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Abstract 
 
The homogenization technique of the laminated composite is presented in this 
paper. The behaviour law of each layer expressed in the laminated coordination 
axis is used. 
The homogenization technique is based on the partially inversed and reversed 
behaviour law technique. This allows the determination of the rigidity tensor 
eventually resulting in the classification of laminate’s behaviour. 
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1 Introduction 
 
   The variety in composite materials with different shapes are continuously 
replaced the conventional materials. This reality has caused an increasing interest 
in the modeling of composites. Several approaches are adopted to predict the 
behaviour of the composites using developing a model, which can used to 
determine the rigidity tensor of this type of materials in practical situations [2].  
The composite laminates are obtained by superposition of the various layers of the 
materials with the same or different nature [3]. Generally, the layers are identical 
from both the material and the thickness stand points. Each layer is formed by 
submerging the fibres in the matrix resin material. The layers generally are 
orthotropic (i.e. with principal properties in orthogonal direction to each layer) or 
transversely isotropic (with isotropic properties in the transverse plane), with the 
laminate then exhibiting anisotropy (with variable direction of principal 
properties), orthotropic, or quasi-isotropic properties. 
 
 
2 Description of problem 
 
   We assume a laminated material composed of several homogenous and elastic 
layers periodically stacked and perfectly pasted in 3er  direction (Figure 1, a). 

             
(a)         (b)    

Figure 1 : (a) Periodic structure laminate, (b) Basic cell y 

The modelling will be undertaken on the rectangular prism as a basic element in 
the 3er  direction and the other directions (i.e. 1er  and 2er ) will not be taken into 
account.  
The axes coordination centre is made on the centre of the basic cell charaterizing 

by the dimensions of 
1 1 1 1

Y , , y
2 2 2 2

= − × − ×
⎤ ⎡ ⎤ ⎡
⎥ ⎢ ⎥ ⎢⎦ ⎣ ⎦ ⎣

 and 
Y Y3 3y ,
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= −
⎤ ⎡
⎥ ⎢
⎦ ⎣

 and having 

the coordination of (o,y1,y2,y3) [6][7] (Figure1, b). 
The elasticity coefficients at a microscopic scale A(y) are only the function  
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of 3Y  and they are periodic on y and constant per part. The local coefficient of the 

heterogeneous volume in a macroscopic scale, A (x)ε , is given by 

( )x3A (x) Aε
ε=  and is εy-periodic [9]. The ratio of the basic cell thickness,Y3, 

and the laminate thickness is called as parameter ε and is assumed to be small. 
The hooks <.> indicate the average of a size on the one-dimensional basic cell y. 
We consider: 

( ) ( )
3

3

Y
2

3 3 3Y3
2

1
f y f y dyY Y

−

< > = ∫          (1) 

The displacement vector u and the stress tensor are the periodic functions with 
unspecified period in y1 and y2. They are only the function of the scalar variable, 
y3, considered as the solution for the following equilibrium problem, Eq.(2), 
written for a one-dimensional (y-dimension) basic cell [5] [1] [4] [10].  
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where E is the second order symmetrical tensor, which is independent of y. 
The fourth order tensor M(y3) is introduced to relate the stress and E tensors as:  
 
( ) ( )3 3y M y Eσ = .             (3) 

 
The homogenous behaviour law is a relationship obtained by making an average 
over the eq. (3), [5]. 

3 Y 3 Y 3 Y
(y M(y e(y) ) )< σ > =< > < >         (4) 

The homogenous coefficients Q are given by eq. (5): 

3 Y
Q M(y )=< >             (5)  

3 Problem solution 
 
   In order to solve this problem, in first step, we proposed a partially inversed 

behaviour law for each layer of laminated material as follows: 

{ }, , , , ,
11 22 12 13 23 33

A e e e= σ σ σ          (6) 
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{ }13 23 33 11 22 12
B , , ,e ,e ,e= σ σ σ   

 

where the components of the tensor A are only the function of y3 while those of  

tensor B are independent of y3. The two tensors, A and B, are related by y3 

-dependent fourth-order tensor (K): 

 

A K : B=              (7)  

 

Making an average over the Eq.(7) results in: 

