically inde-
pendent of ué ) (i=1,..., n). Then as symmetric functions in &;1,...,&mn, > 1_
ZZ o u((JI;) 2 / froare ratlonal functions in the set of indeterminates {u;, . . . ,uz(.Z),
UGk - - - ,u(()},z 1) :i=1,...,d; k=0,...,n} only. Therefore, Hf,zl(ugé) —z) = %
where 1 is free of u("” (i = 1,...,n) and ged(¢,4) = 1. Thus A¢ = f4b. Since f is
irreducible, we conclude that A = 9 is free of u((f;) (i=1,...,n). O
Theorem 4.26. The quantities &r1,...,8m in [{4) are unique and [{7) is a
factorization of F' as a form in ué}é), . ug;) in an extension field of F(uw, . . . ,UEZ),

(h=1) A
UOky -+ Uy, i =1,...,di k=0,...,n).
Proof: From Lemmalm, equations ({.8) and (£9), we can see that A(uy,...,uy),
&, and 22;3 =0 8’; » (k)/fTO are free of u(h)(z =1,...,n). Then, 1) is a
factorization of the Chow form F'(uy, ..., u,) in the polynomial ring F(u;, . - . , ugz),
Uoks - - u(()},z Yii=1,....dk=0,. )[uég), . uéz)] Thus, the factorization
@0 must be unique and hence Erie O

Definition 4.27. By Lemma I8 and Theorem 226 the number g in [@4)) is an
invariant of V' under linear transformations, which is called the leading differential
degree of V.
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Theorem 4.28. The points (§:1,...,&m) (T =1,...,9) in (3) are generic points
of the variety V', and satisfy the equations

ugo—l—Zugpyp:O(U: 1,...,d).
p=1

Proof: Suppose ¢(y1,...,yn) € F{Y} is any differential polynomial vanishing on
V. Then ¢(&1,...,&,) = 0. From Theorem A3 &, = (h)/ a we have

¢)( of of of of )7
R T e S

of of of i =
Hence, (;5(a W7/ 5 5 | Gl ) vanishes for (ugg, . - ., ud0) = (o, - - -, Ca)-
Of ym of of of
Then there exists an m € N, such that (8u§,§')) (;5(8 @ [ GullT > 5l aué,g)) €
sat(f) N F{w; w0, .., uqo}. Since Iy x Sy does not vanish at u((fé) = z;, when

regarding f and polynomials in sat(f) as differential polynomials in ugg, we have

(fr0)™d(&r1, -, &rn) = 0, thus (&1, . .., &rn) = 0, which means that (§,1,...,&m)
eV.
Conversely, for any p € F{Y} such that p(&;1,...,&n) = 0, when we regard the

. 9 d ) 9
polynomial ( 8u§5) )ip( au({*{) / ;

(h)) (I € N) as a differential polyno-

w7 ouM [ ou
. . . () of N, Of of af of
mial in uqo, it vanishes at ug,” = z,. Hence, (auéﬁ')) p(aug’p T /aug’g))
€ sat(f) in the differential ring F{uy, ..., uq, wo1, -+ ,Uon){uoo}, and thus p(&1,. ..,
&n) = 0. So (571, .. ,fm) is a generic point of V.

Since e (h) + 8(“” (=¢,) = 0, we have Ep 1 ugpa (h) + ¢, 2L adh) = 0. Thus,
>0 Uop 8u§;) vanishes at (uoo, - - -, uq0) = (Co, - - -, Ca)- In the case o # 0, 37 Uop
% = 0. Consequently, us0 + >0 Uspérp = 0(0 = 1,...,d). O

Op

To end this subsection, we will prove a result which gives the geometrical meaning
of the leading differential degree.

Suppose F'(uyg,...,uq) is the differential Chow form of V' which is of dimension
d, order g, and leading differential degree g. Theorem and Corollary
show that (§71,...,&n)(T = 1,...,g) are intersection points of V and P; = 0(i =

1,...,d) as well as “P((Jk) =0(k=0,...,h—1). In the next theorem, we will prove

the converse of this result, that is, (§71,...,&w) (T =1,..., g) are the only elements
in V which are alsoon P; =0 (i = 1,...,d) as well as a]P’ék) =0(k=0,...,h—1).
Intuitively, we use P; = 0(i = 1,...,d) to decrease the dimension of V to zero

and use “]P’ék) =0(k=0,...,h —1) to determine the h arbitrary constants in the
solutions of the zero dimensional differential variety.

Theorem 4.29. ({;1,...,&m) (T=1,...,9) defined in [{.4) are the only elements
of V' which also lie on P1,..., Py as well as on “Py,* Pp,...,° ]P’éhil).

Proof: Firstly, from Theorem .28 and Corollary 23] ({+1,...,&m) (T =1,...,9)

are solutions of I(V) and Py,...,Py which also lie on °Py,*Py,...,* ]P’éhil). It
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suffices to show that the number of solutions of I(V') and Py,..., Py which also lie
on “Py,* Py, ...,° ]P’gh_l) does not exceed g.

Let J = [I(V),Py,...,P4]. By Theorem B4 7 is a differential ideal of dimen-
sion zero and order h. Let J<"> = TN F(U)[y1,---»Yn,--- ,y§h), cey y,(lh)], where
Uy = {ugf) ci=1,...,d;5 =0,...,n;k > 0}. Since J is of dimension zero and
order h, its differential dimension polynomial is of the form w(t) = h, for ¢t > h. So
J<P> is an algebraic prime ideal of dimension h.

Let Jo = (J<">,*Po," By, ...,* PY'"") in the polynomial ring F(Ug U {u); j =

1,...,n; 1 = O,...,h—1})[y1,...,yn,...,ygh),...,y,(zh),uoo,...,uég_l)]. It is clear

that Jp is a prime ideal of dimension h. If we can prove that {uqg, ... ,ugéfl)} isa
parametric set of Jy, then it is clear that J; = (Jp) is a prime ideal of dimension zero

in ]-'([U*)[yl,...,yn,...,ygh),...,yr(f)], where U* = UdU{uO],j =0,1,...,n50 =

0,...,h —1}. So it needs to prove that {ugo,..., ué}é 1)} is a parametric set of
Jo. Suppose the contrary, then there exists a nonzero polynomial involving only
{woo, - - -, ugs_l)} as well as the other u, which belongs to Jp. Such a polynomial also
belongs to [J,Po] € F(usj,uq :i=1,...,d;5 =0,. nl—l,...,n>{y1,...,yn,

ugo}. From the proof of Theorem IZ:E[L {F Sry1 — ( SERERE SEYn — e )} is a

Ugp,
characteristic set of [7,Po] w.r.t. the elimination rankmg Upg = Y1 < -+ = Yn- SO

this polynomial can be reduced to zero by F(ug,...,uq). But ord(F,ugy) = h, a
contradiction. So we have proved that [J; is a prime ideal of dimension zero.
It is clear that Jo = (71, BY") € F(U*,ul 1 j =1, m)lyn, .o Yns-- o0y
. y,(lh), u(()}é)] is a prime ideal of dimension zero. Then, there exists an irreducible
polynomial involving only ugf) and U((J}S)' Similarly as above, it also belongs to
[, Pg], thus it can be divisible by F. Since F is irreducible, it differs from F' only
by a factor in F. Thus, F' = f(u;ugo, u10, - - -, Udo) € Jo.
Let (&1,...,&,) ba a generic point of V and ¢; = —Z?Zl uii& (1 =0,...,d).
Then the differential ideal [I(V),Pq,...,Pyq,Po] in F{a){y1,.-.,Yn, %00, ---,Udo}
has a generic point (&1,...,&n, Co,---,Ca). Since f(u;Co,...,Cq) = 0, differentiate

both sides of this identity w.r.t. uol;), we have the following identities

B "9 N o
B2 (-~ (Je) =0 G=tmE=o,

k
a“éj) 1—x 9Co

where 86-(’;) and C”) are respectively obtained by substituting (; to u; in 86(’;) and
h (k) h—ly_ 0 (k=1) 9, :
Pu (z) Let gjix = ( ) (h) j +El 1( ) (hf nY; aug’%f*k) G=1...,nk=
7

0,...,h). Then g € []I(V) Py,...,Pg,Po] C [J,IP’O], for g, vanishes at (&1, ...,&n,
€o,---,Cq). Denote the algebraic ideal [J,Po] N }"(Ud,uélj) g =1,...,ml =
0,....R)y1, -, Yn,--- ,ygh), - ,y,(zh),uoo, . ,ug}é)] by [J,Po]<">. It is clear that
gjk € [T, Po]<">. We will show that [J,Po]<"> = (F7<h>aPy,... *P{"), which
implies that g;z € Jo. Let n = (m,...,7m,) be a generic point of J. Then

