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We report a systematic molecular dynamics study of the isochoric equilibration of hard-sphere
fluids in their metastable regime close to the glass transition. The thermalization process starts
with the system prepared in a non-equilibrium state with the desired final volume fraction φ

but with a prescribed non-equilibrium static structure factor S0(k;φ). The evolution of the α-
relaxation time τα(k) and long-time self-diffusion coefficient DL as a function of the evolution
time tw is then monitored for an array of volume fractions. For a given waiting time the plot
of τα(k; φ, tw) as a function of φ exhibits two regimes corresponding to samples that have fully

equilibrated within this waiting time (φ ≤ φ(c)(tw)), and to samples for which equilibration is not

yet complete (φ ≥ φ(c)(tw)). The crossover volume fraction φ(c)(tw) increases with tw but seems

to saturate to a value φ(a) ≡ φ(c)(tw → ∞) ≈ 0.582. We also find that the waiting time teqw (φ)
required to equilibrate a system grows faster than the corresponding equilibrium relaxation time,
teqw (φ) ≈ 0.27 × [τ eq

α (k;φ)]1.43, and that both characteristic times increase strongly as φ approaches

φ(a), thus suggesting that the measurement of equilibrium properties at and above φ(a) is experi-
mentally impossible.

PACS numbers: 05.40.-a, 64.70.pv, 64.70.Q-

Above a certain size polydispersity, real and simulated
hard sphere liquids fail to crystalize for volume frac-
tions φ beyond the freezing point φ(f) = 0.494 of the
monodisperse system [1–8]. As φ increases the viscosity
increases enormously, and the metastable liquid eventu-
ally becomes an amorphous solid. Mode coupling theory
(MCT) [9, 10] predicts a transition from metastable fluid
to ideal nonergodic states, characterized by the vanishing
of the long-time self-diffusion coefficient DL and the di-
vergence of both, the α-relaxation time τα and the viscos-
ity η. For the hard-sphere fluid the phenomenology pre-
dicted by MCT at φ(a) ≈ 0.52 has been essentially con-
firmed by the experimental observations in hard-sphere

colloidal suspensions at φ
(a)
exp ≈ 0.58 [11, 12], although a

number of intrinsic experimental uncertainties render the

precise determination of φ
(a)
exp a topic of recurrent scien-

tific discussion [8, 11–15].

The recent work of Brambilla et al. [15], however,
seems to put the very experimental relevance of the diver-
gent scenario predicted by MCT under severe question-
ing. By fitting their dynamic light scattering data with
the asymptotic expression τα(φ) ∼ (φ(a) − φ)−γ , tradi-
tionally associated with MCT, these authors determined
φ(a) to be φ(a) = 0.590 ± 0.005. If the ideal MCT picture
were to be observed in their experiments, the measured
τα(φ) should be infinite for φ > φ(a). Instead, for the vol-
ume fraction range φ(a) < φ <∼ 0.6, they report large but
finite relaxation times. The main claim of these authors
is that these measurements involve macroscopic states in

which the system, instead of falling out of equilibrium, re-
mains ergodic and enters a new dynamical regime where
τα increases with volume fraction according to a different
functional form, namely, τα(φ) ∼ τ∞ exp[A(φ0 − φ)−δ].

This interpretation of Brambilla et al. rests on the as-
sumption that their measurements indeed involve fully
equilibrated systems. An alternative possibility, how-
ever, is that this is actually an unrealistic assumption:
if the equilibrium relaxation time τα(φ) indeed diverges
as φ → φ(a), the system might require a similarly di-
vergent equilibration time teqw (φ). The experimentalist
would then need to wait a diverging waiting time to mea-
sure equilibrium properties, which is an experimental im-
possibility. Thus, an alternative interpretation of their
experimental results is that for φ >∼ φ(a) their systems
have not fully equilibrated, even though the on-going ir-
reversible evolution of the system may simply be tech-
nically imperceptible or difficult to measure. Motivated
by these considerations, this work is aimed at studying
the incomplete equilibration of concentrated hard-sphere
systems close to the glass transition by means of system-
atic computer simulations, in which some of the intrinsic
uncertainties of the experimental samples will be absent.

