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We analyze the inelastic electron-electron scattering in undoped graphene within the Keldysh
diagrammatic approach. We demonstrate that finite temperature strongly affects the screening
properties of graphene, which, in turn, influences the inelastic scattering rates as compared to
the zero-temperature case. Focussing on the clean regime, we calculate the quantum scattering
rate which is relevant for dephasing of interference processes. We identify an hierarchy of regimes
arising due to the interplay of a plasmon enhancement of the scattering and finite-temperature
screening of the interaction. We further address the energy relaxation and transport scattering
rates in graphene. We find a non-monotonic energy dependence of the inelastic relaxation rates in
clean graphene which is attributed to the resonant excitation of plasmons. Finally, we discuss the
temperature dependence of the conductivity at the Dirac point in the presence of both interaction
and disorder. Our results complement the kinetic-equation and hydrodynamic approaches for the
collision-limited conductivity of clean graphene and can be generalized to the treatment of physics
of inelastic processes in strongly non-equilibrium setups.

I. INTRODUCTION

Graphene1,2 is a two-dimensional (2D) material with
a quasi-relativistic dispersion law that has attracted an
outstanding attention of leading experimental as well
as theoretical groups all over the world. In 2004, re-
searchers at Manchester University first succeeded in ex-
perimental isolation of a monoatomic graphite layer —
graphene—on an insulating substrate3,4. This technolog-
ical breakthrough was immediately followed by transport
measurements5,6 which have shown remarkable proper-
ties related to Dirac nature of the charge carriers. In
particular, a short and wide sample of clean graphene
exhibits a pseudo-diffusive charge transport7, with the
counting statistics equivalent to that of a diffusive wire8,9.
This equivalence has been confirmed in recent measure-
ments of conductance and noise in ballistic graphene
flakes10,11. In contrast to conventional metals, ballistic
graphene near the Dirac point conducts better when po-
tential impurities are added12–15.

Quantum interference in disordered graphene is also
highly peculiar due to Dirac nature of carriers. In par-
ticular, at the Dirac point, the minimal conductivity5,6

∼ e2/h is “protected” from quantum localization in the
absence of intervalley scattering16 or in the case of a
chiral-symmetric disorder17,22. Away from Dirac point,
the concentration dependence of graphene conductiv-
ity in diffusive samples depends strongly on the nature
of scatterers17. The experimentally observed (approxi-
mately linear) dependence in most of the samples may
be explained by strong impurities creating resonances
near the Dirac point (“midgap states”)17,18, yielding
σ ∝ n ln2 n. Alternative candidates are Coulomb im-
purities and/or ripples, leading to17,19–21 σ ∝ n. The

dominant type (or types) of disorder and the correspond-
ing disorder strength depend, of course, on technology of
the sample preparation.

How important is the electron-electron interaction in
graphene? Recent works demonstrated manifestation
of the interaction in dephasing rate providing the cut-
off to quantum interference phenomena23–25, as well as
in renormalization of conductivity26,27. Recent experi-
ments also showed that the interaction plays a particu-
larly prominent role in suspended graphene samples.28,29

In such samples the splitting of integer quantum Hall
transition (attributed to interaction-induced spin/valley
symmetry breaking) is observed at magnetic fields as low
as 2T (i.e. an order of magnitude less than in graphene
structures on a substrate). Furthermore, one observes
also fractional quantum Hall plateaus, which indicates
the importance of electron correlations.30–32 Continuous
advances in fabrication of high-quality graphene samples
are expected to lead to further enhancement of the role
of interaction in graphene.

On the theoretical side, interactions may have a dra-
matic impact on quantum electronic transport, especially
in systems of reduced dimensionality33. Very generally,
the interaction-induced phenomena may be subdivided in
two big classes, related to effects of renormalization and
inelastic scattering, respectively. In the case of graphene,
the interaction physics becomes an even more complex
problem, in view of the “relativistic” dispersion of carri-
ers. Interaction phenomena are particularly strong near
the Dirac point, where the density of states vanishes (for
a clean system), the screening by intrinsic carriers be-
comes very inefficient, and the Drude conductivity (in
the presence of disorder) is of the order of the conduc-
tance quantum.

http://arxiv.org/abs/1011.5217v1
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The dimensionless bare coupling constant αg = e2/vF
describing the Coulomb repulsion in graphene samples on
a SiO2 insulating substrate is estimated to be 0.6 − 0.8
and can be yet larger, αg ≃ 2.2, in suspended graphene
sheets. Transport experiments on the interaction correc-
tion to conductivity in graphene on a substrate27 have
found much smaller values of the interaction constant
(or, equivalently, the interaction parameter rs) which
can be attributed to the renormalization effects which
we briefly overview below. Furthermore, the value of the
effective fine structure constant of freestanding graphene
as inferred from the results of recent experiments on X-
ray scattering in graphite34 was also found to be much
smaller than the bare value of α.

The interaction effects in the clean graphene have
been considered in Refs. 35–41 within the weak-coupling
renormalization-group (RG) scheme justified for a large
number of flavors of Dirac fermions. The main result
of this consideration35,36 is the renormalization of the
Fermi velocity and hence of the interaction parameter.
This perturbative renormalization group for graphene
thus shows that in the clean case the Coulomb interaction
is marginally irrelevant. In the disordered case, a unified
ballistic RG emerges describing renormalization of dis-
order couplings and of the interaction37–42. In Ref. 41
the corresponding one-loop RG equations are derived for
time-reversal-invariant disorder and in the limit of large
number of valleys.

At sufficiently strong αg, the Coulomb interaction in
a clean graphene has been argued to give rise to vari-
ous instabilities43–49, in particular, to opening the gap
in the Dirac spectrum of the quasiparticles (spontaneous
mass generation). Physically, this instability leads to a
phase transition from the semimetallic state to an insula-
tor state, known as excitonic semimetal-insulator transi-
tion43. Recently, this type of instability has been studied
by effective mean-field-type approach43,44, renormaliza-
tion group method36, and lattice simulations47,48. The
mean-field consideration of the excitonic-type instability
in graphene predicts a certain value of the coupling con-
stant αg ≃ 2 (close to that in a suspended graphene) at
which the instability occurs. The predicted semimetal-
insulator transition, however, has not yet been observed
in experiments in zero magnetic field. One of the possi-
ble reasons for that might be the presence of disorder49.
In strong magnetic field—in the quantum Hall effect
regime— the repulsive interaction between electrons may
result in the Stoner instability50–52 giving rise to spon-
taneous breaking of spin and/or valley symmetry. Ex-
periments do show splitting of quantum Hall plateaus in
strong magnetic fields53, that is attributed to interaction
effects.

It has been debated in the literature whether the
Coulomb interactions in graphene can be theoretically
addressed within the standard Fermi-liquid-type pertur-
bation theory that requires, in particular that the particle
energy is much larger than the decay rate (Γ ≪ ǫ). In
order to understand to what extent graphene is a Fermi

liquid, one has to explore interaction-induced inelastic
collision rates. The inelastic quantum scattering rate at
zero temperature (and finite quasiparticle energy) has
been considered in Refs. 54,55. It was found in these
works that the behavior at Dirac point is rather peculiar
and requires a careful incorporation of screening.
Another highly nontrivial feature of graphene is that

inelastic electron-electron collisions may limit the con-
ductivity at the Dirac point without any disorder or
phonon scattering56,57,59. This peculiarity of graphene—
which should be contrasted to conventional systems
where interactions do not lead (in the absence of Umk-
lapp scattering) to finite resistivity—is a consequence of
the particle-hole symmetry and decoupling between ve-
locity and momentum. As a result, although the total
momentum of interacting particles is conserved during
inelastic collisions, the total current may relax. The
collision-limited conductivity of undoped graphene is
found to be inversely proportional to α2

g and depends
on temperature only through the renormalization of αg.
It was found that the energy relaxation caused by in-
elastic processes in graphene is fast, which allows one to
treat the problem by using a relativistic hydrodynamic
approach58,60–62.
In this paper we analyze the inelastic electron-electron

scattering in graphene within the Keldysh diagrammatic
approach. While we focus on the equilibrium situation
in this work, we have in mind to extend the treatment of
physics of inelastic processes to strongly non-equilibrium
setups, which explains why we prefer to work in the
framework of the Keldysh formalism. More specifically,
our main results are as follows:

• We demonstrate that finite temperature strongly
affects the screening properties of graphene, which,
in turn, influences the inelastic scattering rates as
compared to the zero-temperature case.

• Focussing on the high-temperature regime, we cal-
culate the quantum scattering rate which is rele-
vant for dephasing of interference processes. We
identify an hierarchy of regimes arising due to the
interplay of a plasmon enhancement of the scatter-
ing and finite-temperature screening of the interac-
tion.

• We further discuss the energy relaxation and trans-
port scattering rate in graphene. Our results com-
plement the kinetic-equation and hydrodynamic
approaches56,57,59 for the collision-limited conduc-
tivity of clean graphene.

The paper is organized as follows. In section II we
define the model and develop the Keldysh diagrammatic
formalism for treating the problem of Coulomb interac-
tion in graphene. Section III is devoted to the analysis of
polarization operator of graphene. We first review and
discuss the results for the zero temperature case. Then
we turn to the case of finite temperature and discuss
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the properties of the polarization operator. In particu-
lar, we compare the approximate form of the dynamically
screened interaction propagator with the exact numeri-
cal results. In Sec. IV we calculate the inelastic scatter-
ing rates in the random phase approximation. Here we
use the finite-temperature polarization operator obtained
in Sec. III to treat the problem analytically. We dis-
cuss the asymptotics of the inelastic rates and show that
Dirac fermions show no Fermi liquid behavior. Further,
in Sec. V, we discuss the collision-limited conductivity
obtained within the diagrammatic approach. In Sec. VI
we conclude and summarize the main results of this pa-
per. Technical details of the calculations are presented
in three Appendices.

II. THE MODEL

A. Clean graphene with Coulomb interaction

In this paper we consider clean graphene near the de-
generacy point. The problem is described by the follow-
ing Hamiltonian, which is a sum of the Dirac Hamiltonian
Ĥ0 (describing the physics of non-interacting electrons in
graphene at not too high energies) and the Coulomb in-
teraction term,

Ĥ = Ĥ0 + V̂ =
∑

ν

∫

d2r Ψ̂†
ν(r)(−ivFσ ·∇) Ψ̂ν(r) +

1

2

∑

ν,ν′

∫

d2r1d
2r2 Ψ̂

†
ν(r1) Ψ̂

†
ν′(r2)

e2

ε|r1 − r2|
Ψ̂ν′(r2) Ψ̂ν(r1) . (1)

Here ε is the dielectric constant. The spinors Ψ̂ have
two components in the sublattice space, σi are Pauli ma-
trices operating in this space. The indices ν, ν′ label N
independent degrees of freedom (in graphene N = 4 ac-
counts for spin and valleys degeneracy): the Coulomb
interaction is invariant with respect to any rotations in
the corresponding space. We set ~ = 1. We focus on the
case of undoped graphene and set the chemical potential
(counted from the Dirac point) to zero, µ = 0.