. L h
(M3 s — 25— uoy1;) is a generic point of [, Po]. Thus, (11,..., 7, .. ,77§ ),

o D i1 U0y e — E?Zl(uojnj)(h)) is a generic point of [J,Po]<">. Of

course, it is also a generic point of (J<"> %Py, ]P)éh)). So the two ideals are
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identical. Thus, g;i belongs to J>. Note that the coefficient of y§k) in gjx is (’k‘) Sy =

(Z)%gﬁ)' So V(J2) C V(f(Uo,u((J}S)),gjk :j=1,...,n;k =0,...,h) and the latter

algebraic variety of consists exactly g elements. Thus, |V(71)| = |V(J2)| < g, which
completes the proof. O

Example 4.30. Let V be the general component of P = y'2 —4y = 0. As in Theo-
rem[4.29] we introduce the equation “IPq = ug+u1y which intersects V' at two points:
y = —up/u1 and y' = £21/—wup/u;. The condition y’ = +2+/—up/u; is equivalent
to the vanishing of the Chow form or the condition u( = Z—‘l)u'l F2/-1 Vol given
in Example Using the terminologies of Theorem 29, we have 11 = —ug/u1
with ug,uy satisfying ug = Z—‘l’u'l — 2\/—_1\/M and &1 = —up/uy with ug, uq sat-

isfying uy = 22w 4 2v/—1,/upus.

1

With Theorems [£22] [1.26] [.28] and [£.29] we proved the second and third state-
ments of Theorem

4.5. Relations between the differential Chow form and the variety. In the
algebraic case, we can obtain the defining equations of a variety from its Chow
form. But in the differential case, this is not valid. Now we proceed as follows to
obtain a weaker result.

Lemma 4.31. Let V' be an irreducible differential variety of dimension d > 0 and
(0,0,...,0) ¢ V. Then, the intersection of V with a generic prime passing through
(0,...,0) is either empty or unmized of dimension d — 1. Moreover, in the case
d > 1, it is exactly unmized of dimension d — 1.

Proof: Let P =1(V) be the prime differential ideal corresponding to V. A generic
prime passing through (0,...,0) is uiys + usys + -+ + uny, where the u; are
differential indeterminates. Since (0,0, ...,0) ¢ V, we have
VO V(urys + uzys + -+ + unyyn)
= V(P,ury +ugyz + - - + unyn)

= U VP ways +uaya + - + unynl /vi)
=1

= V(P uryn +uays + -+ + unyn] : 45°)
i=1
Suppose a generic point of V' is (&1,...,&,). Since (0,0,...,0) ¢ V, there exists at
least one i € {1,...,n}, such that & # 0. Of course, & = 0 means V([P,uiy; +
Uy + - + upyn) 1 y£°) = 0. So we need only to consider the case when &; # 0.
Without loss of generality, we suppose &; # 0.
Let
Q = [P,uays + uaya + -+ 4 tnyn] 1 y5° S Flur, -, un){y1, - Yn}

and
Qo = [P,uryr +uayz + -+ + UnYn] 1 yi° C Flug, ..., un){y1, .-, Yn,u1}

A generic point of Qg is (&1, ... ,{n,—W) and dim(Qy) = d. Now we
discuss in three cases.
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Case 1) PN F{y1} # {0}, that is, & is differentially algebraic over F. We have

dimV = d = d.tr.deg F(&1, ..., &) /F = dtr.deg F(&1) (&, . .., &n) / F(&).

Suppose &3, ..., &4+1 are differentially independent over F(&7).
Firstly, Qo N F(ug,...,u,){u1} = {0}. For if not, we have a nonzero differential
polynomial h(us, ..., un,u1) € F{usa,...,un,us } such that h(ug, ..., un,,

- M) = 0. For a fixed ¢ between 2 and n, if we specialize u; to —1,

u; (j #14) to 0, then by Theorem ET4] ¢;/¢; is differentially algebraic over F. So
each & (i = 1,...,n) is differentially algebraic over F, which contradicts to the fact
d> 0.

Secondly, since ys,...,yq+1 is a parametric set of P, it is also a parametric set
for Qp. So ya,...,Yd+1,u1 are differentially dependent modulo Qpy. Since Qp N
Flug,...,up){ur} = {0}, we know that yo,...,ys+1 are differentially dependent
modulo Q. Using the fact that each remaining y; and yo, . .., yq+1 are differentially
dependent modulo @, we obtain dim(Q) < d—1. We claim that dim(Q) = d—1 by
proving that ys,...,yq are differentially independent modulo Q. For if not, there
exists 0 # h(ya,...,ya,u1) € Qo such that h(§2,...,gd,—m+'g'7W) = 0. By
Theorem 2.4l we can specialize ugy1 to —1, the other u; to zero, and conclude that
&y €, 521 are differentially dependent over F. Since &o, . .., &4 are differentially
independent over F, £;441 is differentially algebraic over F(&1,...,&q), which is a
contradiction. Thus dimQ = d — 1.

Case 2) d > 2 and & is differentially transcendental over F. In this case, we
suppose a differential transcendence basis is &1, . .., &4.

Firstly, Qo N F(ug, ..., u,){u1} = {0}. For if not, as proceeded in the preceding
case, we conclude that &;/&; is differentially algebraic over F, that is, &,&; are
differentially algebraic over F, which contradicts to the fact d > 1. So Q is a
nontrivial prime differential ideal.

Secondly, dim(Q) = d—1, for on the one hand from the fact that y1,yo, ..., yd, u1
are differentially dependent modulo Qy, we have dim(Q) < d — 1, and on the other
hand, from the fact that ys,...,yq,u; are differentially independent modulo Q, it
comes dim(Q) > d — 1.

Case 3) d = 1 and & is differentially transcendental over F. If QoNF(ug, ..., un)
{u1} # {0}, the intersection is empty. If Q # [1], similar to case 2, we can easily
prove that the intersection is of dimension zero.

So for each i € {1,...,n} such that & # 0, we can show that V([P u1y1 +usys +
e UpYp)  Ys°) is either empty or of dimension d — 1 similarly as the above steps
for the case i = 1. And if d > 1, it is exactly of dimension d — 1. Thus the theorem
is proved. ([l

The following result gives an equivalent condition for a point to be in a variety.

Theorem 4.32. Let V be a differential variety of dimension d. ThenT € V if and
only if d+ 1 independent generic primes Py, Py, ..., Py passing through T meet V.

Proof: The necessity of the condition is obviously true. We now consider the
sufficiency. We adjoin the coordinates of T to F, and denote F to be the differential
field thus obtained. Regarded as a variety over F, V is the sum of a finite number
of irreducible varieties V;, which are of dimension d [29, p.51]. Suppose T ¢ V/,
and therefore does not lie in any component of V. We now prove that any d + 1
independent generic primes passing through Z do not meet V;. Without loss of
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generality, suppose T = (0,0,...,0). Then a generic prime passing through T is
S$1y1 + - -+ + Spyn with s; differential indeterminates. We proceed by induction on
d.

If d = 0, then for (a1,...,a,) € V, each a; is differentially algebraic over F.
IfVNV(siy1 + - + spyn) # 0, then there exists a (a1,...,a,) € V such that
s1a1 + - + span, = 0. Since the s; are differentially independent over F. Thus
(a1,...,an) = (0,...,0), a contradiction to the fact that T ¢ V. Thus the theorem
is proved when d = 0.

We therefore assume the truth of the theorem for varieties of dimension less than
d, and consider a variety V of dimension d. Let Pg,...,P; be d + 1 independent
generic primes passing through . The equation P4 can be written as s1y; +--- +
SnYn = 0 with s; differential indeterminates. From Lemma .31} P; = 0 meets
V in a variety W of dimension less than d. By the hypothesis of the induction,
Po,...,Ps_1 do not meet W, it follows that V' does not meet Py, ...,P;. Therefore
the theorem is proved. ([

The following result proves the fourth statement of Theorem

Theorem 4.33. Let F(ug,uy,...,uy) be the differential Chow form of V and

Sp = %. Suppose that u;(i = 0,...,d) specialize to sets v; of specific elements
00

in an extension field of F and P; (i = 0,...,d) are obtained by substituting u; by
viinP,. If P, =00 =0,...,d) meet V, then F(vo,...,vq) = 0. Furthermore,
if F(vo,...,vq) = 0 and Sp(vo,...,vq) # 0, then the d + 1 primes P; = 0 (i =
0,...,d) meet V.

