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Abstract

The non-equilibrium self-consistent generalized Langevin equation theory of colloid dynamics

is used to describe the non-stationary aging processes occurring in a suddenly quenched model

colloidal liquid with hard-sphere plus short-ranged attractive interactions, whose static structure

factor and van Hove function evolve irreversibly from the initial conditions before the quench to a

final, dynamically arrested state. The comparison of our numerical results with available simulation

data are highly encouraging.
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I. INTRODUCTION.

The non-stationary, slowly-evolving dynamics of deeply quenched fluids, referred to as

aging, has been the subject of considerable attention over the last decade [1, 2]. Concen-

trated emulsions [3], colloidal gels [4], and aqueous clay suspensions [5] are some examples of

aging systems. In spite of the apparent diversity of these structurally-disordered and out-of-

equilibrium materials, the appearance of certain universal features in their non-equilibrium

evolution suggests the existence of an underlying common source of the observed dynamic

properties. Although this non-stationary behavior is associated with the formation of dis-

ordered solids, including hard materials such as polymer glasses [6], the main features are

best exhibited by soft materials such as those above. In particular, the study of the dynamic

properties of aging colloidal glasses and gels is specially interesting, since the observations

provided, for example, by experimental methods such as dynamic light scattering [7–10] can

sometimes be complemented with direct visualizations at the level of individual particles

by means of digital video imaging techniques [11, 12]. Computer simulation experiments in

well-defined model systems have also contributed with important complementary informa-

tion about the general properties of aging [13–15].

From the theoretical side the study of aging has been addressed in the field of spin

glasses, where a mean-field theory has been developed within the last two decades [16].

The models involved, however, lack a geometric structure and hence cannot describe the

spatial evolution of real colloidal glass formers. About a decade ago Latz [17] attempted

to extend the mode coupling theory (MCT) of the ideal glass transition [18, 19] to describe

the irreversible relaxation, including aging processes, of a suddenly quenched glass forming

system. Similarly, De Gregorio et al. [20] discussed time-translational invariance and the

fluctuation-dissipation theorem in the context of the description of slow dynamics in system

out of equilibrium but close to dynamical arrest. Unfortunately, in neither of these two

theoretical efforts quantitative predictions were presented that could be contrasted with

experimental or simulated results in specific model systems of structural glass-formers.

For concreteness, let us focus our discussion on the conceptually simplest glass-forming

system, namely, a mono-component fluid made of N identical spherical particles in a vol-

ume V which interact through the pair potential u(r) (although in the experimental realiza-

tion of this idealized model we probably have to consider a small amount of polydispersity
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to suppress the kinetic pathway to ordered phases). Assume that in the absence of ex-

ternal fields this system is initially prepared in an equilibrium state corresponding to a

mean density n(0) = N/V and a temperature T (0), in which the static structure factor is

S(0)(k) = Seq(k;n, T (0)). In the simplest idealized quench experiment, at the time t = 0

the temperature of the system is instantaneously and discontinuously changed to a value

T (f). Let us assume that along the process that follows the quench, the density and the

temperature are constrained to remain uniform and constant, i.e., that n(r, t) = n(0) and

T (r, t) = T (f) at any position r in the volume V and any time t > 0. The relevant question

then refers to the value of the static structure factor S(k; t) for t > 0, and to the evolution

of the dynamic properties of the system along this process.

The referred dynamic properties can be described in terms of the relaxation of the fluctu-

ations δn(r, t) of the local concentration n(r, t) of colloidal particles around its bulk equilib-

rium value n. The average decay of δn(r, t) is described by the two-time correlation function

F (k, τ ; t) ≡ N−1δn(k, t+ τ)δn(−k, t) of the Fourier transform δn(k, t) of the fluctuations

δn(r, t), whose equal-time limit is S(k; t) ≡ F (k, τ = 0; t) = N−1δn(k, t)δn(−k, t). We refer

to the time τ as the correlation time, and the overline refers to the average over the prob-

ability distribution of the non-equilibrium ensemble that governs the statistical properties

of δn(r, t) at the evolution time t. This ensemble will surely coincide with an equilibrium

ensemble only in the limit t → ∞, provided that no dynamic arrest condition appears along

the process.

