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Abstract

Our purpose is to investigate properties for processes with station-
ary and independent increments under G-expectation. As applica-
tions, we prove the martingale characterization to G-Brownian motion
and present a decomposition for generalized G-Brownian motion.

1 Introduction

Let (€2, F, P) be a probability space and {A;} be a continuous process
in (9, F, P) with stationary, independent increments and finite variation.
It’s known that there exists some constant ¢ such that A; = ct. However,
it’s not the case in the G-expectation space. A counterexample is {(B):},
the quadratic variation process for G-Brownian motion {B;}. The process
{(B):} is very important in the theory of G-expectation, which shows, in
many aspects, the difference between Probability space and G-expectation
space. However, up to now, few properties of this process are known. For
example, we don’t know whether {-L(B),} belongs to ME(0,T).

In this article, we shall prove that if A, = fot hsds (respectively A; =
f(f hsd(B)) is a process with stationary, independent increments and h €
ML(0,T) (respectively h € Mg (0,T)), there exists some constant ¢ such
that h = ¢. As applications, we prove the following conclusions (Question 1
and 3 are put forward by Prof. Shige Peng in private communications):
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1. {£(B).} ¢ MA(0,T).
2.( Martingale characterization)
A symmetric G-martingale { M} is a G-Brownian motion if and only if

its quadratic variation process {{M),} has stationary and independent incre-
ments;

A symmetric G-martingale {M,} is a G-Brownian motion if and only if
its quadratic variation process (M) = ¢(B); for some ¢ > 0.

The sufficiency of the second part is implied by that of the first part, but
the necessity is not trivial.

3. Let {X:} be a generalized G-Brownian motion with zero mean, then
we have the following decomposition:

Xt — Mt+Lt,

where {M,} is a (symmetric) G-Brownian motion, and {L;} is a negative,
decreasing G-martingale with stationary and independent increments.

This article is organized as follows: In section 2, we recall some basic
notions and results of G-expectation and the related space of random vari-
ables. In section 3, we give characterizations to processes with stationary
and independent increments. In section 4, as applications, we prove the mar-
tingale characterization to G-Brownian motion and present a decomposition
for generalized G-Brownian motion.

2 Preliminary

We recall some basic notions and results of G-expectation and the related
space of random variables. More details of this section can be found in [P06,
P07, P08, P10].

Definition 2.1 Let €2 be a given set and let H be a linear space of real valued
functions defined on €2 with ¢ € H for all constants c. H is considered as the
space of random variables. A sublinear expectation F on H is a functional
E:H—>R satisfying the following properties: for all X, Y € H, we have

(a) Monotonicity: If X >V then E(X) > E(Y).
(b) Constant preserving: E(c) = c.

(c) Sub-additivity: E(X)— E(Y) < E(X —Y).

(d) Positive homogeneity: E(AX) = AE(X), X > 0.

(Q,H, E) is called a sublinear expectation space.
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Definition 2.2 Let X; and X5 be two n-dimensional random vectors defined
respectively in sublinear expectation spaces (Ql,’Hl,El) and (QQ,HQ,EQ).
They are called identically distributed, denoted by X; ~ X, if F, [p(X1)] =
Es[0(X5)], Yoo € Crpip(R™), where Cj 1;,(R") is the space of real continuous
functions defined on R™ such that

() — ()] < O+ |2* + [y*) |z — y|, Yo,y € R,

where k depends only on .

Definition 2.3 In a sublinear expectation space (2, H, E) a random vector
Y = (Y1,--,Y,), Y; € H is said to be independent to another random vector
X = (X1, -+, X)), X; € H under E(), denoted by Y LX), if for each test
function ¢ € Cypi(R™ x R™) we have E[p(X,Y)] = E[E[¢(z,Y)]a—x]-
Definition 2.4 (G-normal distribution) A d-dimensional random vector X =
(X1, -+, Xy) in a sublinear expectation space (2, H, E) is called G-normal
distributed if for each a,b € R we have

aX +bX ~ Va2 + 12X,

where X is an independent copy of X. Here the letter GG denotes the function

G(A) = %E[(AX, X)]:S;— R,

where S; denotes the collection of d x d symmetric matrices.

