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The stationary points of the Hamiltonian H of the classical XY chain with power law pair
interactions (i. e., decaying like r−α with the distance) are analyzed. For a class of “spinwave-type”
stationary points, the asymptotic behavior of the Hessian determinant of H is computed analytically
in the limit of large system size. The computation is based on the Toeplitz property of the Hessian
and makes use of a Szegö-type theorem. The results serve to illustrate a recently discovered relation
between phase transitions and the properties of stationary points of classical many-body Hamiltonian
functions. In agreement with this relation, the exact phase transition energy of the model can be
read off from the behavior of the Hessian determinant for exponents α between zero and one. For α
between one and two, the phase transition is not manifest in the behavior of the determinant, and
it might be necessary to consider larger classes of stationary points.

I. INTRODUCTION

As is long known, the stationary points of a classical
Hamiltonian function can be employed to calculate or
estimate certain physical quantities of interest. Famous
examples include transition state theory [1] or Kramers’s
reaction rate theory for the thermally activated escape
from metastable states [2], where the barrier height (cor-
responding to the potential at a certain stationary point
of the potential energy function) plays an essential role.
More recently, the noise-free escape from quasi-stationary
states (i. e., metastable states whose lifetimes diverge
with the system size) has been related to the presence
of stationary points of marginal stability [3]. Apart from
studies of dynamical properties, stationary points have
also been extensively used for estimating thermodynam-
ical properties by means of the superposition approach
[4].

Dynamical properties like the aforementioned ones are,
as one might expect, not unrelated to the statistical phys-
ical behavior of a system. Accordingly, as worked out
beautifully in [5], properties of stationary points [6] re-
flect in dynamical and statistical physical quantities si-
multaneously. This observation sparked quite some re-
search activity, reviewed in [7], with the aim of relating
equilibrium phase transitions to stationary points and
their indices. Subsequently, it was noticed in [8, 9] that
the Hessian determinant of the total energy function,
evaluated at the stationary points, adds a crucial piece
of information for discriminating whether or not a phase
transition occurs. Omitting some of the technicalities,
the essence of the criterion on the Hessian determinant
can be captured as follows [10].

∗
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Criterion. Let

H(p, q) =
1

2

N
∑

k=1

p2k + V (q1, . . . , qN ) (1)

be the total energy function of a system with N degrees

of freedom, where p = (p1, . . . , pN) and q = (q1, . . . , qN )
denote the vectors of momenta and positions. The poten-

tial energy V will, in general, have stationary points qN
s

defined as solutions of the set of equations

0 =
∂V (q)

∂qk

∣

∣

∣

∣

q=qN
s

, k = 1, . . . , N. (2)

The stationary points are assumed to be isolated, and

their number is assumed to grow at most exponentially

with N . In the thermodynamic limit N → ∞, the sta-

tionary points can induce a phase transition at some crit-

ical energy per degree of freedom ec only if the following

two conditions are met:

1. There exists a sequence
{

qN
s

}∞
N=N0

of stationary

points of V such that

vc := lim
N→∞

V
(

qN
s

)

N
(3)

converges and vc = 〈v〉(ec) is the ensemble expec-

tation value of v = V/N at the energy ec.

2. The asymptotic behavior of the Hessian matrix H
of V , evaluated at the critical points qN

s
contained

in that sequence, is such that

lim
N→∞

∣

∣detH
(

qN
s

)
∣

∣

1/N
= 0. (4)

In short, the criterion requires the existence of a se-
quence of stationary points whose potential energy con-
verges to vc and whose Hessian determinant vanishes in
the sense of (4) in the thermodynamic limit. If, as is
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the case for many classical spin models, the kinetic en-
ergy term is absent in (1), the criterion remains valid,
with the only difference of the critical energy ec being
identical to vc [11].

Note that the above criterion is necessary, but not suffi-
cient, for a phase transition to occur: finding a sequence
of stationary points with the behavior specified above
does not guarantee a transition to take place at the cor-
responding critical energy. However, as model calcula-
tions suggest, the criterion usually appears to single out
the correct transition energies [8, 9]. Importantly for
the application of the Hessian determinant criterion, it
is not necessary to know all stationary points of V , but
a suitably chosen subset may be sufficient. This mat-
ter of fact was pointed out by Nardini and Casetti, and
suitably constructed sequences of stationary points were
used in [10] to single out the phase transition of a model
of gravitating masses and analytically determine its crit-
ical energy.

