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Abstract 
 

By using differential transform method (DTM) to coupled 
Whitham–Broer–Kaup (WBK), we find the explicit traveling wave solutions of 
WBK equations in the form of a convergent polynomial series. In addition two 
examples the special case of WBK equations namely modified Boussinesq (MB) 
and approximate long wave (ALW) equations are discussed in details and 
compared with previous solutions. The obtained results demonstrate the reliability 
of the algorithm and the DTM is an attractive method in solving the systems of 
nonlinear differential equations. 
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1 Introduction 
 

To describe the propagation of shallow water, many well known completely 
integral models are introduced, such as Boussinesq equation, KP equation, KdV 
equation and WBK equation. We consider the WBK equations, which have been 
studied by Whitham [1], Broer [2] and Kaup [3]. Eq. (1) is a model for water 
waves where the field of horizontal velocity is represented by ( , )u u x t=  and 

( , )v v x t=  is the height that deviate from equilibrium position of liquid, and 
,α β are constants, which are represented in different diffusion powers [4].  
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The exact solutions of ( , )u u x t=  and ( , )v v x t=  are given by [5] 
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where , kλ  and 0x  are arbitrary constants. Above system is a very good model 
to describe dispersive waves. If 1α =  and 0,β =  then the system represents the 
modified Boussinesq (MB) equations [5]. If 0α =  and 0,β ≠  then the system 
represents the classical long wave equations that describe shallow water wave 
with dispersion [4]. Ablowitz [6] studied inverse transformation solution for the 
special case of the WBK. Xie et al. [5] applied the hyperbolic function method to 
the WBK equations and found some new solitary wave solutions. El-Sayed and 
Kaya [7] by the Adomian decomposition method (ADM), Rafei and Daniali [8] 
by the variational iteration method (VIM), Rashidi et al. by the homotopy 
perturbation method (HPM) [9] and Homotopy Analysis Method (HAM) [10] 
obtained explicit traveling wave solutions of the Whitham–Broer–Kaup equations.    

Most scientific problems and phenomena are modeled by nonlinear ordinary or 
partial differential equations. Some of them are solved using numerical methods 
and some are solved using analytic methods of perturbation [11]. Although with the 
advancement of the symbolic computation software such as MATHEMATICA, 
MAPLE and so on approximate analytic methods for nonlinear problems have been 
adopted by many researchers. Among these are the HPM [12, 13], homotopy 
analysis method (HAM) [14, 15, 16] and the DTM [17]. The concept of DTM was 
first introduced by Zhou [17] in 1986 and it was used to solve both linear and 
nonlinear initial value problems in electric circuit analysis. The DTM is a semi 
analytical-numerical technique that formulizes Taylor series in a very different 
manner. In this method, we applied certain transformation rules hence the 
governing differential equations and the boundary conditions of the system are 
transformed into a set of algebraic equations and the solution of these algebraic 
equations gives the desired solution of the problem. Chen and Ho [18] developed 
this method for partial differential equations and obtained closed form series 
solutions for linear and nonlinear initial value problems and Ayaz [19] applied it 
to the system of differential equations. Rashidi and Erfani [20] used the DTM to 
solve Burgers’ and nonlinear heat transfer equations and compared the DTM with 
the HAM. 
 
 
2 Basic idea of differential transform method 

 
Consider a function of two variable ),( yxw  be analytic in the domain Ω  

and let 0 0( , ) ( , )x y x y=  in this domain. The function ( , )w x y  is then  
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represented by one series whose centre at located at 0 0( , ).w x y  The differential 
transform of the function is the form 
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where ( , )w x y  is the original function and ( , )W k h  is the transformed function. 
Then its inverse transform is defined as 
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The relations Eq. (3) and Eq. (4) imply that 
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In a real application and when 0 0( , )x y  are taken as (0,0),  then the function 
( , )w x y  is expressed by a finite series and Eq. (4) can be written as 
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Table 1 
The operations for the two-dimensional differential transform method. 
Original function Transformed function 
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3 Application 
 
Consider the Whitham–Broer–Kaup (WBK) equations Eq. (1), with the initial 
conditions [5] 
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Taking the two-dimensional transform of Eq. (1) by using the related definitions 
in Table1, we have 
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By applying the initial conditions Eq. (7) into Eq. (4), the initial transformation 
coefficients are thus determined by 
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Hence from Eq. (9) 
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Substituting Eq. (10) in Eq. (8), and by recursive method we can calculate another 
values of ( , )U k h  and ( , ).V k h  Hence, substituting all ( , )U k h  and ( , )V k h  
into Eq. (6), we have series solution as below  
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Our approximation has one more interesting property, if we expand exact 
solutions Eq. (2) using Taylor’s expansion about (0,0) , we have the series same 
as the our approximation Eq. (11) and Eq. (12). 
 
 
4.  Numerical experiments and discussion 
 

In this section, we obtain numerical solutions of the WBK equations. In 
order to verify the efficiency of the proposed method in comparison with the 
ADM, VIM, HPM and HAM, we report the absolute errors for the DTM 
( 10, 10),m n= =  the DTM ( 20, 20),m n= =  ADM [7] (5-term approximate 
solution), VIM [8] (4-term approximate solution), HPM [9] (2-term approximate 
solution) and HAM [10] (8-term approximate solution), in the following cases: 
“Case 1. The WBK equations Eq. (1), for 1.5α=  and 1.5,β =  in Table 2; Case 
2. The modified Boussinesq (MB) equations [5], reduced of the WBK equations 
for 1α=  and 0,β =  in Table 3; Case 3. The approximate long wave (ALW) 
equations in shallow water [4], reduced of the WBK equations for 0α=  and 