The basic simulation experiment consists of monitor-
ing the irreversible evolution of a hard-sphere system
initially prepared at a non-equilibrium state character-
ized by a prescribed volume fraction φ and by a non-
equilibrium static structure factor S0(k;φ). The irre-
versible evolution to equilibrium is then described in
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terms of the time-evolving non-equilibrium static struc-
ture factor Stw (k;φ) and self intermediate scattering
function (Self-ISF) FS(k, τ, tw), where tw is the evolu-
tion (or “waiting”) time after the system was prepared.
The long-tw asymptotic limit of these properties is, of
course, the equilibrium static structure factor Seq(k;φ)
and self-ISF F eq

S (k, τ). Our interest is to determine the
volume fractions for which equilibrium is reached within
a given waiting time tw.

We use event-driven molecular dynamics to simulate
the evolution of N = 1000 particles in a volume V ,
with particle diameters σ evenly distributed between
σ(1−w/2) and σ(1+w/2), with σ being the mean diam-
eter. We consider the case w = 0.3, corresponding to a
polydispersity sσ = w/

√
12 = 0.0866. According to the

results reported in [3–5], at this polydispersity the sys-
tem shows no evidence of crystallization for any volume
fraction φ = (π/6)nσ3, where σ3 is the third moment
of the size distribution and n is the total number density
n ≡ N/V . All the particles are assumed to have the same
mass M . The length, mass, and time units employed are,
respectively, σ, M , and σ

√

M/kBT .

To produce the initial configurations we used soft-
particle molecular dynamics to simulate the evolution of
a set of initially overlapping, randomly placed particles,
with the correct distribution of diameters, interacting
through a short-ranged repulsive soft (but increasingly
harder) interaction, and in the presence of strong dissi-
pation. For φ below the random close packing limit, this
system evolves rapidly into a disordered configuration
with no overlaps. These non-thermalized hard-sphere
configurations are then given random velocities generated
by a Maxwell-Boltzmann distribution, with kBT set as
the energy unit. These configurations are then used as
the starting configurations for the event-driven simula-
tion of the HS equilibration process.

The simulations were carried for an array of values
of φ between 0.480 and 0.595. For each such volume
fraction we used waiting times from 1 to 105 in pow-
ers of 10. The sequence of configurations obtained
is employed to generate the Self-ISF FS(k, τ, tw) ≡
(1/N)〈∑N

i=1 exp [ik · (ri(tw + τ)− ri(tw))]〉 and the
mean squared displacement (MSD) 〈(∆r(τ ; tw))

2〉 ≡
(1/N)〈

∑N
i=1[ri(tw + τ) − ri(tw)]

2〉, where ri(t) is the
position of the ith particle at time t, τ is the corre-

lation time, and the brackets indicate averaging over
(at least) 20 independent realizations. FS(k, τ ; tw)
is evaluated at k = 7.1, close to the main peak of
Seq(k;φ) for all the values of φ considered. The
α-relaxation time τα(k;φ, tw) is defined by the condi-
tion FS(k, τα, tw) = 1/e, and the long-time self-diffusion
coefficient DL by DL(φ; tw) ≡ limτ→∞〈(∆r(τ ; tw))

2〉/6τ .
Let us illustrate the results of this procedure for one

specific volume fraction, namely, φ = 0.575. In Fig. 1(a)
we present the simulation results for FS(k, τ ; tw) evalu-

10
-4

10
-2

10
0

10
2

10
4

τ/τ0

0

0.2

0.4

0.6

0.8

1

F
S(k

σ=
7.