After the sudden temperature change at t = 0 has occurred the system evolves sponta-

neously, searching for its new thermodynamic equilibrium state, at which the static structure

factor should be Seq(k;n(0), T (f)). If the end state, however, is a dynamically-arrested state

(a glass or a gel), the system may never be able to reach this equilibrium state within experi-

mental times; one then refers to the evolution time t as the waiting or aging time [1, 8, 10–12].

The dependence of S(k; t) and F (k, τ ; t) on t characterizes the non-equilibrium evolution of

the system, whose quantitative theoretical first-principles description, to our knowledge, has

not been available until now, in spite of important theoretical efforts like those referred to

above.

In recent related work [21], however, an extension was proposed of the self-consistent

generalized Langevin equation (SCGLE) theory of colloid dynamics [22–26] and dynamic

arrest [27–34], aimed precisely at describing this non-equilibrium evolution of S(k; t) and
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F (k, τ ; t). This extension was based on Onsager’s theory of thermal fluctuations [35–39],

adequately extended [40, 41] to allow for the description of memory effects. The purpose of

the present paper is to provide the first practical and concrete application of such general

non-equilibrium theory of colloid dynamics by means of its use in the quantitative description

of the aging process of a model monocomponent glass-forming liquid.

In this particular context, such non-equilibrium self-consistent generalized Langevin equa-

tion (NE-SCGLE) theory consists of a closed self-consistent system of equations for S(k; t)

and F (k, τ ; t), which we numerically solve here for a model mono-component fluid of parti-

cles interacting through the hard-sphere plus short-ranged attractive Yukawa potential. This

model system exhibits the glass-fluid-glass reentrance predicted by the equilibrium SCGLE

theory [30] (and originally discovered by MCT [42]). Here we discuss the isochoric quench

of this fluid from an initial equilibrium state (n(0), T (0)) in the reentrant fluid pocket of the

(n, T ) state space, to a final temperature T (f) (< T (0)) in the vicinity and below the attrac-

tive glass transition temperature T (a)(n(0)) corresponding to the density n(0). This process

mimics the computer simulation aging experiment reported by Foffi et al. [14] in a similar

model system (hard-sphere plus short-ranged square well). Here we discuss our theoretical

predictions in reference to the observed behavior in this simulated quench experiment.

We start this discussion by summarizing in the following section the full non-equilibrium

self-consistent generalized Langevin equation (NE-SCGLE) theory, which does not involve

the restrictive assumption of spatial homogeneity. In the same section this theory is simpli-

fied according to the assumption that the system is constrained to remain spatially homo-

geneous and isotropic. The actual solution of the resulting equations are reported in Sec.

III. The last section contains a summary of the results.

II. NON-EQUILIBRIUM SELF-CONSISTENT GENERALIZED LANGEVIN

EQUATION THEORY

The previous discussion implicitly assumes that S(k; t) and F (k, τ ; t) adequately represent

the structural and dynamic properties of the quenched system along the irreversible equili-

bration process. This assumption, which is thought to be accurate in the absence of external

fields, or when the effects of these external fields are very small, is in reality a strong simpli-

fying assumption when the local concentration fluctuations do not relax within experimental
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times, as it occurs at and near dynamically arrested states. The general non-equilibrium

SCGLE theory proposed in ref. [21], however, does not incorporate this simplifying assump-

tion at the outset. Instead, it describes the statistical properties of the instantaneous local

concentration profile n(r, t) of the colloidal liquid in terms of the coupled time evolution

equations for its mean value n(r, t) and for the covariance σ(r, r′; t) ≡ δn(r, t)δn(r′, t) of the

fluctuations δn(r, t) = n(r, t) − n(r, t). In this section we briefly review the general NE-

SCGLE theory and then particularize it to instantaneous homogeneous quench processes.