Comparing the Hessian determinant criterion to other
analytic tools in the statistical physics of phase transi-
tions, its remarkable property is that it is local in con-
figuration space. In contrast to, say, the calculation of
a partition function, no averaging over a large, high-
dimensional manifold is necessary. Instead, only the lo-
cal properties of a sequence of stationary points needs to
be analyzed. Of course, finding an appropriate sequence
of stationary points can be equally hard or impossible,
but in certain instances such a local approach may prove
beneficial.

In this article, we study the stationary points of the
Hamiltonian of a chain of classical XY spins (or rota-
tors), coupled by a pair interaction which decays like
r−α with the distance r of the spins on the lattice. The
model is introduced in detail in Sec. II. Although one-
dimensional, it shows a phase transition from a ferromag-
netic to a paramagnetic phase for exponents α between
zero and two, and the aim of the present work is to ex-
plore the relation between stationary points and phase
transitions for these values of α.

There are a number of interesting aspects of this study
which deserve mention: First, inspired by [10], in Sec. III
a method is devised of how to construct special classes
of stationary points for lattice spin systems. The energy
at such stationary points is evaluated in Sec. IV. The
Hessian at such a stationary point, as required by (4),
is found to be a Toeplitz matrix. As carried out in Sec.
V, this property allows us to employ a Szegö-type theo-
rem for the calculation of the asymptotic behavior of the
Hessian determinant in the limit of large system sizes N .
The results of Sec. V depend on the exponent α not only
quantitatively, but also qualitatively: For 0 6 α 6 1,
the asymptotic behavior of the Hessian determinant in-
deed signals the phase transition at the exact value of the
transition energy, as purported by the criterion of Sec. I.
For 1 < α 6 2, no signature of the phase transition is de-
tected from the Hessian determinant of the special class
of stationary points considered, and one might conclude

that other (or larger) classes of stationary points have to
be taken into account. The findings are summarized and
discussed in more detail in Sec. VI.

II. CLASSICAL XY CHAIN WITH POWER

LAW INTERACTIONS

Consider a set of N lattice sites labeled by an integer
number j ∈ {1, . . . , N} where, to ease the notation, we
assume N to be odd. To each site, a planar vector of unit
length is assigned, parametrized by the angular variables
θj ∈ (−π, π]. The classical XY chain with power law
interactions is characterized by the total energy function

H(θ) = N
N
∑

i=1

(N−1)/2
∑

j=1

1− cos(θi − θi+j)

jα
(5)

with θ = (θ1, . . . , θN ) and some nonnegative exponent α.
Although suppressed in the notation, indices i of the θi
variables are always to be considered modulo N , such as
to account for periodic boundary conditions and to guar-
antee indices in the range from 1 to N . The total energy
function (5) describes N classical spin variables on a ring
(chain with periodic boundary conditions), where each
spin interacts with every other. The interaction strength
between two spins decays proportionally to 1/jα, where j
is the minimal distance of the two spins on the ring. The
total energy (5) is endowed with a normalization factor
defined as

N =

(

2

(N−1)/2
∑

j=1

1

jα

)−1

. (6)

The asymptotic behavior of N in the limit N → ∞ can
be computed, yielding

2N ∼











(1− α)21−αNα−1 for 0 6 α < 1,

1/ lnN for α = 1,

1/ζ(α) for α > 1,

(7)

where ζ denotes the Riemann zeta function. This nor-
malization factor, introduced in [12], is chosen such as
to guarantee extensivity of the total energy, i.e., a finite
limit of the total energy per particle in the limit N → ∞.
The thermodynamic behavior of this model depends

on the exponent α in the following way: For 0 6 α 6

1, the thermodynamic behavior is identical to that of
the mean-field (or Curie-Weiss) case α = 0, showing a
ferromagnetic continuous phase transition characterized
by mean-field critical exponents [13]. For 1 < α 6 2, the
model also shows a phase transition, but thermodynamic
functions differ from the mean-field case (see [14] and
the comment in Sec. 5 of [15]). For α > 2, no phase
transition occurs. The three regimes for the exponent α,
the corresponding thermodynamic behavior, and also the
methods of proof are analogous to Dyson’s analysis of the
Ising chain with spin-spin interaction strengths decaying
as 1/jα [16, 17].
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FIG. 1. Sketch of stationary points of the XY Hamiltonian
H for N = 8, where θi is the angle between the arrow and
the dashed axis. Top: Stationary points where all θi ∈ {0, π}.
Bottom: Spinwave stationary point (9), where all differences
θi − θi−1 between neighboring angles are equal, with differ-
ences chosen such that θ0 = θN , in compliance with the peri-
odic boundary conditions.

