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Abstract

Our purpose is to investigate properties for processes with station-

ary and independent increments under G-expectation. As applica-

tions, we prove the martingale characterization to G-Brownian motion

and present a decomposition for generalized G-Brownian motion.

1 Introduction

Let (Ω,F , P ) be a probability space and {At} be a continuous process
in (Ω,F , P ) with stationary, independent increments and finite variation.
It’s known that there exists some constant c such that At = ct. However,
it’s not the case in the G-expectation space. A counterexample is {〈B〉t},
the quadratic variation process for G-Brownian motion {Bt}. The process
{〈B〉t} is very important in the theory of G-expectation, which shows, in
many aspects, the difference between Probability space and G-expectation
space. However, up to now, few properties of this process are known. For
example, we don’t know whether { d

ds
〈B〉s} belongs to M1

G(0, T ).

In this article, we shall prove that if At =
∫ t

0
hsds (respectively At =

∫ t

0
hsd〈B〉s) is a process with stationary, independent increments and h ∈

M1
G(0, T ) (respectively h ∈ M1,+

G (0, T )), there exists some constant c such
that h ≡ c. As applications, we prove the following conclusions (Question 1
and 3 are put forward by Prof. Shige Peng in private communications):
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1. { d
ds
〈B〉s} /∈ M1

G(0, T ).

2.( Martingale characterization)

A symmetric G-martingale {Mt} is a G-Brownian motion if and only if
its quadratic variation process {〈M〉t} has stationary and independent incre-
ments;

A symmetric G-martingale {Mt} is a G-Brownian motion if and only if
its quadratic variation process 〈M〉t = c〈B〉t for some c ≥ 0.

The sufficiency of the second part is implied by that of the first part, but
the necessity is not trivial.

3. Let {Xt} be a generalized G-Brownian motion with zero mean, then
we have the following decomposition:

Xt = Mt + Lt,

where {Mt} is a (symmetric) G-Brownian motion, and {Lt} is a negative,
decreasing G-martingale with stationary and independent increments.

This article is organized as follows: In section 2, we recall some basic
notions and results of G-expectation and the related space of random vari-
ables. In section 3, we give characterizations to processes with stationary
and independent increments. In section 4, as applications, we prove the mar-
tingale characterization to G-Brownian motion and present a decomposition
for generalized G-Brownian motion.

2 Preliminary

We recall some basic notions and results of G-expectation and the related
space of random variables. More details of this section can be found in [P06,
P07, P08, P10].

Definition 2.1 Let Ω be a given set and let H be a linear space of real valued
functions defined on Ω with c ∈ H for all constants c. H is considered as the
space of random variables. A sublinear expectation Ê on H is a functional
Ê : H → R satisfying the following properties: for all X, Y ∈ H, we have

(a) Monotonicity: If X ≥ Y then Ê(X) ≥ Ê(Y ).

(b) Constant preserving: Ê(c) = c.

(c) Sub-additivity: Ê(X)− Ê(Y ) ≤ Ê(X − Y ).

(d) Positive homogeneity: Ê(λX) = λÊ(X), λ ≥ 0.

(Ω,H, Ê) is called a sublinear expectation space.
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Definition 2.2 Let X1 and X2 be two n-dimensional random vectors defined
respectively in sublinear expectation spaces (Ω1,H1, Ê1) and (Ω2,H2, Ê2).
They are called identically distributed, denoted by X1 ∼ X2, if Ê1[ϕ(X1)] =
Ê2[ϕ(X2)], ∀ϕ ∈ Cl,Lip(R

n), where Cl,Lip(R
n) is the space of real continuous

functions defined on Rn such that

|ϕ(x)− ϕ(y)| ≤ C(1 + |x|k + |y|k)|x− y|, ∀x, y ∈ Rn,

where k depends only on ϕ.