The retarded (advanced) Green’s function of the non-

interacting Hamiltonian Ĥ0 (the bare Green’s function)
in the energy-momentum space has the form

GR,A
0 (ǫ,p) =

ǫ1+ vFσ · p
(ǫ ± i0)2 − v2F p

2
. (2)

It is convenient to introduce the projection operators
that distinguish between the two chiral states:

P±(p) =
1± σ · n

2
, (3)

where np = p/p is the unit vector in the direction of mo-
mentum. With the help of Eq. (3) the matrix Green’s
function, Eq. (2), can be decomposed into the superpo-
sition of the two Green’s functions corresponding to the
states with + and − chiralities:

GR,A
0 (ǫ,p) = P+(p)G

R,A
0+ (ǫ,p) + P−(p)G

R,A
0− (ǫ,p) , (4)

where

GR
0±(ǫ,p) =

1

ǫ+ i0∓ vF p
(5)

and GA
0±(ǫ,p) =

[
GR

0±(ǫ,p)
]∗
. For the later purposes we

will need the quasiparticle spectral weight

A0(ǫ,p) =
1

2i

[
GR

0 (ǫ,p)−GA
0 (ǫ,p)

]
=

− π

2ǫ
(ǫ1+ vFσ · p)[δ(ǫ− vF p) + δ(ǫ + vF p)] . (6)

Using the projection operators, we decompose the spec-
tral weight as follows:

A0(ǫ,p) = P+(p)A0+(ǫ,p) + P−(p)A0−(ǫ,p), (7)

A0±(ǫ,p) = −πδ(ǫ∓ vF p). (8)

It is worth noticing that for Dirac particles the spectral
weight A0(ǫ,p) is not given by the imaginary part of the
Green’s function GR

0 (ǫ,p), because the latter contains
the Pauli matrix σy. However, within each chirality the
conventional relation holds: A0±(ǫ,p) = Im GR

0±(ǫ,p) .
Next, we introduce the coupling constant for Coulomb

interaction in graphene

αg =
e2

εvF
, (9)

which is similar to the fine structure constant

α =
e2

c
≈ 1

137

but is c/εvF times larger. The bare propagator of the
Coulomb interaction in (1) reads (in momentum space):

D0(q) =
2παgvF

|q| (10)

Throughout the paper we assume αg ≪ 1. This assump-
tion is favored by recent experiments 27,34 which sug-
gested that the effective interaction constant in graphene
is rather small at experimentally relevant temperatures.
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B. Keldysh formalism

Although in this work we discuss only equilibrium
physics, we use the Keldysh formalism63,64 in order to
have a basis which can be generalized to the nonequi-
librium situation. In particular, this Keldysh formalism
will be used elsewhere for deriving kinetic equations for
clean and disordered graphene.
The bare Green’s function is now a matrix in the

Keldysh space

Ǧ0 =

(
GR

0 GK
0

0 GA
0

)

. (11)

Here the Keldysh component GK
0 at the equilibrium

reads

GK
0 (ǫ,p) = f(ǫ)

[
GR

0 (ǫ,p)−GA
0 (ǫ,p)

]

= 2if(ǫ)A0(ǫ,p), (12)

where the fermionic thermal factor is given by f(ǫ) =
tanh(ǫ/2T ).
The full Keldysh Green’s function for Eq. (1) is ex-

pressed through Ǧ0

Ǧ =
(
Ǧ0 − Σ̌

)−1
(13)

where Σ is the full self energy. In the lowest order in the
fully dressed propagator of Coulomb interaction Ď the
retarded self-energy is given by

ΣR
0 =

i

2

(
DK ◦GR

0 +DR ◦GK
0

)
, (14)

where the symbol ◦ denotes integration over all internal
energies and momenta.
In the equilibrium situation the Keldysh component

DK of the interaction propagator satisfies

DK(ω,q) = 2ig(ω) ImDR(ω,q) , (15)

where g(ω) = coth(ω/2T ) is the bosonic thermal factor.
Using Eqs. (14), (15), and (12), one gets

ΣR
0 − ΣA

0 = −2i
[
(f + g) Im DR

]
◦ (GR −GA) . (16)

The retarded self energy is a matrix which contains the
two terms:

ΣR = ΣR
ǫ 1+ΣR

v σ · np. (17)

The real parts of ΣR
ǫ and ΣR

v give rise to the corrections
to the energy and Fermi velocity, respectively:

δǫ = −ReΣR
ǫ (ǫ,p), (18)

δvF = ReΣR
v (ǫ,p)/p. (19)

In order to fix the energy unrenormalized, we introduced
the Z factor

Z(ǫ,p) = 1− ReΣR
ǫ (ǫ,p)

ǫ
, (20)

so that ǫ − ReΣR
ǫ (ǫ,p) = Z(ǫ,p)ǫ. The renormalized

Fermi velocity takes then the form

v∗F = vFZ(ǫ,p)

[

1 +
ReΣR

v (ǫ,p)

vF p

]

. (21)

Using Eqs. (20) and (21), we write the retarded Green’s
function as

GR(ǫ,p)

= Z

[

(ǫ− iZ ImΣR
ǫ )1−

(

v∗F +
iZ ImΣR

v

p

)

σ · p
]−1

,

(22)

where

ImΣR
ǫ = −1

2
ImDR(f + g) ◦ TrA, (23)

ImΣR
v = −1

2
ImDR(f + g) ◦ TrAσ · np. (24)

Note that in this representation the velocity acquires a
non-zero imaginary part.
The most singular terms in the renormalized velocity

v∗F , coupling constant α∗
g = e2/εv∗F , and the Z-factor can

be summed up by means of the renormalization group
approach35. For the case of weak interaction αg ≪ 1 the
solution of one-loop RG equations has the form:

v∗F (ǫ) = vF

(

1 +
αg

4
ln

Λ

ǫ

)

, (25)

α∗
g(ǫ) =

αg

1 +
αg

4 ln Λ
ǫ

, (26)

Z(ǫ) = exp

{

− 4

3π

[
αg − α∗

g(ǫ)
]
}

= exp

[

− 1

3π

α2
g ln

Λ
ǫ

1 +
αg

4 ln Λ
ǫ

]

≃ 1. (27)

Here Λ is the ultraviolet energy cutoff (bandwidth) and
the on-shell relation between ǫ and p is assumed. At finite
temperature T the renormalization stops at max[ǫ, T ].
Therefore, for energies below T (which will be in the focus
below) the renormalized velocity and the Z-factor are
independent of energy. Since for αg ≪ 1 the corrections
to unity in the renormalized Z-factor are parametrically
small, in what follows we set Z = 1.
Similarly to the bare Green’s function, Eq. (4), the full

Green’s function, Eq. (22), can be represented as a sum
of the two terms corresponding to ±-chiralities:

GR(ǫ,p) = P+(p)G
R
+(ǫ,p) + P−(p)G

R
−(ǫ,p) , (28)

where

GR
±(ǫ,p) =

Z

ǫ∓ v∗F p− iZ ImΣR
±

(29)

with

ImΣR
± = ImΣR

ǫ ± ImΣR
v

= − ImDR(f + g) ◦ Tr [AP±] . (30)
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Clearly, the bare Coulomb interaction (whose propa-
gator is purely real) does not yield the imaginary part of
the self-energy, so that one has to take into account the
retardation effects. In the random phase approximation
(RPA), the screened Coulomb interaction takes the form

DR
RPA(ω,q) =

D0(q)

1 +D0(q)NΠR(ω,q)
(31)

where N is the number of flavors. The dynamical screen-
ing in Eq. (31) is expressed through the bare polarization
operator

ΠR =
i

2
Tr
(
GR

0 ◦GK
0 +GK

0 ◦GA
0

)
. (32)

In Sec. III below we study Π at zero and finite tempera-
ture.

III. POLARIZATION OPERATOR

In the present section we discuss the properties of the
polarization operator. This is of primary importance for
understanding the screening of the electron-electron in-
teraction and thus the physics of interaction-induced phe-
nomena. We find it instructive to start with analyzing
the zero temperature result and describing the processes
relevant for the polarization operator. Then we turn to
the case of finite temperature, which is our main interest
in the paper. Finally, we analyze the consequences for
the RPA-screened interaction. In the end of this section
we comment on the applicability of the RPA in graphene.

A. Polarization Operator at Zero Temperature and
RPA Interaction Propagator

The polarization operator in the energy-momentum
representation reads

ΠR(ω,q) = −
∫

d2p

(2π)2

∫
dǫ

2π
f(ǫ)Tr{A0(ǫ,p)

×
[
GR

0 (ǫ+ ω,p+ q) +GA
0 (ǫ− ω,p− q)

]}
, (33)

where GR,A
0 are bare Green functions (2). The momen-

tum integrals that appear in this expression can be conve-
niently evaluated using elliptic coordinates as described
in Appendix A.
In the zero temperature limit, Eq. (A1) simplifies and

leads to the well-known expression for the imaginary part
of the polarization operator:35

ImΠR(ω,q) =
1

16
Re

q2signω
√

ω2 − v2F q
2
. (34)

One can see that the imaginary part of the polarization
operator is non-vanishing only if ω > vF q and shows a
divergence at the “light cone” ω = vF q.

To understand the vanishing of the imaginary part of
the polarization operator at ω < vF q, it is instructive
to analyze54,59 the kinematic restrictions for elementary
processes. It is easy to see that an on-shell electron-hole
pair can be created if (left panel of Fig. 1)

ω ≥ vF q . (35)

This should be contrasted to the energy and momentum
conservation of on-shell electron-electron scattering pro-
cesses (right panel of Fig. 1)

ω2 + 2v2F p1p2(1− cos(∢[p1,p2])) = v2F q
2 , (36)

which implies the condition

ω ≤ vF q. (37)

Thus, if we restrict our consideration to on-shell par-
ticles, electron-electron scattering processes only create
electron-hole pairs under the condition ω = vF q, when
ImΠ diverges. As follows from Eq. (36), scattering pro-
cesses that satisfy ω = vF q correspond to forward scat-
tering with ∢[p1, p2] = 0. After the RPA resummation,
the interaction propagator takes the form

DR
RPA(ω, q) =

2πvFαg

q +
πvFαgN

8

iq2
√

ω2 − v2F q
2

. (38)

It is seen that the divergence at ω = vF q is now elimi-
nated; moreover, the imaginary part of the propagator is

ω= a+b
q= a+b

b

b

e−h

a

a

= a−bq

a+b=ω ω=

b

b

a

a

q=
a−b
a−b

ω= a−b
q= a+b

e−e

FIG. 1: Schematics of electron-hole (e-h) creation (left panel)
vs electron-electron (e-e) scattering (right panel) near the
Dirac point for µ = 0. The hole-hole scattering processes are
analogous to those shown in the right panel. We set vF = 1
for brevity. In both panels the possible transferred momenta
satisfy |a−b| ≤ |q| ≤ a+b (only the extreme cases of minimal
and maximal q are shown). For e-h creation ω = a+b, so that
ω ≥ qvF , whereas for e-e scattering the kinematic restrictions
yield ω = a− b ≤ qvF .
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q

ω

p

vF(

v (

vF(

=ω

F )q=ω

=ω

p

Λ)

q)q

q

FIG. 2: Interaction-induced dispersion correction near the
Dirac cone. The electron-hole creation [ω ≥ vF (q) q] and
electron-electron scattering [ω ≤ vF (p) q] regions do not over-
lap, so that the zero-temperature inelastic scattering rate is
zero.

zero at the light cone. Therefore, the forward scattering
divergence that arises on the Golden Rule (GR) level dis-
appears within RPA, yielding a zero scattering rate on
the RPA level. This is a manifestation of a highly sin-
gular character of the zero-temperature problem where
RPA may be insufficient. We will see below that at fi-
nite temperature the thermal broadening regularizes the
problem, so that scattering rates can be evaluated within
the RPA.

In view of the singular character of the problem, at
zero temperature the imaginary part of the self-energy is
highly sensitive to changes of the electron dispersion59.
The Fermi velocity depends logarithmically on the mo-
mentum or energy35, Eq. (25), due to the renormalization
by Coulomb interaction. In Eq. (34) we have neglected
the momentum dependence of vF which leads to a sepa-
ration of the two regions defined by Eqs. (35) and (37),
see Fig. 2. The electron-hole creation [ω ≥ vF (q) q] and
electron-electron scattering [ω ≤ vF (p) q] regions are then
separated due to the renormalization-induced nonlinear-
ity of the electron dispersion, which leads to the vanishing
of the zero-T scattering rate already at the GR level.

However, at finite temperature the situation is essen-
tially different. First, the conditions (35) and (37) will
be smeared by temperature. Second, for energy scales
smaller than T the renormalization of Fermi velocity
is cut off by temperature and hence, the linearity of
the dispersion relations is restored: renormalization re-
duces merely to a T -dependence of the Fermi velocity.
Therefore, when discussing the finite-T physics of in-
elastic scattering on scales . T we will disregard the
renormalization-induced nonlinearity of the dispersion.
Furthermore, below, whenever we will use the notation
vF for ǫ . T we will mean the renormalized value of the
velocity v∗F (T ) and omit the asterisk for brevity.