The function G (1) : Sy — R is a monotonic, sublinear mapping on Sy and
G(4) = LE[(AX, X)] < 1|A|E[|X|?*] =: 1|A|6? implies that there exists a

-2
bounded, convex and closed subset I' C S such that

G(A) = % sup Tr(7A).

vel’

If there exists some § > 0 such that G(A) — G(B) > fTr(A — B) for any
A > B, we call the G-normal distribution is non-degenerate, which is the
case we consider throughout this article.

Definition 2.5 i) Let Q7 = Cy([0, T]; RY) with the supremum norm, H% :=
{o(Byy, ..., B,)|Vn > 1,ty, ..., t, € [0,T],Vp € Cprip(R>™)}, G-expectation
is a sublinear expectation defined by

A

E[SO(BH - Btm Bt2 - Bt1> T Btm - Btmﬂ)]
= Elo(Vt — &1, V/tm — tm—16m)]
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for all X = ¢(B;, — By,, Bi, — By, -+, By,, — B, ,), where &, - - &, are
identically distributed d-dimensional G-normal distributed random vectors
in a sublinear expectatlon space (Q H, E) such that &1 is independent to
(&1,--,&) foreach i = 1,---,m. (Q, H%, E) is called a G-expectation space.

ii) Fort € [0,7] and £ = go(Btl, ..., By,) € HY, the conditional expectation
defined by(there is no loss of generality, we assume ¢ = t;)

m Btmfl)]
= @(Btl - Bt()> Bt2 - Bt1> T Bt-

% i —

Eti [@(Bh - Bt()? Bt2 — Bt17 S Bt

where

95(1'17 o ',ZL’,’) = E[(p(xla t 'axiaBtHl - Btw o '>Btm - Btmﬂ)]'

Define €], = [E(|€]P)]V? for € € H) and p > 1. Then Vt € [0,T],
F,(-) is a continuous mapping on H% with norm || - ||, ¢ and therefore can be
extended continuously to the completion L (Qr) of H} under norm || - ||1.6.

Definition 2.6 Let {X;} be a d-dimensional process defined on a sublinear
expectation space (£2, H, E) such that
(ii) {X;} is a process with stationary and independent increments;

(iii) limy_ E[| X;|?]t~* = 0. Then {X,} is called a generalized G-Brownian
motion.

~

If in addition E(X,) = E(—X,) = 0, {X;} is called a (symmetric) G-
Brownian motion.

Let H2(0,T) be the collection of processes in the following form: for a
given partition {tg,- - -, tx} = 7 of [0, 7],

=

nt(w) = gj(w)l[tjvtjﬂ)(t)’

J

I
o

where &; € Lip(,), i = 0,1,2,---, N—1. For each n € Hg(0,7), let |||z, =

{E(fOT ns|2ds)P/2}1/P and denote HE(0,T) the completion of H%(0,T') under
worm | - g

Definition 2.7 For each n € HZ(0,T) with the form

Zgj 1[t tit1) )



we define

1) = [ 0B = 3 6B, - B

By B-D-G inequality, the mapping I : H2(0,T) — L%(Q2r) is continuous
under || - || gz, and thus can be continuously extended to Hg(0,T).

Definition 2.8 A process { M, } with values in L, (Qr) is called a G-martingale
if Es(M,;) = M, for any s < t. If {M;} and {—M,} are both G-martingale,
we call {M;} symmetric G-martingale.

Definition 2.9 We say that {X;} on (Qr, L5(Qr), E) is a process with
independent increments if for any 0 < ¢t < T and sg < -5, <t < 15 <
~otn < T’ (Xt1 - Xtov o '>th - th71)J—(BS1 - BSO> T Bsm - Bsmﬂ)'

3 Characterization of processes with station-
ary and independent increments

In the sequel, we only consider 1-dimensional G-Brownian motion with 72 >
2
g > 0.

Lemma 3.1 For ( € M}(0,T) and € > 0, let

1 t
qz—/' Cuds
& J(t—e)t

ks—l

Z / Csd8 ke, (k1)) (1),

where t € [0,T), ke <T < (k6 +1)e. Then ase — 0

and

1¢° — C||Mé(O,T) — 0

and
165 = Cllarg 0. = 0.

