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Abstract

The objective of this research is to analyze the singular stresses at
the tips of cracks in multi-layer woven carbon fiber reinforced polymer
(CFRP) composite laminates under tension at cryogenic temperatures.
It is assumed that cracks appear in the transverse fiber bundles. We
consider both cases where the tips of the cracks are located in the fiber
bundles or at the interfaces between two fiber bundles. The generalized
plane strain finite element analysis is carried out for the cracked woven
CFRP laminates. Numerical results are expressed in terms of the stress
intensity factor, and discussed in detail.
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1 Introduction

Woven carbon fiber reinforced polymer (CFRP) composites, due to their high
stiffness to weight ratio and strength to weight ratio, have been considered as
candidate materials for cryogenic fuel tank structures in future space vehicles
[1]. Cryogenic fuel tanks receive mechanical and thermal loadings [2], and
residual thermal stresses develop in the composites at cryogenic temperatures
due to difference in the thermoelastic properties between the composite con-
stituents. When residual thermal stresses are combined with stresses induced
by mechanical loads, microcracks may initiate and propagate in the compos-
ites. These microcracks can act as passages for the cryogenic fuel to permeate,
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which could ultimately lead to the failure of the whole structure [3]. Hence, it
is very important to understand the fracture behavior of woven CFRP com-
posites at cryogenic temperatures before they are used in cryogenic storage
systems. Normal stresses at a crack tip are governed by stress singularity and
stress intensity factor, and the evaluation of stress intensity factor is expected
to offer a basic understanding of the crack behavior in composite materials.

With regard to numerical analysis, the presence of the undulation regions in
woven composites leads to considerable complexities in the associated model-
ing, especially in comparison to composites based on non-woven reinforcement.
As a result, numerical studies on the stress intensity factors for cracks in woven
composites are still limited. In addition, woven composites are most frequently
used by employing multiple layers of material to form a laminate, and inter-
actions with adjoining layers and the free surface of the laminates can have a
significant influence on the crack behavior in woven laminates. Therefore, the
in-depth studies on these issues are important.

The purpose of this paper is to examine the singular stresses at the crack
tip in multi-layer woven CFRP composite laminates under tension at cryogenic
temperatures. Cracks are located in the fiber bundles, whose fibers are oriented
perpendicularly to the mechanical load. Two-dimensional finite elements under
generalized plane strain conditions are used to model the plane section of a
laminate. Special elements with exact stress singularity are placed around the
crack tip. Numerical results for the stress intensity factors are obtained and
discussed.

2 Geometry of Cracked Woven Composite

Laminates

The material investigated in this study is a five harness satin (5HS) woven
composite laminate. The fiber reinforcement is a T800H carbon fabric (Toray
Industries, Inc., Japan), and the matrix is a 3633 toughened epoxy resin (Toray
Industries, Inc., Japan). The T800H/3633 5HS woven laminates have been de-
veloped for cryogenic fuel tanks [1]. Figure 1 shows the symmetrically stacked
2N -layer 5HS woven laminates with cracks (N = 1, 2, 3, ...) in the Cartesian
coordinate system O-xyz. The generalized plane strain condition is assumed.
The woven composite laminates of thickness 4Nh comprise the warp and fill
fiber bundles and the pure matrix, and are of infinite extent in the x-direction.
The thickness of the warp and fill fiber bundles is h, and the width of the fiber
bundles is l. We assume that the undulation angles are θ and −θ.

Suppose that the satin woven composite laminates are subjected to the
mechanical mean stress σ∗

xx in the warp direction (i.e. x-direction) and the
thermal load of Φ−Φs, where Φ is the temperature of the composite laminates
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and Φs is the temperature at the thermal stress-free state. Based on the
experimental observations [4], a sufficiently large tensile stress in the warp
direction leads to crack formation in the fill fiber bundles. In addition, the
cracks initiate at undulations and where the fill fiber bundles are of the greatest
thickness [5]. Thus, internal and edge cracks are located in x = ±5nl planes
(n = 0, 1, 2, ...) of the fill fiber bundles. The lengths of the internal and edge
cracks are 2a and a (a ≤ h), respectively. We consider two cases (Cases 1 and
2), and the crack locations for Cases 1 and 2 are as follows:

Case 1

2(k − 1)h ≤ |z| ≤ 2(k − 1)h + a for odd number of k (k = 1, 3, 5, ...)
2kh − a ≤ |z| ≤ 2kh for even number of k (k = 2, 4, 6, ...)

}
,

(1 ≤ k ≤ N),

Case 2

2kh − a ≤ |z| ≤ 2kh for odd number of k (k = 1, 3, 5, ...)
2(k − 1)h ≤ |z| ≤ 2(k − 1)h + a for even number of k (k = 2, 4, 6, ...)