B. Polarization Operator at non-Zero Temperature

We are now ready to calculate the polarization opera-
tor at finite temperature. It turns out that the effect of
finite temperature on the screening in graphene is much
more pronounced than in conventional metals with fi-
nite Fermi-surface and quadratic electronic dispersion.
Indeed, the linearity of the spectrum of Dirac fermions
gives rise to a strong (linear) energy dependence of the
density of states in two dimensions, whereas for parabolic
spectrum the density of states is constant. In the latter
case, the polarization operator is essentially independent
of temperature. This is not the case for Dirac particles.
Physically, a finite temperature leads to population

of electronic states in an energy range ∼ T around the
Fermi level. Let us consider the undoped graphene where
the chemical potential lies at the Dirac point. The typi-
cal density of states that participate in the screening of
Coulomb interaction at finite temperature is now pro-
portional to T . In more technical terms, at finite T
the integration over the fermionic energy in the polariza-
tion bubble essentially involves not only the distribution
function [thermal factors f(ǫ)] but also the Green’s func-
tions. This strongly changes the polarization operator at
qvF , ω . T .
To simplify the notations at non-zero temperature, we

introduce the dimensionless variables according to

Q =
vF q

2T
, Ω =

ω

2T
. (39)

We use the general expression for the polarization oper-
ator, Eqs. (A1) and (A2) from Appendix A. Considering
four different regions shown in Fig. 3, we simplify these
equations in each of the cases, which allows us to treat

FIG. 3: (Color online) Imaginary part of the polarization op-
erator in the frequency-momentum plane. Four regions of
dimensionless variables Ω and Q (see text) are indicated.
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the problem analytically.
The four regions are defined by the following condi-

tions:

• Region 1: Q ≪ 1 and Q < |Ω|

• Region 2: 1 ≪ Q and Q < |Ω|

• Region 3: Q ≪ 1 and |Ω| < Q

• Region 4: 1 ≪ Q and |Ω| < Q

As shown in Appendix A, the leading-order terms with
non-vanishing imaginary part form the following simpli-
fied polarization operator:

ΠR(Ω, Q) =
T

v2F







ln 2

π

[

1− |Ω|
√

Ω2 −Q2

]

+
i

8

Q2 tanh(Ω/2)
√

Ω2 −Q2
, (region 1) |Ω| > Q

ln 2

π
+

i ln 2

π

Ω
√

Q2 − Ω2
, (region 3) |Ω| < Q

Q ≪ 1

i

8

Q2 signΩ
√

Ω2 −Q2
, (region 2) |Ω| > Q

1

8

Q2

√

Q2 − Ω2
+

i√
2π

√
Qe−Q sinhΩ
√

Q2 − Ω2
, (region 4) |Ω| < Q

Q ≫ 1

(40)

In the case of large momenta, Q ≫ 1, we recover the
zero-temperature result. For Q ≪ 1, the polarization
operator substantally differs from the zero-T expression.
We will discuss this case in more detail in section III C.
The separation between Ω < Q and Ω > Q is dictated by
the non-analytical structure of the polarization operator,
see Eq. (40).

C. RPA Interaction at non-Zero Temperature

The real part of the polarization operator, Eq. (40), for
Q ≪ 1 is determined by temperature and leads therefore
to the screening of Coulomb interaction:

lim
Ω→0

DR
RPA(Ω, Q) =

D0(Q)

1 +D0(Q)NΠR(0, Q)

=
v2Fπ

NT ln 2

(
αgN ln 2

Q+ αgN ln 2

)

, (41)

which yields the screening length

lscr =
vF

2αgNT ln 2
. (42)

Thus at finite temperature the system does screen the
long range Coulomb interaction. Note that for Q ≪
αgN , the RPA propagator becomes independent of the
interaction constant αg,

DR
RPA(Ω, Q)

∣
∣
Q≪αgN

≃ 1

ΠR(Ω, Q)
, (43)

as in conventional systems with Coulomb interaction. We
will see, however, that the dominant contributions to re-
laxation rates are determined by higher transferred mo-
menta Q & αgN , where the peculiarities of the finite-T
screening in graphene are crucially important.

In Region 1, the real part of the polarization operator
in Eq. (40) may become negative, leading to emergence
of plasmon excitations. The plasmon dispersion Ωp(Q)
is determined by the zero of

1 +D0NΠR=
αgNQ ln 2

(Ω2 −Q2)
3/2

[

Ω−(αgN ln 2+Q)
√
Q

√
Q+ αgN2 ln 2

]

,

(44)
yielding

Ωp(Q) =
(αgN ln 2 +Q)

√
Q

√
Q+ 2αgN ln 2

. (45)

For Q → 0, this simplifies to Ωp(Q) ∝
√
αgNQ. A

non-zero imaginary part of the polarization operator (40)
in the corresponding region implies that these plasmons
have a finite lifetime. The decay rate of plasmon excita-
tions is given by

Γp(Ω, Q) =

(
Ω2 −Q2

)3/2

αgNQ ln 2
ImD0(Q) ImΠR(Ω, Q) , (46)

which yields

Γp(Ω, Q)|Ω=Ωp(Q) =
πΩ

16 ln 2

(
Ω2 −Q2

)
∣
∣
∣
∣
Ω=Ωp(Q)

≤ πΩ3

16 ln 2

∣
∣
∣
∣
Ω=Ωp(Q)

. (47)

Remarkably, Eq. (47) indicates a good quasiparticle be-
havior for plasmons which is, as we will see in Sec. IVA,
not true for electronic excitations. The situation is some-
what similar to Luttinger liquid where plasmons are al-
most perfect quasiparticles, whereas, from the point of
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FIG. 4: (Color online) a) Imaginary part of RPA interaction. Left: using an analytic approximation, right: by numerical
evaluation of Eqs. (A1) and (A2). Dashed lines indicate the plasmon dispersion (see Eq. (44)). b) crosssections through the
plots of a) from (Ω, Q) = (1, 0) to (Ω, Q) = (0, 1) (1) from (Ω, Q) = (0.2, 0) to (Ω, Q) = (0, 0.2) (2). Solid curves: analytic
approximation; dashed curves: numerical integration. For all plots the interaction strength is αgN = 1/3.

view of fermionic excitations, the Luttinger liquid repre-
sents a paradigmatic example of a non-Fermi-liquid.
Figure 4 demonstrates that Eq. (40) for the polariza-

tion operator yields a remarkably good approximation for
evaluation of the imaginary part of the RPA-interaction,

ImDRPA = − ND2
0 ImΠR

(1 +ND0ReΠR)
2
+(ND0 ImΠR)

2

(48)

[see also Eq. (B2) in Appendix B]. In Fig. 4b we see the
plasmon peak in the RPA interaction propagator, which
is strongly asymmetric and is suppressed around the light
cone, so that ImDRPA = 0 exactly at Ω = Q.
Let us now discuss the status of the RPA in graphene.

Above we have introduced the large number of indepen-
dent flavors N ≫ 1. At zero temperature, this is the
only parameter which justifies the RPA summation in the
problem of interacting Dirac fermions at µ = 0. Indeed,
in view of the absence of the screening, the non-RPA di-
agrams are parametrically the same as those included in
the RPA series for N ∼ 1. Furthermore, as discussed in
the end of Sec. III A, the renormalization-induced cur-
vature of the spectrum (which is also beyond the RPA)
may dramatically affect the results obtained within the
RPA.
However at finite T , the T -induced screening of the

interaction, Eq. (41), restores the validity of the RPA
for q ≪ T/vF (Q ≪ 1) even for N ∼ 1. Indeed, the
1/q-singularity of the long-range Coulomb interaction is

not compensated in the denominator of Eq. (48) because
the polarization operator at finite T is no longer linear-
in-q. The situation becomes similar to that in conven-
tional metals with a finite Fermi-surface, where the RPA
is justified for q ≪ kF . In graphene the role of kF is
played by T/vF , which in effect establishes an analog
of a finite Fermi-surface. Therefore, for q ≪ T/vF the
RPA does sum up the most singular interaction-induced
terms: all other terms are non-singular because of the
screening. This means that all the observables that are
dominated by the collisions with the momentum transfer
smaller than T/vF can be calculated (even with the cor-
rect numerical prefactors) within the RPA. The RPA re-
sult for those observables that are dominated by qvF ∼ T
is parametrically correct, but the value of the prefactor
can not be found using the RPA.
Below we employ the finite-T RPA for calculation of

various scattering rates in graphene. For the sake of gen-
erality, we keep N as a parameter. In what follows we
focus on the case αgN ≪ 1, but whenever the rate under
the consideration is dominated by qvF . T , the condi-
tion N ≫ 1 can be removed so that we are allowed to
use the RPA for N ∼ 1.

IV. SCATTERING RATES

In this section we calculate various inelastic scatter-
ing rates in clean graphene at finite temperature. More
specifically, we focus on the quantum scattering rate (and



9

dephasing) and the energy relaxation rate induced by the
RPA-screened Coulomb interaction. In Sec. VA below,
we will also calculate the transport scattering rate due to
inelastic collisions. The quantum scattering rate deter-
mines the lifetime of quantum states (plane waves) and is
related to the dephasing rate. The energy relaxation rate
governs the relaxation of the quasiparticle distribution
function. Finally, the transport scattering rate describes
the influence of the inelastic scattering on transport phe-
nomena.

Although the origin of all these rates is the same—
the inelastic electron-electron collisions, these rates, may
strongly differ from each other. For instance, this is ex-
actly what happens in diffusive metals33,65 because of
the infrared-singular collision kernel. Another prominent
example of a non-trivial behavior of relaxation rates re-
lated to the infrared singularities is a Luttinger liquid
(disordered or clean).66–69 On the other hand, within
the Fermi-liquid theory of clean metals all the inelas-
tic scattering rates behave in the same way, since the
characteristic frequency/momenta transfer in the course
of electron-electron collisions is determined by tempera-
ture. The goal of this section is to understand whether
the situation in clean graphene is similar to the Fermi-
liquid or not.

We have already mentioned in the introduction (Sec.
I) the previous works on the inelastic quantum scattering
rate in graphene35,55. These works addressed the scatter-
ing rate at the GR level at zero temperature and obtained
the Fermi-liquid-type result τ−1

q ∼ α2
gNǫ ≪ ǫ. Naively,

one could think that at finite temperature this consider-
ation would lead to τ−1

q ∼ α2
gNT . However, since the

GR result is completely determined by the “mass shell”
(ω = vF q) (see discussion in Sec.III A) one concludes that
the RPA-resummation (which kills the on-shell interac-
tion) would yield τ−1

q (ǫ) = 0 for T = 0 and arbitrary ǫ.
Therefore, the finite-T expectation based on the GR is
also doubtful.

How the quasiparticle broadening behaves in the ex-
perimentally relevant case of finite temperature is thus
by far not obvious. As discussed in Sec.III B, the finite
density of states at non-zero T leads to screening of the
Coulomb interaction, thus justifying the use of the RPA
which then sums up the most singular contributions of
the interaction for small momenta, qvF < T . In this
section we find the behavior of inelastic rates at finite
temperature within the RPA. As we have already seen in
section III B, the behavior of the polarization operator at
finite temperature is highly non-trivial. This leads to a
rather rich behavior of the scattering rates.

It turns out that, in addition to the temperature scale,
two more characteristic scales appear which are relevant
for relaxation rates: α2

gN
2T and αgNT . In this section

we will distinguish between the four regimes (I-IV) as
shown in Fig. 5. The contributions to each of the scat-
tering rates from different regions (1-4, see Fig. 3) of the
momentum-frequency plane are calculated separately.

T

I IIIII IV

0

ε

α TN2
TN

2
g αg

FIG. 5: Characteristic energy scales separating domains of
distinct behavior of the rates.

A. Quantum scattering rate in graphene

One of the main manifestations of the inelastic scat-
tering in electronic systems is the interaction-induced de-
phasing. In order to analyze the effects of dephasing in
graphene, we will follow the route suggested by earlier
works on 2D (in particular, diffusive) systems.33 A natu-
ral first step is to calculate the quantum scattering rate
τ−1
q which is given by the imaginary part of the quasipar-
ticle self-energy taken at the mass-shell. Indeed, for con-
ventional metals with parabolic dispersion, in the high-
temperature (ballistic) regime, the dephasing rate τ−1

φ

to leading order is given by τ−1
q , see Ref. 70. In the dif-

fusive regime, the scattering kernel acquires an infrared
singularity leading to a divergent τ−1

q at finite T . This
is a manifestation of the fact that the single-particle self-
energy is not a gauge-invariant object; no divergencies
occur in observable (gauge-invariant) quantities, such as,
e.g., dephasing rate. However, even when the quantum
scattering rate diverges, the calculation of it turns out
to be instructive: a parametrically correct result for the
dephasing rate can be obtained from the expression for
τ−1
q supplemented with an appropriate infrared cutoff. It

is thus useful to begin with analyzing τ−1
q .

