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ALTERNATIVE POLARIZATIONS OF BOREL FIXED IDEALS

KOHJI YANAGAWA

Abstract. Let I be a monomial ideal of a polynomial ring S. Polarization is

a classical technique constructing a squarefree monomial ideal pol(I) ⊂ S̃ which
has (for example) the same Z-graded Betti numbers as I. We show that if I is
Borel fixed, it has an alternative polarization. While the standard polarization
sends the monomial x2yz2 to x1x2y1z1z2, our version sends it to x1x2y3z4z5.

1. Preparation

We introduce the convention and notation used throughout the paper. Let S =
k[x1, . . . , xn] be a polynomial ring over a field k. The ith coordinate of a ∈ N

n

is denote by ai (i.e., we change the font). For a ∈ N
n, xa denotes the monomial∏n

i=1 x
ai
i ∈ S. For a monomial m := xa, set deg(m) :=

∑n

i=1 ai and degi(m) := ai.
For a monomial ideal I ⊂ S, G(I) denotes the set of minimal (monomial) generators
of I. We define the order � on N

n so that a � b if ai ≥ bi for all i. We refer [1, 2]
for unexplained terminology.

Take d ∈ N
n with di ≥ 1 for all i, and set

S̃ := k[ xi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ di ].

Note that
Θ := {xi,1 − xi,j | 1 ≤ i ≤ n, 2 ≤ j ≤ di } ⊂ S̃

forms a regular sequence with S̃/(Θ) ∼= S. (Throughout this paper, S̃ and Θ are
used in this meaning, while the value of d ∈ N

n depends on the context.)

Definition 1.1. For a monomial ideal I ⊂ S, a polarization of I is a squarefree

monomial ideal J ⊂ S̃ satisfying the following conditions:

(i) S̃/J ⊗
S̃
S̃/(Θ) ∼= S/I,

(ii) Θ forms a S̃/J-regular sequence.

The following is a well-known fact, and the proof is found in [6, Lemma 6.9].

Lemma 1.2 (c.f. [6, Lemma 6.9]). Let I and J be monomial ideals of S and S̃
respectively. Assume that the condition (i) of Definition 1.1 is satisfied. Then the
condition (ii) is equivalent to the following.

(ii’) βS̃
i,j(J) = βS

i,j(I) for all i, j.

While the proof in [6] concerns only the case #Θ = 1, it works in the general

case. If Θ does not form a S̃/J-regular sequence, the relation between βS̃
i,j(J) and

βS
i,j(I) is not simple. So it is better to compare the Hilbert series of S̃/J with that

of S/I (recall that the Hilbert series is determined by Betti numbers.)
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For a monomial xa with a � d, set

pol(xa) :=
∏

1≤i≤n

xi,1xi,2 · · ·xi,ai ∈ S̃.

Let I = (xa1 , . . . , xar) ⊂ S be a monomial ideal with ai � d for all i. Then it is
well-known that

pol(I) = ( pol(xa1), . . . , pol(xar) )

gives a polarization of I, which is called the standard polarization of I. (If the reader
is nervous about the choice of d, take it so that xd is the least common multiple
of the minimal generators of I.) While all monomial ideals have the standard
polarizations, some have alternative ones.

Let d be a positive integer, and set

(1.1) S̃ := k[ xi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ d ].

For a monomial xa ∈ S with deg(xa) ≤ d, set bi :=
∑i

j=1 aj for each i ≥ 0 (here

b0 = 0), and

b-pol(xa) :=
∏

1≤i≤n
bi−1+1≤j≤bi

xi,j ∈ S̃.

If ai = 0 then bi−1 = bi and xi,j does not divide b-pol(xa) for all j. Let I ⊂ S be a
monomial ideal with deg(m) ≤ d for all m ∈ G(I). Set

b-pol(I) := ( b-pol(m) | m ∈ G(I) ) ⊂ S̃.

This ideal sometimes gives a polarization of I, and sometimes not. Note that the
condition (i) of Definition 1.1 is always satisfied, and the problem is the condition
(ii).

In the sequel, when we treat b-pol(I), we assume that S̃ is the one in (1.1) and
deg(m) ≤ d for all m ∈ G(I).

Example 1.3. (1) For I = (x2, xy, xz, y2, yz) ⊂ k[x, y, z], we have

b-pol(I) = (x1x2, x1y2, x1z2, y1y2, y1z2),

and it gives a polarization. In fact, since I is Borel fixed, we can use Theorem 2.3
below. Moreover, it is essentially different to the standard polarization

pol(I) = (x1x2, x1y1, x1z1, y1y2, y1z1).