Definition 2.3 In a sublinear expectation space (Ω,H, Ê) a random vector
Y = (Y1, · · ·, Yn), Yi ∈ H is said to be independent to another random vector
X = (X1, · · ·, Xm), Xi ∈ H under Ê(·), denoted by Y⊥X , if for each test
function ϕ ∈ Cl,Lip(R

m × Rn) we have Ê[ϕ(X, Y )] = Ê[Ê[ϕ(x, Y )]x=X ].

Definition 2.4 (G-normal distribution) A d-dimensional random vectorX =
(X1, · · ·, Xd) in a sublinear expectation space (Ω,H, Ê) is called G-normal
distributed if for each a, b ∈ R we have

aX + bX̂ ∼
√
a2 + b2X,

where X̂ is an independent copy of X . Here the letter G denotes the function

G(A) :=
1

2
Ê[(AX,X)] : Sd → R,

where Sd denotes the collection of d× d symmetric matrices.

The function G(·) : Sd → R is a monotonic, sublinear mapping on Sd and
G(A) = 1

2
Ê[(AX,X)] ≤ 1

2
|A|Ê[|X|2] =: 1

2
|A|σ̄2 implies that there exists a

bounded, convex and closed subset Γ ⊂ S+
d such that

G(A) =
1

2
sup
γ∈Γ

Tr(γA).

If there exists some β > 0 such that G(A) − G(B) ≥ βTr(A − B) for any
A ≥ B, we call the G-normal distribution is non-degenerate, which is the
case we consider throughout this article.

Definition 2.5 i) Let ΩT = C0([0, T ];R
d) with the supremum norm, H0

T :=
{ϕ(Bt1 , ..., Btn)|∀n ≥ 1, t1, ..., tn ∈ [0, T ], ∀ϕ ∈ Cl,Lip(R

d×n)}, G-expectation
is a sublinear expectation defined by

Ê[ϕ(Bt1 − Bt0 , Bt2 − Bt1 , · · ·, Btm − Btm−1)]

= Ẽ[ϕ(
√
t1 − t0ξ1, · · ·,

√

tm − tm−1ξm)],
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for all X = ϕ(Bt1 − Bt0 , Bt2 − Bt1 , · · ·, Btm − Btm−1), where ξ1, · · ·, ξn are
identically distributed d-dimensional G-normal distributed random vectors
in a sublinear expectation space (Ω̃, H̃, Ẽ) such that ξi+1 is independent to
(ξ1, · · ·, ξi) for each i = 1, · · ·, m. (ΩT ,H0

T , Ê) is called a G-expectation space.

ii) For t ∈ [0, T ] and ξ = ϕ(Bt1 , ..., Btn) ∈ H0
T , the conditional expectation

defined by(there is no loss of generality, we assume t = ti)

Êti [ϕ(Bt1 − Bt0 , Bt2 − Bt1 , · · ·, Btm − Btm−1)]

= ϕ̃(Bt1 −Bt0 , Bt2 −Bt1 , · · ·, Bti −Bti−1
),

where

ϕ̃(x1, · · ·, xi) = Ê[ϕ(x1, · · ·, xi, Bti+1
−Bti , · · ·, Btm −Btm−1)].

Define ‖ξ‖p,G = [Ê(|ξ|p)]1/p for ξ ∈ H0
T and p ≥ 1. Then ∀t ∈ [0, T ],

Êt(·) is a continuous mapping on H0
T with norm ‖ · ‖1,G and therefore can be

extended continuously to the completion L1
G(ΩT ) of H0

T under norm ‖ · ‖1,G.
Definition 2.6 Let {Xt} be a d-dimensional process defined on a sublinear
expectation space (Ω,H, Ê) such that

(i) X0 = 0;

(ii) {Xt} is a process with stationary and independent increments;

(iii) limt→0 Ê[|Xt|3]t−1 = 0. Then {Xt} is called a generalized G-Brownian
motion.