}
,

(1 ≤ k ≤ N).

The surface layers of the woven laminates with an odd number of N for Case 1
and an even number of N for Case 2 contain the internal cracks, and those of
the woven laminates with an even number of N for Case 1 and an odd number
of N for Case 2 contain the edge cracks.
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Figure 1 2N -layer five harness satin woven laminates with cracks
(N = 1, 2, 3, . . .).
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3 Temperature-Dependent Material

Properties

The material properties of the 3633 toughened epoxy resin matrix are taken
to be isotropic and temperature dependent. The property data for the 3633
toughened epoxy resin are very difficult to find. Therefore, the Young’s mod-
ulus EM(Φ), Poisson’s ratio νM(Φ), shear modulus GM(Φ) and coefficient of
thermal expansion αM(Φ) of the matrix are assumed to be the same as those of
the bisphenol-A epoxy resin. The subscript M denotes the matrix. The elastic
and thermal properties of the bisphenol-A epoxy resin are approximated by
the exponential functions of temperature [6] using the experimental data [7].

We assume temperature independent properties for the T800H carbon
fiber, and the carbon fiber can be regarded as transversely isotropic material
with Young’s moduli ELF , ETF , Poisson’s ratio νLTF , shear moduli GLTF =
GTLF , GTTF and coefficients of thermal expansion αLF , αTF . The subscript F
refers to the fiber, and the L and T denote the longitudinal and transverse
directions, respectively. The first subscript on Poisson’s ratio νLT refers to the
direction of the applied tensile (compressive) stress, and the second subscript
refers to the direction of the contraction (expansion). Only Young’s modulus
ELF and coefficient of thermal expansion αLF of the T800H carbon fiber are
found in published data, and the remaining properties are assumed to be the
same as the T300 carbon fiber properties [8]. A summary of the carbon fiber
properties used in the analysis is given in Table 1.

The fiber bundles are considered as transversely isotropic unidirectional
T800H/3633 composites. The composite cylinder assemblage (CCA) model
[9] is used to predict the elastic and thermal properties of the fiber bundles
EB

L (Φ), EB
T (Φ), νB

LT (Φ), GB
LT (Φ) = GB

TL(Φ), GB
TT (Φ), αB

L (Φ), αB
T (Φ) in terms

of the bundle constituent properties and the fiber volume fraction in the fiber
bundles V B

F . The superscript B denotes the fiber bundle.

Table 1 Elastic and thermal properties of carbon fiber

ELF ETF νLTF GLTF GTTF αLF αTF

(GPa) (GPa) (GPa) (GPa) (10−6/K) (10−6/K)

294 40.0∗ 0.26∗ 24.0∗ 14.3∗ −0.56 10.0∗

∗ Property data for the T300 carbon fiber [8]
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4 Finite Element Analysis

The constitutive equations in terms of stress-strain relationship are given as⎡
⎢⎣

σxxδ(x, z)
σzzδ(x, z)
σxzδ(x, z)

⎤
⎥⎦ =

⎡
⎢⎣

C11δ(Φ) C12δ(Φ) C16δ(Φ)
C12δ(Φ) C22δ(Φ) C26δ(Φ)
C16δ(Φ) C26δ(Φ) C66δ(Φ)

⎤
⎥⎦

⎡
⎢⎣

εxxδ(x, z) − εxx0δ(Φ)
εzzδ(x, z) − εzz0δ(Φ)

2εxzδ(x, z) − 2εxz0δ(Φ)

⎤
⎥⎦ ,

(δ = w, f, M), (1)

where σxxδ(x, z), σzzδ(x, z), σxzδ(x, z) are the stress components, εxxδ(x, z),
εzzδ(x, z), εxzδ(x, z) are the strain components, C11δ(Φ), C12δ(Φ), . . ., C66δ(Φ)
are the components of the stiffness matrix and εxx0δ(Φ), εzz0δ(Φ), εxz0δ(Φ)
(δ = w, f, M) are the initial strain components. The subscripts w and f refer
to the warp and fill fiber bundles, respectively. The initial strain components
are given in Appendix A.

Due to symmetry conditions, we consider only the region 0 ≤ x ≤ 5l/2,
0 ≤ z ≤ 2Nh. Let uiδ(x, z) (i = x, z, δ = w, f , M) be the displacement
components. The boundary conditions at x = 0 for the kth lamina (1 ≤ k ≤ N)
occupying the region 0 ≤ x ≤ 5l/2, 2(k-1)h ≤ z ≤ 2kh may be stated as
follows:

Case 1
Odd number of k (k = 1, 3, 5, ...)