0.5,β =  in Table 4”. The results clearly show that even the DTM (10,10)  is the 
most accurate method of all the others method. Note that the DTM is easier to 
calculate than HAM, ADM, VIM and HPM because in the DTM we have iterative 
procedure where do not need to solve any differential equations or integrate 
equations. In the other methods we must in each iterate solve differential 
equations or integrate equations. In Fig. 1 we show the results obtained by DTM 
(15,15),  in comparison with the exact solutions Eq. (2), for various parameter λ  
when 0.1,k = 0 12,x =  1.5α =  and 1.5β =  (WBK equation). From Fig. 1, it 
can be concluded that our results are good agreement with exact solutions Eq. (2). 
It is also evident that when more terms for the DTM are computed the numerical 
results get much closer to the exact solutions. 
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4. Conclusions 
 

In this paper, the DTM has been applied to the coupled Whitham–Broer–Kaup 
problem. The results for three numerical examples in Tables 2-4 showed the 
validity and accuracy of this procedure. From Tables 2-4 it is obvious that the 
DTM is the most accurate method of all the others method.  
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Fig. 1. The results obtained by DTM (15,15),  in comparison with the exact 
solutions for various parameter λ  when 00.1, 12, 1.5 and =1.5.k x α β= = =  

 (a), (c) 0.5λ = ; (b),(d) 2λ = . 
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Table 2 
The absolute errors for the case of 00.1, 0.005, 10, 1.5 and =1.5.k xλ α β= = = =  

x  t  
DTM(10,10) DTM(20,20) HAM [10] VIM [8] ADM [7] HPM [9] 

Exact Approximatu u−  

0.1 0.1 1.1102E−16 1.1102E−16 8.4109E−08 1.2303E−04 1.0489E –04 8.9190E –10  
 0.5 1.1102E−16 1.1102E−16 2.4944E−08 6.1687E−04 8.8831E –05  2.2302E –08  
0.5 0.1 1.7208E−15 5.5511E−17 8.4345 E−08 1.1094E−04 2.7952E –03 7.8779E –10  
 0.5 1.8319E−15 0.0000 2.2294 E−07 5.5623E−04 2.3618E –03 1.9699E –08  

  Exact Approximatv v−  

0.1 0.1 1.3878 E−17 1.3878 E−17 2.6499E−06 1.1043E−04 6.4142E –03 9.6607E –10  
 0.5 4.1633 E−17 4.1633 E−17 1.2946E−05 5.5407E−04 5.6151E –03 2.4158E –08  
0.5 0.1 7.3552 E−15 2.7756 E−17 2.6396E−06 9.7538E−05 3.7519E –02 8.2720E –10  
 0.5 7.4524 E−15 2.7756 E−17 1.2935E−05 4.8934E−04 2  .2624E –03 2.0685E –08  

Table 3 
The absolute errors for the case of 00.1, 0.005, 10, 1 and =0.k xλ α β= = = =  
x  t  

DTM(10,10) DTM(20,20) HAM [10] VIM [8] ADM [7] HPM [9] 

Exact Approximatu u−  

0.1 0.1 5.5511E−17 5.5511E−17 2.5947E−07 6.3527E−05    8.1630E –07    4.6057E –10 
 0.5 0.0000 0.0000 2.5097E−06 3.1855E−04    7.1608E –07    1.1517E –08 
0.5 0.1 9.9920 E−16 0.0000 2.3362E−07 5.7287E−05    2.0341E –05    4.0681E –10 
 0.5 8.8818 E−16 5.5511 E−17 2.2555E−06 2.8724E−04 5  1.7853E –0    1.0172E –08 

  Exact Approximatv v−  

0.1 0.1 5.2042 E−18 5.2042 E−18 1.5483 E−06 1.65942E−05    5.8868E –05    1.4517E –10 
 0.5 8.6736 E−18 8.6736 E−18 7.7433 E−06 8.32598E−05    5.2717E –05    3.6302E –09 
0.5 0.1 1.1085 E−15 3.4694 E−18 1.3716E−06 1.46569E−05    2.9916E –04    1.2430E –10 
 0.5 1.1206 E−15 5.2041 E−18 6.8600E−06 7.35317E−05 4  2.6787E –0    3.1083E –09 

 
 
Table 4 
The absolute errors for the case of 00.1, 0.005, 10, 0 and =0.5.k xλ α β= = = =   
x  t  

DTM(10,10) DTM(20,20) HAM [10] VIM [8] ADM [7] HPM [9] 

Exact Approximatu u−  

0.1 0.1 2.7756 E−17 2.7756 E−17 1.2980E−07 3.17634E−05    8.0299E –06    2.3029E –10 
 0.5 0.0000 0.0000 1.2621E−06 1.59274E−04    6.7992E –06    5.7584E –09 
0.5 0.1 4.9960 E−16 0.0000 1.1686E−07 2.86433E−05    2.0619E –04    2.0341E –10 
 0.5 4.4409 E−16 2.7756 E−17 1.1338E−06 1.43620E−04 4  1.7451E –0    5.0862E –09 

  Exact Approximatv v−  

0.1 0.1 2.6021 E−18 2.6021 E−18 7.7417E−07 8.29712E−06    4.8190E –04    7.2585E –11 
 0.5 4.3368 E−18 4.3368 E−18 3.8722E−06 4.16299E−05    4.2222E –04    1.8151E –09 
0.5 0.1 5.5424 E−16 1.7347 E−18 6.8585E−07 7.32847E−06    2.5440E –03    6.2151E –11 
 0.5 5.6032 E−16 2.6020 E−18 3.4304E−06 3.67658E−05 3  2.2258E –0    1.5541E –09 
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