III. STATIONARY POINTS

Stationary points of the total energy function (5) are
defined as the real solutions of the set of equations

0 =
∂H(θ)

∂θk

= N
(N−1)/2
∑

j=1

sin(θk − θk+j) + sin(θk − θk−j)

jα

(8)

for k = 1, . . . , N . Since the total energy function (5)
is invariant under a global rotation θi → θi + φ with
φ ∈ R, the solutions of (8) come in one-parameter fam-
ilies: Given a stationary point (θ1, . . . , θN ), every point
(θ1 + φ, . . . , θN + φ) is also a solution of (8). The cri-
terion of Sec. I, however, requires all stationary points
to be isolated, and we therefore have to get rid of the
trivial rotational degeneracy. We explicitely destroy the
rotational symmetry by fixing θN = 0 and eliminating
the equation with k = N in (8). The thermodynam-
ics of this reduced model is identical to that of the full
one, since the contribution of one degree of freedom to
the partition function is negligible in the thermodynamic
limit.
Determining all solutions of the remaining set of non-

linear equations is presumably a hard task (too hard for
the author at least). There are, however, two particu-
larly simple classes of solutions, similar in spirit to those
constructed in [10] for a one-dimensional model of grav-
itating masses: First, any combination of θi ∈ {0, π} for
i = 1, . . . , N − 1 will make the sine functions in (8) van-
ish and therefore satisfies the set of equations. A second
class of solutions is given by

θ(x)m = mx with x = 2πn/N, (9)

where m,n ∈ {1, . . . , N} and hence 0 < x < 2π. These
solutions have constant radian x between neighboring
spins, implying sin(θk−θk+j) = sin(θk−j−θk) and there-
fore each of the summands in (8) vanishes separately.
These two classes of solutions, as is easily checked

numerically, are not exhaustive. This is probably ex-
pected, in particular when comparing with the results

for the nearest-neighbor XY chain for which all station-
ary points can be computed analytically [18]. The two
classes of solutions introduced above are also solutions in
the case of nearest-neighbor interactions, but many more
solutions exist. Since nearest-neighbor interactions can
be considered as the limit α → ∞ of the power law de-
cay discussed in the present article, it is maybe not too
surprising to find that (at least many of) these solutions
persist to finite α.
We will in the following restrict the analysis to the

“spinwave” stationary points (9), mainly for the reason
that the Hessian matrix at these points, as discussed in
detail in Sec. V, is a Toeplitz matrix. This structure is
particularly helpful when calculating the large-N asymp-
totics of the Hessian determinant. Moreover, from the
results on the nearest-neighbor XY chain in [18], one
may be led to conjecture that the spinwave stationary
points are of particular importance for our purposes: At
least for nearest-neighbor interactions, the spinwave sta-
tionary points have the smallest absolute value of the
Hessian determinant amongst the stationary points of a
given energy, and therefore determine whether the crite-
rion of Sec. I is satisfied or not.

IV. TOTAL ENERGY AT STATIONARY

POINTS

The criterion of Sec. I involves the potential energy
(which, in the case of the XY model, equals the total
energy), evaluated at the stationary points. Inserting
the spinwave stationary points (9) into the total energy
function (5), we obtain

e(x) :=
H(θ(x))

N
=

N
N

N
∑

i=1

(N−1)/2
∑

j=1

1− cos(jx)

jα

=
1

2
−N

(N−1)/2
∑

j=1

cos(jx)

jα
. (10)