1,
t)

t
w

=1
t
w

=10
t
w

=100
t
w

=1000
t
w

=10000
t
w

=100000

0 10 20
0

1

2

3

4

S(
k)

0 10 20
kσ

0

t
w

(a)

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

τ/τ0

10
-4

10
-3

10
-2

10
-1

10
0

10
1

<
(∆

r(
τ,

t w
))

2 >

10
0

10
1

10
2

10
3

10
4

10
5

t
w

10
3

10
4

D
L

-1
(φ

,t w
)

0.48 0.5 0.52 0.54 0.56 0.58
φ

10
1

10
2

10
3

10
4

10
5

D
L

-1
(φ

, t
W

)

t
w

(b)

FIG. 1: (a) Self intermediate scattering function FS(k, τ ; tw)
evaluated at k = 7.1 and (b) mean squared displacement
〈(∆r(τ ; tw))

2〉 of a polydisperse hard-sphere system at vol-
ume fraction φ = 0.575 and polydispersity s = 0.0866 as
a function of the correlation time τ for waiting times tw =
100, 101, ..., 105. The inset of (a) shows the corresponding
S0(k;φ) (black circles) and Seq(k;φ) (red squares). The up-
per inset of (b) shows the inverse long-time self-diffusion co-
efficient, D−1

L (φ; tw), as a function of tw for φ = 0.575. The
lower inset of (b) shows DL(φ; tw) as a function of φ at fixed
waiting time, for tw = 100, 101, ..., 105 (various overlapping
symbols).

ated at k = 7.1 as a function of the correlation time τ
for the sequence of waiting times tw = 100, 101, ..., 105.
This sequence exhibits the increasing slowing down of the
dynamics as the system approaches its equilibrium state
and illustrates the fact that FS(k, τ ; tw) saturates to its
equilibrium value F eq

S (k, τ) after a certain equilibration

waiting time teqw (φ). For example, from the illustrative
data in the figure we find that teqw (φ = 0.575) ≈ 104.
A similar evolution and saturation is observed in the
static structure factor Stw(k;φ), although the changes
with tw are not as dramatic as observed in FS(k, τ ; tw);
the inset of Fig. 1(a) presents the initial static structure
factor S0(k;φ) ≡ Stw=0(k;φ) and the final equilibrium
Seq(k;φ). From the data for FS(k, τ ; tw) in this figure
we can determine the α-relaxation time τα(k;φ, tw) as a
function of tw. The results indicate that the α-relaxation
time τα(k;φ = 0.575, tw) saturates approximately to its
equilibrium value τeqα (k;φ = 0.575) ≈ 2× 102 within the
equilibration waiting time teqw (φ = 0.575) ≈ 104.

Fig. 1(b) presents the results for 〈(∆r(τ ; tw))
2〉 as a

function of the correlation time τ for the illustrative vol-
ume fraction φ = 0.575 and for the same sequence of wait-
ing times. Contrary to the determination of τα(k;φ, tw),
which requires the evaluation of FS(k, τ ; tw) within a
rather local window of correlation times, the determina-
tion of DL(φ; tw) requires 〈(∆r(τ ; tw))

2〉 in a window of
correlation times long enough to include the asymptotic
diffusive regime where 〈(∆r(τ ; tw))

2〉 ≈ 6DLτ . This win-
dow must then be very long (of the order of 104 accord-
ing to the data in the figure), even if the waiting time is
small. As a consequence, the resulting value of DL(φ; tw)
turns out to be rather insensitive to the value of tw, as
indicated in the upper-left inset of Fig. 1(b), which plots
DL(φ = 0.575; tw) as a function of tw. A similar behavior
was observed in DL(φ; tw) at the other volume fractions,
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and the results are presented in the lower inset of Fig.
1(b), which plots DL(φ; tw) as a function of φ for fixed
waiting time tw = 100, 102, ..., 105. The main feature to
highlight is that the results for DL(φ; tw) are almost in-
dependent of tw, and hence, DL(φ; tw) is not a reliable
probe of the equilibration of the system compared with
the tw-dependence of τα(k;φ, tw), that we now discuss.
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FIG. 2: Simulation data of the α-relaxation time τα(k;φ, tw)
of a polydisperse hard-sphere system (s = 0.0866) (a) as a
function of tw at fixed volume fraction and (b) as a function
of volume fraction at fixed waiting time. The asterisks in (a)
highlight the points (teqw (φ), τ eq

α (k; φ)), whereas the asterisks

in (b) indicate the crossover volume fraction φ(c)(tw) at the
various waiting times. The inset in (b) exhibits the evolution

of φ(c)(tw) with waiting time.