 

y y y yA K : B K : B< > =< > =< > < >         (8) 

 

The second step is to re-inverse the resulting partially inversed behaviour law 

relationship, Eq.(8), which allows to determine the homogenous components 

corresponding to the stress tensor average (<σ(y3)>) and strain tensor average  

 

(<e(y3)>) as well: 

3 Y 3 Y
(y Q e(y) )< σ > = < >           (9) 

 

The procedure is schematically illustrated in the figure 2. 
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Figure 2: the procedure used to solve the problem 

 
 
4 Application 
 
   We consider a laminated material with periodical structure along the direction 

3er . The layers are assumed elastic, homogeneous, and 3er  monoclinic [8]. 
The behaviour law for each layer is written as follows: 

N: layers number 

a1: Elastic 

coefficient for 

layer 1 

a2: Elastic 

coefficient for 

layer 2 

an: Elastic 

coefficient for 

layer n 

Partially inverse of each layer’s behaviour law 

k1 k2 kn 

Average of K: 
n

t t
ijkl y ijkl

t 1
k

1 k h
H =

< > = ∑  

Partially reverse of behaviour law: 

Q: homogenous coefficients 
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Using the partially inversed behaviour law, Eq.(10), the fourth order tensor K is 
obtained. 
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where the components of tensor K for each layer exhibited as: 
 

1113 1123 1133 1111 1122 1112
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1213 1223 1233 1211 1222 1212

1313 1323 1333 1311 1322 1312
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and are given in Eq.(13) 
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The other components are zero.  
Using the relationships (13), the tensor K of each layer becomes (14): 
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Recalling that  
A K :B A K : B K :B= ⇒< >=< >< >=< >  and that the components of tensor 
B are  independent of y3. Replacing K tensor from Eq.(14) and the average 
values of A and B will give: 
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The average of each component is calculated as follows: 
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n
t t

ijkl y ijkl
t 1

k
1 k h
H =

< > = ∑         (16) 

Where H is the laminate thickness, n is the number of layer in each laminate, 
t
ijklk  is the fourth order tensor component corresponding to layer t and ht is the 

layer thickness. 
In order to determine the homogenous behaviour law, we proceed by re-inversing 
the resulting partially inversed behaviour law relationship, Eq.(15), which allows 
to determine the fourth order tensor Q indicating the homogenous components: 
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Where ( )2323 1313 1323 2313D 4 k k k k< <= < > > − < > >  

 
The values of the tensor Q components given in Eq.(17) obviously shows that 
tensor Q is symmetrical: 
 

11 111111 1122 1133 1112

22 222222 2233 2212

33 333333 3312

23 232323 2313

13 131313

12 121212

Sym

eq q q 0 0 q

eq q 0 0 q

eq 0 0 q

2 eq q 0

2 eq 0

2 eq

⎛ ⎞⎛ ⎞ ⎛
⎜ ⎟⎜ ⎟ ⎜
⎜ ⎟⎜ ⎟ ⎜
⎜ ⎟⎜ ⎟ ⎜
⎜ ⎟⎜ ⎟ ⎜
⎜ ⎟⎜ ⎟ ⎜=
⎜ ⎟⎜ ⎟ ⎜
⎜ ⎟⎜ ⎟ ⎜
⎜ ⎟⎜ ⎟ ⎜
⎜ ⎟⎜ ⎟ ⎜
⎜ ⎟⎜ ⎟ ⎜

⎝ ⎠ ⎝⎝ ⎠

< σ > < >

< σ > < >

< σ > < >

< σ > < >

<σ > < >

<σ > < >

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

  (18) 

 
 
It is possible to show that the homogenized material is also monoclinic with 
respect to Y3-axis. 
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4 Conclusion 
 
The present approach allowed to determine the behavior law of the laminated 
material using the behaviour law of each layer and thickness.   

The results obtained are in perfect agreement with the literature because the 
behaviour law of laminate is transversely isotropic if the behaviour law of all 
layers is isotropic and it is monoclinic if at least one layer is monoclinic.  

The present work was concluded by an numerical application using our approach 
whose permitting the tensor homogenized coefficients from the data of the layer 
so the coefficient independent of the rigidity tensor and thickness. 
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