More precisely, b-pol(I) and pol(I) are different even after permutations of variables.
In fact, if m ∈ G(pol(I)) is divided by yi for some i, then y1 divides m. However,
y1 does not divide x1y2 ∈ G(b-pol(I)) and y2 does not divide y1z2 ∈ G(b-pol(I)).
Of course, there are many similar examples (in the class of Borel fixed ideals).

(2) In general, b-pol(I) does not give a polarization. For example, if I =
(x2y, xy2, xz2, y2z), then b-pol(I) = (x1x2y3, x1y2y3, x1z2z3, y1y2z3) and it is not
a polarization (to see this compare the Betti numbers of b-pol(I) with that of I
using Macaulay2).
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The polarization of the form b-pol(I) first appeared in Nagel and Reiner [6,
Corollary 2.21]. Inspired by this, Lohne [4] undertakes a study of all possible
polarizations of certain monomial ideals. He calls b-pol(I) the box polarization,
since the ideals treated in [6] are constructed from combinatorial data described
by several “boxes” (something like Young diagrams). While the name “box” is no
longer natural in our case, we use the symbol b-pol.

Definition 1.4. We say a polarization J of I is faithful, if Θ forms an Exti
S̃
(S̃/J, S̃)-

regular sequence for all i.

If a polarization J of I is faithful, then we have

ExtiS(S/I, S)
∼= Exti

S̃
(S̃/J, S̃)⊗S̃ S̃/(Θ).

In fact, the long exact sequences of Ext•
S̃
(−, S̃) yield

Ext
i+(#Θ)
S (S̃/(J + (Θ)), S̃) ∼= Exti

S̃
(S̃/J, S̃)⊗

S̃
S̃/(Θ).

Since Θ ⊂ S̃ forms a regular sequence and S̃/(J + (Θ)) ∼= S/I, we have

Ext
i+(#Θ)
S (S̃/(J + (Θ)), S̃) ∼= ExtiS(S/I, S).

Hence, if J is faithful, ExtiS(S/I, S) and Exti
S̃
(S̃/J, S̃) have the same degree and

Betti numbers. So S/I and S̃/J have the same arithmetic degree in this case.

Remark 1.5. For any I, the standard polarization is always faithful by [7, Corol-
lary 4.10] (see also [9, Theorem 4.4]). If S/I is Cohen-Macaulay, then any polar-

ization J of I is faithful. In fact, S̃/J is also Cohen-Macaulay in this case, and the

only non-vanishing Ext-module is Extc
S̃
(S̃/J, S̃) (here, c := codim J), which is the

canonical module of S̃/J . Hence the assertion is immediate from the well-known
fact on canonical modules.

Example 1.6. For the ideal I := (x2y, x2z, xyz, xz2, y3, y2z, yz2) of S := k[x, y, z],

J := b-pol(I) ⊂ S̃ gives a polarization (to see this, compute the Betti numbers).

However, deg Ext3S(S/I, S) = 5 and deg Ext3
S̃
(S̃/J, S̃) = 4. Hence J is not faithful.

Let M be a finitely generated S-module. We say M is sequentially Cohen-
Macaulay if Extn−i

S (M,S) is either a Cohen-Macaulay module of dimension i or the
0 module for all i. The original definition is given by the existence of a certain
filtration (see [8, III, Definition 2.9]), however it is equivalent to the above one by
[8, III, Theorem 2.11].

Lemma 1.7. Let M be a sequentially Cohen-Macaulay S-module, and y ∈ S a
non-zero divisor of M . Then M/yM is a sequentially Cohen-Macaulay module
with Exti+1

S (M/yM, S) ∼= ExtiS(M,S)/y · ExtiS(M,S) for all i. Moreover, we have

Ass(M/yM) = { p | p is a minimal prime of p′ + (y) for some p
′ ∈ Ass(M) }.

To prove this lemma, recall the following basic properties of a finitely generated
module N over S (c.f. [1, Theorem 8.1.1]).

(1) dimS Ext
i
S(N, S) ≤ n− i for all i.
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(2) For a prime ideal p ⊂ S of codimension c, p ∈ Ass(N) if and only if p is an
associated (equivalently, minimal) prime of ExtcS(N, S).

Proof. Since y is a non-zero divisor of ExtiS(M,S) for all i by the above remark,
the first assertion is clear. To see the second assertion, let p ⊂ S be a prime ideal
of codimension c. Then we have;

p ∈ Ass(M/yM) ⇐⇒ pSp ∈ AssSp
(ExtcS(M/yM, S)⊗S Sp)

⇐⇒ dimSp
(Extc−1

S (M,S)⊗S Sp) = n− c+ 1 and y ∈ p

⇐⇒ ∃ p
′ ∈ Ass(Extc−1

S (M,S)) with codim p
′ = c− 1,

p
′ ⊂ p and y ∈ p

⇐⇒ ∃ p
′ ∈ Ass(M) with codim p

′ = c− 1, p′ ⊂ p and y ∈ p.