σxxf (0, z) = 0, 2(k − 1)h ≤ z < 2(k − 1)h + a,
uxf(0, z) = 0, 2(k − 1)h + a ≤ z ≤ (2k − 1)h,
uxw(0, z) = 0, (2k − 1)h ≤ z ≤ 2kh,

⎫⎪⎬
⎪⎭ (2)

σxzf (0, z) = 0, 2(k − 1)h ≤ z ≤ (2k − 1)h,
σxzw(0, z) = 0, (2k − 1)h ≤ z ≤ 2kh,

}
(3)

Even number of k (k = 2, 4, 6, ...)

uxw(0, z) = 0, 2(k − 1)h ≤ z ≤ (2k − 1)h,
uxf(0, z) = 0, (2k − 1)h ≤ z ≤ 2kh − a,
σxxf (0, z) = 0, 2kh − a < z ≤ 2kh,

⎫⎪⎬
⎪⎭ (4)

σxzw(0, z) = 0, 2(k − 1)h ≤ z ≤ (2k − 1)h,
σxzf (0, z) = 0, (2k − 1)h ≤ z ≤ 2kh,

}
(5)

Case 2
Odd number of k (k = 1, 3, 5, ...)

uxw(0, z) = 0, 2(k − 1)h ≤ z ≤ (2k − 1)h,
uxf(0, z) = 0, (2k − 1)h ≤ z ≤ 2kh − a,
σxxf (0, z) = 0, 2kh − a < z ≤ 2kh,

⎫⎪⎬
⎪⎭ (6)
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σxzw(0, z) = 0, 2(k − 1)h ≤ z ≤ (2k − 1)h,
σxzf (0, z) = 0, (2k − 1)h ≤ z ≤ 2kh,

}
(7)

Even number of k (k = 2, 4, 6, ...)

σxxf (0, z) = 0, 2(k − 1)h ≤ z < 2(k − 1)h + a,
uxf(0, z) = 0, 2(k − 1)h + a ≤ z ≤ (2k − 1)h,
uxw(0, z) = 0, (2k − 1)h ≤ z ≤ 2kh,

⎫⎪⎬
⎪⎭ (8)

σxzf (0, z) = 0, 2(k − 1)h ≤ z ≤ (2k − 1)h,
σxzw(0, z) = 0, (2k − 1)h ≤ z ≤ 2kh.

}
(9)

The loading conditions are as follows:

Case 1
Odd number of k (k = 1, 3, 5, ...)

uxw(5l/2, z) = u∗
x, 2(k − 1)h ≤ z ≤ (2k − 1)h,

uxM (5l/2, z) = u∗
x, (2k − 1)h ≤ z ≤ 2kh,

}
(10)

Even number of k (k = 2, 4, 6, ...)

uxM (5l/2, z) = u∗
x, 2(k − 1)h ≤ z ≤ (2k − 1)h,

uxw(5l/2, z) = u∗
x, (2k − 1)h ≤ z ≤ 2kh,

}
(11)

Case 2
Odd number of k (k = 1, 3, 5, ...)

uxM (5l/2, z) = u∗
x, 2(k − 1)h ≤ z ≤ (2k − 1)h,

uxw(5l/2, z) = u∗
x, (2k − 1)h ≤ z ≤ 2kh,

}
(12)

Even number of k (k = 2, 4, 6, ...)

uxw(5l/2, z) = u∗
x, 2(k − 1)h ≤ z ≤ (2k − 1)h,

uxM (5l/2, z) = u∗
x, (2k − 1)h ≤ z ≤ 2kh,

}
(13)

where u∗
x is the uniform displacement in the x-direction induced by the mechan-

ical and thermal loads. For the case of the woven laminates with an infinite
number of layers (N = ∞), we only need to consider the repeating unit defined
by 0 ≤ x ≤ 5l/2, 0 ≤ z ≤ 2h and symmetry conditions are imposed on the
top surface of the repeating unit (z = 2h).

The loading case considered in this study is dominated by the opening
mode of deformation (Mode I). Therefore, only the Mode I stress intensity
factors KI are studied. The definitions of the stress intensity factors KI at the
tips of the fill fiber bundle cracks give
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Case 1
Odd number of k (k = 1, 3, 5, ...)

KI =

⎧⎪⎪⎨
⎪⎪⎩

lim
z→{2(k−1)h+a}+

[2π {z − 2(k − 1)h − a}]1/2 σxxf (0, z), (a < h),

lim
z→{(2k−1)h}+

(2π)1/2 {z − (2k − 1)h}ω σxxw(0, z), (a = h),
(14)

Even number of k (k = 2, 4, 6, ...)