Fig. 2(a) plots the dependence of the α-relaxation
time τα(k;φ, tw) as a function of waiting time tw for
fixed volume fraction φ. These plots confirm that
beyond an equilibration waiting time teqw (φ), the α-
relaxation time τα(k;φ) saturates approximately to its
equilibrium value τeqα (k;φ). To emphasize these con-
cepts we have highlighted the points (teqw (φ), τeqα (k;φ))
in the figure. In fact, we notice that the highlighted
points (teqw (φ), τeqα (k;φ)) obey the approximate relation
teqw (φ) ≈ 0.27 × [τeqα (k;φ)]1.43, suggesting that the wait-
ing time teqw (φ) required to equilibrate a system is al-
ways longer than the corresponding equilibrium relax-
ation time τeqα (k;φ), and that both characteristic times
increase strongly with φ.
The same data for τα(k;φ, tw) presented in Fig. 2(a)

can also be displayed in a complementary manner,
namely, plotting τα(k;φ, tw) as a function of volume frac-
tion for fixed waiting time tw, and this is done in Fig.
2(b). The first feature to notice in each of the corre-
sponding curves is that one can distinguish two regimes in
volume fraction, namely, the low-φ (equilibrated) regime
and the high-φ (non-equilibrated) regime, separated by a
crossover volume fraction φ(c)(tw). Focusing, for exam-
ple, on the results corresponding to tw = 103, we notice
that φ(c)(tw = 103) ≈ 0.57. In Fig. 2(b) we have high-
lighted the crossover points (φ(c)(tw), τ

eq
α (k;φ)). We ob-

serve that the resulting crossover volume fraction φ(c)(tw)
first increases rather fast with tw, but then slows down
considerably, suggesting a saturation to a value slightly
larger than 0.58, as indicated in the inset of Fig. 2(b).
One of the main products of the simulation results just

presented is the determination of the volume fraction de-
pendence of the equilibrium α-relaxation time τeqα (k;φ).
Clearly, our simulation experiment can determine this
property only within the window 0 ≤ φ ≤ φ(c)(tmax

w ),
where tmax

w is the maximum waiting time achieved in
the simulation experiment. In our case tmax

w = 105,
yielding φ(c)(tmax

w ) ≈ 0.58. These results are plotted
in Fig. 3(a) as solid circles. For φ ≥ 0.58 the tw-
dependent α-relaxation time τα(k;φ, tw) did not saturate
to its equilibrium value within the total duration of the
present simulation experiment. These results are also
plotted in Fig. 3(a) as empty circles, to denote insuffi-
cient equilibration. Thus, only the data in solid sym-
bols are meaningful when comparing with the predic-
tions of equilibrium theories such as MCT or the more
recently developed self-consistent generalized Langevin
equation (SCGLE) theory [16, 17]. In Fig. 3(a) we show,
for example, a one-parameter fit of the equilibrium data
(φ ≤ 0.58) obtained with the full numerical solution of
the SCGLE theory (Ecs. (1), (2), and (5-8) of Ref [17]
with D0 =

√
π/16φ, and with kc = 8.4823 adjusted to fit

these equilibrium data). According to this fit, τeqα (k;φ)
diverges at φ(a) ≈ 0.582.