A. General NE-SCGLE theory.

The referred equations for n(r, t) and σ(r, r′; t) read [21]

∂n(r, t)

∂t
= D0∇ · b(r, t)n(r, t)∇βµ[r;n(t)] (2.1)

and

∂σ(r, r′; t)

∂t
=D0∇ · n(r, t) b(r, t)∇

∫

dr1E [r, r1;n(t)]σ(r1, r
′; t)

+D0∇′ · n(r′, t) b(r′, t)∇′

∫

dr1E [r
′, r1;n(t)]σ(r1, r; t)

− 2D0∇ · n(r, t) b(r, t)∇δ(r− r′),

(2.2)

in which D0 is the self-diffusion coefficient of the colloidal particles in the absence of direct

interactions, µ[r;n] is the electrochemical potential at position r (which is a functional of

the local concentration profile n(r)), and E [r, r′;n(t)] is the functional derivative E [r, r′;n] ≡

[δβµ[r;n]/δn(r′)] evaluated at the concentration profile n(r) = n(r, t). Thus, for given D0

and µ[r;n], Eqs. (2.1) and (2.2) would constitute a closed system of equations for n(r, t) and

σ(r, r′; t) if it were not for the presence of the dimensionless local mobility function b(r, t).

This mobility function b(r, t) describes the local frictional effects of the direct (i.e., conser-

vative) interactions between the colloidal particles, as deviations from the value b(r, t) = 1,

and can be expressed in terms of the memory function of the two-time correlation function

C(2)(r, r′; t, t′) ≡ δn(r, t)δn(r′, t′), which we write as C(2)(r, r + x; t, t + τ) ≡ C(x, τ ; r, t),

and which is the value of the van Hove function at a spatial location r in the system and at

an evolution time t. Since the covariance is σ(r, r′; t) = C(2)(r, r′; t, t) = C(x, τ = 0; r, t), it

can also be written as σ(x; r, t). Although in the development of the non-equilibrium SC-

GLE theory the assumption of absolute spatial homogeneity and isotropy is avoided, these
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spatially-varying van Hove function and covariance do depend on the location r in space

but are assumed to be approximately isotropic within a small volume around r, so that they

only depend on the magnitude |x| of the correlation vector x. Under these conditions, the

local covariance σ(|x|; r, t) can be written in terms of its Fourier transform σ(k; r, t) as

σ(| x |; r, t) =
1

(2π)3

∫

d3ke−ik·xσ(k; r, t), (2.3)

so that Eq. (2.2) may be re-written as

∂σ(k; r, t)

∂t
=− 2k2D0n(r, t)b(r, t)E(k;n(r, t))σ(k; r, t)

+ 2k2D0n(r, t) b(r, t),

(2.4)

where E(k;n(r, t)) ≡ (2π)−3
∫

d3ke−ik·xE [r, r + x;n(r, t)]. Similarly, the local van Hove

function C(|x|, τ ; r, t) can also be expressed in terms of its spatial Fourier transform as

C(| x |, τ ; r, t) =
1

(2π)3

∫

d3ke−ik·xC(k, τ ; r, t). (2.5)

Let us notice that we can also introduce the notation C(k, τ ; r, t) = n(r, t)F (k, τ ; r, t), with

F (k, τ ; r, t) being the non-equilibrium intermediate scattering function, whose initial value

F (k, τ = 0; r, t) = S(k; r, t) defines the time-evolving spatially-varying static structure factor

S(k; r, t); this more familiar notation will be employed later on.

According to Ref. [21], the actual calculation of the local mobility function b(r, t) requires

the solution, at each position r and each evolution time t, of a system of equations involving

the Laplace transform (LT) of C(k, τ ; r, t) (denoted by Ĉ(k, z; r, t) ≡
∫

∞

0
dτe−zτC(k, τ ; r, t)),

as well as the LT of its self component CS(k, τ ; r, t), and of the τ -dependent friction function

∆ζ∗(τ ; r, t), namely,

Ĉ(k, z; r, t) =
σ(k; r, t)

z + k2D0n(r,t)σ−1(k;r,t)

1+λ(k) ∆ζ̂∗(z;r,t)

, (2.6)

ĈS(k, z; r, t) =
1

z + k2D0

1+λ(k) ∆ζ̂∗(z;r,t)