Since | cosx| 6 1 for all x, we have

∣

∣

∣

∣

∣

N
(N−1)/2
∑

j=1

cos(jx)

jα

∣

∣

∣

∣

∣

6 N
(N−1)/2
∑

j=1

1

jα
=

1

2
, (11)

confirming that the normalization factor N in (6) had
been chosen appropriately in order to render the total
energy per spin finite in the thermodynamic limit.
In the limit N → ∞ and for certain values of the expo-

nent α, the summation in the second line of (10) can be
performed explicitely. For α = 1 we use formula 1.441.2
of [19], and for α ∈ 2N0 we use formula 1.443.1 to obtain

e(x) =
1

2
+

N
2

{

ln[2(1− cosx)] for α = 1,

(−4π2)α/2 Bα[x/(2π)]/α! for α ∈ 2N0,

(12)
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for the total energy of a spinwave solution θ(x) in the ther-
modynamic limit. Bα denotes the Bernoulli polynomial
of order α as defined for example in Sec. 9.62 of [19]. The
graph of e(x) is shown in Fig. 2 (upper plot) for exponents
α = 0, 1, 2, 4, and 6. For noninteger values of α, the in-
finite sum in (10) cannot be performed, but e(x) can be
evaluated numerically for reasonably large system sizes
N . The resulting curves (not shown in Fig. 2) are found
to interpolate smoothly between the curves for integer
α. For positive, even α = 2, 4, 6, . . . , the energy values
cover densely the entire range of energies per spin acces-
sible to the system in the thermodynamic limit. This is
a desirable property when applying the criterion of Sec.
I, as it allows us to use spinwave stationary points for
the construction of sequences of stationary points whose
energy converges to any desired energy value accessible
to the system.
For exponents in the range 0 6 α 6 1, the situation

is more intricate. For large, but finite, system sizes N ,
the energies corresponding to the spinwave stationary
points θ(x) are becoming denser and denser on the in-
terval (0, 1/2) with increasing N . In the thermodynamic
limit, however, the energy converges to 1/2 for any given
value of x ∈ (0, 2π), and to zero for x = 0, resulting in
the straight line plotted in Fig. 2 (upper plot). The ap-

proach to this behavior with increasing system size N is
illustrated in Fig. 2 (lower plot) for the exponent α = 1/2.

Equation (12) and the numerical results in Fig. 2
demonstrate that the energy per spin of a sequence {θ(x)}
of spinwave stationary points for increasing N , but with
a fixed value of x, indeed converges to a limiting value,
as required in equation (3) of the criterion in Sec. I. To
construct a sequence of stationary points with a given
value of x, it will in general be necessary to restrict the
sequence to some infinite subset {N1, N2, . . . } of system
sizes such that 2πn/Ni = x for some n ∈ {1, . . . , Ni}.

V. HESSIAN DETERMINANT AT

STATIONARY POINTS

In order to apply the criterion stated in Sec. I, we need
to evaluate the determinant of the Hessian matrix at a
stationary point. Again, in order to destroy the trivial
global rotational symmetry of the total energy function
H , one of the spin variables, say θN , is fixed at zero. The
resulting total energy is a function of N − 1 variables
θ1, . . . , θN , and its Hessian HN is an (N − 1)× (N − 1)
symmetric matrix with entries

[HN ]kl(θ) =
∂2H(θ)

∂θk∂θl
=



















N
(N−1)/2
∑

j=1

cos(θk − θk+j) + cos(θk − θk−j)

jα
for k = l,

−N cos(θk − θl)

∆(l − k)α
for k 6= l,

(13)

for k, l = 1, . . . , N − 1, where

∆(l− k) =

{

|l − k| for |l − k| 6 (N − 1)/2,

N − |l − k| else,
(14)

is the minimal distance between k and l on the ring.
Evaluating the Hessian at a spinwave stationary point
θ(x) as defined in (9), one obtains

[HN ]kl(θ
(x)) =

{

1− 2e(x) for k = l,

h
(x)
l−k for k 6= l,

(15)

with

h
(x)
j = −N cos(jx)

∆(j)α
(16)

and with the total energy per spin e(x) as given in (10).
Without fixing θN to zero, this matrix would be circu-
lant and the eigenvalues were readily obtained by Fourier
transforming a row vector of the matrix. Fixing θN cor-
responds to eliminating the Nth row and column of the
matrix, and although the resulting matrix is not circulant

anymore, it retains the Toeplitz property: As is evident
from (15), the elements [HN ]kl depend only on the dif-
ference l − k of the indices.