If in addition Ê(Xt) = Ê(−Xt) = 0, {Xt} is called a (symmetric) G-
Brownian motion.

Let H0
G(0, T ) be the collection of processes in the following form: for a

given partition {t0, · · ·, tN} = πT of [0, T ],

ηt(ω) =
N−1
∑

j=0

ξj(ω)1[tj ,tj+1)(t),

where ξi ∈ Lip(Ωti), i = 0, 1, 2, · · ·, N−1. For each η ∈ H0
G(0, T ), let ‖η‖Hp

G
=

{Ê(
∫ T

0
|ηs|2ds)p/2}1/p and denote Hp

G(0, T ) the completion of H0
G(0, T ) under

norm ‖ · ‖Hp
G
.

Definition 2.7 For each η ∈ H0
G(0, T ) with the form

ηt(ω) =

N−1
∑

j=0

ξj(ω)1[tj ,tj+1)(t),
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we define

I(η) =

∫ T

0

η(s)dBs :=
N−1
∑

j=0

ξj(Btj+1
−Btj ).

By B-D-G inequality, the mapping I : H0
G(0, T ) → Lp

G(ΩT ) is continuous
under ‖ · ‖Hp

G
and thus can be continuously extended to Hp

G(0, T ).

Definition 2.8 A process {Mt} with values in L1
G(ΩT ) is called aG-martingale

if Ês(Mt) = Ms for any s ≤ t. If {Mt} and {−Mt} are both G-martingale,
we call {Mt} symmetric G-martingale.

Definition 2.9 We say that {Xt} on (ΩT , L
1
G(ΩT ), Ê) is a process with

independent increments if for any 0 < t < T and s0 ≤ · · ·sm ≤ t ≤ t0 ≤
· · ·tn ≤ T , (Xt1 −Xt0 , · · ·, Xtn −Xtn−1)⊥(Bs1 −Bs0 , · · ·, Bsm − Bsm−1).

3 Characterization of processes with station-

ary and independent increments

In the sequel, we only consider 1-dimensional G-Brownian motion with σ2 ≥
σ2 > 0.

Lemma 3.1 For ζ ∈ M1
G(0, T ) and ε > 0, let

ζεt =
1

ε

∫ t

(t−ε)+
ζsds

and

ζε,0t =
kε−1
∑

k=1

1

ε

∫ kε

(k−1)ε

ζsds1]kε,(k+1)ε](t),

where t ∈ [0, T ], kεε ≤ T < (kε + 1)ε. Then as ε → 0

‖ζε − ζ‖M1
G
(0,T ) → 0

and
‖ζε,0 − ζ‖M1

G
(0,T ) → 0.

Proof. The proofs to the two cases are similar. Here we only prove
the second case. Our proof starts with the observation that for any ζ, ζ ′ ∈
M1

G(0, T )

‖ζε,0 − ζ ′ε,0‖M1
G
(0,T ) ≤ ‖ζ − ζ ′‖M1

G
(0,T ). (3.0.1)

5



In fact,

‖ζε,0 − ζ ′ε,0‖M1
G
(0,T )

= Ê[

∫ T

0

|ζε,0 − ζ ′ε,0|]ds

= Ê[Σkε−1
k=1 |

∫ kε

(k−1)ε

ζsds−
∫ kε

(k−1)ε

ζ ′sds|]

≤ Ê[Σkε−1
k=1

∫ kε

(k−1)ε

|ζs − ζ ′|sds]

≤ ‖ζ − ζ ′‖M1
G
(0,T ).