1. Quantum scattering rate: definitions

The peculiarity of graphene is that the self-energy is
a matrix in the sublattice space, which has a non-zero
imaginary part, ImΣv [Eq. (24)], in the off-diagonal com-
ponents. Therefore, the definition of the quantum scat-
tering time in graphene is actually not unique. Indeed,
one can associate with the quantum scattering rate the
on-shell value of the imaginary correction to the energy
in the full Green’s function, ImΣǫ [Eq. (23)], similarly to
the conventional Fermi-liquid theory:

1

2τq(ǫ)
= −θ(ǫ) ImΣǫ(vF p,p)|p=ǫ/vF

− θ(−ǫ) ImΣǫ(−vF p,p)|p=−ǫ/vF
(49)

Here at ǫ > 0 we have taken the self-energy at the “+”
mass-shell corresponding to the positive energies, ǫ =
vF p, and at ǫ < 0 on the “−” mass-shell. Clearly,

1

τq(ǫ)
=

1

τq(−ǫ)
(50)

for undoped graphene (µ = 0) because of the particle-
hole symmetry. Within the RPA the explicit expression
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for the imaginary part of the total self-energy Σǫ taken
at ǫ = vF p reads:

ImΣǫ(vF p,p) = −π

2

∫
dω

2π
[g(ω) + f(vF p− ω)]

×
∫

d2q

(2π)2
ImDR(ω,q)

×[δ(vF p− ω − vF |p− q|) + δ(vF p− ω + vF |p− q|)] .
(51)

Alternatively, one can introduce the lifetime of the
+ and − chiral states through the corresponding self-
energies, Eq. (30):

1

2τ±(ǫ)
= − ImΣ±(ǫ,p)|p=|ǫ|/vF (52)

which yields

1

τ+(ǫ)
=

1

τ−(−ǫ)
. (53)

Using Eqs. (30) and (6), we get for the self-energy of
electrons (+ chirality)

ImΣ+(vF p,p) = −π

2

∫
dω

2π
[g(ω) + f(vF p− ω)]

×
∫

d2q

(2π)2
ImDR(ω,q)

×
[(

1 +
p(p− q)

p|p− q|

)

δ(vF p− ω − vF |p− q|)

+

(

1− p(p− q)

p|p− q|

)

δ(vF p− ω + vF |p− q|)
]

.

(54)

for the “own” mass-shell, and

ImΣ+(−vF p,p) = −π

2

∫
dω

2π
[g(ω) + f(−vF p− ω)]

×
∫

d2q

(2π)2
ImDR(ω,q)

×
[(

1− p(p− q)

p|p− q|

)

δ(−vF p− ω − vF |p− q|)

+

(

1 +
p(p− q)

p|p− q|

)

δ(−vF p− ω + vF |p− q|)
]

.

(55)

for the “wrong” (hole) mass-shell.
The main formal difference between the two relaxation

rates, Eq. (49) and Eq. (52), which are related by

1

τq(ǫ)
=

1

2τ+(ǫ)
+

1

2τ−(ǫ)
, (56)

is in the appearance of Dirac factors 1±cos θ in Eqs. (54)
and (55) where θ = arccos(pp′/pp′) is the scattering an-
gle between the incoming momentum p and the momen-
tum p′ = p−q after scattering. These factors are related

to the additional Berry phase in the problem of Dirac
particles, which arises due to the overlap of Bloch func-
tions and, in particular, forbids the backscattering within
the same chirality and valley. Note that for well-defined
quasiparticles (i.e., in a Fermi-liquid situation) the self-
energy at a “wrong” mass shell would never be relevant.
However, if the quasiparticle broadening is larger than
the characteristic energy, this is no longer the case, so
that Eq. (55) may then contribute to the observables.
In Eq. (54), the term with 1+ cos θ corresponds to the

electron-electron scattering (right panel of Fig. 1) which
is determined by the contribution of region 3 in Fig. 3.
The term with 1− cos θ is due to electron-hole scattering
(electron-hole pairs, left panel of Fig. 1) accompanied
by the excitation of plasmons and is determined by the
contribution of region 1 in Fig. 3. The latter contribution
is suppressed for the forward scattering θ = 0 because
of the Dirac factor. Furthermore, at zero temperature
only the electron-electron processes are allowed by the
kinematic restrictions.
At finite T , however, the situation is different for the

low-energy domains I and II (ǫ < αgNT ), where the con-
tributions of the electron-electron and electron-hole scat-
tering to the inelastic quantum scattering rates are of the
same order. This means that the low-energy electron-
type and hole-type quasiparticles are strongly correlated
by the mutual inelastic scattering, whereas at higher en-
ergies (ǫ > αgNT , corresponding to domains III and IV)
the electronic and hole subsystems are only weakly cou-
pled with each other, in agreement with Ref. 59.
As we will see below, depending on the energy range,

Fig. 5, both τ−1
q and τ−1

± may be larger or smaller than
energy. When the quasiparticle’s broadening is small
(“Fermi-liquid regime”), the two rates coincide since the
inelastic scattering is dominated by small scattering an-
gles θ and the Dirac factors reduce to 0 and 1. At the
lowest energies (domains I and II), both τ−1

q and τ−1
± ex-

ceed the energy which makes the notion of mass shell not
well-defined. In particular, due to the inelastic broaden-
ing, the electronic excitation (+ chirality) has tails at
negative energies which overlap with the hole mass shell.
Furthermore, as shown in Sec. IVC, the character-

istic rate of the energy relaxation (energy mixing due
to the diffusion over energy) is in the “non-Fermi-liquid
regime” of the same order as the quantum scattering rate,
so that the electronic excitations constantly explore the
hole mass shell and vice versa. In this situation, the
broadening of quasiparticles of a given chirality is in ef-
fect described by the total scattering rate τ−1

q , according
to Eq. (56), rather than Eq. (52). Therefore, in what fol-
lows, we will mostly focus on the Fermi-liquid-type total
rate τ−1

q , formally defined in Eq. (49).

2. Quantum scattering rates: results and discussion

The evaluation of integrals involved in the calculation
of the total quantum scattering rate τ−1

q is outlined in
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Τq
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Α
g
T
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FIG. 6: (Color online) Quantum scattering rate for αgN = 4×
10−3 (double logarithmic scale). Dots: exact values obtained
by numerical evaluation; solid lines: analytical asymptotics,
Eq. (57).

τq I II III IV

qvF ∼ ω T (αgNT )2/ǫ αgNT αgNT

Regions 1,2,3,4 1,3 3 3

TABLE 1: Momentum/frequency scales and regions of the
Q-Ω plane that dominate the quantum scattering rate τ−1

q in
different domains (I,II,III, and IV) of energy ǫ.

Appendix B. The result depends on the energy range
(see Fig. 5):

1

2τq(ǫ)
≈







c1
T

N

√
ǫ

T
, ǫ≪ α2

gN
2T, I

c2αgT, α2
gN

2T ≪ ǫ ≪ αgNT, II

c3αgT, αgNT ≪ǫ. III, IV
(57)

Here c1 ∼ 1, c2 = 3π/2, and c3 = 2β(2)/π are the numer-
ical coefficients of order unity, β(x) is the Dirichlet beta
function and β(2) is the Catalan constant. Note that for
energies in Regimes II, III, and IV, the number of inde-
pendent flavors N drops out from the expression for τq.
The comparison of the asymptotic expressions (57) with
the exact numerical evaluations is shown in Fig. 6).
The obtained rates are dominated by different values

of momenta transferred during the collision. Further-
more, depending on the energy range the main contri-
bution may come from different regions of the Q vs. Ω
plane (Fig. 3) as shown in Table 1.
In Regime I the result is determined by momenta of or-

der temperature and therefore all four regions contribute
in the same way: τ−1

q ∼ (ǫT )1/2/N . All scattering an-
gles θ contribute to the result in Regime I. In order to
evaluate the numerical prefactor cI one needs the knowl-
edge of the screened interaction in the crossover around
qvF ∼ T , which is beyond the analytic approximations

for the polarization operator used above. For energies
in Regime II the dominant contributions come from re-
gions 3 (electron-electron scattering) and 1 (electron-hole
scattering); in both of them all scattering angles θ con-
tribute. In Regimes III and IV the main contribution
to the quantum scattering rate stems from the region
3 (electron-electron scattering) and is dominated by the
forward scattering (θ . αgNT/ǫ ≪ 1).
An important feature of the quantum scattering rate

is its non-monotonic energy dependence, see Eq. (57)
and Fig. 6: with increasing energy the quasiparticle
broadening first grows in Regime I, has a maximum at
ǫ ∼ α2

gN
2T , then decreases in Regime II, and finally be-

comes energy-independent. The maximum of τ−1
q occurs

due to the resonant emission/absorption of plasmonic ex-
citations. We will see below that the non-monotonicity
of the energy dependence is related to the peculiar prop-
erties of the dynamical screening in graphene and is a
characteristic feature of all inelastic scattering rates in
graphene.
In Fig. 7 we show the results for the quantum scatter-

ing rate of electrons, τ−1
+ , defined in Eq. (52). One sees

that Fig. 7 represents an “unfolding” of Fig. 6 into the
contributions of “own” (ǫ > 0) and “wrong” (ǫ < 0) mass
shells, according to Eq. (56). The hole mass shell with
ǫ < 0 is probed by electrons due to the strong quasipar-
ticle broadening. At positive energies in Regimes III and
IV (ǫ > αgNT ), the total scattering rate τ−1

q is domi-

nated by the electronic scattering rate τ−1
+ .

In contrast to the naive expectation (τ−1
q ∼ α2

gNT )
based on the Fermi GR result, the quantum scattering
rate calculated within the RPA is proportional to αg (and
does not depend on N) for ǫ ≫ α2

gN
2T and is indepen-

dent of αg at the lowest energies. This enhancement of
the inelastic scattering for αgN ≪ 1 is a result of pe-
culiar screening properties of graphene at finite T which
leads to a nonanalytic behavior of the rate as a function
of the natural four-fermion coupling constant α2

g. This
behavior bears a certain similarity to the behavior of the
quantum scattering rate in a spinful Luttinger liquid.66,67

Importantly, the formal calculation of the total scat-
tering rate τ−1

q in the lowest order in the RPA inter-

action propagator yields τ−1
q (ǫ) > |ǫ| for regimes I and

II (ǫ < αgNT ). This means that the quantum scatter-
ing rate is ill-defined in these low-energy domains. This
also signifies that for the calculation of observables in
these energy domains the higher-order terms in the RPA
screened interaction may become important. Neverthe-
less, the above lowest-order calculation in domains I and
II is useful as it provides the characteristic value for the
intensity of inelastic processes.
Since the RPA quasiparticle broadening in domain I

may overlap with the higher-energy domains, where the
quantum scattering rate is of the order of αgT , one
can speculate that the characteristic strength of inelastic
scattering is given by τ−1

q (ǫ) ∼ αgT also at low energies.
Of course, the calculation based on the lowest-order RPA
diagrams for the self-energy is then insufficient. More-
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FIG. 7: (Color online) Quantum scattering rate τ−1
+ for the + chirality (electrons) for αgN = 4 × 10−3 (double logarithmic

scale). Dots: exact values obtained by numerical evaluation; solid lines: analytical asymptotics (see Appendix B).

over, the typical observables at finite temperatures are
dominated by ǫ ∼ T (the border between domains III and
IV), where the quasiclassical broadening is smaller than
energy and the above calculation is justified. The low-
energy inelastic relaxation may become relevant in the
context of spectroscopy under strongly non-equilibrium
conditions, for example, in problems related to tunnel-
ing into a non-equilibrium state (cf. Ref. 69). In this
situation the inelastic effects can be treated within the
quantum-kinetic approach including non-RPA contribu-
tions, similarly to one-dimensional problems.69