�

Lemma 1.8. Let J be a polarization of I. If S̃/J is sequentially Cohen-Macaulay,
then so is S/I, and J is faithful.

Proof. Follows from the first assertion of Lemma 1.7. �

Remark 1.9. Even if S/I is sequentially Cohen-Macaulay, a polarization J is not
necessarily faithful. In fact, S/I of Example 1.6 is sequentially Cohen-Macaulay.

Let M be an S-module, and let

F : 0 = M0 ⊂ M1 ⊂ M2 ⊂ · · · ⊂ Mr = M

be a prime filtration, that is, there is a prime ideal pi such that Mi/Mi−1
∼= S/pi

for each 1 ≤ i ≤ r. Herzog and Popescu ([3]) call the filtration F is pretty clean
if i < j and pi ⊆ pj imply pi = pj . By [3, Theorem 4.1 and Corollary 3.4], if
M admits a pretty clean filtration F then M is sequentially Cohen-Macaulay and
AssM = { pi | 1 ≤ i ≤ r }.

2. Main Results

We say a monomial ideal I is Borel fixed, if m ∈ I, xi|m and j < i imply
(xj/xi) ·m ∈ I. Of course, if char(k) > 0, this terminology is unnatural. However,
we use it for simplicity. Borel fixed ideals play an important role in Gröbner basis
theory, since they appear as the “generic initial ideals” of homogeneous ideals (c.f.
[2, §15.9]).

For a monomial m ∈ S, set

ν(m) := max{ i | xi divides m }.

If I is Borel fixed, it is well know that

depthS/I = n−max{ ν(m) | m ∈ G(I) }

(c.f. [2, Corollary 15.25]).

Lemma 2.1. If I is a Borel fixed ideal (with deg(m) ≤ d for all m ∈ G(I)), then

b-pol(I) = ( b-pol(m) | m ∈ I with deg(m) ≤ d ).
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Proof. Since the inclusion “⊆” is clear, it suffices to show the converse. To prove
this by a contradiction, assume that there is some m ∈ I with deg(m) ≤ d and
b-pol(m) 6∈ b-pol(I). Take m so that it has the smallest degree among these monomi-
als. It is clear that m 6∈ G(I). Hence there is some i with xi|m and m′ := m/xi ∈ I.
Set l := ν(m). Since I is Borel fixed, we have m′′ := m/xl = (xi/xl) · m

′ ∈ I.
Since deg(m′′) < deg(m) =: e, we have b-pol(m′′) ∈ b-pol(I). Hence b-pol(m) =
xl,e · b-pol(m

′′) ∈ b-pol(I). This is a contradiction. �

As shown in [3, Proposition 5.2], the quotient S/I of a Borel fixed ideal I has a
pretty clean filtration. The next result states that the same is true for J := b-pol(I).

Moreover, since J is a radical ideal, S̃/J actually admits a clean filtration by [3,
Corollary 3.5]. Hence the simplicial complex associated with J is non-pure shellable.

Theorem 2.2. Let I be a Borel fixed ideal, and set J := b-pol(I). Then S̃/J has

a pretty clean filtration, in particular, S̃/J is sequentially Cohen-Macaulay.

Proof. Set l := n − depthS/I. Then {m ∈ G(I) | ν(m) = l } is non-empty. Let
m be the maximum element of this set with respect to the lexicographic order. If
m = xl, then I (resp. J) is a prime ideal (x1, . . . , xl) (resp. (x1,1, x2,1 . . . , xl,1)) and
there is nothing to prove. So we may assume that m 6= xl, and set m1 := m/xl.
Since m ∈ G(I), we have m1 6∈ I.

Claim 1. The ideal I1 := I + (m1) is Borel fixed.

Proof of Claim 1. It suffices to show that xi|m1 and j < i imply (xj/xi) · m1 ∈ I.
Note that m′ := xl · (xj/xi) ·m1 = (xj/xi) ·m ∈ I and m′ ≻ m with respect to the
lexicographic order. From our choice of m, we have m′ 6∈ G(I). Hence there is some
k such that xk|m

′ and m′/xk ∈ I. Since I is Borel fixed (xj/xi) · m1 = m′/xl =
(xk/xl) · (m

′/xk) ∈ I. �

If m1 =
∏l

i=1 x
ai
i , then

n := b-pol(m1) =
∏

1≤i≤l
bi−1+1≤j≤bi

xi,j,

where bi :=
∑i

j=1 aj for each i ≥ 0 (here b0 = 0). Note that bl = deg(n) =: e, and

there is a nondecreasing sequence {αj}1≤j≤e with

n =

e∏

j=1

xαj ,j.