By the definition of space M1
G(0, T ), we know that for each ζ ∈ M1

G(0, T ),
there exists a sequence of processes {ζn} with

ζnt = Σmn−1
k=0 ξntk1]tk,tk+1](t)

and ξntk ∈ Lip(Ωtk) such that

‖ζ − ζn‖M1
G
(0,T ) → 0 as n → ∞. (3.0.2)

It is easily seen that for each n,

‖ζn;ε,0 − ζn‖M1
G
(0,T ) → 0 as ε → 0. (3.0.3)

Thus we get

‖ζε,0 − ζ‖M1
G
(0,T )

≤ ‖ζε,0 − ζn;ε,0‖M1
G
(0,T ) + ‖ζn − ζn;ε,0‖M1

G
(0,T ) + ‖ζn − ζ‖M1

G
(0,T )

≤ 2‖ζn − ζ‖M1
G
(0,T ) + ‖ζn − ζn;ε,0‖M1

G
(0,T ).

The second inequality follows from (3.0.1). Combining (3.0.2) and (3.0.3),
first letting ε → 0, then letting n → ∞, we have

‖ζε,0 − ζ‖M1
G
(0,T ) → 0 as ε → 0.

�

Theorem 3.2 Let At =
∫ t

0
hsds with h ∈ M1

G(0, T ) be a process with sta-
tionary and independent increments, then we have h ≡ c for some constant
c.

Proof. Let c := Ê(AT )/T ≥ −Ê(−AT )/T =: c. Then we have
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‖h− hT/(2n),0‖M1
G
(0,T )

= Ê[
2n−1
∑

k=0

∫ (k+1)T/(2n)

kT/(2n)

|hs − hT/(2n),0
s |ds]

≥ Ê[
n−1
∑

k=0

∫ (2k+1)T/(2n)

2kT/(2n)

|hs − hT/(2n),0
s |ds]

≥ Ê[
n−1
∑

k=1

∫ (2k+1)T/(2n)

2kT/(2n)

(hs − hT/(2n),0
s )ds]

= Ê[
n−1
∑

k=1

(

∫ (2k+1)T/(2n)

2kT/(2n)

hsds−
∫ 2kT/(2n)

(2k−1)T/(2n)

hsds)]

= Ê
n−1
∑

k=1

[(A(2k+1)T/2n − A2kT/2n)− (A2kT/2n −A(2k−1)T/2n)]

=
n−1
∑

k=1

Ê[(A(2k+1)T/2n − A2kT/2n)− (A2kT/2n − A(2k−1)T/2n)]

=
n−1
∑

k=1

(c− c)T/(2n)

= (c− c)(n− 1)T/(2n).

So by Lemma 3.1, letting n → ∞, we have c = c. Furthermore, we note
that Mt := At − ct is a G-martingale. In fact, for t > s, we see

Ês(Mt)

= Ês(Mt −Ms) +Ms

= Ê(Mt −Ms) +Ms

= Ms.

So {Mt} is a symmetric G-martingale with finite variation, from which we
conclude that Mt ≡ 0, hence that At = ct.�

Corollary 3.3 Assume σ > σ > 0. { d
ds
〈B〉s} /∈ M1

G(0, T ).

Proof. The proof is straightforward from Theorem 3.2. �

Corollary 3.4 There is no symmetric G-martingale {Mt} which is a standard
Brownian motion under G-expectation(i.e. 〈M〉t = t).

Proof. Let {Mt} be a symmetric G-martingale. If {Mt} is also a standard
Brownian motion, by Theorem 4.8 in [Song10a] or Corollary 5.2 in [Song10b],
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there exists {hs} ∈ M2
G(0, T ) such that

Mt =

∫ t

0

hsdBs

and
∫ t

0

h2
sd〈B〉s = t.

Thus we have d
ds
〈B〉s = h−2

s ∈ M1
G(0, T ), which contradicts the conclusion of

Corollary 3.3. �

Lemma 3.5 Let At =
∫ t

0
hsds with h ∈ M1

G(0, T ) be a process with inde-
pendent increments. Then At is symmetric for each t ∈ [0, T ].