, (2.7)

and

∆ζ∗(τ ; r, t) =
D0

3 (2π)3

∫

dk k2

[

σ(k; r, t)/n(r, t)− 1

σ(k; r, t)

]2

C(k, τ ; r, t)CS(k, τ ; r, t). (2.8)
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with λ(k) being a phenomenological “interpolating function” given by [21, 28, 29]

λ(k) =
1

1 +
(

k
kc

)2 , (2.9)

where kc >∼ 2π/d, with d being some form of distance of closest approach. A simple empirical

prescription is to choose kc as kc = kmin, the position of the first minimum (beyond the main

peak) of the static structure factor S(k; r, t) = σ(k; r, t)/n(r, t). The local mobility b(r, t)

finally follows from the solution of these equations by means of its relation with ∆ζ̂∗(z; r, t),

namely,

b(r, t) =
[

1 + ∆ζ̂∗(z = 0; r, t)
]

−1

. (2.10)

B. Instantaneous homogeneous quench.

Let us now discuss the application of this general theory to the particular conditions

referring to the irreversible evolution of the structure and dynamics of a system constrained

to suffer a programmed process of homogeneous compression or expansion (and/or of cooling

or heating). Under these conditions, rather than solving Eq. (2.1) for n(r; t), we assume

that the system is constrained to remain spatially uniform, n(r; t) = n(t), according to a

prescribed time-dependence n(t) of the uniform bulk concentration (and/or to a prescribed

uniform time-dependent temperature T (t)). In consistency with this assumed constraint we

have that the dependence on the position r disappears from the previous equations so that,

for example, Eq. (2.4) may be re-written as

∂σ(k; t)

∂t
= −2k2D0n(t)b(t)E(k; t)

[

σ(k; t)− E−1(k; t)
]

, (2.11)

with E(k; t) ≡ E(k;n(t)) and with

b(t) =

[

1 +

∫

∞

0

dτ∆ζ∗(τ ; t)

]

−1

, (2.12)

where ∆ζ∗(τ ; t) is provided by the solution of the self-consistent system in Eqs. (2.6)-(2.8)

for the uniform bulk concentration n(r; t) = n(t).

Among the many possible programmed protocols (n(t), T (t)) that one could devise to

drive or to prepare the system, the simplest corresponds to the idealized quasi-static process,

in which the relaxation rate ∂σ(k; t)/∂t is virtually negligible due to a virtually instantaneous
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“thermalization” of σ(k; t) to its local equilibrium value σl.e.(k; t) ≡ 1/E(k; t) [21, 39]. A

quasi-static process, however, is a rather unrealistic concept, at least in the limit of small

wave-vectors, in which the relaxation times diverge as k−2, as seen in the example below. In

contrast, a far more interesting and fundamental protocol corresponds to the opposite limit,

in which the system, initially at an equilibrium state determined by initial values of the

control parameters, (n(0), T (0)), must adjust itself in response to a sudden and instantaneous

change of these control parameters to new values (n(f), T (f)), according to the “program”

n(t) = n(0)θ(−t)+n(f)θ(t) and T (t) = T (0)θ(−t)+T (f)θ(t), with θ(t) being Heavyside’s step

function.

Under these conditions the formal solution of Eq. (2.11) can be written, for t > 0, as

σ(k; t) = σ0(k)e−α(k)u(t) + [E (f)(k)]−1
(

1− e−α(k)u(t)
)

, (2.13)

where E (f)(k) = E(k;n(f), T (f)) is the Fourier transform of E [| r − r′ |;n(f), T (f)] ≡

[δβµ[r;n]/δn(r′)]n=n(f),T=T (f),

u(t) ≡

∫ t

0

b(t′)dt′, (2.14)

and

α(k) ≡ 2k2D0n̄(f)E (f)(k). (2.15)

Clearly, the presence of the time-dependent mobility b(t) couples this formal solution with

the self-consistent system in Eqs. (2.6)-(2.8). For the present conditions, and in terms of

the non-stationary static structure factor S(k; t) ≡ σ(k; t)/n(f) and intermediate scattering

function F (k, τ ; t) ≡ C(k, τ ; t)/n(f), we may rewrite such self-consistent system of equations

as

F̂ (k, z; t) =
S(k; t)

z + k2D0S−1(k;t)