KI =

⎧⎪⎨
⎪⎩

lim
z→(2kh−a)−

{2π(2kh − a − z)}1/2 σxxf (0, z), (a < h),

lim
z→{(2k−1)h}−

(2π)1/2 {(2k − 1)h − z}ω σxxw(0, z), (a = h),
(15)

Case 2
Odd number of k (k = 1, 3, 5, ...)

KI =

⎧⎪⎨
⎪⎩

lim
z→(2kh−a)−

{2π(2kh − a − z)}1/2 σxxf (0, z), (a < h),

lim
z→{(2k−1)h}−

(2π)1/2 {(2k − 1)h − z}ω σxxw(0, z), (a = h),
(16)

Even number of k (k = 2, 4, 6, ...)

KI =

⎧⎪⎪⎨
⎪⎪⎩

lim
z→{2(k−1)h+a}+

[2π {z − 2(k − 1)h − a}]1/2 σxxf (0, z), (a < h),

lim
z→{(2k−1)h}+

(2π)1/2 {z − (2k − 1)h}ω σxxw(0, z), (a = h),
(17)

where ω is the order of stress singularity at the interface tip of the crack, and
the ω values can be determined using the analytical method [10] (Appendix
B). Using the crack opening displacement, Eqs. (14)−(17) can be rewritten as

Case 1
Odd number of k (k = 1, 3, 5, ...)

KI =

{
(2π)1/2μ∗ {2(k − 1)h + a − z}−1/2 uxf(0, z), (a < h),

(2π)1/2μ∗ {(2k − 1)h − z}−(1−ω) uxf (0, z), (a = h),
(18)

(2(k − 1)h ≤ z < 2(k − 1)h + a),

Even number of k (k = 2, 4, 6, ...)

KI =

{
(2π)1/2μ∗(z − 2kh + a)−1/2uxf (0, z), (a < h),

(2π)1/2μ∗ {z − (2k − 1)h}−(1−ω) uxf(0, z), (a = h),
(19)

(2kh − a < z ≤ 2kh),
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Case 2
Odd number of k (k = 1, 3, 5, ...)

KI =

{
(2π)1/2μ∗(z − 2kh + a)−1/2uxf (0, z), (a < h),

(2π)1/2μ∗ {z − (2k − 1)h}−(1−ω) uxf(0, z), (a = h),
(20)

(2kh − a < z ≤ 2kh),

Even number of k (k = 2, 4, 6, ...)

KI =

{
(2π)1/2μ∗ {2(k − 1)h + a − z}−1/2 uxf(0, z), (a < h),

(2π)1/2μ∗ {(2k − 1)h − z}−(1−ω) uxf (0, z), (a = h),
(21)

(2(k − 1)h ≤ z < 2(k − 1)h + a),

where μ∗ is the constant (see Appendix C).
Highly accurate stress intensity factors can be obtained by placing special

singular elements around the crack tip. The singular triangle element con-
structed by Stern [11] is used to obtain the proper displacement field near the
interface tip of the crack. The surrounding nonsingular elements are six- and
eight-node isoparametric elements.

5 Numerical Results and Discussion

The woven geometry of the 5HS woven laminates is determined by the pa-
rameters l = 4h/3tan θ and d = l/8. From the geometrical parameters of the
actual T800H/3633 5HS woven laminates, the undulation angle is estimated
to be θ = 9.0 deg. The value of a fiber volume fraction in the fiber bundles
V B

F is taken as 0.85, corresponding to that of actual T800H/3633 5HS woven
laminates. The fuel tanks in the space vehicles contain cryogen such as liquid
hydrogen or oxygen, at very low temperatures like 20 K for liquid hydrogen,
and, hence, the temperature Φ = 20 K is considered. The stress-free temper-
ature Φs is assumed to be 453 K [12]. The finite element code was verified
by comparing the results for the stress intensity factors of transverse cracks
in unidirectional glass fiber reinforced polymer composite laminates with the
theoretical results [13].

Figure 2 shows the normalized stress intensity factors KI/K0 of the cracks in
the first layer (k = 1, N = 1, 2, ∞) under pure thermal load (i.e. σ∗

xx = 0 MPa)
at 20 K as a function of crack length to fiber bundle thickness ratio a/h for Case
1. The stress intensity factor results are normalized by K0 = Exf (Φs)αxf (Φs)
Φs(πh)1/2. The thermally induced stress intensity factors in the first layer
increase with the increase in N . The stress intensity factors first increase,
reach a peak and then finally decrease with increasing a/h. This characteristic
behavior occurs because the warp fiber bundles are significantly stiffer in the
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loading direction than the fill fiber bundles, and this feature leads to a crack
arrest. Also, the positions of the peaks in the stress intensity factors for N =
1, 2, ∞ are different. This implies that the interaction with adjoining layers
influences the crack behavior. Figure 3 depicts the corresponding results for
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Figure 2 Normalized stress intensity factors KI/K0 vs. crack length to fiber
bundle thickness ratio a/h for k = 1 under σ∗

xx = 0 MPa at 20 K (Case 1).
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bundle thickness ratio a/h for k = 1 under σ∗
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the normalized stress intensity factors KI/K0 under mechanical load (i.e. σ∗
xx =