Claim 2. With the above notation, we have J : n = (xi,bi+1 | 1 ≤ i ≤ l).

Proof of Claim 2. First we prove xi,bi+1 · n ∈ J for 1 ≤ i ≤ l. Note that xi · m1 =
(xi/xl) ·m ∈ I. If ν(m1) ≤ i, then we have xi,bi+1 · n = b-pol(xi ·m1) ∈ J . Hence we
may assume that ν(m1) > i, and we can take k := min{ j | aj > 0, j > i }. Since
m′ := (xi/xk) ·m1 is in I by Claim 1, we have xi,bi+1 · n = xk,bi+1 · b-pol(m

′) ∈ J .

Next we prove J : n ⊆ (xi,bi+1 | 1 ≤ i ≤ l). Assume that a monomial n′ ∈ S̃
satisfies n′ ·n ∈ J . Then there is a monomial m′′ ∈ G(I) such that b-pol(m′′) divides
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n′ · n. If n′ 6∈ (xi,bi+1 | 1 ≤ i ≤ l), then b-pol(m′′) 6∈ (xi,bi+1 | 1 ≤ i ≤ l) also, and
b-pol(m′′) =

∏
xβj ,j with αj ≤ βj for all 1 ≤ j ≤ e, and βj ≤ l for all j. Moreover,

since n′ · n can not be divided by xl,e+1, we have deg(m′′) ≤ e. It means that if

m′′ =
∏

xci
i then bi (=

∑i

j=1 aj) ≥
∑i

j=1 cj for all i. Since I is Borel fixed, m′′ ∈ I
implies m1 ∈ I. This is a contradiction. �

Set J1 := J + (n) and p := (xi,bi+1 | 1 ≤ i ≤ l). Then J1/J ∼= (S̃/p)(−e).
Note that b-pol(I1) = J1. If I1 is not a prime ideal, applying the above argument

to I1, we get a Borel fixed ideal I2 (⊃ I1) such that b-pol(I2)/J1 satisfies the similar
property to J1/J . Repeating this procedure, we have a sequence of Borel fixed
ideals

I = I0 ⊂ I1 ⊂ I2 ⊂ · · · ⊂ It

of S such that Ji := b-pol(Ii) satisfies Ji/Ji−1
∼= S̃/pi up to degree shifting for all

i ≥ 1. Here pi ⊂ S̃ is a prime ideal of the form ( xj,ci,j | 1 ≤ j ≤ li) for some
li, ci,j ∈ N. By the noetherian property of S, the procedure eventually terminates,
that is, It will become a prime ideal. In this case, Jt = b-pol(It) is also a prime
ideal, and we have a prime filtration

0 ⊂ J1/J ⊂ J2/J ⊂ · · · ⊂ Jt/J ⊂ S̃/J

This is a pretty clean filtration. In fact, depthS/I1 ≥ depthS/I by construction.
Similarly, depthS/Ij ≥ depthS/Ii holds for j ≥ i. On the other hand, we have
codim pi = li = n− depthS/Ii. Hence codim pj ≤ codim pi for j ≥ i. �

By the proof of the above result, we see that any associated prime of J is of the
form ( xi,ci | 1 ≤ i ≤ m) for some m, ci ∈ N.

Theorem 2.3. If I ⊂ S is a Borel fixed ideal, then J := b-pol(I) gives a polariza-
tion of I, which is faithful.

Proof. To see that J is a polarization, it suffices to show that if a subset Θ′ of Θ

forms a S̃/J-regular sequence then so dose Θ′∪{ xi,1−xi,j } for xi,1−xi,j ∈ Θ \Θ′.

Since any p ∈ Ass S̃/J is a monomial prime ideal, p+ (Θ′′) is a prime ideal for all

Θ′′ ⊂ Θ′. Since S̃/J is sequentially Cohen-Macaulay, so is S̃/(J + (Θ′)) and

AssS(S̃/(J + (Θ′))) = { p+ (Θ′) | p ∈ Ass S̃/J }

by Lemma 1.7. Recall that all p ∈ Ass(S̃/J) is of the form (xk,ck | 1 ≤ k ≤ m).