Proof: Let T =1(V) C F{Y},Ice = [Z,Po,...,Pa) C F{u){y1,---,Yn, woo,---,Udo},
andZy = [I¢¢] € F(uo,...,ua){y1,...,Yn}. By Lemmal[LI0 {F, %yl—a—F e
00

au((ﬁ') ’

%yn - %} is a characteristic set of I¢ ¢ w.r.t. the elimination ranking ugqo <

Yoo Uon )

c- < ugp < Y1 < -+ < Yp. Since Fisirreducible, I¢ ¢ = [F, Spyl—%, ey SEYR—
Uo1

OF 1. Qoo 3 _ _OF

Bu[()}:l)] : SF with SF = Ouég)'

When u; specializes to v;, Z; becomes an ideal in F(vq, ..., v, ) {Y}. If Py,..., Py
meet V, then Z; = [Z,Py,...,P4] # [1] which implies F(vq,...,v4) = 0 since
F e Hcyg.

If Sp(vo,...,vq) # 0 and F(vo,...,vq) = 0, then let 7, = (%(vo,...,
Uo;

va))/(Se(vo, -..,va))(i = 1,...,n). We claim that (y,,...,7,) lies in V and
the d + 1 primes Py, ..., P4, which implies that Py, ..., Pq meet V.

Firstly, let p be any polynomial in Z. Then p € I¢ ¢, so there exists an integer
m such that SFp € [F,Sry1 — 82—?1')’ ey SEYn — 8u—§’3] If we specialize u;; —
Vij, Uio — Vo and let y; = 7;, then we have S¥(vo,...,va)p(@y,...,7,) = 0, so
p(H1,---,Y,) =0. That is, (§;,...,7,) € V. Secondly, since P; € I ¢, similarly as
in the above, it follows that (7y,...,%,,) lies in P;. So Py, ..., Py meet V. O

Similar to the algebraic case [16l, p.22], we can show that a generic differential
prime passing through a given point x = (z1, 22, ...,z,) is of the form ag + a1y1 +
o+ apy, = 0 with a; = Z?:o sijxzj(i =0,1,...,n), where g = 1 and S = (s;5) is
an (n+1) x (n+ 1) skew-symmetric matrix with s;;(¢ < j) independent differential
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indeterminates. That is,

ao 1

ai Z1
= S .

Gnp Tn

For convenience, we denote such a prime by Sz and say a generic prime passing
through a point z is of the form Sz.

Now we write w; = (0, i1, ..., Uin)’ = S'Y where Y = (1,y1,...,y,)" and
the S are skew-symmetric matrices with 3;1@ (j < k) independent differential in-
determinates. Substitute the u; in F(ug,uy,...,uy) by these equations. Then
we get a differential polynomial involving S;k (j < k) and the y;. Regarding this
differential polynomial as a differential polynomial in S;k(j < k), then we have
F(ug,uy,...,ug) = F(S°Y,S'Y,...,8%) = gs(y1,- - -, yn)gb(s;k) where (b(s;k)
are different differential monomials. In this way, we get a finite number of differen-
tial polynomials g4(y1,...,Yyn) over F, which we denote the set by P. Similarly, in
this way, we will get another set D of differential polynomials from the polynomial
SF(U(), ceey ud).

Theorem 4.34. Let V be an irreducible differential variety with dimension d and
F(ug,uy, ...,ug) its differential Chow form. Then V \ V(D) = V(P)\ V(D) # 0,
where P, D are the differential polynomial sets obtained from F(ug,uy,...,uq) and
Sr(ug,us,...,uq) as above.

Proof: On the one hand, for any T € V, from Theorem 32] any d + 1 generic
primes passing through Z meet V. So S°%, S'Z,..., S meet V. By the proof
of Theorem I33, F(S°%, S'7,..., S%F) = 0. Since szk(j < k) are differential
indeterminates, T € V(P). So V \ V(D) C V(P)\ V(D).

On the other hand, for any T € V(P) \ V(D), since any d + 1 generic primes
passing through 7 are of the form S°z, SZ, . .., S%Z with the S? indeterminate skew-
symmetric matrices, we have F(S°z, S'z,...,5%%) = 0 and Sr(S°z, S'7,...,S7)
# 0. From Theorem B33, S°Z, S'Z,..., 5% meet V. Thus from Theorem E32
T e V. Thus V \ V(D) = V(P) \ V(D).

Now, we show that V \ V(D) # 0. Suppose the contrary, i.e. V C V(D), in
particular, its generic point (¢1,...,&,) € V(D). Thus, Sp(S°, S, ..., 8%) =0,
where & = (1,&,...,&,). Recall that Sék(j < k;yi = 0,1,...,d) are indepen-

dent differential indeterminates over F{&1,...,&,). Now we consider a differential
endomorphism ¢ of F(&1,...,&u){s% (7 < ki@ = 0,1,...,d)} over F(&1,..., &)
satisfying ¢(sfy) = —sp and ¢(shy) = 0(j < k;j = 1,...,m). Tt is clear that
o(Sr(S%, ..., S9E)) = Sr(sh: — > opey S0k&ks s — Dopey S4&k) = 0. If we denote
spp. by wik, we have Sp(u;Co,...,¢qs) =0, thus Sp € sat(F'), which is a contradic-
tion. So V \ V(D) £ 0. O

Since V is an irreducible differential variety, VNV (D) is a subset of V' with lower
dimension than that of V' or with the same dimension but of lower order. Thus,
V' \ V(D) contains almost all points of V.

Example 4.35. Continue from Example @4l In this example, F(ug) = u?(uf)? —
2uiuhuouf + (uh)?ud + 4udug and Sp(ug) = 2uiuf — 2ujufug. Following the steps
as above, we obtain P = {(y')? — 4y} and D = {y'}.
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5. DIFFERENTIAL CHOW VARIETY

In Theorem [[.2], we have listed four properties for the differential Chow form.
In this section, we are going to prove that these properties are also the sufficient
conditions for a differential polynomial F(uy,...,us) to be the Chow form for a
differential variety. Based on these sufficient conditions, we can define the differen-
tial Chow quasi-variety for certain classes of differential varieties in the sense that
a point in the differential Chow quasi-variety represents a differential variety in the
class. In other words, we give a parametrization of all differential varieties in the
class. Obviously, this is an extension of the concept of Chow variety in algebraic
case [13} [16].

5.1. Sufficient conditions for a polynomial to be a differential Chow form.
The following result gives sufficient conditions for a differential polynomial to be
the Chow form of an irreducible variety. From Theorem[[.2] they are also necessary
conditions.

Theorem 5.1. Let F(ug,us,...,uq) be an irreducible differential polynomial in
F{ug,uy, ...,uq} where u; = (w0, Wi, ..., uin) (¢ = 0,...,d). If F satisfies the
following conditions, then it is the Chow form for an irreducible differential variety
of dimension d and order h.

1. F(ug,uy,...,uq) is differentially homogenous of the same degree in each u;
and ord(F,u;;) = h for all u;j occurring in F.
2. F(ug,uy,...,uq) can be factored uniquely into the following form
F(ug,uy,...,uy) = A(ug,uy,...,ug H“oo +Zu §Tp—|—t

= A(ug,uy,...,ug) H(uoo + ZUOp&p)(

T=1 p=1

where g = deg(F, ugé)) and &, are in an extension field of F. The first “ =7
is obtained by factoring F'(ug,u1,...,uq) as an algebraic polynomial in the vari-
ables u((fé), ugll), . ug;), while the second one is a differential expression by defining
derivatives of &, to be

& = 0l sy e i, (M2 1)

T

recursively, where &, is the natural derivation over F(ug,uy,...,uq).

3. 2= (&1, &m) (T =1,...,9) are on the differential primes P, = 0(c =
1,...,d) as well as on the algebraic primes a}P’gs) =0(=0,...,h—1).

4. For each 7, if vio+vin&ri+- 4 vin&rn =0 (i =0,...,d), then F(vq,...,vq) =
0, where v, = (v, Vi1,...,Vin) and vy are from an extension field of F. It is
equivalent to say that if S°,..., 8% are (n+1) x (n + 1) skew-symmetric matrices,
each having independent differential indeterminates above its principle diagonal,

then F(S%,,...,8%,) =0, where & = (1,&1, ..., &)
Before proving the theorem, we need several lemmas.

Lemma 5.2. [I5, p.11, Theorem 1] Let R and S* be two rings and R isomorphic to
a subring S of S*. Then there exists an extension ring R* of R which is isomorphic
with 8*, this isomorphism including that between R and S.
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Lemma 5.3. Let V be an irreducible differential variety of dimension d > 0 over
F and P := ug + u1y1 + -+ - + unyn a generic prime. Then every generic point of
V(I(V),P) over Flug,...,un) is a generic point of V over F.