Proof. By arguments similar to that in the proof of Theorem 3.2, we
have

‖h− hT/(2n),0‖M1
G
(0,T )

= Ê[

2n−1
∑

k=0

∫ (k+1)T/(2n)

kT/(2n)

|hs − hT/(2n),0
s |ds]

≥ Ê[

n−1
∑

k=0

∫ (2k+1)T/(2n)

2kT/(2n)

|hs − hT/(2n),0
s |ds]

≥ Ê[

n−1
∑

k=0

∫ (2k+1)T/(2n)

2kT/(2n)

(hs − hT/(2n),0
s )ds]

= Ê[

n−1
∑

k=0

(

∫ (2k+1)T/(2n)

2kT/(2n)

hsds−
∫ 2kT/(2n)

(2k−1)+T/(2n)

hsds)]

= Ê

n−1
∑

k=0

[(A(2k+1)T/2n − A2kT/2n)− (A2kT/2n − A(2k−1)+T/2n)]

=

n−1
∑

k=0

{Ê(A(2k+1)T/2n −A2kT/2n) + Ê[−(A2kT/2n −A(2k−1)+T/2n)]}.

The right side of the first inequality is only the sum of the odd terms. Sum-
ming up the even terms only, we have

‖h− hT/(2n),0‖M1
G
(0,T )

≥
n−1
∑

k=0

{Ê(A(2k+2)T/2n − A(2k+1)T/2n) + Ê[−(A(2k+1)T/2n −A2kT/2n)]}.

8



Combining the above inequalities, we have

2‖h− hT/(2n),0‖M1
G
(0,T )

≥
2n−1
∑

k=0

{Ê(A(k+1)T/2n − A(kT/2n) + Ê[−(A(k+1)T/2n −AkT/2n)]}

≥ Ê
2n−1
∑

k=0

(A(k+1)T/2n − A(kT/2n) + Ê
2n−1
∑

k=0

[−(A(k+1)T/2n − AkT/2n)]

= Ê(AT ) + Ê(−AT ),

Thus by Lemma 3.1, letting n → ∞, we have Ê(AT ) + Ê(−AT ) = 0,
which means that AT is symmetric. �

Theorem 3.6 Let At =
∫ t

0
hsd〈B〉s be a process with stationary, independent

increments and h ∈ M1,+
G (0, T ). Then there exists a constant c ≥ 0 such that

At = c〈B〉t.
Proof. Noting that Kt :=

∫ t

0
hsds =

∫ t

0
(d〈B〉s

ds
)−1dAs is a process with

independent increments, we know that KT is symmetric by Lemma 3.5.

Let Mt =
∫ t

0
hsd〈B〉s −

∫ t

0
2G(hs)ds and Nt =

∫ t

0
hsd〈B〉s − λ2t, where

λ2 = Ê(AT )/T . We know that both {Mt} and {Nt} are G-martingale with
finite variation. Let Lt = Êt(λ

2T − σ2KT ). Then {Lt} is a symmetric G-
martingale. By the symmetry of {Lt} we have

Mt = Êt(MT ) = Êt(LT +NT ) = Lt +Nt.

By uniqueness of G-martingale decomposition, we get L ≡ 0 and h ≡ λ2

σ2 . �

4 Characterization of G-Brownian motion

Theorem 4.1(Martingale characterization of G-Brownian motion)

Let {Mt} be a symmetric G-martingale with MT ∈ L2
G(ΩT ) and {〈M〉t}

a process with stationary and independent increments. Then {Mt} is a G-
Brownian motion;

Let {Mt} be a G-Brownian motion on (ΩT , L
1
G(ΩT ), Ê). Then there exists

a positive constant c such that 〈M〉t = c〈B〉t.
Proof. By Theorem 4.8 in [Song10a] or Corollary 5.2 in [Song10b], there

exists h ∈ M2
G(0, T ) such that Mt =

∫ t

0
hsdBs. So 〈M〉t =

∫ t

0
h2
sd〈B〉s. By

Theorem 3.6, there exists some constant c ≥ 0 such that h2 ≡ c2. Thus by
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the representation of G-expectation given in [DHP08], {Mt} is a G-Brownian
motion with Mt distributed as N(0, [c2σ2t, c2σ2t]).