B. Dephasing rate at high temperatures

Let us now discuss the dephasing rate. The result
for the quantum scattering rate obtained for the clean
graphene allows us to evaluate the dephasing rate rele-
vant to weak (anti)localization in the ballistic regime24

of high temperatures Tτdis ≫ 1, where τdis is the elas-
tic mean free time due to scattering off impurities. It
is worth noting that this condition may coexist with the
condition τφ ≫ τdis which allows long interfering paths
in the weak-localization experiment. Indeed, the inelastic
scattering is suppressed with decreasing αg (even though
in a non-trivial way) so that one expects that τφ can be
made arbitrary long.
The result for the quantum scattering rate, Eq. (57),

remains intact (up to the change in prefactor) when we
calculate it in a self consistent way as appropriate for
estimating the dephasing rate:

τ−1
φ ∝

∞∫

(Tτφ)−1

dQ . . . (58)

This happens due to the fact that the characteristic mo-
menta dominating the integrals for the quantum scatter-
ing rate in Regimes II,III, and IV is of the same order

as the resulting rate [see Table 1 and Eq. (57)], both are
∼ αgT for N ∼ 1 (for N ≫ 1, the characteristic mo-
menta are much higher than 1/τq). In Regime I of lowest
energies, the characteristic momentum transfer is much
higher than the rate. Therefore, in all these regimes the
infrared cutoff is redundant and the dephasing rate is
given by the quantum scattering rate, Eq.(57), similarly
to the case of conventional metals in the ballistic regime70

(although, in contrast to the conventional case, the char-
acteristic transferred frequencies are much smaller than
temperature). Since the characteristic energies involved
in the transport coefficients are of order of T , we con-
clude that in the ballistic regime the interference effects
are governed by

1

τφ
∼ αgT. (59)

This prediction can be verified by transport experiments
on graphene at sufficiently high temperatures (depending
on the purity of the system, T & 10− 100K for a typical
setup with graphene deposited on a insulating substrate
and T & 1 − 10K for suspended graphene flakes). At
lower temperatures Tτdis ≪ 1 corresponding to the “dif-
fusive regime” with respect to interaction, one expect the
conventional33,71 diffusive result for the dephasing rate

1

τφ
∼ T

g
ln g, (60)

where g is the dimensionless Dirac-point conductance.
At the Dirac point g is close to unity and hence τ−1

φ ∼ T.

C. Energy relaxation rate

Let us now discuss the energy relaxation time in clean
graphene. In Sec. IVA we have seen that the typical mo-
mentum or energy transfer during the electron-electron
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collision is much smaller than temperature. In this sit-
uation, the energy relaxation occurs through multiple
scattering processes which can be viewed as diffusion in
energy space (see, e.g., Ref. 72). The characteristic en-
ergy relaxation rate is given by the diffusion coefficient
of this problem, which amounts to introducing the factor
KE = ω2/T 2, see Appendix B1, into the collision ker-
nel. More rigorous calculation of the energy relaxation
or equilibritation rates can be done using the language of
kinetic equation; here we only estimate the typical rate
τ−1
E within the energy diffusion picture.
Once the quantum scattering rate is obtained, the cal-

culation of the energy relaxation rate can be done using
the same steps as described in the previous section. Tech-
nically, the integrals in Eq. (51) are only slightly changed,
which leads, however, to a substantial difference between
the two rates. The detailed calculation can be found in
appendix B; here we present only the result:

1

τE(ǫ)
∼







T

N

√
ǫ

T
, I

α2
gNT
√

ǫ/T
ln

(
ǫ/T

α2
gN

2

)

, II, III

α2
gNT

( ǫ

T

)3/2

ln

(
1

αgN

)

, IV

(61)

Again the obtained rates are dominated by different mo-
mentum scales and by contributions of different regions
as shown in table 2. Due to the factor KE all contri-
butions except in regime IV are now determined by mo-
menta of order temperature, which does not allow us to
find the numerical value of the prefactors analytically.
Furthermore, in fact, the above calculation based on

the energy diffusion is not justified for “hot electrons”
with high energies, ǫ > T . Indeed, within our consider-
ation, the characteristic energy transfer dominating the
energy relaxation in Regime IV turns out to be much
higher than T , in contrast to the original assumption.
Therefore, the estimate Eq. (61) for Regime IV can not be
trusted and another approach is needed for this Regime.

τE I II III IV

qvF ∼ ω T T T ǫ

Regions 1,2,3,4 1,2,3,4 1,2,3,4 4

TABLE 2: Momentum/frequency scales and regions of the
Q-Ω plane that dominate the energy relaxation rate τ−1

E in
different domains (I,II,III, and IV) of energy ǫ.

The numerical results for the energy relaxation rate
are shown in Fig. 8 together with the analytical asymp-
totics, Eq. (61). One sees that the energy relaxation has
a minimum at ǫ ∼ T , where we recover, up to the log-
arithmic factor | lnαg|, the GR result τ−1

E ∼ α2
gNT . At

lower energies the inelastic scattering is enhanced due
to the resonance in the RPA interaction propagator (the

Ε

ΤE
-1

Α
g
T

-
Α

g2 N
T

ln
Α

g
N

TΑgNTΑg
2N2T

I II III IV

FIG. 8: (Color online) Energy relaxation rate for αgN =
4×10−3 (double logarithmic scale), obtained from the energy-
diffusion consideration. Dots: exact values obtained by
numerical evaluation; solid lines: analytical asymptotics,
Eq. (61). Since the energy-diffusion approximation employed
in the calculation is not justified in Regime IV, we do not
present the results in this Regime for ǫ ≫ T .

FIG. 9: Diagrams describing the first-order interaction cor-
rection to the conductivity

resonant condition correspond to ǫ ∼ α2
gN

2T ), whereas
at high energies the energy relaxation is stronger because
of the large phase space available for inelastic processes.
We remind the reader, however, that at ǫ > T the above
calculation based on the energy-diffusion approximation
is not justified. In order to find the correct relaxation
of the distribution functions in this Regime of hot elec-
trons, one should solve the corresponding kinetic equa-
tion which can be reduced to the Fokker-Planck equation.
This will be done elsewhere.

V. TRANSPORT RATE AND CONDUCTIVITY

A. Transport scattering rate due to inelastic
collisions

In this section we calculate the transport relaxation
rate due to inelastic collisions. The expression for the cor-
responding kernel of the self-energy can be deduced from
the interaction-induced correction to the conductivity, as
described below. We are interested in the linear-response
dc conductivity. The leading order perturbative correc-
tion to the conductivity due to Coulomb interaction is
given by the two diagrams shown in Fig. 9.
In the absence of interaction, the conductivity of a
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clean graphene diverges at finite temperature. There-
fore, we have regularized the diagrams by introducing
a small broadening (δ) which mimics the finite lifetime
due to weak disorder. The general analytic expression of

the lowest-order interaction correction to the conductiv-
ity within the Keldysh formalism can be found in Ref.
71. This correction can be split into two parts (Fig. 9a
and Fig. 9b, respectively): δσ = δσs + δσv, where

δσs
ββ = − 1

4i

∫
d2p1
(2π)2

∫
dǫ1
2π

∫
d2p2
(2π)2

∫
dǫ2
2π

∂f1
∂ǫ

Tr

{

jβ
[
GR(1)−GA(1)

]
jβ

×
[

(f2 + g)
[
DR −DA

][
GR(1)GR(2)GR(1)−GA(1)GA(2)GA(1)

]

+ f2

[

GR(1)
[
GR(2)DR −GA(2)DA

]
GR(1)−GA(1)

[
GR(2)DR −GA(2)DA

]
GA(1)

] ]}

(62)

is the self-energy contribution and

δσv
ββ = − 1

4i

∫
d2p1
(2π)2

∫
dǫ1
2π

∫
d2p2
(2π)2

∫
dǫ2
2π

∂f1
∂ǫ

Tr
{

jβ(f2 + g)
[
DR −DA

]

×
[
GR(1)GR(2)−GA(1)GA(2)

]
jβ
[
GR(2)GR(1)−GA(2)GA(1)

]

+ 2jβf2
[
GR(1)−GA(1)

][
DAGR(2) jβG

R(2)−DRGA(2) jβG
A(2)

]
jβ
[
GR(1)−GA(1)

]}

(63)

is due to the vertex correction. Here jβ = evFσβ is the current operator in graphene and we used the short-hand
notations for the arguments of Green’s functions: 1 = p1, ǫ1 and 2 = p2, ǫ2. We first trace out the sublattice
structure and then regularize the divergent integrals by δ. The most divergent interaction-induced correction to the
dc conductivity is then proportional to δ−2:

δσ = −e2v2F
4δ2

∫
dǫ1
2π

∂f

∂ǫ1

∫
dǫ2
2π

∫
d2p1
(2π)2

∫
d2p2
(2π)2

π[δ(ǫ1 − vF p1) + δ(ǫ1 + vF p1)] signǫ1

×
[

1−
(
p1 · p2

p1p2

)]

︸ ︷︷ ︸

Transport factor

[

1 +

(
p1 · p2

p1p2

)]

︸ ︷︷ ︸

Dirac factor

KΣ(ǫ1, ǫ1 − ǫ2,p1,p1 − p2). (64)

Here KΣ is the integral kernel of the self-energy:

Im ΣR
0 (ǫ,p) =

∫
d2q

(2π)2

∫
dω

2π
KΣ(ǫ, ω,p,q) (65)

The correction, Eq. (64), is determined by the inelastic
electron-electron scattering. In the diagrams of the lead-
ing order in bare interaction shown in Fig. 9, we have
KΣ ∝ ImD0 = 0, so that the inelastic corrections are
zero. What remains in the first-order conductivity cor-
rection, Fig. 9, are the contributions responsible for the
renormalization of the Fermi velocity in graphene com-
ing from the real part of the self-energy; note that these
contributions are less singular in δ−1.
Thus, we have to consider higher order corrections. In

Fig. 10 one can see all classes of second order skeleton
diagrams. There are also the second-order diagrams of
the ladder type, see Fig. 11. Such diagrams contribute

only to the renormalization of vF , similarly to the dia-
grams in Fig. 9, and their contribution has been already
included into the calculation simply by the replacement
vF → vF (T ).

In the large N approximation diagrams in Fig. 10d,
10e, and 10f dominate. Diagram 10f is known as Coulomb
drag diagram and yields a zero contribution at the Dirac
point due to electron-hole symmetry (see Refs. 73,74 and
Appendix C). Thus we are left with diagrams 10d and
10e which correspond to the two diagrams shown in Fig.
9 with the second-order correction to the interaction in-
stead of the bare one. For these two diagrams Eq. (64)
still holds with KΣ ∝ ImD1. This suggests to replace
the bare interaction lines shown in Fig. 9 by the RPA in-
teraction lines, which would correspond to Eq. (64) with
KΣ ∝ ImDRPA. Note that even with the RPA-dressed
interaction, Eq. (64) still yields a divergent contribution
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FIG. 10: Second-order skeleton diagrams for the conductivity

FIG. 11: Examples of second-order diagrams for the conduc-
tivity that contribute to the renormalization of velocity.

which we have regularized with δ.
Considering the two independent scattering processes

with the transport scattering rates δ and τ−1
tr such that

we find the Drude conductivity in the form

σ = e2
∫

dǫ ρ(ǫ)

(

−∂nF

∂ǫ

)
v2F τtr(ǫ)

2[1 + τtr(ǫ)δ]
, (66)

where nF (ǫ) = [1 − f(ǫ)]/2 is the thermal Fermi distri-
bution function and ρ(ǫ) is the thermodynamic density
of states. Expanding this formula in (δτtr)

−1, we get the
“interaction-induced” correction:

δσ =
e2v2F
4δ2

∫

dǫ
∂f

∂ǫ

ρ(ǫ)

τtr(ǫ)
. (67)

Comparing Eq. (67) with Eq. (64) we can iden-
tify the interaction-induced transport scattering rate in
graphene. The transport scattering rate obtained from
the conductivity correction corresponds to the kernel Ktr

defined in Appendix B 1.
Furthermore, the connection between the kernels in

the transport scattering rate and the quantum scatter-
ing rate also follows from Eqs. (64), (65), and (67). One
can see from Eq. (64) that in the transport scattering
rate not only the contribution of forward scattering pro-
cesses is suppressed as in conventional systems but also
the contribution of the backward scattering. The latter
suppression is due to the Berry phase of π in graphene.
In the above derivation we have assumed δ ≫ τ−1

tr

which allowed us to extract τ−1
tr from the expansion of

the conductivity in τ−1
tr . Using the generalized GR ap-

proach, we show in Appendix C that the expression for
the transport scattering rate obtained in this way remains
valid also for δ → 0.