Proof: By Theorem[B1, [I(V'),P] is a prime differential ideal of dimension d—1. Let
7 be a generic point of V(]I(V), ]P’). Then for any differential polynomial p in I(V'), we
have p(n) = 0. On the other hand, for any differential polynomial p € F{y1,...,yn}
such that p(n) = 0, we have p € [I(V),P]. Then p = >, ,;P® mod (V). Substi-
tuting up by —uiy1 — -+ — upyy in the above equality, we have p = 0modI(V).
Hence 7 is a generic point of V. O

In the next result, we will show that the following stronger version of condition
4) from Theorem [5.1]is also valid.

Lemma 5.4. Consider F in Theorem [51] as an algebraic polynomial f(u(k) (0

oj 1 %og>
h h . k n k k—m .
u((m), e u((m)) in ugj). If viok + 2201 Do (Z)’Uijqu(_j ) =0 (i=0,...,d;k =
0,...,h), then f(vojk, Voji, Voohs - - -, Vonk) = 0, where the v are in some extension
field of F.

Proof: Regard Q = [v0 + Z?Zl v;i&rj 1 = 0,...,d] as a differential ideal in
Frj 173 =1,...,n){vio,...,vin : ¢ = 0,...,d}, where v;; are differential inde-
terminates. From condition 4) of Theorem 5.1} F(vo,...,va)|lv(g) = 0. It is clear
that Q is a prime ideal and {v;o + Z?:l v;&rj 1 = 0,...,d} is its characteris-
tic set with v;o as leaders. By the differential Nullstellensatz, F(vy,...,vq) € Q.
From condition 1) of Theorem Bl ord(F,vy) = h. Then F(vo,...,vq) € (vio +
St Vs vla) + 0 0 e+ 0 Yy (e e T i =0, ).

In this algebraic relation, we can change vg-c) to algebraic indeterminates v;;, and

regard F' as an algebraic polynomial. Then f(vejk, Yoji, Voohs - - - > Yonh) € (Vioo +
h-1 h— .

S Vij0€rgs - ioh + 1y VignErj + 31y Yoy (M) vim€ ™ i =0, d),

which shows that lemma is valid. [l

Proof of Theorem[5.1l Let V, (t =1,...,g) be the irreducible differential variety
over F with (&7,,...,&-,) as its generic point over F. We will show later that all

the varieties V, are the same.
Firstly, we claim that the generic points of V;; which lie on Py, ... P, as well as on

“Po,* Py, . . . “P((thl) are included in {(&;1,...,&n) : 7=1,...,g9}. Without loss of
generality, we consider V;. It suffices to show that if (910, ..., 705 -« Mhs -« nn)
is a generic point of the algebraic ideal 1(V})<"> = I(V\))NF[y1, - -+, Yn,-- -, y%h), cey
] which lies on “PY) *PV (¢ = 1,....d;k = 0,...,h;l = 0,...,h — 1), then
there must exist some 7 such that n;o = &-; for j =1,...,n. Similar to the proof
of Lemma/[5.4], rewrite F' as an algebraic polynomial f (ugﬁ) , uélj), uég), el ug;)) and
consider the condition 2) as a pure algebraic factorization. Let (110, .., 7m0, - -,
Nih, -+ ->Mnn) be such a generic point of I(V;)<"> other than (&11,...,&1n, ..., Yf),

.. ,58?). Then we have the following isomorphism F (1910, - - -, 1m0y« - - s Mhy « - - s Mnk)
= F(&11y s &iny ov ey 5}11), e g)) which maps 7n;; to {Y;) for j from 1 to n, k
from 0 to h and leaving elements of F unchanged. By Lemma [5.2] this isomorphism
can be extended to an isomorphism

k L h
F(no,---» Nnos - - - Mihs -« nnhyuaj)yu(()j)) > F(€11y .- Einy e 110 Egn)»wajkvw()jl)
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where ¢ = 1,...,d;5 = 0,...,n;k = 0,...,h;l = 0,...,h — 1, and ugz) and
u(()lj) map to wy;r and woj; respectively. Since (710, Mn0s- -« Mhy-- - Mnp) lies
on 9P a ]P’él), the relation ug%) + 200 anzo (i)u((;;) Njk—m = 0 implies that
Weok + Z? 12; 0( ) ngélk m _ = 0(c = 1,...,d) and the relation u(()lg +
ZJ 1 Zm o ( )uOJ m) nj.1—m = 0 implies that wQOl+Z;’:1 Z'lrn:() ( )twojm f(l m) _

0(l = 0,...,h —1). Furthermore, if woon + 31—, woint\" + > S ()

wojmﬁ(h m) = 0 is valid, then from Lemma 5.4 f(wejk, woji, Wooh, - - -, Wonn) = 0.
Then, by the Hilbert Nullstellensatz, when regarded as a polynomial in the algebrauc

indeterminates u((fé), ey ué}:l), (We ik, Woji, u((fé), .. u((JZ)) S (ué}é) + u01)§11 4+
u(()};)gln +Z? 1 Zh_l (h) wojmf(h m)). Reversing the above isomorphism, we
have f( UJ ,uélj),ugé), .. u((JZ)) is divisible by ugé) + u((ﬁ)mo + -+ ugfl)nno +
Z] 1 Z ( )“03 ™) Mj,h—m- From condition 2), we have f( Up ,uglj),uég), . ug,?)
= AT (u00> +ulle g+t fm+2] LR (Ml e, Thus, there
exists some 7 such that n;o = & (] =1,...,n), Wthh completes the proof of the
claim.

Denote the dimension and order of V. by d, and h. respectively. We claim that
d. = d and h,; = h. Since V; meets Py,...,P; and (&1,...,&) are such points
in their intersection variety, by Theorem B.7 d, > d. If d, > d, then V, meets
Py, ..., Pg,Py. Let (m1,...,m,) be a generic point of V(I(V;),Py,...,P4,Py). Then
by Lemma B3] (11, ...,n,) is also a generic point of V;. Since (n1,...,7n,) lies on

Py, it also lies on “Py,* Py, ... ,° P(()h_l). From the above claim, there exists some 7
such that (m1,...,1n) = (&1, - - -, &rn). Thus, (€71, - .., &n) lies on Py, which implies
that F(up,...,uq) is a zero differential polynomial, which is a contradiction. So
dr =d.

It remains to show that h, = h. We first prove h, > h. Suppose the con-
trary, then h, < h — 1. Similar to the proof of Theorem 29 we can prove that
V([I(V;), Py, ..., Pg)<"> 0Py, ..., “P"™) = 0. But (&,,...,&,) is an element
of V(I(V;),Pq, ..., Pq) which also lies on *Py,* Py, ..., “]P’éh_l), which is a contra-
diction. Now suppose that h, > h, then h; — 1 > h. From Theorems and
A28 every point of V; which lies both on Py,...,P4 and on *Py,* Py, ...,° ]P’(()hf_l)
is a generic point of V.. But the generic points of V. which lie on Pq,... Py as
well as on “Pg,*Py,...,° ]P’éh_l) are included in {(&1,...,&m) : 7 = 1,...,9}

So some (&71,...,&m) lies on *Py,* Py, ... % ]P’(()hf_l). Since h, — 1 > h, we have

(&1, .-, &) lies on “]P’éh), which implies F'(ug,...,uq) = 0, a contradiction. Thus,
we have proved that d, = d and h, = h.

Since the solutions of V; and Py,...,Pg which also lie on *Py,* Py, ...,% ]P’éh_l)
are generic points of V. and these are therefore contained in {(&1,...,&m) : T =

1,...,g}. Hence, the differential Chow form of V; is of the form
g
Ir
Fr(uo, ... uq) = H (w00 + w01&r1 + -+ + ton&rn) ™) 77,
where [, =1 or 0 according to whether (&r1, -+, &n) isin V;. Since both F) and

F are irreducible, they differ at most by a factor in F. Therefore, V, (1 =1,...,9)
are the same variety, and F(ug,...,uq) is their differential Chow form. O
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In order to define Chow varieties in the next subsection, we will introduce the
concept of order-unmixed varieties. A variety V is called order-unmized if all its
components have the same dimension and order. Let V' be an order-unmixed differ-
ential variety with dimension d and order h and V' = Ui:l V; its minimal irreducible
decomposition with F;(ug,uy, ..., uy) the differential Chow form of V;. A differen-
tial Chow form of V is defined to be

l
(51) F(u()v"'aud):HFi(u07ula"'aud)Si

=1

with s; arbitrary nonnegative integers. Associated with (G5I), we introduce the
concept of multiplicative differential variety V = 22:1 5; V;, where s; is called the
multiplicity of V; in V. Recall that, we defined the differential degree m and leading
differential degree g for an irreducible differential variety V' in Definitions .17 and
respectively. Let g; and m; be the leading differential degree and differential
degree of V; respectively. Then the leading differential degree and differential degree
of V is defined to be Zli:1 s;g; and Zi:l s;m; respectively. Given a differential
polynomial G(ug,...,uq) with ord(G,ug) = h, it may be reducible over F such

(h)

that some of its irreducible factors are free of Uog . In that case, if the product of

all such factors is L, then we define the primitive part of G w.r.t. ué}é) to be G/L.