A. Szegö’s theorem

For our purposes, the Toeplitz property comes in
handy, as a number of theorems on the large-N asymp-
totics of determinants are known for sequences of N ×N
Toeplitz matrices [20]. The kind of sequence of matrices
{TN}∞N=1 that is typically considered in the mathematics
literature is where the matrix elements

[TN(f)]kl ≡ tl−k(f) (17)

are given as Fourier coefficients of a complex-valued func-
tion f defined on the circle,

tj(f) =
1

2π

∫ π

−π

f(φ)e−ijφdφ. (18)

For particularly well-behaved f , Szegö’s theorem states
that the large-N asymptotics of the determinants of such
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FIG. 2. Upper plot: The graph of the total energy per spin
e(x) of a spinwave solution θ(x) in the thermodynamic limit
as given in (12). For positive, even α = 2, 4, 6, . . . , the en-
ergy values cover densely the entire range of energies per spin
accessible to the system in the thermodynamic limit. Lower
plot: Total energy per spin e(x) for α = 1/2 and spinwave sta-
tionary points (9), plotted for various system sizes N . With
increasing N , the curve approaches a horizontal line of energy
1/2.

a sequence is given by

lim
N→∞

∣

∣det
(

TN(f)
)
∣

∣

1/N
= exp

(

1

2π

∫ 2π

0

ln f(φ)dφ

)

,

(19)
and many generalizations of this result to larger classes
of symbols f can be found in the literature [20]. Inverting
the Fourier transformation (18), we can write

f(φ) =

∞
∑

j=−∞
tje

ijφ. (20)

Using equations (15) and (16) and a standard trigono-
metric identity, we obtain

f (x)(φ) =1− 2e(x)

−N
∞
∑

j=1

cos[j(x+ φ)] + cos[j(x− φ)]

jα
.

(21)

for the symbol of the Hessian, evaluated at a spinwave
stationary point θ(x) as defined in (9). Then, as in the

calculation of the energy in Sec. IV, the formulæ 1.441.2
and 1.443.1 of [19] can be used to perform the summation
in (21) for the values α = 1 or α ∈ 2N of the exponent.

1. Exponent α = 1

In the case of α = 1 we can use the identity

∞
∑

j=1

cos(jx)

j
= −1

2
ln[2(1− cosx)] (22)

(1.441.2 of [19]) to write (21) in the form

f (x)(φ) =
N
2

ln

[

(

cosx− cosφ

cosx− 1

)2
]

. (23)

To compute the Hessian determinant as a function of the
energy per spin, we invert the first case in equation (12),
yielding

cosx = 1− 1

2
exp

(

2e− 1

N

)

. (24)

Inserting this expression into (23) gives

f (x(e))(φ) = 1−2e+N ln

∣

∣

∣

∣

2(1− cosφ) − exp

(

2e− 1

N

)∣

∣

∣

∣

.

(25)
As a consequence of the asymptotic behavior (7) of N ,
the logarithmic term on the right hand side vanishes and
we obtain

f (x(e))(φ) = 1− 2e. (26)

From equation (19), the large-N asymptotic behavior of
the Hessian determinant (15) is found to be

D1(e) := lim
N→∞

∣

∣detHN (θ(x))
∣

∣

1/N
= 1− 2e (27)

in the case of α = 1, with accessible energy values lying
in the interval [0, 1/2]. The straight line (27) is plotted
in Fig. 3 together with numerical results for the Hessian
determinants for several finite system sizes. The conver-
gence of the finite-system data to their infinite-system
limit D1 is slow, but this is no surprise as the finite-N
corrections in (25) are logarithmic.
Interpreting (27) in terms of the criterion of Sec. I [and

equation (4) in particular], we observe a vanishing Hes-
sian determinant at the energy per spin e = 1/2. This
value coincides precisely with the known phase transition
energy of the model, providing a nice illustration of the
criterion of Sec. I.

2. Exponents α ∈ 2N0

In the case of α ∈ 2N0 we can use the identity

∞
∑

j=1

cos(jx)

jα
= −(−1)α/2

1

2

(2π)α

α!
Bα

( x

2π

)

(28)
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FIG. 3. The Nth root of the Hessian determinant detHN

for α = 1, evaluated at spin wave stationary points θ(x),
plotted versus the corresponding energy per spin e(x). With
increasing system size N , the numerically computed determi-
nant slowly (logarithmically) approaches the analytic large-N
asymptotic result D1 (black line).