Proof. The proofs to the two cases are similar. Here we only prove
the second case. Our proof starts with the observation that for any (,(’ €
Mg(0,T)

||C€’O /€0||Ml(oT < ||C CHMl(OT (3-0-1)



In fact,
1657 = ¢l s 0.7

T
= B[ 10— ¢

ke ke
= Bz gm—[ ¢'ds]

(k—1)e k—1)e

IA

ke

Jolbore / G, — C]uds]
(k—1)e

< 1€ = ¢l 01)-

By the definition of space M}(0,T), we know that for each ¢ € M}(0,T),
there exists a sequence of processes {("} with

G =T € Dt (1)
and & € Lip(§Y;,,) such that
¢ — CnHMé(O,T) — 0 as n — oo. (3.0.2)
It is easily seen that for each n,
1€ = ¢"llarg 07y —+ 0 as € = 0. (3.0.3)
Thus we get

||CE’0 - C”Mé(O,T)
< ¢ - Cn;E’OHMCl;(o,T) +[|¢" — Cn;s’OHMé(o,T) +|¢" — C||Mé(0,T)
< 2||Cn - C||Mé(O,T) + ||Cn - Cn;a’OHMé,(o,Ty

The second inequality follows from (3.0.1). Combining (3.0.2) and (3.0.3),
first letting € — 0, then letting n — oo, we have

!|C€’° — (s ©om) — 0ase—0.
G

O

Theorem 3.2 Let A; = f(f hsds with h € ML(0,T) be a process with sta-
tionary and independent increments, then we have h = ¢ for some constant
c.

Proof. Let ¢ := E(Ar)/T > —E(—Ap)/T =: ¢. Then we have



||h o hT/(2n)

2n—1

. ||Mé(O,T)

. (k+1)T/(2n)
— B [ T n,

o KT/ (2n)

v

o J 2kT/(2n)

onola(2k+1)T/(20)
By | h,

— pT/Cn)0) ]

— pT/en)0) 4]

onola2k+1)T/(20)
E| / (hy — hT/)0) g5

>
1  2kT/(2n)
_n-l (2k+1)T/(2n) 2kT/(2n)
X / s - [ hods)
1 J2kT/(2n) (2k—1)T/(2n)

= Z (Akt1yr/2n — Askryon) — (Aokr/on — Ak—1)7/20)]

= Z E[(Agki1yrzn — Askryan) — (Askryon — Ak—1yr/20)]

So by Lemma 3.1, letting n — 0o, we have ¢ = ¢. Furthermore, we note

that M; := A; — ¢t is a G-martingale. In fact, for ¢t > s, we see
E,(M,)
= s(Mt Ms) + Ms
= E(M,— M,)+ M,
= M,.

So {M,} is a symmetric G-martingale with finite variation, from which we
conclude that M; = 0, hence that A; = ¢t.[J

Corollary 3.3 Assume 7 > o > 0. {£(B),} ¢ M4(0,T).
Proof. The proof is straightforward from Theorem 3.2. [

Corollary 3.4 There is no symmetric G-martingale { M, } which is a standard
Brownian motion under G-expectation(i.e. (M); = t).

Proof. Let {M;} be a symmetric G-martingale. If { ), } is also a standard
Brownian motion, by Theorem 4.8 in [Songl0a] or Corollary 5.2 in [Song10b],
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there exists {h,} € MZ(0,T) such that

t
Mt == / h’sst
0

t
/ h2d(B), = t.
0

Thus we have 4 (B), = h;? € M(0,T), which contradicts the conclusion of
Corollary 3.3. O

Lemma 3.5 Let A, = [ hyds with h € MA(0,T) be a process with inde-
pendent increments. Then A; is symmetric for each ¢ € [0, 7.

and

Proof. By arguments similar to that in the proof of Theorem 3.2, we

have
Hh T, OH ML (0,T)
o 2nl L (k41)T/(20)
= F / |hs — RT/CM0|ds)
0 7 KT/ (2n)
_nl e2k+1)T/(2n)
Hy| I, — B/ ds]
0 ¥ 2kT/(2n)
_nol e(2k+1)T/(2n)
Hy| (hy — /0]

o 2kT/(2n)

n—1

R (2k+1)T/(2n) 2KT/(2n)
= E| (/ hsds—/ hsds)]
(

o < 2KT/(2n) 2k—1)+T/(2n)
n—1

= b Z[(A(%H)T/?n — Aorrjon) — (A2kryon — Ak—1)+1/20)]
k=0

= Z{E (k417 /2n — Aokr/on) + E[- (Agkr/on — A@r-1)+r1/2n)] }-

The right s1de of the first inequality is only the sum of the odd terms. Sum-
ming up the even terms only, we have

IIh R0 v 0.