B. Transport scattering rate: results

Similarly to the quantum scattering rate, the transport
rate is dominated by region 3 in the regimes II, III, and

Ε

Τtr
-1

Α
g
T

Α
g2 N

T

TΑgN TΑg
2N2T

I II III IV

FIG. 12: (Color online) Transport scattering rate for αgN =
4 × 10−3 (double logarithmic scale). Dots: exact values ob-
tained by numerical evaluation; solid lines: analytical asymp-
totics, Eq. (68).

IV. Again, this is not so for energies that are in the regime
II. In this case, we have an additional contribution from
region 1, like in section IVA. The calculation outlined
in appendix B yields

1

τtr(ǫ)
∼







T

N

√
ǫ

T
, I

αgT, II

α2
gNT

(
T

ǫ

)

, III

α2
gNT

(
T

ǫ

)2

, IV

(68)

The characteristic momenta dominating the transport
scattering rate as well as the relevant regions in Q-Ω
plane as shown in Table 3. The transport scattering rate
in Regimes II and III is dominated by momenta much
smaller than temperature, which allows us to find the
numerical prefactors (given in Appendix B). Regimes I
and IV is determined by momenta of order temperature,
which does not allow us to find the numerical coefficient
in these regimes. The analytical asymptotics are plotted
alongside with the exact numerical result in Fig. 12.

τtr I II III IV

qvF ∼ ω T α2
gN

2T/ǫ ǫ T

Regions 1,2,3,4 1,3 3 3

TABLE 3: Momentum/frequency scales and regions of the
Q-Ω plane that dominate the transport scattering rate τ−1

tr in
different domains (I,II,III, and IV) of energy ǫ.

Similarly to Sec. IVC, we see a strong enhancement of
the transport scattering rate in region II. When energy
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approaches temperature, the GR result

τ−1
tr (ǫ ∼ T ) ∼ α2

gNT (69)

is reproduced.
Comparing the transport scattering rate with the en-

ergy relaxation rate,

τtr
τE

∝ ln
1

αgN
, (70)

we observe that in the limit of small αg the relaxation of
energy due to the inelastic collisions occurs much faster
than the velocity relaxation, τtr ≫ τE. The difference
between the two rates comes from the fact that the for-
ward scattering in graphene is strongly enhanced. The
RPA screening suppresses the contribution of scattering
angles smaller than αg thus regularizing the logarithmi-
cally divergent contribution to the energy relaxation rate.
On the other hand, the transport factor in Ktr, see Eq.
(64), kills the contribution of the forward scattering to
the transport scattering rate much more efficiently than
the RPA screening (this is the reason why the GR result
for τtr is parametrically correct), so that no logarithmic
factor arises in τtr.
The relation Eq. (70) justifies the hydrodynamic ap-

proach59–62: the distribution functions of electrons and
holes equilibrate within each type of carriers much faster
than the direction of the velocity is changed. As a re-
sult, the distribution functions effectively depend only on
the velocity direction. This means that the interaction-
induced transport scattering rate entering the observ-
ables should be averaged over the temperature window:

〈τ−1
tr (ǫ)〉 =

∞∫

0

dǫ ρ(ǫ)
∂f

∂ǫ

1

τtr(ǫ)

∞∫

0

dǫ ρ(ǫ)
∂f

∂ǫ

. (71)

Evaluating these integrals numerically using the exact
expression for the RPA propagators, we find

〈τ−1
tr (ǫ)〉 ≃ 1.18α2

gNT. (72)

As we will see below, this averaged value of the transport
scattering rate can be substituted into the Drude expres-
sion for the conductivity, which yields the parametrically
correct result for the collision-dominated conductivity of
clean graphene.

C. Collision-limited conductivity

Above, when calculating the conductivity, we have as-
sumed that the finite lifetime of quasiparticles is pro-
vided by some artificially introduced broadening δ which

mimics disorder. The introduction of the artificial life-
time allowed us to identify the contribution of the in-
elastic collisions to the transport scattering rate by con-
sidering the perturbative-in-interaction contributions to
the conductivity. Let us now discuss the conductivity
of clean graphene, or, more precisely, the conductivity
of graphene in the regime when the inelastic collisions
dominate over disorder scattering.
The conductivity of graphene at the Dirac point is a

rather intricate quantity. In the absence of interaction,
transport in the ballistic limit shows remarkable pecu-
liarities in graphene.2 The interplay between vanishing
density of states and vanishing scattering rate leads to
the non-universal conductivity that depends on the mea-
surement details. In particular, finite size clean graphene
sample of the “short-and-wide” geometry shows a behav-
ior analogous to that of a normal diffusive metal. The
zero-T conductivity of such a setup is σ = 4 × e2/πh.
The same value of conductivity was predicted for an in-
finite sample with a large but finite electron lifetime.
A different result, σ = e2/2h, was found in the un-
doped graphene at a large frequency. At any non-zero
value of the chemical potential, the conductivity of clean
graphene is infinite. At finite temperature, energies
within the temperature window contribute to the con-
ductivity. This implies that the Dirac-point conductivity
becomes infinite in the noninteracting case at any non-
zero T .
As has been shown in Refs. 56,57,59, the conductivity

of clean undoped graphene becomes finite due to the in-
elastic electron-electron collisions. The estimate for the
collision-limited conductivity can be obtained by substi-
tuting the typical value of interaction-induced transport
scattering time, Eq. (69), and the typical density of ther-
mally populated states, ρ(T ) ∼ NT/v2F , into the Drude
formula, which yields

σ =
e2

h
ρ(T )v2F τtr(T ) ∼

e2

h

NT

v2F
v2F

1

α2
gNT

∼ e2

h

1

α2
g

. (73)

Note that the explicit dependence on T , N , and vF drops
out from this formula; however, the temperature depen-
dence appears in Eq. (73) implicitly through the renor-
malization of αg. A more rigorous calculation of the
collision-limited conductivity requires the analysis of the
kinetic equation.56,57 Importantly, the fast energy relax-
ation discussed above not only simplifies such an analy-
sis, but also reduces the kinetic equation to the hydrody-
namic model58–62.
The consideration of Sec. VA, which allowed us to

find the transport scattering rate from the expression for
the conductivity, relied on the perturbative treatment of
the interaction. This assumes the following hierarchy of
the energy scales:

τ−1
tr ≪ δ ≪ T. (74)

The first inequality implies that the broadening of the
Green’s functions is due to the artificial “disorder” rate
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δ, whereas the second inequality establishes the ballistic
regime which allows us to neglect the dressing of inter-
action by disorder. Since the characteristic frequency
transfer in the transport scattering rate is of order of
temperature, the resulting τ−1

tr does not depend on δ as
long as δ ≪ T . Furthermore, in Appendix C we have cal-
culated τ−1

tr from the generalized GR approach for δ = 0
and reproduced the transport kernel Ktr from Appendix
B. Therefore, we expect that the Drude formula, yield-
ing Eq. (73), is applicable also for τ−1

tr ≫ δ, i.e. in the
collision-dominated transport regime. This expectation
is supported by the results of Refs. 56,57,59.
Assuming the validity of the Drude formula for δ ≪

τ−1
tr , we evaluate the conductivity using the transport
scattering rate given by Eq. (72):

σ =
e2

h

Nπ

〈τ−1
tr (ǫ)〉

∞∫

0

dǫρ(ǫ)
∂f

∂ǫ
≈ e2

h

0.58

α2
g

(75)

This result has the same form as found in Refs. 56,57
within the kinetic equation approach. The only differ-
ence is in the numerical value of the prefactor. It is worth
noting here that the kinetic approach of Refs. 56,57 was
based on the GR calculation of the self-energies. As we
have seen in Sec. VA, the RPA result for the trans-
port scattering rate at relevant energies ǫ ∼ T [as well as
the energy-averaged characteristic rate, Eq. (71)] has the
same form as given by the GR. However, the proper inclu-
sion of the finite-T changes the prefactor in the transport
scattering rate. This explains the difference between the
numerical prefactors between our result, Eq. (75), and
the result of Refs. 56,57. We thus see that it is impor-
tant to include the full RPA-interaction into the kinetic-
equation approach. This will be done elsewhere.
Finally, let us discuss on the qualitative level the effect

of disorder on the Dirac-point conductivity in graphene.
For simplicity we set N = 1 below. In the absence of
interaction, effect of disorder on transport in the ballis-
tic regime is highly unconventional and strongly depends
on the type of randomness.13,14,22,75 On the other hand,
as we have seen above, the interaction effects are cru-
cially important for the transport already in a clean sys-
tem. It is thus important to explore transport in realistic
graphene structures, with both the electron-electron in-
teraction and disorder taken into account.
The role of disorder here is twofold: (i) potential dis-

order introduces velocity relaxation, thus contributing to
the transport scattering rate:

1

τtr
∼ α2

gT +
1

τdis
, (76)

and (ii) establishes a finite density of states already in
the Dirac point:

ρ ∝ T +
1

τdis
. (77)

Substituting these formulas into the Drude conductivity,
we obtain the following result describing the crossover

FIG. 13: Schematic plot (only parametrical scales are given)
of the temperature dependence of the Drude conductivity (in
units of e2/h; solid line) αg ≪ 1/ ln(Λτdis), where Λ is the
bandwidth. For simplicity, the logarithmic temperature cor-
rections to αg which comes from the renormalization is not
shown. Dashed lines: low-T behavior of the conductivity gov-
erned by quantum interference effects; depending on the char-
acter of disorder, the localization, antilocalization, or critical-
ity (coincides with the solid line) may occur. Dash-dotted
line: expected high-T behavior governed by electron-phonon
scattering.
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FIG. 14: Schematic plot of the temperature dependence of the
Drude conductivity (in units of e2/h) for strong interaction,
αg ≫ 1/ ln(Λτdis). The characteristic scale T0 is given by
T0 ∼ τ−1

dis ln2(Λ/T0) ∼ τ−1
dis ln2(Λτdis). For possible deviations

at low and high T (interference and phonon contributions,
respectively), see Fig. 13

between the collision-dominated and disorder-dominated
regimes:

σ ∼ e2

h

T + 1
τdis

α2
gT + 1

τdis

. (78)

This expected temperature dependence of the Drude con-
ductivity is shown in Fig. 13 for the case weak interac-
tion (or strong disorder), αg ≪ 1/ ln(Λτdis) when the
renormalization of αg gives only small logarithmic cor-
rections. For stronger interaction (or weaker disorder),
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αg ≪ 1/ ln(Λτdis), the renormalization of

αg(T ) =
αg

1 +
αg

4 ln Λ
T

,

becomes strong [so that the renormalized coupling “for-
gets” about its bare value, αg(T ) → 4/ ln(Λ/T )] already
in the collision-dominated regime, see Fig. 14. One sees
that, since the interaction-induced transport rate con-
tains α2

g whereas the density of states of thermally ex-
cited quasiparticles does not, the two crossover T -scales
appear, which establishes an intermediate regime of the
ballistic transport,

1

τdis
≪ T ≪ 1

α2
gτdis

.

Again, a more rigorous derivation of the conductivity
in the presence of both disorder and inelastic scattering
is based on kinetic-equation approach and will be per-
formed elsewhere. Note that we neglected the phonon
contribution to the relaxation rates (for estimate of their
contribution, see, e.g. Ref. 24) which becomes relevant
at sufficiently high temperatures.
At T ∼ 1/τdis the Drude conductivity becomes of the

order of conductance quantum and the dephasing rate
becomes of the order of T . At lower temperatures, the
T dependence of the conductivity is governed by in-
terference effects: localization, antilocalization, or crit-
ical behavior may occur, depending on the symmetry
of disorder.16,17,76 The crossover scale 1/τdis in typical
experiments on high-quality graphene is in the range
T ∼ 1− 100K.