(1.443.1 of [19]), valid for 0 6 x 6 2π. From this formula
and considering that x, φ ∈ [0, 2π], we can write

∞
∑

j=1

cos[j(x± φ)]

jα
= −(−1)α/2

1

2

(2π)α

α!

×







Bα

(

x±φ
2π

)

for 0 6 x± φ 6 2π,

Bα

(

x±φ
2π ∓ 1

)

else.
(29)

Inserting these identities into (21), we obtain

f (x)(φ) = −(−1)α/2
N
2

(2π)α

α!































Bα

(

x+φ
2π

)

− 2Bα

(

x
2π

)

+Bα

(

x−φ
2π

)

for φ 6 x and φ 6 2π − x,

Bα

(

x+φ
2π − 1

)

− 2Bα

(

x
2π

)

+Bα

(

x−φ
2π

)

for φ 6 x and φ > 2π − x,

Bα

(

x+φ
2π − 1

)

− 2Bα

(

x
2π

)

+Bα

(

x−φ
2π + 1

)

for φ > x and φ > 2π − x,

Bα

(

x+φ
2π

)

− 2Bα

(

x
2π

)

+Bα

(

x−φ
2π + 1

)

for φ > x and φ 6 2π − x.

(30)

For our purposes, the case α = 2 is particularly interesting, as this is the only positive even exponent for which the
XY chain with power law interactions exhibits a phase transition. In this case, making use of the Bernoulli polynomial
B2(x) = x2 − x+ 1/6, the symbol simplifies to

f (x)(φ) = − 6

π2



















φ2 for φ 6 x and φ 6 2π − x,

(φ− 2π)2 − 2π(x− φ) for φ 6 x and φ > 2π − x,

(φ− 2π)2 for φ > x and φ > 2π − x,

φ2 + 2π(x− φ) for φ > x and φ 6 2π − x.

(31)

To compute the Hessian determinant as a function of
the energy per spin, we invert the function e(x) in (12),
yielding

x(e) = π
(

1±
√

1− 4e/3
)

(32)

in the case of α = 2, and insert this expression into (31).
The symbol f (x)(φ), plotted in Fig. 4, is easily seen

to be positive for some values of x and φ, and negative
for others. In principle this causes a problem when com-

puting the large-N asymptotic behavior of the Hessian
determinant (15) from Szegö’s theorem (19) where we
have to integrate the logarithm of f (x). Instead, to cir-
cumvent this problem, we chose to replace f (x) in (19)
by its absolute value and compute

D2 := exp

(

1

2π

∫ 2π

0

ln |f (x(e))(φ)|dφ
)

. (33)

Inserting (31) and performing the integration, we obtain

D2 =
1

6

(

3−
√
9− 12e

)2















exp

[

−2 + 2
√

2
√

1− 4e/3− 1 arccoth
(
√

3−4e
2
√
9−12e−3

)

]

for 0 6 e 6 9/16,

exp

[

−2 + 2
√

2
√

1− 4e/3− 1 arctanh
(
√

3−4e
2
√
9−12e−3

)

]

for 9/16 < e 6 3/4.

(34)

The graph of D2 is shown in Fig. 5 together with nu-
merical results for the Hessian determinants for several

finite system sizes. The numerical results are in such ex-
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FIG. 4. The graph of the symbol f (x)(φ) for α = 2 as given
in (31), plotted as a function of x and φ.

cellent agreement with (34) that it is tempting to believe
that taking the absolute value of f (x(e)) in (33) is not
merely an approximation, but gives an exact asymptotic
expression for the Hessian determinant. Unfortunately,
the author was unable to proof this conjecture [21].

Interpreting (34) in terms of the criterion (4), we ob-
serve a strictly positive Hessian determinant on the entire
range of accessible energies per spin e ∈ [0, 3/4]. For the
class of spinwave stationary points considered, the anal-
ysis of the Hessian determinant therefore fails to give
an indication of the phase transition known to exist for
α = 2.