100 MPa) at 20 K. It is found that the stress intensity factors under combined
mechanical and thermal loads are larger than those under pure thermal load.
The dependence of the stress intensity factors on the crack length becomes
large, when the woven laminates are subjected to combined loads. Figure 4
contains plots of the normalized stress intensity factors KI/K0 of the cracks in
the first layer (k = 1, N = 1, 2, ∞) under mechanical load at 20 K against a/h
for Case 2. The stress intensity factors initially increase and then decrease as
a/h increases in the same fashion as those for Case 1. For Case 2, the stress
intensity factors for N = 1 are larger than those for N = 2, ∞. Also, the values
of the stress intensity factors for Case 2 and N = 1 are higher than those for
Case 1 and N = 1, 2, ∞. These reveal that the edge cracks play an important
role in the fracture behavior of woven composites. In Figure 5 the normalized
stress intensity factors KI/K0 of the cracks in the surface layer (k = N , N =
1, 2) under mechanical load at 20 K are plotted as a function of a/h for Cases
1 and 2. The numerical results for the stress intensity factors of the cracks in
the surface layer exhibit similar trends for the stress intensity factor variation
with a/h to those of the cracks in the first layer. The stress intensity factors
of the internal and edge cracks for N = 2 are larger than those for N = 1.
Also, the stress intensity factors of the edge cracks are larger than those of the
internal cracks. Therefore, as noted above, it is important to understand the
edge crack behavior in the woven composite laminates. This result is in accord
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Figure 4 Normalized stress intensity factors KI/K0 vs. crack length to fiber
bundle thickness ratio a/h for k = 1 under σ∗

xx = 100 MPa at 20 K (Case 2).



Singular stress fields for transverse cracks 359

with the experimental observations on damage development mechanisms in
T800H/3633 5HS woven laminates at cryogenic temperatures [14].

The normalized stress intensity factors KI/K
′
0 at the crack tip located at

the warp/fill interface (a/h = 1.0) in the first layer (k = 1, N = 1, 2, ∞) are
listed in Table 2 for Cases 1 and 2 under σ∗

xx = 0, 100 MPa at 20 K. The stress
intensity factors are normalized by K ′

0 = Exf (Φs)αxf (Φs)Φsπ
1/2hω. The order

of stress singularity ω at the tip of a crack located at the warp/fill interface is
0.3681. Except for the edge crack (Case 2, N = 1), the stress intensity factors
increase as increasing N . The values of the normalized stress intensity factors
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Figure 5 Normalized stress intensity factors KI/K0 vs. crack length to fiber
bundle thickness ratio a/h for k = N under σ∗

xx = 100 MPa at 20 K
(Cases 1 and 2).

Table 2 Normalized stress intensity factors KI/K
′
0 for k = 1

under σ∗
xx = 0, 100 MPa at 20 K (Cases 1 and 2)

N 1 2 ∞
KI/K

′
0 Case 1 σ∗

xx = 0 MPa 2.362 2.404 4.786

σ∗
xx = 100 MPa 3.091 3.143 5.603

Case 2 σ∗
xx = 0 MPa 4.630 2.292 4.786

σ∗
xx = 100 MPa 5.520 2.956 5.603
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Table 3 Normalized stress intensity factors KI/K
′
0 for k = N

under σ∗
xx = 0, 100 MPa at 20 K (Cases 1 and 2)

N 1 2

KI/K
′
0 Case 1 σ∗

xx = 0 MPa 2.362 5.146

σ∗
xx = 100 MPa 3.091 5.995

Case 2 σ∗
xx = 0 MPa 4.630 2.479

σ∗
xx = 100 MPa 5.520 3.194

KI/K
′
0 at the interface tip of the crack in the surface layer (k = N , N = 1,

2) are tabulated in Table 3 for Cases 1 and 2 under σ∗
xx = 0, 100 MPa at 20

K. For the same value of N , it is clear that the stress intensity factors of the
edge cracks are larger than those of the internal cracks. For both the internal
and edge cracks, the stress intensity factors for N = 2 are larger than those
for N = 1.