VI. CONCLUSIONS

In conclusion, we have analyzed the inelastic electron-
electron scattering in graphene using the Keldysh dia-
grammatic approach. We have demonstrated that fi-
nite temperature strongly affects the screening proper-
ties of graphene. This, in turn, dramatically influences

the inelastic scattering rates as compared to the zero-
temperature case. We have calculated the finite-T quan-
tum scattering rate, see Eq. (57) and Fig. 6, which is
relevant for dephasing of interference processes. We have
identified an hierarchy of regimes, Eq. (5), arising due to
the interplay of a plasmon enhancement of the scattering
and finite-temperature screening of the interaction. The
lifetime of quasiparticles with energies close to the Dirac
point has been found to be independent of the coupling
constant. We have further calculated the energy relax-
ation rate, Eq. (61) and Fig. 8, and transport scattering
rate, Eq. (68) and Fig. 12. For all the three rates, we have
found a non-monotonic energy dependence which has
been attributed to the resonant excitation of plasmons.
Finally, we have discussed the collision-limited conduc-
tivity of clean graphene as well as the expected behavior
of the high-temperature conductivity in the presence of
disorder, see Eqs. (75) and (78), respectively. Our results
complement the kinetic-equation and hydrodynamic ap-
proaches for the collision-limited conductivity.

Our approach that employs the Keldysh formalism can
be generalized for the treatment of physics of inelastic
processes in strongly non-equilibrium setups. In partic-
ular, this framework is expected to allow us to investi-
gate interaction effects on full counting statistics of the
electron transport in graphene and to develop the the-
ory of tunneling spectroscopy in strongly biased graphene
setup.
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Appendix A: Polarization Operator

In this Appendix we evaluate the polarization operator, Eq. (33), at finite temperature. In a scattering process with
emitting a photon, three different momenta are involved which form in two dimensions triangles as shown in figure
15. Specifically, if an electron before scattering has the momentum p and the emitted photon carries momentum
q, the electron that is left over has to carry p − q. The angular integration over the transferred momentum q

becomes complicated. To proceed further it is convenient to choose elliptic coordinates defined by ξ = p + |p− q|
and η = p − |p− q|. The corresponding coordinate system is shown in Fig. 15. Using the elliptic coordinates, the
expressions for the imaginary and real parts of the polarization bubble take the form

ImΠR =
sinh(Qβ)

2π
Re




Q

√

β2 − 1

1∫

0

dη

√

1− η2

cosh(Qβ) + cosh(ηQ)
+

Q
√

1− β2

∞∫

1

dξ

√

ξ2 − 1

cosh(Qβ) + cosh(ξQ)



 , (A1)
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FIG. 15: Sketch of elliptic coordinates

ReΠR = − Q

π2

∞∫

1

dξ

1∫

0

dη

sinh(ξQ)

√

1− η2

ξ2 − 1

ξ

β2 − ξ2
+ sinh(ηQ)

√

ξ2 − 1

1− η2
η

β2 − η2

cosh(ξQ) + cosh(ηQ)
. (A2)

Here and below we introduce the notation β = Ω/Q to decouple expansions in small or large Q from the behavior at
the singularity Q = Ω. For simplicity we set vF = 1 and T = 1. The integrals in Eqs. (A1) and (A2) are evaluated
separately in the four regions shown in Fig. 3.

a. Region 1

In region 1 the condition Q ≪ 1 and β > 1 hold, which means that in Eq. (A1) only the part with the η-integral
is left. Expanding the integrands in small ηQ ≪ 1, we get

ImΠR ≃ Q sinh(Qβ)

2π
√

β2 − 1

1∫

0

dη

√

1− η2

cosh(Qβ) + 1
=

Q

8

tanh(Qβ/2)
√

β2 − 1
(A3)

for imaginary part and

ReΠR ≃ −Q

π2

=πQ
2

(

β√
β2−1

−1

)

︷ ︸︸ ︷
∫ 1

0

dη
√

1−η2
Qη2

β2−η2

≃ 2 ln 2

Q2

︷ ︸︸ ︷
∞∫

1

dξ

√

ξ2 − 1

cosh(ξQ)+1
≃ − ln 2

π

(

|β|
√

β2 − 1
− 1

)

(A4)

for the real part of ΠR. The term ∝ sinh(ξQ) in Eq. (A2) yields a contribution of the order of ∼ Q2. The second
term ∝ sinh(ηQ) results in Eq. (A4).
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b. Region 2

In region 2, we have Q ≫ 1 and β > 1. In Eq. (A1) again only the η-integral is left and by neglecting cosh(ηQ)
and expanding in large Q we get

ImΠR ≃ 1

2π

sinh(Qβ)
√

β2 − 1

1∫

0

dη

√

1− η2

cosh(Qβ)
=

1

8

Qsignβ
√

β2 − 1
. (A5)

By expanding Eq. (A2) in large Q and resolving exponentials in the denominator by a geometric series, we see that the
leading contribution to the real part of the polarization operator is small in region 2, being of the order of ∼ Q−2 ≪ 1.

c. Region 3

Region 3 is characterized by the conditions Q ≪ 1 and β < 1. In this region, only the ξ-integral contributes to
Eq. (A1). By expanding the integrand in small Qβ we get

ImΠR ≃ Qβ

2π

Q
√

1− β2

≃ 2 ln 2

Q2

︷ ︸︸ ︷
∞∫

1

dξ

√

ξ2 − 1

1 +cosh(ξQ)
≃ ln 2

π
Re

β
√

1− β2
. (A6)

The simplification of Eq. (A2) in region 3 is similar to that leading to Eq. (A4). The contribution of the first term
in Eq. (A2) is of order Q lnQ, yielding

ReΠR ≃ − Q

π2

=−πQ
2

︷ ︸︸ ︷
∫ 1

0

dη
√

1− η2
Qη2

β2 − η2

≃ 2 ln 2

Q2

︷ ︸︸ ︷
∞∫

1

dξ

√

ξ2 − 1

cosh(ξQ) + 1
≃ ln 2

π
. (A7)

d. Region 4

Finally, in region 4 the conditions Q ≫ 1 and β < 1 are fullfiled. In Eq. (A1) only the ξ-integral contributes and
by neglecting cosh(Qβ) and expanding the integrand in large Qξ we get

ImΠR ≃ sinh(Qβ)

π

Q
√

1− β2

∞∫

1

dξ
√

ξ2 − 1 e−Qξ

︸ ︷︷ ︸

≃e−Q 1

Q3/2

√
π
2

≃ sinh(Qβ)
√

β2 − 1

e−Q

√
2πQ

. (A8)

In region 4 the simplification of Eq. (A2) differs from that in region 2 in one important point. By neglecting cosh(Qη)
in comparison to cosh(Qξ), the first term [∝ sinh(Qξ)] yields no principle value integral, while β is smaller 1. This
results in

ReΠR ≃ − Q

π2

∞∫

1

dξ
ξ

√

ξ2 − 1(β2 − ξ2)

1∫

0

dη
√

1− η2 =
1

8

Q
√

1− β2
. (A9)

Appendix B: Calculating the rates

In this Appendix we calculate the integrals for inelastic scattering rates.
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1. Definitions of the rates

The rates we are interested in are defined by inserting the kernel Kj into the integrand for the imaginary part of
the total self-energy, Eq. (51) (j = q,+,E, tr):

• Total quantum scattering-rate (j = q):

Kq = 1;

• Energy relaxation-rate (j = E):

KE =
ω2

T 2
;

• Transport scattering-rate (j = tr):

Ktr =
1

2
sin2 θ =

1

2

q2 sin2 γ

ǫ2 + q2 − 2ǫq cos γ
.

Here θ is the angle between incoming particle and outgoing particle and γ is the angle between q and p. The origin
of Ktr is explained in Sec. VA. The kernel for the chiral scattering rate τ−1

± depends on the scattering channel. In
particular, for + chirality at ǫ > 0 the electron-electron scattering kernel contains cos2(θ/2) and the electron-hole
scattering kernel contains sin2(θ/2) due to Dirac factors.
It is convenient to introduce the dimensionless energy y = ǫ/2T . The integrals we have to handle are of the following

form:

τ−1
j (y) = −2T 2

v2F

∞∫

0

dQ

2π
Q

2π∫

0

dγ

2π

∑

Ω=y±
√

y2+Q2+2Qy cos γ

[
Kj(Ω, Q, y) ImDR

RPA(Ω, Q)[coth(Ω) + tanh(y − Ω)]
]
. (B1)

Since the combinations y±
√

y2 +Q2 + 2Qy cos γ lead to complicated integrands, we split the integrals into the parts
corresponding to Q ≪ y and y ≪ Q. Here γ is the angle between the transferred momentum q and the initial
momentum p.

2. Simplifying the integrand

The imaginary part of the interaction propagator is given by

ImDR
RPA(Ω, Q) = − D2

0(Q)N ImΠ(Ω, Q)

[1 +D0(Q)N ReΠ(Ω, Q)]
2
+[D0(Q)N ImΠ(Ω, Q)]

2 , (B2)

where

D0(Q) =
v2F
T

αgπ

Q
(B3)

is the bare Coulomb interaction.
The splitting of the Q integral leads to the following simplification:

Ω ≃ y ±
{

y −Q cosγ Q ≪ y

Q− y cos γ y ≪ Q
,
√

|Q2 − Ω2| ≃







2y +

Q |sin γ| −
Q ≪ y

2
√
yQ
∣
∣sin γ

2

∣
∣ +

2
√
yQ
∣
∣cos γ

2

∣
∣ −

y ≪ Q

(B4)

Here +,− correspond to the two possible values for Ω that appear in Eq. (B1). These signs reflect the separation
of integration domains into the parts above and below the mass-shell line Q = Ω: + corresponds to Ω > Q and −
corresponds to Ω < Q. Below we simplify the integrands I = [g + f ]Kj ImDR

RPA separately in each to the region in
the Q vs Ω plane.
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a. Region 1

In region 1, the dominant contribution to all the rates comes from the domain y ≪ Q. Using the simplified
polarization operator, Eq. (40), we obtain

Ij
1,2(y,Q, γ) ≃ v2F

T

1

N

π2

8

√
yQ
∣
∣sin γ

2

∣
∣

(
2
√
y
√
Q

αgN

∣
∣
∣sin

γ

2

∣
∣
∣− ln 2

)2

+
( π

16
Q2
)2

×







1, j = q

2 cos2 γ
2 , j = +

4Q2, j = E
1
2 sin

2 γ, j = tr

. (B5)

Here and below the first digit in the subscript of the function I denotes the region in the Q vs Ω plane, while the
second digit is 1 for Q ≪ y and 2 for Q ≫ y.

b. Region 2

The contribution to all the rates coming from the region 2 is exponentially small in Regime IV. In other Regimes,
it contains at least an extra αg as compared to the contributions of region 3, except for the situations when results for
the rate are determined by momenta q of order T/vF . In this situations, it turns out that the asymptotics produced
by region 2 is the same as the asymptotics of region 3. We remind the reader that finding the numerical value of the
prefactor is beyond our analytical approach when integrals are dominated by q ∼ T/vF . Therefore, there is no case
where we need to calculate the contribution of region 2.

c. Region 3

Region 3 appears to be the most important region because most of the final results for the rates are determined by
this region. In this region both small and large y compared to Q are important:

• y ≫ Q :

Ij
3,1(y,Q, γ) ≃ v2F

NT

π

ln 2

|sin γ|Q−1

[(
Q

αgN ln 2
+ 1

)2

− 1

]

sin2 γ + 1

×







1, j = q

2, j = +

4Q2 cos2 γ, j = E
1
2
Q2

y2 sin2 γ, j = tr

; (B6)

• y ≪ Q :

Ij
3,2(y,Q, γ) ≃ v2F

T

1

N

2π

ln 2

√
y

Q−3/2 cos γ
2

4y

Q

(
Q

αgN ln 2
+ 1

)2

cos2
γ

2
+ 1

×







1, j = q

2 sin2 γ
2 , j = +

4Q2, j = E
1
2 sin

2 γ, j = tr

. (B7)

d. Region 4

This region is only important for the energy relaxation rate (j = E). The corresponding contribution is governed
by Q ≪ y, so that only the energy range y ≫ 1 is of interest, where

IE
4,1(y,Q, γ) ≃ v2F

T

α2
gπ

24N√
2πQ

sin γ cos2 γ
(

sin γ +
αgπN

8

)2 (B8)

3. Results for the rates

Finally we estimate the rates in the Regimes I, II, III, and IV as defined in Fig. 5, using the simplified integrands
of the previous part.