Otherwise, its primitive part w.r.t. u((fé) by convention is defined to be itself. Then

we have

Theorem 5.5. Let F(ug,uy,...,uq) be a differential polynomial and F the prim-
itive part of F with respect to the variable ué}é). If F satisfies the four conditions

in Theorem [51), then F is the Chow form for an order-unmized multiplicative dif-
ferential variety of dimension d and order h.

Proof: By definition, F' = Bﬁ, where ord(B,up) < h. Since F is differen-
tially homogenous in u; for each ¢, F' is differentially homogenous in each u;

too. And since B is free of ugé), i.e. B divides A, then F satisfies conditions
2) and 3), and moreover the (¢;1,...,&,) in the factorization are the same as
that of F. By the proof of Theorem B we have I(&:1,...,&) is of dimen-
sion d and order h over F. Then similarly as the proof of Lemma (1] and The-

orem ELTT} we conclude that I(— -7 v0;&rj, -, — 25— vaj&rj) is of dimension
dover F{vy; 4 =0,...,d;j = 1,...,n) and its relative order w.r.t. any para-
metric set is h, where v;; (1 = 0,...,d;j = 1,...,n) are differential indetermi-
nates over F{(&;1,...,&n). In particular, tr.deg F{(Co,C1,.--,Ca)/F{C1,..-,Ca) =
h, where Cz = — Z?:l ’Uij&—j. Thus B(— Z?:l ’Uojf-,—j, ey Z?:l ’Udjf-,—j) 75 0.
But F(— Z?:l ’Uojf-,—j, ceey— Z?:l ’Udj&—j) = O, SO F(— Z?:l ’Uojg-,—j, ceey— Z?:l

vgiér5) = 0. It follows that }?(S%T, ...,8%,) = 0, for if we suppose the con-
trary, then B(S%,,...,8%,) = 0. But if we specialize sj-k(j < k,j>0)to0
and s, (k > 0) to —vjy, then B(— Z?Zl 00;&rjs ey — E_?:l vg;€rj) = 0, which is a
contradiction. Thus, F satisfies condition 4).

Now we claim that F is the Chow form of some variety. Let V; =1(&1,...,&m)
over F. Following the steps in the proof of Theorem [5.1] exactly, we arrive at the
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conclusion that the differential Chow form of V; is of the form
g
lT
F-,—(uo, ce ,U_d) =A, H ((UOO + w1 + -+ uOn&—n)(h)) 3
p=1

where I;, = 1 or 0 according to whether ({-1,...,&7») is in V.. Since each &,
is in at least one of the varieties V;, the differential Chow form of U?—:l V; is of
the form G(uo,...,uq) = [[J_;(Fr(uo,...,u4))*" = C(u,...,ua) [[J_, ((uoo +
uo1ér1 + -0+ uonﬁm)(h))m” with 7,, > 0. Since F' and G have the same factors
(uoo + uw01&r1 + - -+ + uonSTn)(h) and the primitive factor of F writ. uég) is itself,
thus we can find 7n,, such that /' = G’ which completes the proof. O

5.2. Differential Chow quasi-variety. An irreducible variety V in the n dimen-
sional space with dimension d, order h, leading differential degree g, and differential
degree m is said to be of index (n,d, h,g,m). In this section, we will define the
differential Chow quasi-variety in certain cases such that each point in this variety
represents a differential variety with a given index (n,d, h, g, m).

For a given index (n, d, h, g, m), a differential polynomial F'(uy, . .., uq) which has
unknown coefficients ay (A =0, ..., D) and satisfies the following two conditions is
referred to as a differential polynomial with index (n,d, h,g, m).

1) F is a homogenous polynomial of the same degree m in each set of indetermi-
nates w; = (o, Ui1, - -, Uin) (1 = 0,...,d) and their derivatives. Furthermore, for
each wu;j, ord(F, u;;) is either h or —oo. In particular, ord(F, ugo) = h.

2) As a polynomial in ué’é),ué}}), e ,u(()};), its total degree is g. In particular,

deg(F, ufyy)) = g.

We want to determine the necessary and sufficient conditions imposed on ay (A =
0,...,D) in order that F' is the differential Chow form for a differential variety of
index (n,d, h,g,m). Proceeding in this way, if the necessary and sufficient condi-
tions given in Theorem [5.1] can be expressed by some differential polynomials in
ay, then the variety defined by them is called the differential Chow (quasi)-variety.
More precisely, we have the following definition.

Definition 5.6. Let F(up,...,uq) be a differential polynomial with differential
indeterminates a; (i = 0,...,D) as coefficients and with index (n,d,h,g,m). A
quasi-variety CV in the variables a; is called the Chow quasi-variety with index
(n,d, h,g,m) if a point @; is in CV if and only if F is the Chow form for an order-
unmixed differential variety with index (n,d, h,g,m;) with m; < m, where F is
obtained from F' by first replacing a; by a; and then taking the primitive part with
respect to the variable u((fé).

In the case h = 0, since Theorems and [5.1] become their algebraic counter-
parts, we can obtain the equations for the algebraic Chow variety in the same way
as in [16, p.56-57]. So in the following, we only consider the case h > 0. For h > 0,
the case g = 1 is relatively simple. The following result shows how to determine the
defining equations for the differential Chow quasi-variety with index (n,d, h, g, m)
in the case of g = 1.

Theorem 5.7. Let F(uyg,...,uq) be a differential polynomial with differential inde-
terminates a, (i = 0,..., D) as coefficients and with index (n,d, h,g,m) with g = 1.
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Let I'r be the initial of F' w.r.t. the elimination ranking uoo > w;; and ag, ..., ar the
coefficients of I'r. Then we can find a set of differentially homogeneous polynomials

R, (ag,...,ap)(w=1,...,v)

in a, such that V(R, : w =1,...,v) \ V(ag,...,as) is the Chow quasi-variety of
index (n,d, h,g,m) with g = 1.

Proof: In order for F to be a differential Chow form, by Theorem [[.2] F must be
differentially homogeneous in each u;. Let A be a differential indeterminate. For
each 7, replacing u; by Au; in F', we should have

F(uo,. . ,ui,l,/\ui,uprl,. ..,ud) = /\mF(uO,. . ,ud).

Comparing the coefficients of the power products of A, u;; and their derivatives,
we obtain a system of linearly homogenous equations R, (ag,...,ap) = 0, (w =
1,...,e1) in a,, which are the conditions for F' to be differentially homogeneous
and with degree m in each u;. So by Gaussian elimination in linear algebra, we can
obtain a basis for the solution space of R, =0 (w =1, ..., e1). More precisely, if the
coefficient matrix of this linear equations is of rank r, then r of {ag,...,ap} are the
linear combinations of the other D+1—7 of a,,. Now substitute these r relations into
F and denote the new polynomial by F;. That is, F} is a differentially homogenous
polynomial in each u;, which only involves D + 1 — r independent coefficients a,,.
Since g = 1, F can be written in the form

Fl(U.O, ey ud) = AQ’U,(()%) + Aluéq) + -+ Anuéz) + B,
where A; and B are free of U(SZ)- Denote —(Alugll) + -+ Anué}:l) + B)/Ap by
z. Then u((fs) = z is the solution of F; as an algebraic polynomial in ugs). Let
¢ = On / o
5= 0l oy L =
proof of Theorem .22 we define the derivatives of §; to be §§k) = (5u§]( )|u(h)_z
00 —

where 0,, is referred to be the natural derivation operator in F(ug,...,uq). It is
easy to see that this definition is well defined. Since F is differentially homogeneous
in ug, by Theorem [£.T5], for r # 0

- k+ OF,
S5 (")) e =

= AJ'/AO‘ug’g):z for j = 1,...,n. Proceeding as in the

k—1)

(
5=0 k>0 Auy;
In the case r = h, we have > ", uoj;u—lg,}) = 0. Set ugg) = 7z in the identity
Z?:o uoj% = 0, then we have gy + Z?Zl ug;&; = 0 with uég) = 2. So
U5
&1y y&nye ey ghil), ... ,57(1}171)) is a solution of *Py,*Py,...,° ]P’éhil) and z =

— (327 u0j&) ™. So Fi(u, . .., ug) = Ag(uoo+Y "5 uo;&;) ™. As a consequence,
with these &;, the second condition and the second part of the third condition in
Theorem [5.] are satisfied.