There is, of course, no reason to attempt to fit the
volume fraction dependence of the whole set of (equili-
brated and non-equilibrated) data in Fig. 3(a) in this
manner. As a mere fitting exercise, however, we no-
tice that these data can be fitted by the expression
τα(φ) = τ∞ exp[A(φ0 − φ)−δ], thus finding A = 0.02,
δ = 1.921, τ∞ = 0.21 and φ0 = 0.6235 (dashed line
in the figure). These values are rather similar to those
that fit the experimental data of Brambilla et al. [15].
Another manner to see that the full set of data corre-
sponding to tw = 105 follows this φ-dependence is shown
in the inset of Fig. 3(a), where we plot the logarithm of
[τα(k;φ, tw)/τ∞] vs. [A(φ0 − φ)−δ]. We find that within
the resolution of the figure, these data do follow approx-
imately this functional form in the metastable regime of
volume fractions both before and beyond the crossover
volume fraction φ(c)(tw = 105) ≈ 0.58 (pointed by an ar-
row). Amazingly enough, we find a similar behavior also
for the shorter waiting times tw = 104 and 103 using
the same values for the parameters δ, C, and τ∞ as for
tw = 105, but with φ0 = 0.635 and 0.631, respectively. In
fact, in the inset of Fig. 3(a) we have also included the ex-
perimental data of Brambilla et al. [15] for φ > 0.5, using
the same parameters as above but with φ0 = 0.637. In
reality we previously multiplied their experimental data
of τα(φ) by the expression DS/D0 = (1 − φ)/(1 + 1.5φ)
for the short-time self-diffusion coefficient of the hard-
sphere suspension (scaled with its zero-φ value D0, [20]),
as a simple manner to “substract” the effects of hydro-
dynamic interactions from their experimental data, so as
to compare with our simulation results. This compari-
son suggests a completely similar phenomenology. In the
present case, however, it is quite clear that the departure
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FIG. 3: Volume fraction dependence of (a) the α-relaxation
time τα(k;φ, tw = 105) and (b) the long-time self-diffusion
coefficient DL(φ; tw = 105) of the polydisperse HS system.
The solid (empty) symbols denote simulation data of fully
equilibrated (insufficiently equilibrated) systems. The solid
lines are the predictions of the SCGLE theory. The dashed
line in (a) corresponds to τα(φ) = τ∞ exp[A(φ0 − φ)−δ] with
A = 0.02 and δ = 1.9212, τ∞ = 0.21, and φ0 = 0.6235.
The inset in (a) plots τα(k;φ, tw) for tw = 105 (circles), 104

(squares) and 103 (triangles) using the same values for δ, C,
and τ∞ but with φ0 = 0.635 and 0.631, and 0.630 for tw = 103

and 104, and 105, respectively. The inset of (b) is a zoom of
the metastable regime of the main figure.

of τα(k;φ, tw = 105) from the equilibrium curve predicted
by the SCGLE theory near φ(a) is due to the insufficient
equilibration of the system within the maximum wait-
ing time tmax

w = 105 of our simulation, and this suggest
that a similar situation might hold in the experiments
reported by Brambilla et al. [15].
Let us finally mention that a similar scenario is ob-

served in the results for DL(φ; tw). Thus, in Fig. 3(b)
we plot the simulation results for DL(φ; tw = 105) with
the empty symbols indicating again insufficient equilibra-
tion. The solid line of Fig. 3(b) is the prediction of the
SCGLE theory with the value kc = 8.4823 kept from the
fit of the data for τα(k;φ, tw = 105) in 3(a). Despite
the small quantitative disagreements with the simulation
data, amplified in the inset of 3(b), the SCGLE fit pro-
vides a remarkably good overall description of the vol-
ume fraction dependence of the equilibrium results for
DL(φ; tw = 105).
The results just presented suggest that any simulation

aimed at determining the equilibrium value of dynamic
order parameters such as τα(k;φ, tw) and DL(φ; tw) near
the dynamic arrest transition is bound to be limited by
the duration of the simulation experiment, represented
by the maximum waiting time tw involved. This lim-
its the determination of these equilibrium values to the
window of volume fractions 0 ≤ φ ≤ φ(c)(tmax

w ). For
φ ≥ φ(c)(tmax

w ), the simulation results will be report-
ing the properties of an insufficiently equilibrated sys-
tem. The results presented here indicate that if we want
to enlarge this window we would have to go to expo-
nentially longer waiting times, which is bound sooner or
later become a lost battle. There is, of course, no obvi-
ous reason to believe that a different situation will pre-

vail in experimental samples. In the meanwhile,it is clear
that the correct analysis of the data corresponding to in-
completely equilibrated conditions must be made in the
framework of a non-equilibrium theory. In fact, one of
the motivations to carry out the present simulation ex-
periments was the need to count with reliable data aimed
at explicitly exhibiting the main features of incompletely
equilibrated systems that will serve as a reference to test
the recently-developed non-equilibrium extension of the
SCGLE theory [21]. This analysis is already in progress,
and the preliminary results seem highly encouraging.
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