For even exponents α = 4, 6, 8, . . . , analogous calcu-
lations can be performed. The corresponding asymptotic
results for the determinant, computed according to (33),
share the most important features of the case α = 2: The
analytic large-N asymptotic result Dα is bounded away
from zero (see Fig. 6) and in excellent agreement with
numerical data (not shown). For α > 2, however, the
fact that Dα is bounded away from zero was to be ex-
pected, as no phase transition occurs in this case. The
graphs in Fig. 6 also suggest that, in the limit α → ∞,

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.0

0.2

0.4

0.6

0.8

N=501

N=301

N=101

|detHN |1/N

e

FIG. 5. The Nth root of the Hessian determinant detHN for
α = 2, evaluated at spin wave stationary points θ(x), plotted
versus the corresponding energy per spin e(x). Already for
moderate system sizes N , the finite-system data are in excel-
lent agreement with the analytic large-N asymptotic result
D2 (black line).

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.00

0.05

0.10

0.15

0.20

0.25

Α=¥

Α=6
Α=4
Α=3
Α=2
Α=5�4
0£Α£1

Dα

e

FIG. 6. Asymptotic large-N behavior Dα of the Hessian de-
terminant, plotted as a function of the energy per spin e for
various exponents α. Solid lines correspond to values of α for
which exact analytic results are available, dashed lines were
obtained numerically. Dα vanishes at e = 1/2 for α ∈ [0, 1]
(long-range interactions) and for α = ∞ (nearest-neighbor
interactions). For all finite α > 1, Dα is bounded away from
zero.

Dα approaches the function D∞(e) = |2e− 1|. This limit
corresponds to nearest-neighbor interactions on the lat-
tice, and indeed D∞ coincides with the behavior of the
determinant of the nearest-neighbor XY chain reported
in [18].

3. Other values of α

For other values of the exponent α, Szegö’s theorem
can still be used to obtain the asymptotic behavior Dα of
the Hessian determinant but, to the best of the author’s
knowledge, the infinite sums in (10) and (21) cannot be
calculated anymore. Numerical results for the cases α =
5/4 and α = 3 are shown in Fig. 6.

B. Hadamard bounds

The Szegö-type theorem we used in Sec. VA allowed us
to obtain exact asymptotic large-N results of the Hessian
determinant of spinwave stationary points. The draw-
back, however, is that an evaluation of the resulting infi-
nite Fourier sums is possible only for the exponents α = 1
and α ∈ 2N0. In the present section we will supplement
these results by an upper bound on Dα, valid for any
α > 0. Comparing to numerical data, we will observe
that the bound is sharp for 0 6 α 6 1.
A bound on the determinant of a (real or complex)

N × N -matrix M can be obtained by the celebrated
Hadamard inequality

| detM | 6
N
∏

j=1

‖cj‖ , (35)
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where cj denotes the jth column (or row) vector of M ,
and ‖cj‖ its Euclidean norm. In contrast to the meth-
ods of Sec. VA that are based on the Toeplitz property
of the Hessian, the Hadamard inequality can be used to
bound the Hessian determinant not only of spinwave sta-
tionary points (9), but of any kind of stationary point. In
the context of phase transitions and their relation to sta-
tionary points and their determinants, Hadamard bounds
first have been used in [10].
The Hadamard bound (35) becomes particularly sim-

ple for a circulant matrix. In this case, ‖cj‖ = ‖ck‖ for
all j, k = 1, . . . , N , and hence

| detM |1/N 6 ‖cj‖ (36)

for any j. The Hessian (15) of a spinwave stationary point
we want to study is not quite a circulant matrix, but it is
closely related: HN (θ(x) is an (N − 1)× (N − 1)-matrix,
obtained from an N × N circulant matrix by deleting
one row and one column. The norm of every column of
HN (θ(x) is therefore bounded above by the norm

‖c‖ =

(

[1− 2e(x)]
2
+N 2

N
∑

j=2

cos2[x(j − 1)]

∆(j − 1)2α

)1/2

6
√

[1− 2e(x)]2 +N

(37)

of any column of the original N ×N circulant matrix. A
bound on the Hessian determinant is then given by

∣

∣detHN (θ(x(e))
∣

∣

1/N
6 ‖c‖ 6

√

(1 − 2e)2 +N . (38)

For α ∈ [0, 1], we have observed in (7) that the normal-
ization constant N goes to zero in the limit N → ∞,
yielding

lim
N→∞

∣

∣detHN (θ(x(e))
∣

∣

1/N
6 |1− 2e|. (39)