3
,_.

~

{E(A@rsayr/on — Aeksnr/on) + El—(A@kiyr/an — Askryan)]}-
0

v
=
i



Combining the above inequalities, we have

2||h — hT/(Zn)’OHMé(o T)
2n—1

> Z {E(Agsyryan — Awrjzn) + El=(Agsnyryon — Airjzn)]}

2n—1 2n—1

> E Z (k4 1)T/2n — A@ry2n) + E Z (A 1yr/2n — Arryon)]
= (AT) + E(—Ar),

Thus by Lemma 3.1, letting n — oo, we have E(Ar) + E(—Ar) = 0,
which means that Ar is symmetric. [J
Theorem 3.6 Let A; = fg hsd(B)s be a process with stationary, independent
increments and h € M57(0,T). Then there exists a constant ¢ > 0 such that
At = C<B>t.

Proof. Noting that K, := f(f hsds fo 22)~1d A, is a process with
independent increments, we know that Kp is symmetrlc by Lemma 3.5.
Let My = [ hed(B), — [y 2G(h,)ds and Ny = [ hd(B), = A*t, where

A2 = E(Ar)/T. We know that both {M,} and {N,} are G- martmgale with
finite variation. Let L, = E,(\*T — 2K7). Then {L,} is a symmetric G-
martingale. By the symmetry of {L;} we have

Mt - Et(MT) = Et(LT + NT) - Lt + Nt.

By uniqueness of G-martingale decomposition, we get L =0 and h = 5. [

4 Characterization of G-Brownian motion

Theorem 4.1(Martingale characterization of G-Brownian motion)

Let {M,;} be a symmetric G-martingale with My € LZ(Qr) and {(M),}
a process with stationary and independent increments. Then {M,;} is a G-
Brownian motion;

Let {M,} be a G-Brownian motion on (Qr, LL(Q7), E). Then there exists
a positive constant ¢ such that (M), = ¢(B);.

Proof. By Theorem 4.8 in [SonglOaJ or Corollary 5. 2 in [Songl()b] there

exists h € ME(0,T) such that M, = [, hdBs. So (M), = fo h2d )s. By

Theorem 3.6, there exists some constant ¢ > 0 such that h? = ¢?. Thus by



the representation of G-expectation given in [DHPO0S], {M,;} is a G-Brownian
motion with M; distributed as N (0, [c?a?t, c*G>t]).

On the other hand, if {M,;} is a G-Brownian motion on (Qr, L§(Q7),
then {M,} is a symmetric G-martingale. By the above arguments, we have
(M); = ¢(B); for some positive constant c. [

Let H = {a| a(t) = Z}Z an Lt (1)} and H = {a € H|A[a = 0] = 0},
where ) is the Lebesgue measure.

In the following Lemma, we say that {X,} on (Qp, LL(Qr), E) is a pro-
cess with independent increments in the following sense, which is somewhat
different from Definition 2.9.

Forany O <t <T and sg < ---5,, <t <tg<---t, <T,
(th - Xtoa te '>th - thfl)J_(Xsl - ng, o 'aXSm - Xsmfl)'

Lemma 4.2 Let {L;} be a process with absolutely continuous paths. Assume
ct < L; <@t for real numbers ¢ < ¢. Let C(a) =¢a™ — ca™ for any a € R. If

T T
E(/ a(s)dLy) :/ Cla(s))ds, ¥ a € H,
0 0
we have that {Lt}A is a process with stationary and independent increments
such that ¢t = —E(—L;) < E(L;) = ¢t.

Proof. It suffices to prove the Lemma for the case ¢ < ¢. For any a € H,
let

05 = €lia(s)=0) + Clia(s)<0]-

By assumption,
T T
E(/ a(s)dLs):/ a(s)0ids.
0 0

On the other hand, by the representation theorem for G-expectation given
in [DHPOS] or [HP09], there exists some weak compact subset P C M;(€Qr)
such that

E(€) = max Ep(&), V¢ € Le(Qr),
which means that there exists P, € P such that
T T
Epa(/ a(s)dLy) :/ a(s)0ids.
0 0

By the assumption for L;, we have P,{L, = f(f 0%ds,Vt} = 1. From this we
have

. t1 tn
E[(p(Ltl _Ltov"'uLtn _Ltnfl)] Z(p(/ Hgdsu"'a/ egd8>

to tn—1
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for any ¢ € Cy(R"™) and n € N. Consequently,

~

E[SO(Ltl — Ly, -+ Ly, — Ltnfl)]

t1 tn
supiol [ o2, [ )
acH to tn—1
= sup  @(ei(ts —to), - - cnltn — tho1)).