In order for F; to be the differential Chow form for some differential variety, by
Theorem B1L (&5, .., &,) should satisfy P, =0 (0 = 1,...,d) and F;(S%, ..., S9)
= 0 where S? are (n + 1) x (n + 1)-skew symmetric matrices with elements inde-
pendent indeterminates and & = (1,&y,...,&,)7.

Firstly, setting y; = A;/Ao in P, = 0, we get uy04o + Z?:l UgjA; = 0. Then
we obtain some equations in a, by equating to zero the coefficients of the various
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differential products of ug,...,ug. This gives polynomials R (ag,...,ap) (w =
61—|—1,...,62).
Secondly, we obtain some differential equations xr(a,, y1, - - .,vq) by equating to

zero the coefficients of all differential products of the independent indeterminates
sty (j > k) in F1(S°Y,..., 89) = 0 with Y = (1,y1,...,ys)". Then setting y\* =

§§k) in the above x, and clearing denominators, we obtain polynomial equations

(k)

pp in u;;’ and a,. Equating to zero the coefficients of the power products of the

©J
ugc) in p,, we finally obtain differential polynomials in a,: Ry (ao,...,ap)(w =
e2+1,...,v). We then obtain the defining equations R,, = 0 for the Chow variety.

We now show that all the R, are homogenous polynomials. We have known for

v=1,...,e1, R, are linearly homogenous polynomials. Since F} as well as A; are
linearly homogenous in ay,...,ap, Ry(ag,...,ap) (w=-e1 +1,...,e2) are linearly
homogenous polynomials. To show R, (ag,...,ap)(w = ea + 1,...,v) are differ-

entially homogenous polynomials, it suffices to show that as a rational function,
F1(S%,...,S%) is differentially homogenous in a,. Indeed, ¢; and their deriva-
tives are differentially homogenous rational functions in a,. And since F is linearly
homogenous in a,,, for any differential indeterminate \, Fy (S, ..., S%)(\ao, ...,
Aap) = ANMF(S%, ..., 8%)(ag,...,ap). Clearing denominators, we get differen-
tially homogenous polynomials in ay, . . ., ap, which implies that R (ao,...,ap) (w
=ey+1,...,v) are differentially homogeneous polynomials.

Let ag, ..., as be the coefficients of Ir. Then we claim that the quasi-projective
variety CV =V(R, : w =1,...,v) \ V(ao,...,ar) is the differential Chow quasi-
variety. Indeed, for every element (dp,...,ap) in CV, following the proof of this
theorem, I with coefficients d, satisfies the four conditions in Theorem [5.1l And
since g = 1, its primitive part must be irreducible and satisfies the four conditions
too, which consequently must be the differential Chow form for some irreducible
variety with index (n,d, h,1,m;) with m; < m. O

The following example illustrates the procedure to compute the Chow quasi-
variety in the case of g = 1.

Example 5.8. We consider a differential polynomial which has 16 terms and has
index (2,1,1,1,2) to illustrate the proof of Theorem Bt F = ajuiyupiuf, +
AU11U12U02UY) + A3UO1UO2UI2UL g + a4u§2u11u’10 + G5U%2U00U61 + agUi0U12U02UY,
+a7u00u02u12u’11+a8u32u10u’11+agu10u01u12u62+a10u00u02u11u’12+a11u11u12u00u62
+a12U01 U2U10 UL Fa13U00UT 1 U2 +A14U00 U1 U1 U12+A15U01 UToUO2UT +a16U10U31U12-
We will derive the conditions about the coefficients a, under which F' is a differ-
ential Chow form. Firstly, in order for F' to be differentially homogenous, we have
R1 = as+a1, R2 = ag+aq, R3 = ag+as, Ry = aro+ar, Bs = a11+az, Rg = aiz2+as.
Replacing as, as, ag, a10, a11, a12 by —a1, —aq, —ag, —a7, —as, —ags respectively in F'
to obtain Fj.

For such an F7, Ay = alu%Qum +agu11U12U02, A = —alu%QUQO—I—aﬁuloulguog, Ao
= —GgU10UNIUI2—A2UT1UT2 Ugo, and B = a3u01u02u12u’10—|—a4u32u11u’10—|—a7u00u02u12
u/11 —a4u32u10u’11 —G7U00U02U11U/12 —a3u01u02u10u’12 +a13u00u%1u02—|—a14u00 Uo1U11
U124015U01U10 Uo2U11Fa16U10Ud; U12. Then z = (Fi—Agug) /Ao, & = A1/ Aoluy ==
and & = Ag/A0|u60:z. To confirm that uig + ©11&1 + w1262 = 0, we must have
R7:a6—a1 :O,Rg:a2+a1 = 0.

In order to satisfy the fourth condition of Theorem 5.1l we obtain a set of dif-
ferential polynomial equations Ry (ao,...,a15) = 0 which have more complicated
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forms. By simplifying them with R; = 0 and Rg = 0, we obtain Rg = arai (a5 +
ai6), Rio = arai(aia + a16), R11 = arai(aiz — a6), Ri2 = ai1(as — a7), Rz =
ai1(as + az), Ris = arai6(ar — ar), Ris = a15a} + a1arase, Rig = araa} + arazass,
Ri7 = arai(a1—az), Rig = a%a13—a1a7a16, Rig = a?—a%al. Thus the Chow quasi-
variety is V(Rl, ey ng)/V(al, ag) = V(a2+a1, as+ai,aq4—ay,a5+ay, a6—ay, a7 —
ai,as+ai,a9+ai, a0+ a1, a1 — a1, G2 — a1, @14 + 13, @15 + a13, a6 — a13)/V(ar).
From Example £.3] it is easy to check that each point of this quasi-variety is the
coefficients of the Chow form for V(a1y] + a13y2) for some a1, a15 € F. Note that
a13 could be zero and the result is still valid.

We are unable to prove the existence of the Chow quasi-variety in the case of
g > 1. The main difficulty is how to do elimination for a mixed system consisting
of both differential and algebraic equations. In our case, conditions 1, 2, and
the second part of condition 3 of Theorem [5] generate algebraic equations in the
coefficients of F' and §;;, while the first part of condition 3 and condition 4 of
Theorem [B.1] generate differential equations. And we need to eliminate variables
&;; from these equations.

The following example shows that the Chow quasi-variety can be easily defined
in a very special case.

Example 5.9. If n = 1 and d = 0, then every irreducible differentially homoge-
neous polynomial in ug = (ugg,uo1) is the differential Chow form for some irre-
ducible differential variety.

Proof: Let F(ug) = F(ugo, uo1) be an irreducible differentially homogenous poly-
nomial with degree m and order h. Then F(—32,—1) = (—uim)mF(uoo,um).

Let g(—42) = F(—32,—1). It is easy to show that g(y) is an irreducible polyno-

mial. By Example [£3] the Chow form of the differential prime ideal sat(g(y)) is

(—u01)"g(—322) = (—uo1)™F (=32, —1) = F(uoo,uo1), and the result is proved.
O

6. GENERALIZED DIFFERENTIAL CHOW FORM AND DIFFERENTIAL RESULTANT

We mentioned that the differential Chow form can be obtained by intersecting
the variety with generic differential primes. In this section, we show that when inter-
secting an irreducible differential variety of dimension d by d+ 1 generic differential
primals, we can obtain the generalized Chow form which has similar properties to
the Chow form. As a direct consequence, we can define the differential resultant
and give some new properties for it.