6 Conclusions

The cryogenic singular stresses at the crack tip in multi-layer woven CFRP
composite laminates with temperature-dependent material properties under
tension are examined by using a finite element method. The stress intensity
factors depend on the crack type and the number of layers, and the crack arrest
may occur when the cracks approach the interfaces between two orthogonal
fiber bundles. Also, the edge cracks are important in the cryogenic fracture
behavior of the woven laminates. The present results are expected to offer
a basic understanding of the cryogenic fracture behavior of woven laminates
which will be used in cryogenic storage systems.
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Appendix A

The initial strain components εxx0δ(Φ), εzz0δ(Φ), εxz0δ(Φ) (δ = w, f , M) in-
volved in Eq. (1) are given by

⎡
⎢⎣

εxx0δ(Φ)
εzz0δ(Φ)
2εxz0δ(Φ)

⎤
⎥⎦ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
T

]−1

⎡
⎢⎢⎢⎣

εT
LLw(Φ) − ETw(Φ)

ELw(Φ)
νLTw(Φ){εyy0(Φ) − εT

TTw(Φ)}
εT

TTw(Φ) − νTTw(Φ){εyy0(Φ) − εT
TTw(Φ)}

0

⎤
⎥⎥⎥⎦ ,

(δ = w),

⎡
⎢⎢⎢⎣

εT
xxf(Φ) − Eyf (Φ)

Exf (Φ)
νxyf (Φ){εyy0(Φ) − εT

yyf (Φ)}
εT

zzf(Φ) − νyzf (Φ){εyy0(Φ) − εT
yyf (Φ)}

0

⎤
⎥⎥⎥⎦ ,

(δ = f),

⎡
⎢⎣

εT
M(Φ) − νM(Φ){εyy0(Φ) − εT

M(Φ)}
εT

M(Φ) − νM(Φ){εyy0(Φ) − εT
M(Φ)}

0

⎤
⎥⎦ ,

(δ = M),

(A.1)

where the superscript −1 represents the matrix inverse and [T ] is a transfor-
mation matrix given by

[
T

]
=

⎡
⎢⎣ cos2 θ sin2 θ cos θ sin θ

sin2 θ cos2 θ − cos θ sin θ
−2 cos θ sin θ 2 cos θ sin θ cos2 θ − sin2 θ

⎤
⎥⎦ . (A.2)

The elastic properties of the warp fiber bundles ELw(Φ), ETw(Φ), νLTw(Φ),
νTTw(Φ) and fill fiber bundles Exf (Φ), Eyf(Φ), νxyf (Φ), νyzf (Φ) are given as
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ELw(Φ) = Eyf (Φ) = EB
L (Φ),

ETw(Φ) = Exf (Φ) = EB
T (Φ),

νLTw(Φ) = νyzf (Φ) = νB
LT (Φ),

νTTw(Φ) = νB
TT (Φ) =

EB
T (Φ) − 2GB

TT (Φ)

2GB
TT (Φ)

,

νxyf (Φ) = νB
TL(Φ) =

EB
T (Φ)

EB
L (Φ)

νB
LT (Φ),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A.3)

where the subscripts x, y and z denote the three axes of the Cartesian co-
ordinate system. The thermal strains εT

LLw(Φ), εT
TTw(Φ), εT

xxf (Φ) = εT
zzf(Φ),

εT
yyf (Φ), εT

M(Φ) are

εT
LLw(Φ) =

∫ Φ

Φs

αB
L (φ)dφ,

εT
TTw(Φ) =

∫ Φ

Φs

αB
T (φ)dφ,

εT
xxf (Φ) = εT

zzf (Φ)

=
∫ Φ

Φs

αB
T (φ)dφ,

εT
yyf (Φ) =

∫ Φ

Φs

αB
L (φ)dφ,

εT
M(Φ) =

∫ Φ

Φs

αM(φ)dφ.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A.4)

The uniform strain (i.e. constant in the x-z plane) in the y-direction εyy0(Φ)
can be found from the condition:

∫∫
Ωw

σyyw(x, z)dxdz +
∫∫

Ωf

σyyf (x, z)dxdz +
∫∫

ΩM

σyyM (x, z)dxdz

Ωw + Ωf + ΩM
= 0,

(A.5)

where Ωδ (δ = w, f , M) denote the regions of the warp fiber bundles, fill
fiber bundles and matrix, respectively. The stresses σyyδ(x, z) (δ = w, f , M)
can be written as:
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σyyδ(x, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ETw(Φ){εyy0(Φ) − εT
TTw(Φ)} +

ETw(Φ)

ELw(Φ)
νLTw(Φ)σLLw(x, z)

+νTTw(Φ)σTTw(x, z), (δ = w),

Eyf (Φ){εyy0(Φ) − εT
yyf (Φ)} +

Eyf (Φ)