On the other hand, if {Mt} is a G-Brownian motion on (ΩT , L
1
G(ΩT ),

then {Mt} is a symmetric G-martingale. By the above arguments, we have
〈M〉t = c〈B〉t for some positive constant c. �

Let H = {a| a(t) = Σn−1
k=0atk1]tk,tk+1](t)} and H = {a ∈ H|λ[a = 0] = 0},

where λ is the Lebesgue measure.

In the following Lemma, we say that {Xt} on (ΩT , L
1
G(ΩT ), Ê) is a pro-

cess with independent increments in the following sense, which is somewhat
different from Definition 2.9.

For any 0 < t < T and s0 ≤ · · ·sm ≤ t ≤ t0 ≤ · · ·tn ≤ T ,

(Xt1 −Xt0 , · · ·, Xtn −Xtn−1)⊥(Xs1 −Xs0, · · ·, Xsm −Xsm−1).

Lemma 4.2 Let {Lt} be a process with absolutely continuous paths. Assume
ct ≤ Lt ≤ ct for real numbers c ≤ c. Let C(a) = ca+ − ca− for any a ∈ R. If

Ê(

∫ T

0

a(s)dLs) =

∫ T

0

C(a(s))ds, ∀ a ∈ H,

we have that {Lt} is a process with stationary and independent increments
such that ct = −Ê(−Lt) ≤ Ê(Lt) = ct.

Proof. It suffices to prove the Lemma for the case c < c. For any a ∈ H ,
let

θas = c1[a(s)≥0] + c1[a(s)<0].

By assumption,

Ê(

∫ T

0

a(s)dLs) =

∫ T

0

a(s)θasds.

On the other hand, by the representation theorem for G-expectation given
in [DHP08] or [HP09], there exists some weak compact subset P ⊂ M1(ΩT )
such that

Ê(ξ) = max
P∈P

EP (ξ), ∀ξ ∈ L1
G(ΩT ),

which means that there exists Pa ∈ P such that

EPa
(

∫ T

0

a(s)dLs) =

∫ T

0

a(s)θasds.

By the assumption for Lt, we have Pa{Lt =
∫ t

0
θasds, ∀t} = 1. From this we

have

Ê[ϕ(Lt1 − Lt0 , · · ·, Ltn − Ltn−1)] ≥ ϕ(

∫ t1

t0

θasds, · · ·,
∫ tn

tn−1

θasds)
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for any ϕ ∈ Cb(R
n) and n ∈ N . Consequently,

Ê[ϕ(Lt1 − Lt0 , · · ·, Ltn − Ltn−1)]

≥ sup
a∈H

ϕ(

∫ t1

t0

θasds, · · ·,
∫ tn

tn−1

θasds)

= sup
c1,···,cn∈[c,c]

ϕ(c1(t1 − t0), · · ·, cn(tn − tn−1)).

The converse inequality is obvious. Thus {Lt} is a process with stationary
and independent increments such that ct = −Ê(−Lt) ≤ Ê(Lt) = ct. �

Lemma 4.3 Let {Lt} be a G-martingale with finite variation and LT ∈
Lβ
G(ΩT ) for some β > 1. Then {Lt} is decreasing. Particularly, Lt ≤ L0 =

Ê(LT ).

Proof. By Theorem 4.5 in [Song10a], we know {Lt} has the following
decomposition

Lt = Ê(LT ) +Mt +Kt,

where {Mt} is a symmetric G-martingale and {Kt} is a negative, decreasing
G-martingale. Since both {Lt} and {Kt} are processes with finite variation,
we get Mt ≡ 0. Therefore, we have Lt = Ê(LT ) +Kt ≤ Ê(LT ) = L0. �

Theorem 4.4 Let {Xt} be a generalized G-Brownian motion with zero mean.
Then we have the following decomposition:

Xt = Mt + Lt,

where {Mt} is a symmetric G-Brownian motion, and {Lt} is a negative,
decreasing G-martingale with stationary and independent increments.

