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Abstract 
 

This paper presents a new approach for solving approximate analytical higher 
order solutions for strong nonlinear Duffing oscillators with cubic-quintic 
nonlinear restoring force. The system is conservative and with odd nonlinearity. 
The new approach couples Homotopy Perturbation Method with Variational 
method. These approximate solutions are valid for small as well as large 
amplitudes of oscillation. In addition, it is not restricted to the presence of a small 
parameter such as in the classical perturbation method. Illustrative examples are 
presented to verify accuracy and explicitness of the approximate solutions.  
 
Keywords: Nonlinear Oscillators, Variational formulation, Homotopy 
Perturbation Method, Duffing equation 
 
 
1- Introduction  
 
We present in this paper a new accurate approach for accurate higher-order 
approximate analytical solutions of the Duffing oscillator with strong cubic and 
quintic nonlinearities. 
Nonlinear oscillation in engineering and applied mathematics has been a topic to 
intensive research for many years. Many asymptotic techniques  
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including,variational iteration method [2, 12], homotopy perturbation method [3–
15], energy balance method [4, 6, 8, 10] were used to handle strongly nonlinear 
systems. Coupled Method of Homotopy Perturbation Method and Variational 
Method was paid attention recently; it is proven this method is very effective to 
determine the natural frequencies of strongly nonlinear oscillators with high 
accuracy [9]. 
In Coupled Method of Homotopy Perturbation Method and Variational Method, 
the following homotopy is constructed and a variational formulation for the 
nonlinear oscillation is established, from which the natural frequency and 
approximate solution can be readily obtained [9].  
The Duffing equation is a well-known nonlinear differential equation which is 
related to many practical engineering systems such as the classical nonlinear 
spring system with odd nonlinear restoring characteristics and more recently in 
different physical phenomena. There have been many variations of Duffing 
equation, for instance, the Duffing-harmonic equation and the cubic-quintic 
Duffing equation [13]. 
Due to the presence of fifth power nonlinearity, the cubic-quintic Duffing 
equation inherits strong nonlinearity and thus accuracy of approximate analytical 
methods becomes extremely demanding. cubic-quintic Duffing equation can be 
found in the modeling of free vibration of a restrained uniform beam carrying 
intermediate lumped mass and undergoing large amplitude of oscillations in the 
unimodel Duffing type temporal problem [7,11], the nonlinear dynamics of a 
slender elastica [14], the generalized Pochhammer-Chree (PC) equations [16] and 
the compound Korteweg-de Vries (KdV) equation [5] in nonlinear wave systems, 
and the propagation of a short electromagnetic pulse in a nonlinear medium [1] 
 
 
2- The Homotopy Perturbation Method and Variational 
Formulation 
 
To illustrate the basic ideas of this method, we consider the following equation [3, 
15]: 

( ) ( ) 0=− rfuA  Ω∈r , (1) 
With the boundary condition of: 

0, =⎟
⎠
⎞

⎜
⎝
⎛

∂
∂
n
uuB  Γ∈r , (2) 

Where A is a general differential operator, B a boundary operator, f (r) a known 
analytical function and Γ is the boundary of the domain Ω. 
A can be divided into two parts which are L and N, where L is linear and N is 
nonlinear. Eq. (1) can therefore be rewritten as follows: 

( ) ( ) ( ) 0=−+ rfuNuL  Ω∈r , (3) 
Homotopy perturbation structure is shown as follows: 

( ) ( ) ( ) ( )[ ] ( ) ( )[ ] 01, 0 =−+−−= rfApuLLppH ννν  (4) 
Where, 
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( ) [ ] Rpr →×Ω 1,0:,ν  

 
 

(5) 

In Eq. (5), [ ]1,0∈p  is an embedding parameter and 0u  is the first approximation 
that satisfies the boundary condition. We can assume that the solution of Eq. (5) 
can be written as a power series in p, as following: 

...2
2

10 +++= νννν pp         (6) 
And the best approximation for solution is: 

...lim 2101 +++== → ννννpu         (7)
Consider the following generalized nonlinear oscillations without forced terms. 