1+λ(k) ∆ζ̂∗(z;t)

, (2.16)

F̂S(k, z; t) =
1

z + k2D0

1+λ(k) ∆ζ̂∗(z;t)

, (2.17)

and

∆ζ∗(τ ; t) =
D0

3 (2π)3 n(f)

∫

dk k2

[

S(k; t)− 1

S(k; t)

]2

F (k, τ ; t)FS(k, τ ; t). (2.18)
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Eqs. (2.12)-(2.18) constitute our general self-consistent description of the spontaneous evo-

lution of the structure and dynamics of an instantaneously and homogeneously quenched

liquid.

Of course, one important aspect of this analysis refers to the possibility that the end state

of the quench process happens to be in the region of dynamically arrested states. For the

discussion of this important aspect it is useful to consider the long-τ (or small z) asymptotic

stationary solutions of Eqs. (2.16)-(2.18) above. Just like in the equilibrium SCGLE theory

[28], these may be analyzed in terms of the asymptotic values of these dynamic properties

(the so-called non-ergodicity parameters), given by [21]

f(k; t) ≡ lim
τ→∞

F (k, τ ; t)

S(k)
=

λ(k; t)S(k; t)

λ(k; t)S(k; t) + k2γ(t)
(2.19)

and

fS(k; t) ≡ lim
τ→∞

FS(k, τ ; t) =
λ(k; t)

λ(k; t) + k2γ(t)
, (2.20)

where the squared localization length γ(t) is the solution of

1

γ(t)
=

1

6π2n(f)

∫

∞

0

dkk4 [S(k; t)− 1]2 λ2(k; t)

[λ(k; t)S(k; t) + k2γ(t)] [λ(k; t) + k2γ(t)]
. (2.21)

These equations are the non-equilibrium extension of the corresponding results of the equilib-

rium SCGLE theory, and their derivation from Eqs. (2.16)-(2.18) follows the same arguments

as in the equilibrium case [24].

In the following section we numerically solve Eqs. (2.12)-(2.18) for still more specific

conditions, namely, for an isochoric quench of a model colloidal system, in which n(f) = n(0)

and Eq. (2.13) can be written in terms of the time-evolving static structure factor S(k; t) =

σ(k; t)/n(f) as

S(k; t) = S0(k)e−α(k)u(t) + Seq
f (k)

(

1− e−α(k)u(t)
)

, (2.22)

with Seq
f (k) ≡ [n(f)E (f)(k)]−1. Let us notice that in the limit in which the friction function

∆ζ∗(τ ; t) vanishes, b(t) = 1 and hence u(t) = t, so that Eq. (2.22) reads

S∗(k; t) = S0(k)e−α(k)t + Seq
f (k)

(

1− e−α(k)t
)

. (2.23)

This limiting expression describes an exponential interpolation of S(k; t) between its initial

value S0(k) and its final equilibrium value Seq
f (k) ≡ [n(f)E (f)(k)]−1. It is then important

to notice that the general solution S(k; t) in Eq. (2.22) can be written in terms of this
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particular solution as S(k; t) = S∗(k; u(t)), with u(t) given by Eq. (2.14). This means

that a sequence of static structure factors S∗(k; un) generated by this simple exponential

interpolating formula when the time t is given a sequence of values un, say un = n∆u (with

n = 0, 1, 2, ...), will be identical to the sequence S(k; tn) generated when the exact solution in

Eq. (2.22) is evaluated at a different sequence tn (n = 0, 1, 2, ...), provided that the times un

and tn are related by un =
∫ tn
0

b(t′)dt′. This observation greatly simplifies the mathematical

analysis and the numerical method of solution of the full self-consistent theory under the

particular conditions considered here.