Hence xi,1 − xi,j is S̃/(J + (Θ′))-regular.
The last assertion follows from Lemma 1.8. �

Remark 2.4. S. Murai told us that Theorem 2.3 can be shown by his result [5,
Proposition 1.9]. In fact, from a nondecreasing sequence {ai}i∈N of integers, he
defined the operator αa acting on the set of monomials of variables x1, x2, . . .. If
we take ai = (i − 1) · n for each i, this operator corresponds to our b-pol. To
see this, assign our variable xi,j to his x(j−1)n+i. Since the operator αa preserves
Betti numbers by [5, Proposition 1.9], it gives a polarization by Lemma 1.2. (For
general {ai}i∈N, α

a has no relation to polarization. Our choice of {ai}i∈N makes
this operator “polarization-like”.) However, this proof does not give a pretty clean
filtration (i.e., the non-pure shellability of the associated simplicial complex) of
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S̃/ b-pol(I). Moreover, the following generalization of Theorem 2.3 can not be
proved in this way.

Theorem 2.5. Let A be a subset of {1, 2, . . . , n}. For a monomial m = xa ∈ S,
set mA :=

∏
i∈A xai

i , m−A :=
∏

i 6∈A xai
i and

b-polA(m) := b-pol(mA) · pol(m−A) ∈ S̃

(we set S̃ := k[ xi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ d ], where d := max{ deg(m) | m ∈ G(I) }).
If I is Borel fixed,

b-polA(I) := ( b-polA(m) | m ∈ G(I) )

is a faithful polarization of I.

By the above theorem, Borel fixed ideals have many alternative polarizations (if
n is large).

Lemma 2.6. In the situation of Theorem 2.5, we have

J = ( b-polA(m) | m ∈ I with deg(m) ≤ d ).

Clearly, this is a generalization of Lemma 2.1.

Proof. It suffices to prove “⊇”. For a contradiction, assume that there is some
m = xa ∈ I with deg(m) ≤ d and b-polA(m) 6∈ J . Since m 6∈ G(I), there is some
i with xi|m and m′ := m/xi ∈ I. If i 6∈ A, then it is easy to see that b-polA(m) =
xi,ai · b-polA(m

′) ∈ J . Hence we have i ∈ A. Set νA(m) := max{i ∈ A | ai > 0}. If
we replace ν(A) by νA(m), the last part of the proof of Lemma 2.1 works verbatim,
except that b-polA(m) = xνA(m),f · b-polA(m

′′) with f :=
∑

i∈A ai. �

Proof of Theorem 2.5. We will show that the corresponding statement (and the

proof) of Theorem 2.2 holds for J := b-polA(I), that is, S̃/J has a pretty clean
filtration and any associated prime of J is of the form ( xi,ci | 1 ≤ i ≤ m). If
this fact is given, then the present theorem follows from the same argument as
Theorem 2.3.

To prove the above fact, take the same m ∈ S̃ as the proof of Theorem 2.2 (here
ν(m) = l := n− depthS/I, and νA(m) is not used). Clearly, as shown in Claim 1,
I + (m1) is Borel fixed.

For the statement corresponding to Claim 2, we need modification. Under the
assumption that m 6= xl, set m1 := m/xl =

∏n

i=1 x
ai and n = b-polA(m1). For each

i ∈ A, set

bi :=
∑

j∈A, j≤i

aj.

In the rest of the proof, we will show that J : n = p where

p := (xi,bi+1 | i ∈ A, i ≤ l) + (xi,ai+1 | i 6∈ A, i ≤ l).

Note that xi ·m1 = (xi/xl) · m ∈ I for i ≤ l. If i 6∈ A, then we have xi,ai+1 · n =
b-polA(xi · m1) ∈ b-polA(I). If i ∈ A, then we can show that xi,bi+1 · n ∈ b-polA(I)
by a similar argument to Claim 2, while we have to replace min{ j | aj > 0, j > i }
by min{ j ∈ A | aj > 0, j > i }. Hence we have J : n ⊃ p.

To prove the converse, assume that a monomial n′ ∈ S̃ satisfies n′ · n ∈ J .
Then there is a monomial m′′ ∈ G(I) such that b-polA(m

′′) divides n′ · n. If n′ 6∈
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(xi,ai+1 | i 6∈ A, i ≤ l), then b-polA(m
′′) 6∈ (xi,ai+1 | 1 ≤ i ≤ l) also. It means

that degi(m
′′) ≤ ai = degi(m1) for all i 6∈ A. Now concentrating our attention on

the variables xi with i ∈ A and i ≤ l, we can use the proof of Claim 2 (almost)
verbatim, and we see that the assumption n′ 6∈ p yields a contradiction. Hence the
analogy of Theorem 2.2 holds for b-polA(I). �
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