2
0 ( ) 0u u f uω ε′′ + + =  (8) 

Where f is a nonlinear function of  , ,u u u′′ ′ . 
Its variational functional can be easily obtained as [9]: 

 2 2
0 2 0

1 1( )  ( )
2 2

t
J u u u F u dtω ε⎧ ⎫′= − + +⎨ ⎬

⎩ ⎭∫  
(9) 
 

Where F is the potential,  
dF f
du

=  
(10) 

 
 
 
2- Problem Definition 
 
A cubic-quintic Duffing oscillator of a conservative autonomous system can be 
described by the following second-order differential equation with cubic-quintic 
nonlinearities [13] 

( ) 0 u f u′′ + =  (11) 
With initial conditions:   (0)  ,  (0) 0u A u ′= =  
Where 3 5( )f u u u uα β γ= + +  is an odd function, and u and t are generalized 
dimensionless displacement and time variables whileα , β  and γ  are positive 
constant parameters if 0γ =  it is a cubic Duffing oscillator, if  0β =  it is a 
quintic oscillator otherwise it is a cubic-quintic oscillator.  
 
 
3- Applications 
 
In order to assess the advantages and the accuracy of the Coupled Method of 
Homotopy Perturbation Method and Variational Method, we will consider the 
following two examples. 
 
3.1- Example 1 
 
We consider the quintic nonlinear oscillator [9]: 
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5 0 u u uε′′ + + =  (12) 
  
With initial condition of:   (0)  ,  (0) 0u A u ′= =  
Suppose that the frequency of Eq. (12) isω . 
We construct following homotopy by same manipulation as basic idea:  

[ ]2 5 2[ (1 ) ] 0 ,  0 ,1u u p u u pω ε ω′′ + + + − = ∈  (13) 

 
We assume that the periodic solution to equation Eq. (13) may be written as a 
power series in  p: 

2
0 1 2 ...u u pu p u= + + +  (14) 

Substituting Eq. (14) into Eq. (13), collecting terms of the same power of p, gives: 
2

0 0 0 00 ,  (0)  ,  (0) 0u u u A uω′′ ′+ + = = =  (15) 
And: 

2 5 2
1 1 0 0 1 1(1 ) 0 ,  (0) 0 ,  (0) 0u u u u u uω ε ω′′ ′+ + + − = = =  (16) 

The solution of Eq. (15) is 0 cosu A tω= , where ω  will be identified from the 
variational formulation for  1u , which reads: 

 2 2 2 2 5
1 1 1 0 1 0 1 0

1 1( ) { (1 ) }  ,
2 2

T
J u u u u u u u dtω ω′= − + + − +∫  

(17) 

To better illustrate the procedure, we choose the simplest trail function: 

1
1(cos cos3 )
5

u B t tω ω= −
(18) 

Substituting  1u  into the functional Eq. (17) results in: 
2 2 51 ( 192 1200 675 1200 )( , )

1200
B A A A BJ B ω π ω π ε π πω

ω
⎧ ⎫− − + +

= ⎨ ⎬
⎩ ⎭

 
(19) 

Setting: 

0J
B

∂
=

∂
, and 0J

ω
∂

=
∂

 
(20) 

We obtain: 
2 491 0,  and ,B=0

16
Aω ε− + + =  

(21) 

The first order approximate solution is obtained, which reads: 
 

491
16

Aω ε= +  
(22) 

 
In order to compare with energy balance solution, we write Pashaei, Ganji, and 
Akbarzade’s result [6]: 

471  
12

Aω ε= +  
(23) 
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And we write homotopy perturbation method solution, by J. H. He’s result [9]: 

45 1 
8

Aω ε= +  

 
 

(24) 

Table 1.Comparison of coupled method frequency with parameter expanding 
frequency and energy balance frequency ( 1ε =  ). 
 
A Coupled method 

frequency 
Homotopy perturbation 

method 
Energy balance 

frequency 
0.01 1.0000 1.0000 1.0000 
0.1 1.0000 1.0000 1.0000 
0.2 1.0004 1.0005 1.0005 
0.3 1.0023 1.0025 1.0024 
0.4 1.0072 1.0080 1.0074 
0.5 1.0174 1.0193 1.0181 
1 1.2500 1.2747 1.2583 
5 18.7766 19.7895 19.1202 

 
 

 
Figure 1. Comparison of the coupled method solution with the Homotopy 
perturbation solution and energy balance solution 1 2 1ε ε= = . 
 