Clv"'vcne[gva

v

The converse inequality is obvious. Thus {Lt}A is a process with stationary
and independent increments such that ¢t = —F(—L;) < E(L;) =¢t. O

Lemma 4.3 Let {L;} be a G-martingale with finite variation and Ly €
[:g(QT) for some 5 > 1. Then {L;} is decreasing. Particularly, L, < Ly =
E(Lr).

Proof. By Theorem 4.5 in [SonglOal, we know {L;} has the following
decomposition R

Ly = E(Lr) + M; + K,

where {M,;} is a symmetric G-martingale and {K,} is a negative, decreasing
G-martingale. Since both {L;} and {K;} are processes with finite variation,

we get M; = 0. Therefore, we have L, = E(Lr) + K; < E(LT) = Ly. O

Theorem 4.4 Let { X, } be a generalized G-Brownian motion with zero mean.
Then we have the following decomposition:

Xy = M; + Ly,

where {M;} is a symmetric G-Brownian motion, and {L;} is a negative,
decreasing G-martingale with stationary and independent increments.

Proof. Clearly {X;} is a G-martingale. By Theorem 4.5 in [Songl0a],
we have the following decomposition

Xy = My + Ly,

where {M,;} is a symmetric G-martingale, and {L;} is a negative, decreasing
G-martingale. Since {X;} is a process with independent increments, it is eas-
ily seen that {M,} and {L;} are both processes with independent increments
by the uniqueness of G-martingale decomposition.

In the sequel, we first prove that {L;} is a process with stationary in-
crements. Noting that E(—L,) = E(—X,) = ct for some positive constant
c since {X;} is a process with stationary and independent increments, we
claim that —L; — ct is a G-martingale. To prove this, it suffices to show that
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for any t > s, E[—(L; — L,)] = ¢(t — s). In fact,

EJ—(L, - Ly)]
= E,J—(X,— M, — X, + M,)]
= :J—QQ—XM
= F _(Xt - Xs)]

Combining this with Lemma 4.3, we have —L; — ¢t < 0. On the other hand,
for any a € H

#1[ atspar

~ T
= E[/ a(s)dX)
0
= E[Zz;éatk (th+1 - th)]

= Zz;écagc(tkﬂ - tk)
T T

= / ca_(s)ds:/ C(a(s))ds,
0 0

where C'(a(s)) is defined as in Lemma 4.2 with ¢ = 0,¢ = —c. By Lemma
4.2, {L;} is a process with stationary increments.

Now we are in a position to show that {M,} is a (symmetric) G-Brownian
motion. To this end, by Theorem 4.1, it suffices to prove that {(M),} is a
process with stationary and independent increments. For n € N, let

2n—1
th = Xerl kT (k+1)T (t)
2n }2”7 —on ]
k=0
and
on—1
QX)) =D (X = Xpe)?
k=0

Observing that QF(X) = X2 —2 [}

o XedXs, we have

() — QX))
t t
2 / (X7 — XTHdM,| + | / (X7 — X7 dL,|)
0 0
— oI +1I).

IN
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for any n,m € N. It’s easy to check that
t
E(IT) < c/ E( X" — X™")ds — 0 as m,n — co.
0

Noting that

2n—12mM—1
Io= D D K~ XM =M
i=0 j=0
2m—12m—1 '
= > > 1
i=0 =0
we get
2n—12m—1 '
E(?) <> N E[(I).
i=0 j=0

It’s easily seen that E[(I7)?] < sz(njfm) for some constant C, hence that
E(I?) — 0, and finally that E(|QMX) — Q"(X)|) = 0 as m,n — oo.
Then

X) = lim  QF

< >t L1G(Q;,1~),n—>oo t
is a process with stationary and independent increments. Noting that (M), =
(X)), (M) is also a process with stationary and independent increments. [
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