The solution γ(t) of Eq. (2.21) provides a dynamic order parameter in the sense that

when it is infinite we can say that at that waiting time t the system remains ergodic, whereas

if it is finite, we say that the system became dynamically arrested. A practical manner to

use this criterion is to first construct a sequence of static structure factors S∗(k; un) using

Eq. (2.23) for the uniform sequence un = n∆u (with n = 0, 1, 2, ...). Each member of this

sequence is then employed as the static input to solve self-consistently Eqs. (2.16)-(2.18),

thus evaluating, using Eq. (2.12), a mobility sequence b(un). Since the sequence S
∗(k; un) is

identical to the sequence S(k; tn) provided that un =
∫ tn
0

b(t′)dt′, the mobility b(un) must be

identical to b(tn), and the corresponding time-sequence tn can be determined by means of

the approximate recursive relation tn+1 = tn + (∆u)/b(tn). If the dynamic arrest condition

occurs along this process, i.e., if a value u(a) exists such that γ(u) (determined using S∗(k; u)

in Eq. (2.21)) is infinite for u < u(a) and finite for u > u(a), then b(u) → 0 when u → u(a)

from below, and it is then not difficult to realize that the corresponding dynamic arrest

time t(a) will diverge and u(a) =
∫

∞

0
b(t′)dt′. The following numerical results illustrate the

physical implications of this singular behavior.

III. ILLUSTRATIVE APPLICATION.

Let us now apply the theory just presented, to a concrete model system, namely, a

dispersion of colloidal particles interacting through the hard-sphere plus attractive Yukawa

pair potential expressed, in units of the thermal energy kBT = β−1, as

βu(r) =











∞, r < σHS;

−K exp[−z(r/σHS−1)]
(r/σHS)

, r > σHS.
(3.1)
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FIG. 1: State space (φ, T ∗) of the hard-sphere plus attractive Yukawa model system (z = 20). The

dotted line is the spinodal curve and the solid line is the dynamic arrest line calculated using Eq.

(2.21) within the mean spherical approximation (MSA) for the equilibrium static structure factor

Seq(k;φ, T ∗). We consider an instantaneous quench process at t = 0 from the ergodic initial state

I to the final state F near but slightly above the attractive glass “branch” of the dynamic arrest

line. We also consider a second process, now to the point F ′ below this dynamic arrest line but

still above the spinodal curve.

The state space of this system is spanned by the volume fraction φ = πnσ3
HS/6 and the

reduced temperature T ∗ ≡ K−1, as illustrated in Fig. 1. The equilibrium phase diagram of

this system includes the gas and liquid disordered phases and crystalline solid phases. Here

we will describe the equilibrium static structure factor Seq(k;φ, T ∗) = [nEeq(k;n, T ∗)]−1 of

the disordered phases within the mean spherical approximation (MSA) [43]. Using this

approximation and the compressibility equation [44] one can determine the spinodal curve

of the gas-liquid transition by means of the condition 1/Seq(k = 0;φ, T ∗) = 0; the result is

plotted in Fig. 1 for z = 20.

Using the same MSA equilibrium static structure factor Seq(k;φ, T ∗) in the equilibrium

version of Eq. (2.21) we can scan the state space (φ, T ∗) to determine γeq at any point

(φ, T ∗) [30]. In this manner one locates the dynamic arrest transition line indicated by the

solid curve of Fig. 1. The region to the right and below this curve is thus predicted to

correspond to dynamically arrested states. This figure focusses on the high-density glass-

fluid-glass reentrance region that was first discovered using mode coupling theory [42]. We
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now follow the approach introduced by Foffi et al. [14] in a simulation experiment on a very

similar model system (a hard-sphere plus square-well fluid). Such experiment corresponds

to suddenly quenching the system under isochoric conditions from an initial state (φ0, T
∗

I )

located in the fluid pocket of the reentrance (point I in Fig. 1), to a final state near the

fluid-“attractive glass” transition line (either point F or point F ′ in Fig 1). In the first case

the end state (φ0, T
∗

F ) lies slightly above the transition line, whereas in the second, the end

state (φ0, T
∗

F ′) lies in the region of arrested states.