23

a. Region 1

The contributions of Region 1 to the quantum and transport scattering rates are only relevant for energies in Regime
II for y ≪ Q, where we have:

τ−1
j (y) =

2T 2

v2F

1∫

min(y,1)

dQ

2π
Q

2π∫

0

dγ

2π
Ij
1,2(y,Q, γ) . (B9)

Performing first the angular integration over γ, we obtain the quantum scattering rate:

τ−1
q (y) ≃ 4αgT

1∫

0

da
1√

1− a2
≃ 2παgT, (B10)

the chiral scattering rate:

τ−1
+ (y) ≃ 4αgT

1∫

0

da
√

1− a2 ≃ παgT, (B11)

and the transport scattering rate:

τ−1
tr (y) ≃ 8αgT

1∫

0

da a2
√

1− a2 ≃ π

2
αgT. (B12)

Here the integrals over the variable a = αgN ln 2/
√
4yQ correspond to the Q integration.

Regime τ−1
+ (y) Q Ω γ θ

II ≃ 2παgT α2
gN

2/y Q 0 < γ < π 0 < θ < π

TABLE 4: Contribution of region 1 to the chiral quantum scattering rate τ−1
+ in Regime II and the characteristic values of

Q,Ω, γ, and θ dominating this contribution.

Regime τ−1
tr (y) Q Ω γ θ

II ≃ π αgT/2 α2
gN

2/y Q 0 < γ < π 0 < θ < π

TABLE 5: Contribution of region 1 to the transport scattering rate τ−1
tr in Regime II and the characteristic values of Q,Ω, γ,

and θ dominating this contribution.

In all the regimes, the contribution of region 1 to the energy relaxation rate is parametrically the same as that of
other regions. Since the numerical prefactor is not accessible within our calculation (the integrals are dominated by
qvF ∼ T ), we have chosen to present only the calculation of the contribution of region 3.

b. Region 2

There is no important contribution from region 2 (see Sec. B 2 b above).
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c. Region 3

This is the most important region for all the rates in most of the Regimes. The corresponding integrals are expressed
through the kernels Ij

3,i introduced in Sec. B 2 as follows:

τ−1
j (y) =

2T 2

v2F

min(y,1)∫

0

dQ

2π
Q

2π∫

0

dγ

2π
Ij
3,1(y,Q, γ) +

2T 2

v2F

1∫

min(y,1)

dQ

2π
Q

2π∫

0

dγ

2π
Ij
3,2(y,Q, γ) (B13)

Using the short-hand notations

x′ =
1

αgN ln 2
, y′ =

y

αgN ln 2
,

we obtain the following result for the contribution of region 3 to the quantum scattering rate:

τ−1
q (y) ≃ αg

π
T







min(x′,y′)
∫

0

dx
arsinh

[√

x(x + 2)
]

√

x(x + 2)(x+ 1)
+

x′
∫

min(x′,y′)

dx
arsinh

[√
4y′
(√

x+ 1√
x

)]

(1 + x)

√

1 + 4y′
(√

x+ 1√
x

)2







. (B14)

Regime τ−1
q (y) Q Ω γ θ

I ∼
√

y

N
T 1 −Q 0 < γ < π 0 < θ < π

II ≃ παgT α2
gN

2/y −Q 0 < γ < π 0 < θ < π

III ≃ 4β(2)
π

αgT αgNT Q cos γ 0 < γ < π θ .
αgN

y
≪ 1

IV ≃ 4β(2)
π

αgT αgNT Q cos γ 0 < γ < π θ .
αgN

y
≪ 1

TABLE 6: Contribution of region 3 to the total quantum scattering rate τ−1
q in all energy domains and the corresponding

characteristic values of the transferred momentum Q, transferred frequency Ω, the angle γ between momenta p and q, and the
scattering angle θ.

For the contribution of region 3 to the chiral scattering rate we get:

τ−1
+ (y) ≃ αg

π
T







min(x′,y′)
∫

0

dx
arsinh

[√

x(x + 2)
]

√

x(x + 2)(x+ 1)

+

x′
∫

min(x′,y′)

dx

√

1 + 4y′
(√

x+ 1√
x

)2

arsinh
[√

4y′
(√

x+ 1√
x

)]

−√
4y′
(√

x+ 1√
x

)

(1 + x)2 4y′

x







(B15)

Regime τ−1
+ (y) Q Ω γ θ

I ∼
√

y

N
T 1 −Q 0 < γ < π 0 < θ < π

II ≃ παgT α2
gN

2/y −Q 0 < γ < π 0 < θ < π

III ≃ 8β(2)
π

αgT αgNT Q cos γ 0 < γ < π θ .
αgN

y
≪ 1

IV ≃ 8β(2)
π

αgT αgNT Q cos γ 0 < γ < π θ .
αgN

y
≪ 1

TABLE 7: Contribution of region 3 to the chiral quantum scattering rate τ−1
+ in all energy domains and the corresponding

characteristic values of Q, Ω, γ, and θ.
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The contribution of region 3 to the energy relaxation rate reads:

τ−1
E (y) ≃ αg

π(x′)2
T







min(x′,y′)
∫

0

dx
x

x+ 2




arsinh

(√

x(x + 2)
)

(x+ 1)−1
√

x(x + 2)
− 1



+

x′
∫

min(x′,y′)

dx
x2arsinh

[√
4y′
(√

x+ 1√
x

)]

(1 + x)

√

1 + 4y′
(√

x+ 1√
x

)2







. (B16)

Regime τ−1
E (y) Q Ω γ θ

I ∼
√

y

N
T 1 −Q 0 < γ < π 0 < θ < π

II ∼ α2
gT

N
√
y

ln
(

y

α2
gN

2

)

1 −Q π −
αgN
√

y

αgN
√

y
≪ 1

III ∼ α2
gT

N
√
y

ln
(

y

α2
gN

2

)

1 −Q π −
αgN
√

y

αgN
√

y
≪ 1

IV ∼ α2
gNT ln

(

1
α2
gN

2

)

1 −Q π −
αgN
√

y
θ .

αgN

y
≪ 1

TABLE 8: Contribution of region 3 to the energy relaxation rate τ−1
E obtained in all energy domains within the energy-diffusion

approximation and the corresponding characteristic values of Q, Ω, γ, and θ. Since in all energy domains the result is dominated
by Q ∼ 1, the numerical prefactors can not be obtained from the asymptotics at Q ≪ 1 and Q ≫ 1.

Finally, region 3 yields the following result for τ−1
tr :

τ−1
tr (y) ≃ αg

2πy′2
T

min(x′,y′)
∫

0

dx
x

x + 2



1−
arsinh

(√

x(x + 2)
)

(x+ 1)
√

x(x+ 2)





+
4

π
αgT

x′
∫

min(x′,y′)

dx

√

y′

x

[

z2 + 3

3z4
− arsinhz

z5(1 + z2)−1/2

]

z=
√
4y′

(√
x+ 1√

x

)

. (B17)

Regime τ−1
tr (y) Q Ω γ θ

I ∼
√

y

N
T 1 −Q 0 < γ < π 0 < θ < π

II ≃ π
4
αgT

α2

gN
2

y
−Q π −

αgN
√

y

αgN
√
y

≪ 1

III ∼ N
y
α2
gT y y(1 − 2| sin γ

2
|)

αgN

y
& π −

αgN

y
θ .

αgN

y
≪ 1

IV ∼ N

y2α
2
gT 1 Q cos γ

αgN

y
θ .

αgN

y
≪ 1

TABLE 9: Contribution of region 3 to the transport scattering rate τ−1
tr in all energy domains and the corresponding charac-

teristic values of Q, Ω, γ, and θ. Since in energy domains I and IV the result is dominated by Q ∼ 1, the numerical prefactors
in these domains are beyond the accuracy of our approximations. Furthermore, since in Regime III the integral is dominated
by Q ∼ y, the splitting of the integrand according Eqs. (B6) and (B7) does not reproduce the correct prefactor.

d. Region 4

This region is only relevant for the energy relaxation rate in Regime IV, where the main contribution comes from
Q ≪ y, yielding

τ−1
E (y) =

8T 2

v2F

max(y,1)∫

1

dQ

2π
Q

π
2
− 1

Q∫

0

dγ

2π
IE, γ ≪ π

2
− 1

Q

4,1 (y,Q, γ) ≈ 12N√
2π

α2
gTy

3/2 ln

(
16

Nπαg
√
y

)

. (B18)

Since the result is determined by Q ∼ Ω ∼ y ≫ 1, the energy-diffusion model is, in fact, not applicable in this Regime.
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2

E − ω/2

E + ω/2

ǫ− ω
ǫ

FIG. 16: Diagram for the “elementary” inelastic scattering amplitude.

Appendix C: Scattering Rates from the Generalized Golden Rule

In this Appendix we analyze the golden rule approach to calculating quantum and transport scattering rates. The
quantum scattering rate for electrons was introduced in Eq. (52). Using the imaginary part of the self energy Eq.
(24), we obtain

τ−1
+ (ǫ) ∝

∫

dq

∫

dω |DRPA(q, ω)|2 [1− nF (ǫ− ω)]

∫

dpTr [P+(p) δ(ǫ− vF p)A0(ǫ− ω,p− q)]

×
∫

dE [nF (E − ω/2)− nF (E + ω/2)]

∫

dkTr [A0(E − ω/2,k− q/2)A0(E + ω/2,k+ q/2)] . (C1)

The spectral weights A0 are defined in Eq. (6). Equation (C1) is completely equivalent to Eq. (46) of the main text.
We can regard the quantum scattering rate as the probability (per unit time) of the electron decay with emitting

an electron-hole pair. The amplitude of this decay process is given by the ”half” of the self-energy diagram shown
in Fig. 16. The incoming and outgoing particles in this diagram are taken at the mass shell. Equation (C1) has the
form of the Fermi golden rule with the amplitude determined by the RPA-screened interaction.
We can now apply the golden rule to calculate the transport scattering rate. This amounts to including an extra

transport factor [vi · (vi − vf )]/v
2
F accounting for the change of the current due to scattering, in the integrand of Eq.

(C1). Here vi and vf are total velocities of incoming and outgoing particles. For the linear electronic dispersion the
velocities of individual quasiparticles are determined by the relation

v =
∂ǫ

∂p
=

v2Fp

ǫ
(C2)

This results in the following transport factor:

vi ·(vi − vf )

v2F
= v2F

p

ǫ

(
p

ǫ
− p− q

ǫ− ω
− k+ q/2

E + ω/2
+

k− q/2

E − ω/2

)

, (C3)

Note that in the conventional case of massive particles with the quadratic electronic dispersion, v = p/m and hence
vi − vf ∝ p − (p − q) − (k + q/2) + (k − q/2) = 0, which reflects the fact that because of the total momentum
conservation there is no current relaxation in conventional metals due to the electron-electron interaction.
We now apply the particle-hole symmetry of the graphene spectrum in order to simplify the expression for transport

scattering rate. Let us reverse the integration variables in the second line of Eq. (C1): (E,k) 7→ (−E,−k). Using
the symmetry A0(ǫ,p) = A0(−ǫ,−p), we see that the trace in the integrand is not changed. The difference of
two equilibrium distribution functions in the second line of Eq. (C1) is also independent of the sign of E. Thus
the contribution of particle-hole pair into the current relaxation vanishes, which corresponds to the absence of the
Coulomb-drag contribution to the conductivity77 in undoped graphene (Fig. 10f). This allows us to keep only the
part of the transport factor Eq. (C3) which is even under reversing E and k,

v2F
p

ǫ

(
p

ǫ
− p− q

ǫ− ω

)

= 1− sign(ǫ− ω) cos θ, (C4)
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where θ is the scattering angle. Inserting this reduced transport factor into the first line of Eq. (C1) and calculating
the trace of projection operators, we obtain

[1− sign(ǫ− ω) cos θ] Tr [P+(p)A0(ǫ − ω,p− q)]

=
1

2

[
1− sign(ǫ− ω) cos θ

][
(1 + cos θ)δ(ǫ − ω − vF |p− q|) + (1− cos θ)δ(ǫ − ω + vF |p− q|)

]

=
1

2
(1− cos2 θ)

[
δ(ǫ − ω − vF |p− q|) + δ(ǫ − ω + vF |p− q|)

]
. (C5)

This way the transport factor 1− cos2 θ appears for Dirac fermions.
The golden rule calculation of the transport scattering rate reproduces the result obtained from the Drude conduc-

tivity Eq. (64). Note that an additional broadening δ was not used in this calculation. This shows that our result for
τ−1
tr can be actually applied in the limit τ−1

tr ≫ δ as we argued in Sec. VC.
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