Exf (Φ)
νxyf (Φ)σxxf (x, z)

+νyzf (Φ)σzzf (x, z), (δ = f),

EM (Φ){εyy0(Φ) − εT
M(Φ)}

+νM (Φ){σxxM (x, z) + σzzM (x, z)}, (δ = M),
(A.6)

where σLLw(x, z) and σTTw(x, z) are given by:

[
σLLw(x, z)
σTTw(x, z)

]
=

[
cos2 θ sin2 θ 2 cos θ sin θ
sin2 θ cos2 θ −2 cos θ sin θ

] ⎡
⎢⎣ σxxw(x, z)

σzzw(x, z)
σxzw(x, z)

⎤
⎥⎦ . (A.7)

Appendix B

The order of stress singularity at the interface tip of the crack is determined
by the roots of the following equation:

|Δ(ω)| = 0, (B.1)

where Δ(ω) is an 8 × 8 square matrix and |Δ(ω)| is the determinant of the
square matrix Δ(ω). The 8 × 8 matrix Δ(ω) is given by

Δ(ω) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Δ1,1(ω) Δ1,2(ω) Δ1,3(ω) Δ1,4(ω) 0 0 0 0
Δ2,1(ω) Δ2,2(ω) Δ2,3(ω) Δ2,4(ω) 0 0 0 0
Δ3,1(ω) Δ3,2(ω) Δ3,3(ω) Δ3,4(ω) 0 0 0 0
Δ4,1(ω) Δ4,2(ω) Δ4,3(ω) Δ4,4(ω) 0 0 0 0
Δ5,1(ω) Δ5,2(ω) Δ5,3(ω) Δ5,4(ω) Δ5,5(ω) Δ5,6(ω) Δ5,7(ω) Δ5,8(ω)
Δ6,1(ω) Δ6,2(ω) Δ6,3(ω) Δ6,4(ω) Δ6,5(ω) Δ6,6(ω) Δ6,7(ω) Δ6,8(ω)
Δ7,1(ω) Δ7,2(ω) Δ7,3(ω) Δ7,4(ω) Δ7,5(ω) Δ7,6(ω) Δ7,7(ω) Δ7,8(ω)
Δ8,1(ω) Δ8,2(ω) Δ8,3(ω) Δ8,4(ω) Δ8,5(ω) Δ8,6(ω) Δ8,7(ω) Δ8,8(ω)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(B.2)
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in which

Δ1,1(ω) = λxf1 (−1)−ω, Δ1,2(ω) = λxf1 (−1)−ω,
Δ1,3(ω) = λxf2 (−1)−ω, Δ1,4(ω) = λxf2 (−1)−ω,
Δ2,1(ω) = λxzf1 (−1)−ω, Δ2,2(ω) = λxzf1 (−1)−ω,
Δ2,3(ω) = λxzf2 (−1)−ω, Δ2,4(ω) = λxzf2 (−1)−ω,
Δ3,1(ω) = λxzw1, Δ3,2(ω) = λxzw1,
Δ3,3(ω) = λxzw2, Δ3,4(ω) = λxzw2,
Δ4,1(ω) = ηxw1, Δ4,2(ω) = ηxw1,
Δ4,3(ω) = ηxw2, Δ4,4(ω) = ηxw2,
Δ5,1(ω) = λzf1 (ζf1)

−ω, Δ5,2(ω) = λzf1 (ζf1)
−ω,

Δ5,3(ω) = λzf2 (ζf2)
−ω, Δ5,4(ω) = λzf2 (ζf2)

−ω,
Δ5,5(ω) = −λzw1 (ζw1)

−ω, Δ5,6(ω) = −λzw1 (ζw1)
−ω,

Δ5,7(ω) = −λzw2 (ζw2)
−ω, Δ5,8(ω) = −λzw2 (ζw2)

−ω,
Δ6,1(ω) = λxzf1 (ζf1)

−ω, Δ6,2(ω) = λxzf1 (ζf1)
−ω,

Δ6,3(ω) = λxzf2 (ζf2)
−ω, Δ6,4(ω) = λxzf2 (ζf2)

−ω,
Δ6,5(ω) = −λxzw1 (ζw1)

−ω, Δ6,6(ω) = −λxzw1 (ζw1)
−ω,

Δ6,7(ω) = −λxzw2 (ζw2)
−ω, Δ6,8(ω) = −λxzw2 (ζw2)

−ω,
Δ7,1(ω) = ηzf1 (ζf1)

1−ω, Δ7,2(ω) = ηzf1 (ζf1)
1−ω,

Δ7,3(ω) = ηzf2 (ζf2)
1−ω, Δ7,4(ω) = ηzf2 (ζf2)