For this process we solve the general self-consistent system of equations in Eqs. (2.12)-

(2.18). The specific calculations are performed along the isochore φ0 = 0.555 with initial

temperature T ∗

I = 0.159 and final temperature T ∗

F = 0.0604. Fig. 2 illustrates the irreversible

evolution of the static structure factor S(k; tw) as a sequence of snapshots corresponding to

five intermediate waiting times tw (from now on denoted by tw, rather than simply by t). We

observe that the structure, initially described by Seq(k;φ0, T
∗

I ), relaxes to the expected final

value Seq(k;φ0, T
∗

F ), and that this process is faster at large wave-vectors, where it involves

the appearance of stronger oscillations with k and a general shift of the maxima of S(k; t)

to larger wave-vectors. To a large extent these features can be understood in terms even of

the simple interpolating expression in Eq. (2.23).

The corresponding adjustment of the main peak of S(k; tw) from its initial value

Seq(kmax;φ0, T
∗

I ) to its final value Seq(kmax;φ0, T
∗

F ) (< Seq(kmax;φ0, T
∗

I )) occurs, however,

notoriously more slowly than at large wave-vectors and in an apparently non-monotonic

manner, as illustrated in the inset of Fig. 2, which zooms on the evolution of the main peak.

As observed there, as the system evolves, the maximum of S(k; tw) moves to the right while

decreasing in height to a value smaller than Seq(kmax;φ0, T
∗

F ), bouncing back at later times

to reach this final value. The origin of the predicted non-monotonic behavior can also be

understood on the basis of the simple interpolation expression in Eq. (2.23), which implies

that S(k; t) will not change with waiting time for the wave-vectors k∗ at which the initial

and the final static structure factors are already identical, Seq(k∗;φ0, T
∗

I ) = Seq(k∗;φ0, T
∗

F ).

It is then not difficult to see that if the condition k
(I)
max < k∗ < k

(F )
max occurs, as it happens in

our example, we shall observe this non-monotonic effect.

A more interesting effect, which is perceptible in Fig. 2, but which is illustrated in

more detail in Fig 3, is the evolution of S(k; tw) at smaller wave-vectors. This refers to

the emergence of a non-equilibrium low-k peak that indicates the appearance of spatial
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FIG. 2: Non-equilibrium evolution of the static structure factor S(k, tw). The system, ini-

tially equilibrated at (φ0, T
∗

I ) = (0.555, 0.159), with S(k; t = 0) = Seq(k;φ0, T
∗

I ) ((black) dot-

ted curve), is instantaneously quenched at tw = 0 to the final point (φ0, T
∗

F ) = (0.555, 0.0604).

The static structure factor then evolves continuously along a sequence of non-equilibrium

values ((red) point-dashed lines) illustrated by the snapshots corresponding to tw/t0 =

3.2, 60.87, 174.29, 945.39, 2023.54, and 4858.84, with t0 ≡ [σ2/D0]. Since the point F

lies outside the dynamic arrest region, S(k, tw) eventually attains its final equilibrium value

S(k; tw = ∞) = Seq(k;φ0, T
∗

F ) ((blue) dashed curve). The main figure shows the resulting re-

laxation process in a wide k-range and the inset zooms on the evolution of the main peak of

S(k, tw).

heterogeneities of average size λ1(tw) ≈ 2π/k1(tw), with k1 being the position of this emerging

low-k maximum. Fig 3.a provides a zoom on this effect in the case of the slightly deeper

quench, now to the final state point F ′ in Fig. 1, with temperature T ∗

F ′ = 0.0588 slightly

below the dynamic arrest line. These heterogeneities may be associated with the appearance

of voids whose average size and importance increase with waiting time, as suggested by the

increasing height of the peak and by its shift to smaller wave-vectors observed as the system

evolves. The emergence of this peak is associated with the vicinity of the gas-liquid spinodal

region. In fact, it has the same origin as the low-k peak that characterizes the process

of early spinodal decomposition [45], even though in our case the final state (φ0, T
∗

F ′) lies

outside the spinodal region.