6.1. Generalized differential Chow form. Let V be an irreducible differential

variety with dimension d and order h, (&1,...,&,) a generic point of V, and
(6'1) P; = w0 + Z Z uijkyj(-k) + Z ’uia(Y(si))a, (Z =0,..., d)
7=1k=0 0c Zg(osiﬂ)
1< ]al <m;

a generic differential polynomial of order s; > 0 and degree m; > 1, where w;j, Ui
(i=0,....d;j=1,....nk=0,...,8;a € Z;(Osﬁl),l < |a] < m;) are differential
indeterminates and (Y(*))* is a monomial in F[y1, ..., Yn,Yls- - Y, - - - ,yfi), e

(Si)]

yn '] with exponent vector o = (@10, .-+, Qs A11y -+ -y Qnly - vy Qllgys -« -5 Qps, ), 1€
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n S
(Yo = 1T 11 (y](k))ajk and |af = 377 | 701 aji,. For convenience in the rest
j=1k=0
of the paper, we denote the nonlinear part of each IP; by f;, that is,

P; =Uio+zzuijky§k) + fi(i=0,...,d)
j=1 k=0
Denote u to be the set consisting of all the u;;r and u;, for ¢ = 0,...,d. We
define d 4+ 1 elements (o, (1, ...,Cq of F{u,&1,...,&n):
(6.2) G==3 > u& — fil€r,... &) (i =0,....d)
j=1k=0

Similar to the proof of Lemma [l we can prove that any set of d elements of
Cos---,Cq is a differential transcendence basis of F(u)(Co,...,(qs) over F(u). We
thus have

Lemma 6.1. d.tr.deg F(u){((p,...,C(q)/F{u) =d

Let I be the prime differential ideal in R = F(u){zo,...,2q} having ¢ =
(Co,---,Ca) as a generic point. By Lemma [61] the dimension of I is d. Then, the
characteristic set of I w.r.t. any ranking consists of an irreducible differential poly-

nomial g(zo, ..., zq) in R and I = sat(g). Since the coefficients of g(zo,...,zq) are
elements in F(u), without loss of generality, we assume that g(u; zo, ..., zq) is irre-
ducible in F{u; zo, . .., zq}. We shall subsequently replace zq, . .., zq by oo, - - - , Udo,
and obtain

(63) G(uo,ul,...,ud) :g(u;uoo,...,udo),

where w; = (U0, - - -, Uijk, - - - » Uias - - -) 1S the sequence of the coefficients of P;.

Definition 6.2. The differential polynomial defined in (63) is called the generalized
Chow form of V' or the prime ideal I(V).

Similar to Lemma .9, we can prove that two generalized Chow forms for a
differential variety can only differ by a factor in F. Similar to Theorem [£.16] we can
prove that the generalized Chow form is a differentially homogeneous polynomial in
each set of indeterminates u;, but in this case the homogeneous degree for distinct
u; may be distinct. The order of the generalized Chow form w.r.t. u,;, denoted by
ord(G, u;), is defined to be max,cy,; {ord(g,u))}. Now we will consider the order of
the generalized Chow form.

Theorem 6.3. Let Z be a prime differential ideal with dimension d and order h,
and G(ug,uy, ...,uq) = g(w; upo, w10, --,udo) its generalized Chow form. Then
for a fized i between 0 and d, ord(g,ui) = h+ s — s; with s = 27:0 s;. Moreover,
ord(G,u;) = h+ s —s;.

Proof: Use the notations as above in this section. Let Zy; = [Z,Py,...,P;—1, P11,
Py € Flugy ..oy Wim1, Wig1, .- Ug){Y1, -, Yn}. By Theorem B3 Z, is a
prime ideal with dimension 0 and order h+sg+---+S;—1+5S;+1+---+S¢ = h+s5—s;,
where s = E?:o s

Let ]Ig_f = [I,Po, “en ,Pd] C f<u>{u00, ey Udoy Y1y - - - ,yn} and Il = [I,Po, ey
]P)d] = [Id,Po] C ]:<ﬁ \ {ui0}>{ui0,y1, - ,yn}, where U = ug U - Uuy. De-
note ord(G,u;0) by hi. Similar to the proof of Lemma [£TI0l we can show that
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A = g(u;ugo, - -, Udo), - th)yl — 8:221) SR a(hl)yn -~ th) is a characteris-
tic set of I ¢ w.r.t. the ehmlnatlon rlzi;lklng Uoo < e UG 11504 Ui+1,0 < Udo <
Uip < Y1 < -+ < yn. Clearly, Z; is the dlﬁerentlal ideal generated by I¢ ¢ in
]:<ﬁ \ {ui0}>{ui0, Y1y yn} Since {UOO, ceey Ui—1,05 Ui4+1,05 - - - ,udo} is a paramet—
ric set of I ¢, A is also a characteristic set of Z; w.r.t. the elimination rank-
ing uip < y1 < -+ < yu. Since dim(Z;) = 0, from Corollary 2.9 we have
ord(Zy) = ord(A) = ord(g, wso)-

On the other hand, let Il(l) [Id, —|— D i1 D Ouukyj ) fil € F@u\
{wio}){wios y1,-- - un} I=1,...,8). Smce dim(Z fl)) =0, ujp is a leading variable
of Iy) for any ranking. Thus, by Lemma BTl we have 0rd(I£l+1)) = ord(Iil)) +1,
which follows that ord(Ifsi)) = ord(Zy) + s;. And it is easy to see that ord(Ifsi)) =
ord(Zy) + s;. Indeed, let A be a characteristic set of Zy w.r.t. some orderly ranking
Z, and let t be the pseudo remainder of uggi) RD DD D uijkyEk) + fiwrt. A
under the ranking #Z. Clearly, ord(¢,u;,0) = s;. It is obvious that for some orderly
ranking, {A, 1} is a characteristic set of Z\*") with 1d(A) and u{3" as its leaders, so
ord(Ifsi)) = ord(Zy) + s;. Thus, ord(Z;) = ord(Zq) = h + s — s;, and consequently,
ord(g, uip) = h+ s — s;.

It remains to show that ord(g, usjx) (7 =1,...,n;k=0,1,...,s;) and ord(g, 4;a)
cannot exceed ord(g, uio). If ord(g, uix) =1 > ord(g,ulo) then differentiate the

identity g(u;¢p,...,(qs) = 0 w.r.t. uz(é)k, we have » (l) (u;Co,---,¢4) = 0. Thus,
Uik

aa(l) can be divisible by g, a contradiction. So ord(g, ui;x) < ord(g, ui). Similarly,
l]k

we can prove that ord(g, uio) < ord(g, ui). Thus, ord(G, u;) = ord(g, wip)- O
In the following, we consider the factorization of the generalized Chow form.

Denote h 4+ s — s; by h; (i =0,...,d) where s = sz:o s;. Now consider G as a

polynomial in uogo) with coefficients in Fy = ]-"(Uldzoﬁl(hl) \ {uégo)}), where ﬁl(}”) =

{u® :u€n,i=0,...,h}. Then, in an algebraic extension field of Fy, we have

g*AH uogo)—zT

where t; = deg(g,u((mo)). Let &prp = grpk/gr0(p = 1,...,n; k = 0,...,50) and

_ _ _9g _ _9g _
= 0, where E = —— = =1 and g,0 =
{ra gra/Gro, Grp a0 (ho) _ > Ira Du") o) gr
% hoy_ - Similarly as in Section 4.4, we can uniquely define the derivatives of
Upo " lugy "=2zr
zr and & po to make them elements in a differential field. From g(u; (o, .. ., €s)=0

if we differentiate this equality w.r.t. ug};‘;g), then we have
9y 9y

ol o

(6.4) (=) =

And if we differentiate g(u;¢p,...,¢s) =0 w.r.t. u((JZO), then

dg dg

(6.5) —s
oui) " o™

F(=(EN)™) =0
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where (£(s0)) = (Y(SO))a|(y17»»»7yn):(§17”"5")- And in the above equations, %,
P

4 when substituting w0 by .

99 dg 3
Bu[()}[;o

(ho) €
8u0p(l)C BuO;O

9g
represent
3 Céh,o) p

5 and
Foreachp=1,...,nand k=0,..., so, multiplying the equations in (G.4)) by uo,x,
and for o € ZZ (SOH , 1 < |a| < mg, multiplying the equations in ([65) by ugq, then
adding all of the equations obtained together, we have

n

0
Co aCOhO Z Z Opk ho) Z to au(io)
p=1k=0 Opk ac Zn(so—i-l)
1< |a| <my
n
Thus, the polynomial 00 5 thoy (ho) + > E Uopk - Thgy (ho) + > U aua(g“)
p=1k=0 Yopk ac Zn(so—i-l)
1< |a| < myg
vanishes at (ugo, - .., ud0) = (o, - -, C4)- Since it is at most of the same order as g,

it must be divisible by g. And since it has the same degree as g, there exists some
a € F such that

0
o (ho Z Z uOPk (hO) Z o 8 (iO) a9

Upo p=1k=0 Opk ac Z (so-i-l)
1< |OZ| S mo
Setting u((mo) = 2, in both sides of the above equation, we have
n  so
U00gr0 + Z Z U0pk 9T pk + Z Uoadra = 0.
p=1 k=0 ac Zn(so+1)
1< |OZ| < mo
Or,
n  so
ugo + Z Z quké.Tpk + Z ané.Ta =0.
p=1k=0 ac Z (so-i-l)
1< |a| § mo
Then, we have
n S0
(U’OO + Z Z qukngk: + Z uOonga)(hO)
p=1k=0 ac Zn(so—i-l)
1< |a| < myg
n  so .
= (Z quk:é-Tpk + Z uOonga)(hO) =0.
p=1k=0 ac Zn(so—i-l)
1< |a| <myg

We have the following theorem

Theorem 6.4. Let G(ugp,uy,...,uq) be the generalized Chow form of a differen-
tial variety of dimension d and order h. Then, there exist &p(p = 1,...,m7 =
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1,...,t0) in an extension field of Fo such that

to
(6.6) G(up,uy,...,ug) = A(ug,uy, ..., ua) [[ Pora, ..., &rn) ")

where A(ug,uy,...,uq) is in F{ug,uy,...,uq} and tg = deg(g,u(go“)).