1−ω,
Δ7,5(ω) = −ηzw1 (ζw1)

1−ω, Δ7,6(ω) = −ηzw1 (ζw1)
1−ω,

Δ7,7(ω) = −ηzw2 (ζw2)
1−ω, Δ7,8(ω) = −ηzw2 (ζw2)

1−ω,
Δ8,1(ω) = ηxf1 (ζf1)

1−ω, Δ8,2(ω) = ηxf1 (ζf1)
1−ω,

Δ8,3(ω) = ηxf2 (ζf2)
1−ω, Δ8,4(ω) = ηxf2 (ζf2)

1−ω,
Δ8,5(ω) = −ηxw1 (ζw1)

1−ω, Δ8,6(ω) = −ηxw1 (ζw1)
1−ω,

Δ8,7(ω) = −ηxw2 (ζw2)
1−ω, Δ8,8(ω) = −ηxw2 (ζw2)

1−ω.

(B.3)

In Eq. (B.3), the overbar represents the complex conjugate and λxδ′j, λzδ′j,
λxzδ′j (δ′ = w, f ; j = 1, 2) are given by

λxδ′j = C12δ′(Φ)ηzδ′j + C11δ′(Φ)ζδ′j ηxδ′j ,
λzδ′j = C22δ′(Φ)ηzδ′j + C12δ′(Φ)ζδ′j ηxδ′j ,
λxzδ′j = C66δ′(Φ)(ζδ′j ηzδ′j + ηxδ′j),

⎫⎪⎬
⎪⎭ (δ′ = w, f ; j = 1, 2). (B.4)

ζ2
δ′j (δ′ = w, f ; j = 1, 2) are the roots of the following equation:

∣∣∣∣∣ C22δ′(Φ) + C66δ′(Φ)ζ2
δ′ {C12δ′(Φ) + C66δ′(Φ)} ζδ′

{C12δ′(Φ) + C66δ′(Φ)} ζδ′ C66δ′(Φ) + C11δ′(Φ)ζ2
δ′

∣∣∣∣∣ = 0, (δ′ = w, f).(B.5)
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Values of ηxδ′j, ηzδ′j (δ′ = w, f ; j = 1, 2) can be found, satisfying the following
equation:[

C22δ′(Φ) + C66δ′(Φ)ζ2
δ′j {C12δ′(Φ) + C66δ′(Φ)} ζδ′j

{C12δ′(Φ) + C66δ′(Φ)} ζδ′j C66δ′(Φ) + C11δ′(Φ)ζ2
δ′j

] [
ηxδ′j
ηzδ′j

]

=

[
0
0

]
, (δ′ = w, f ; j = 1, 2). (B.6)

Equation (B.6) now determines, for each root ζδ′j , the ratio of the components
ηxδ′j , ηzδ′j .

Appendix C

The constant μ∗ in Eqs. (18)−(21) is given by

μ∗ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

C66f (Φ)

2{1 − νf (Φ)} , (a < h),

−2C66w(Φ)(κ1 + ωκ2)

sin(πω)
, (a = h),

(C.1)

where
νf(Φ) = 2Gzxf(Φ) {νzxf (Φ) + νyzf (Φ)νxyf (Φ)} /Exf (Φ), (C.2)

κ1 =
γ2−ω

1 (1 + β1)χ12 − γ2−ω
2 (1 + β2)χ11

χ11χ22 − χ12χ21

,

κ2 =
γ2−ω

1 (1 + β1)(χ22 − χ12) − γ2−ω
2 (1 + β2)(χ21 − χ11)

χ11χ22 − χ12χ21
,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(C.3)

χ1j = {(1 + βj)G0(Φ) − 2βj} − 2 {1 − νf (Φ)} (1 + βj)G0(Φ)(1 + γj),

χ2j = γj {(1 + βj)G0(Φ) − 2} − 2 {1 − νf(Φ)} (1 + βj)G0(Φ)(1 + γj),

⎫⎪⎬
⎪⎭

(j = 1, 2)

(C.4)

βj =
C22w(Φ)γ2

j − C66w(Φ)

C12w(Φ) + C66w(Φ)
, (j = 1, 2), (C.5)

G0(Φ) =
C66w(Φ)

C66f(Φ)
, (C.6)
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and γ2
j (j = 1, 2) are the roots of the following characteristic equation:

C22w(Φ)C66w(Φ)γ4 +
{
C12w(Φ)2 + 2C12w(Φ)C66w(Φ) − C11w(Φ)C22w(Φ)

}
γ2

+C11w(Φ)C66w(Φ) = 0.

(C.7)
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