Proof. Clearly {Xt} is a G-martingale. By Theorem 4.5 in [Song10a],
we have the following decomposition

Xt = Mt + Lt,

where {Mt} is a symmetric G-martingale, and {Lt} is a negative, decreasing
G-martingale. Since {Xt} is a process with independent increments, it is eas-
ily seen that {Mt} and {Lt} are both processes with independent increments
by the uniqueness of G-martingale decomposition.

In the sequel, we first prove that {Lt} is a process with stationary in-
crements. Noting that Ê(−Lt) = Ê(−Xt) = ct for some positive constant
c since {Xt} is a process with stationary and independent increments, we
claim that −Lt− ct is a G-martingale. To prove this, it suffices to show that

11



for any t > s, Ês[−(Lt − Ls)] = c(t− s). In fact,

Ês[−(Lt − Ls)]

= Ês[−(Xt −Mt −Xs +Ms)]

= Ês[−(Xt −Xs)]

= Ê[−(Xt −Xs)]

= c(t− s).

Combining this with Lemma 4.3, we have −Lt − ct ≤ 0. On the other hand,
for any a ∈ H

Ê[

∫ T

0

a(s)dLs]

= Ê[

∫ T

0

a(s)dXs]

= Ê[Σn−1
k=0atk(Xtk+1

−Xtk)]

= Σn−1
k=0ca

−
tk
(tk+1 − tk)

=

∫ T

0

ca−(s)ds =

∫ T

0

C(a(s))ds,

where C(a(s)) is defined as in Lemma 4.2 with c = 0, c = −c. By Lemma
4.2, {Lt} is a process with stationary increments.

Now we are in a position to show that {Mt} is a (symmetric) G-Brownian
motion. To this end, by Theorem 4.1, it suffices to prove that {〈M〉t} is a
process with stationary and independent increments. For n ∈ N , let

Xn
t =

2n−1
∑

k=0

X kT
2n
1
] kT
2n

, (k+1)T
2n

]
(t)

and

Ωn
t (X) =

2n−1
∑

k=0

(X kt
2n

−X kt
2n
)2.

Observing that Ωn
t (X) = X2

t − 2
∫ t

0
Xn

s dXs, we have

|Ωn
t (X)− Ωm+n

t (X)|

≤ 2(|
∫ t

0

(Xn
s −Xm+n

s )dMs|+ |
∫ t

0

(Xn
s −Xm+n

s )dLs|)

= 2(I + II).
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for any n,m ∈ N. It’s easy to check that

Ê(II) ≤ c

∫ t

0

Ê(|Xn
s −Xm+n

s |)ds → 0 as m,n → ∞.

Noting that

I =
2n−1
∑

i=0

2m−1
∑

j=0

(X i
2n

+ j

2n+m
−X i

2n
)(M i

2n
+ j+1

2n+m
−M i

2n
+ j

2n+m
)

=

2n−1
∑

i=0

2m−1
∑

j=0

Iji ,

we get

Ê(I2) ≤
2n−1
∑

i=0

2m−1
∑

j=0

Ê[(Iji )
2].

It’s easily seen that Ê[(Iji )
2] ≤ C j

22(n+m) for some constant C, hence that

Ê(I2) → 0, and finally that Ê(|Ωn
t (X) − Ωm+n

t (X)|) → 0 as m,n → ∞.
Then

〈X〉t := lim
L1
G
(ΩT ),n→∞

Ωn
t

is a process with stationary and independent increments. Noting that 〈M〉t =
〈X〉t, 〈M〉t is also a process with stationary and independent increments. �
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