Proof: From what we have proved,

n S0
(ho)
G(ug,uq, ..., ug) = A(ug, uy, ..., ug) I] (U00+ > > uoprbrpk + > u()aﬁra) o
=1 p=1k=0 oc Zn(so+1)

1<\a\<m0

Denote &rp0 by &7p. To complete the proof it remains to show that & ,p =

(&po) P (k = 1,...,80) and &4 = ﬁ H ((émo) ))%j. From equation (6.4)

15=0
and equation ([G.3]) , we have 5,@ = ;f(:zjm/ C(h“) (k=0,...,5) and (5(50))04 —
Opk
%/%. So we have the equalities: (085)%3)/3<?go>>(k) _ ng)/ﬁ
[0}
and — (hm/ PR —pﬁljno«a éﬁ?/%)m) " Thus, (%/%)m_
aua(i‘i)/ au%%‘” and 82%0) / aui%”) ; pﬁl jlsjo ((ﬁ%‘a) / %)(”)% vanish at (uoo,

o) = (Coy--.,Cq). Similarly as in the proof of Theorem 28 we can see

k n I\ Sed
( 8<g>/ aﬂ))()_ 8&)/ %)aﬁd 8&)/ <h> =11 H ( ) _%))(J)
o Opg Aug 0 Buop% 8u000 Bu[mo Aug 0 ou Opg 15} 0

p=1j= 0
vanish at u( o+d) _ z&j)(j > 0). Thus, 5512)0 = &rpp and o — H H ((§Tp0) )) -
p=1j=0
0. The proof is completed. O

Theorem 6.5. The points ({71, ..,&m) (T =1,...,t0) in (10) are generic points
of the variety V', and satisfy the equations

Pa(yla"-uyn):u00+zzu0pkyl(;k)+fa:O(U:L"-ud)

p=1k=0
Proof: The proof is similar to that of Theorem O

Theorem 6.6. Let G(uy,...,uy) be the generalized Chow form of V and S¢ =

% with ord(G,ugo) = ho. Suppose that u;(i = 0,...,d) specialize to sets v; of
%oo

specific elements in an extension field of F and P; (i = 0,...,d) are obtained by

substituting w; by v; in P;. If P, = 0(i = 0,...,d) meet V, then G(vo,...,Vq)

= 0. Furthermore, if G(vg,...,vq) = 0 and Sg(vo,...,vq) # 0, then the d + 1

differential hypersurfaces P; =0 (i =0,...,d) meet V.

Proof: The proof is similar to that of Theorem [£.33 O

6.2. Differential resultant of multivariate differential polynomials. As an
application of the generalized Chow form, we can define the differential resultant
of n + 1 generic differential polynomials in n variables. Let Z = [0] be the ideal
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generated by 0 in F{Y}. Then dim(Z) = n. Let G(ug,uy,...,u,) be the general-
ized Chow form for Z. Then we will define G(up, us,...,u,) to be the differential
resultant for the n + 1 generic differential polynomials given in (6.]).

Definition 6.7. The differential resultant for the n+ 1 generic differential polyno-
mials P; in (6I)) is defined to be the generalized Chow form of Z = [0] associated
with these P;, and will be denoted by R(ug,...,u,) = G(ug,...,u,).

Theorem 6.8. Let R(ug,...,u,) be the differential resultant of the n + 1 dif-
ferential polynomials Py, ..., P, given in (61) with ord(P;) = s; and deg(P;) =
m;, where w; = (Uio, ..., Uijk,---,Wia,---) (i = 0,...,n). Denote s = Y ' si,
u = U gu\{uoo,...,uno} and D = max{mg,m1,...,myn}. Then there exist
hjk € Fu)yr, .-, Yn,- - ,ygs), . ,yr(f)] such that

R(U.O, ey un) = Z hjkék]P)j.

Moreover, the degree of hji, is bounded by (sn +n)?D*"™ + D(sn + n).

Proof: Let J be the ideal generated by Py, ..., P, in F{ug,...,Un,Y1,.-.,Ynt Let
Z be the elimination ranking u < y, < -+ < y1 < Upo < -+ - < ugp with arbitrary
ranking endowed on ©(u) = (fu : u € u; 0 € O). Clearly, J is a prime ideal with

Py, ..., P, asits characteristic set w.r.t. Z. Thus, uU{y1,...,y,} is a parametric
set of J. From the definition of R, R € J. In R(uyg,...,u,) = G(ug,...,u,) =
g(u;ugp, - .., Uno), let u;p (i =0,...,n) be replaced respectively by
n S
k . .
P > wipyy = D (Y (1=0,..,0),
j=1k=0 ac ZrZL(OsﬂLl)
1< |OZ| S m;
and let R be expanded as a polynomial in Py, ...,P, and their derivatives. The
term not involving Py, ..., [P, or their derivatives will be a differential polynomial
only in uU{yi,...,y,} which also belong to J. Since J (F{u,v1,...,yn} = {0},
such term will be identically zero. So R is a linear combinations of Pg,...,P,

and some of their derivatives. Since ord(R,u;0) = s — s;, the above expansion
for R involving P; only up to the order s — s; and the coefficients in the lin-
ear combination are polynomials in F{u}{y1,...,Yn,- .-, yis), . ,y,(f)]. Thus, R €
(55 %0Py, ..., 0Py, Po,...,65 % Py, ...,6Pn, Pp) C FW Y1, - yns- s, yl),
which implies that (6°~%0Py,..., 0P, Py, ...,05 Py, ..., 0Py, Pp) in Flu)lyi,. ..,

yn,...,ygs),..., y,(f)] is the unit ideal. By [28, Theorem 1], there exist Aj; €

FW) Y1,y Yny---s ygs), cee y,(f)] with deg(A4;x) < (sn + n)2D*" " + D(sn + n)
such that

n S$—Sj
1= "% Ayd*P;,
§=0 k=0
where D = max{mq, m1,...,m,}. If we multiply the above equation by R and
denote Aji R by hji, we complete the proof. O

As a consequence of the above five theorems proved in this section, the properties
of the differential resultant listed in Theorem [[.3] are proved.
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7. CONCLUSION

In this paper, an intersection theory for generic differential polynomials is pre-
sented by giving the explicit formulas for the dimension and order of the intersection
of an irreducible differential variety with a generic differential hypersurface. As a
consequence, we show that the differential dimension conjecture is true for generic
differential polynomials.

The Chow form for an irreducible differential variety is defined. Most of the
properties of the algebraic Chow form have been extended to its differential coun-
terpart. In particular, we introduce the concept of Chow quasi-variety for a special
class of differential varieties. Furthermore, the generalized Chow form for an ir-
reducible differential variety is also defined and its properties are proved. As an
application of the generalized differential Chow form, we can give a rigorous defi-
nition for the differential resultant and establish its properties which are similar to
that of the Sylvester resultant of two univariate polynomials.

As we mentioned in Section 5, the theory of differential Chow quasi-varieties
is not fully developed and the main difficulty is to develop an elimination theory
for mixed systems with both algebraic and differential equations. We mentioned
in Section 1 that the algebraic Chow form has many important applications. It is
very interesting to see whether some of these applications can be extended to the
differential case.

In this paper, we only consider Chow forms for affine differential varieties. It is
not difficult to extend the results in this paper to differentially projective varieties.
In thus a case, the properties of Chow form is almost the same except in Theorem
433 where the condition Sg # 0 is not needed. And the Chow quasi-variety
becomes Chow variety, just as the algebraic counterpart in [16, [13].
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