For the accessible values of the energy per spin e ∈
[0, 1/2], this bound coincides with the exact α = 1 asymp-
totic result for D1 obtained in Sec. VA. Comparing (39)
to numerical data, it is tempting to conjecture that the
bound is tight, i. e., coinciding with the exact asymp-
totics, for all α ∈ [0, 1], but we were not able to prove
this. Such a result for Dα (i. e., one that is independent
of the precise value of α) would also agree well with the
known fact that the thermodynamics of the XY chain
has no α-dependence as long as α is between zero and one
[13]. In particular, the bound (39) vanishes at e = 1/2,
and this value coincides with the phase transition en-
ergy of the model for α ∈ [0, 1]. At the same time, the
value e = 1/2 is also the maximum energy per spin of
the model, and the phase transition is of the “partial
equivalence of ensembles”-type as described in [22]. For
α > 1, N converges to the finite value 1/(2ζ(α)) in the
thermodynamic limit, and the resulting bound (38) is
strictly positive and cannot give any indication of the
phase transition of the model.

VI. DISCUSSION AND CONCLUSIONS

We have analyzed the stationary points of the Hamil-
tonian (5) of the classical XY chain with power law pair
interactions, decaying like r−α with the distance r on
the lattice. Computing all stationary points of H seems
to be way out of reach, but special classes of stationary
points can be constructed. For the class of “spinwave-
type” stationary points where all differences θi − θi−1

between neighboring angles are equal, we have analyti-
cally computed, in the limit of large system size N , the
asymptotic behavior Dα of the Hessian determinant of
H as a function of the energy per spin e. The computa-
tion is based on the Toeplitz property of the Hessian and
makes use of a Szegö-type theorem. The analytic results
have been compared to numerical computations of the
Hessian determinants for system sizes of up to N = 501,
and the agreement was found to be excellent.
The motivation behind these calculations is based on

a recently discovered relation between phase transitions
and the properties of stationary points of classical many-
body Hamiltonian functions, as reviewed in Sec. I. Ac-
cording to this relation, a phase transition is signaled
by the vanishing of the (suitably scaled) Hessian deter-
minant, evaluated along a suitably chosen sequence of
stationary points of H , in the thermodynamic limit (4).
Moreover, the thermodynamic limit value of the energy
of such a sequence of stationary points coincides with the
phase transition energy of the model described by H .
For the XY chain with power law pair interactions

with exponent 0 6 α 6 1, we found that the asymptotic
value Dα of the Hessian determinant at the spinwave sta-
tionary points is zero at the energy per spin e = 1/2. In
agreement with the criterion on phase transitions and
stationary points, this value coincides precisely with the
phase transition energy of the model.
For α > 1, Dα is bounded away from zero, giving no in-

dication of the phase transition occurring for 1 < α 6 2.
This is of course a somewhat disappointing result, as
this is the most interesting case: For α > 1 an exact
solution of the thermodynamics of the XY chain is not
known, and obtaining an exact expression for the critical
energy would have been a remarkable result. However,
the reader should keep in mind that we have considered
only the special class of spinwave stationary points. One
good reason to focus on this class was the observation
that, for the XY chain with nearest-neighbor interac-
tions studied in [18], the spinwave stationary points were
the “flattest” ones (in the sense of having the smallest
value of Dα for a given value of the energy per spin e),
and therefore good candidates for Dα to vanish. On the
other hand, the presence of spinwave stationary points
depends crucially on the boundary conditions, and their
number grows smaller than exponentially with the sys-
tem size. Hence, in order to find an asymptotically van-
ishing Hessian determinant in the sense of (4), it appears
to be necessary to go beyond the study of spinwave sta-
tionary points.
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Beyond the analysis of specific features of the XY
chain with power law interactions, the results reported
in the article provide a number of more general indica-
tions that might prove useful for further applications of
the criterion of Sec. I: First, the strategies of how to con-
struct special classes of stationary points can be extended
straightforwardly to other types of spin-spin-interactions
and to higher-dimensional lattices. Second, Szegö-type
results should be applicable for the computation of the
large-N asymptotics of the Hessian determinant also in
other one-dimensional models. And third, the crucial
step for successfully applying the criterion to some model
is certainly the choice of a suitable class of stationary

points. The present case study, although not fully con-
clusive by itself, provides a further piece of information
that can contribute towards an understanding of this is-
sue.
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