3.2- Example 2 
We consider the cubic-quintic nonlinear oscillator [9]: 

3 5
1 2 0 u u u uε ε′′ + + + =  (25) 

With the initial condition of:  (0)  ,  (0) 0u A u ′= =  
Suppose that the frequency of Eq. (25) is ω  
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We construct following homotopy:  

[ ]2 3 5 2
1 2[ (1 ) ] 0 ,  0 ,1u u p u u u pω ε ε ω′′ + + + + − = ∈  (26) 

 We assume that the periodic solution to equation Eq. (26) may be written as a 
power series   in p: 

2
0 1 2 ...u u pu p u= + + + , (27) 

Substituting Eq. (27) into Eq. (26), collecting terms of the same power of p, gives: 
2

0 0 0 00 ,  (0)  ,  (0) 0u u u A uω′′ ′+ + = = =  (28) 
And: 

2 3 5 2
1 1 1 0 2 0 0 1 1(1 ) 0 ,  (0) 0 ,  (0) 0u u u u u u uω ε ε ω′′ ′+ + + + − = = =  (29) 

The solution of Eq. (28) is 0 cosu A tω= , where ω  will be identified from the 
variational formulation for  1u , which reads: 

 2 2 2 2 3 5
1 1 1 0 1 1 0 1 2 0 1 0

1 1 2( ) { (1 ) }  ,  
2 2

T
J u u u u u u u u u dt T πω ω ε ε

ω
′= − + + − + + =∫

 

(30
) 

To better illustrate the procedure, we choose the simplest trail function: 

1
1(cos cos3 )
5

u B t tω ω= −
(31) 

Substituting  1u  into the functional Eq. (30) results in: 
2 2 3 5

1 2(1200 192 1200 840 675 )1( , )
1200

A B A A A BJ B π ω π ω π ε π ε πω
ω

⎧ ⎫− − + +
= ⎨ ⎬

⎩ ⎭
 

(32) 

Setting: 

0J
B

∂
=

∂
, and 0J

ω
∂

=
∂

 
(33) 

We obtain: 
2 2 4

1 2
7 91 0,  and ,B=0

10 16
A Aω ε ε− + + =  

(34) 

The first order approximate solution is obtained, which reads: 
2 4

1 2
7 91

10 16
A Aω ε ε= + +  

(35) 

 
In order to compare with Modified Lindsted-Poincare solution: Double series 
Expansion, we write J. H. He’s result [9]: 
 

2 4
1 2

3 51
4 8

A Aω ε ε= + +  
(36) 
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Table 2.Comparison of coupled method frequency with parameter expanding 
frequency and energy balance frequency 1 2 1ε ε= = . 
 

A Coupled method frequency Modified Lindsted-Poincare 
frequency 

0.1 1.0035 1.0038 
0.2 1.0143 1.0154 
0.3 1.0332 1.0356 
0.4 1.0613 1.0658 
0.5 1.1001 1.1075 
1 1.5042 1.5411 
5 19.2370 20.2577 

 

 
 
Figure2. Comparison of the coupled method solution with the Modified Lindsted-
Poincare solution and energy balance solution. 
 
 
4- Conclusions 
 
This paper has proposed a new method for solving accurate analytical 
approximations to strong nonlinear oscillations.  
The solution procedure of Coupled Method of Homotopy Perturbation Method 
and Variational Method is of deceptive simplicity and the insightful solutions 
obtained are of high accuracy even for the one-order approximation. Unlike the 
classical perturbation method involving expansion over a small parameter, these  
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approximate analytical frequencies are valid for small as well as large amplitudes 
of oscillation as it is not restricted to the presence of a small parameter. 
The most important advantages of this method as compared to the previous 
methods are its simplicity and flexibility in application. The method can also be 
extended to wide range of problems such as (singular) nonlinear boundary value 
problems, delay differential equations, autonomous systems and other problems of 
mathematical physics. We think that the method have great potential which still 
needs further development. 
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