As said above, this phenomenon is already observed in the shallower quench of Fig. 2. In

13
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FIG. 3: Non-equilibrium evolution of the static structure factor S(k, tw) for the deeper quench

to the final state point F ′. The system, initially equilibrated at (φ0, T
∗

I ) = (0.555, 0.159), with

S(k; t = 0) = Seq(k;φ0, T
∗

I ) ((black) dotted curve), is instantaneously quenched at tw = 0 to the

final point(φ, TF ′) = (0.555, 0.0588) inside the dynamic arrest region. The static structure factor

then evolves continuously along a sequence of non-equilibrium values ((red) point-dashed lines)

illustrated by the snapshots corresponding to tw/t0 = 0.0, 1.23, 3.84, 140, 490, 975, 1265, and

1522 (≈ t
(c)
w /t0). Panel (a) focuses on the low-k peak of S(k, tw), and its inset shows the dependence

of the position k1(tw) of this low-k peak on the waiting time tw (empty circles), with the solid line

being the fit of the last few points with k1(tw) ≈ (tw)
−α and α ≈ 1

5 . Panel (b) shows the behavior

in a larger k-regime, similar to Fig. 2, with its inset zooming on the evolution of the main peak.

that case, however, although the system slows down considerably, the final structure of the

irreversible evolution of S(k; tw) is still the expected final equilibrium static structure factor

Seq(k;φ0, TF ), i.e., limtw→∞ S(k; tw) = Seq(k;φ0, TF ) and the position k1(tw) of this low-k

peak decreases indefinitely. In contrast with that scenario, in the deeper quench illustrated

in Fig 3, the final structure of the system is no longer Seq(k;φ0, TF ′); instead, the asymptotic

long-tw limit of S(k; tw) is given by S(a)(k) ≡ S∗(k; u(a)), where u(a) is the value of u at which

the dynamic arrest condition is satisfied. This value is determined using the structure factor

S∗(k; u) of Eq. (2.23) as the structural input in Eq. (2.21), as discussed at the end of Sec.

II. In Fig. 3.a we can compare the non-equilibrium arrested structure factor S(a)(k) with

the equilibrium structure Seq(k;φ0, TF ) that would have been attained if no dynamic arrest

condition had appeared along the equilibration process of S(k; tw).

In the same figure we also illustrate the evolution of S(k; tw) towards its asymptotic limit
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S(a)(k) with a series of snapshots corresponding to a set of increasing waiting times. The

most interesting feature revealed by these snapshots is the existence of an early evolution

regime, in which S(k; tw) evolves rather quickly towards the close neighborhood of S(a)(k).

As illustrated by these snapshots, this occurs within a finite waiting time t
(c)
w ≈ 1500t0. This

early regime is followed by an asymptotic long-tw regime, in which the evolution of S(k; tw)

to actually reach the exact asymptotic value S(a)(k) becomes extremely slow and completely

imperceptible in the scale of the figure.

This is illustrated in the inset of Fig. 3(a), where we plot the evolution of the position

k1(tw) of the low-k peak of S(k; tw) for various waiting times between the last two snapshots

of the main figure (i.e., 1265t0 ≤ tw ≤ 1522t0). We notice that in this regime the last

few data for k1(tw) may be fitted approximately by a power law k1(tw) ≈ 10.22 × (tw)
−1/5.

In fact, the crossover waiting time t
(c)
w can be estimated more accurately by the condition

10.22× (t
(c)
w )−1/5 = k

(a)
1 , with k

(a)
1 = 2.34 being the asymptotic value of k1(tw) corresponding

to S(a)(k). This yields t
(c)
w ≈ 1589t0. The slow evolution regime tw > t

(c)
w , corresponding

to asymptotically long times, cannot be observed, by definition, in the structural evolution

illustrated in Fig. 3. It can, however, be observed in the evolution of the dynamic properties,

as we discuss below.

Let us emphasize the difference between the two quench processes just discussed (i.e.,

those involving the final state F or F ′). For this, Fig. 3.b plots the evolution of S(k; tw) for

the latter process in the same manner as Fig. 2 does for the former. Let us point out that the

quench simulated by Foffi et al. [14] corresponds to the conditions illustrated in Fig. 3, i.e.,

to the process ending in the state F ′ just below the dynamic arrest line. We recall that in

the process illustrated in Fig. 2 nothing prevents the evolution of S(k; tw) from reaching the

final structure factor Seq(k;φ0, TF ), and this leads to the upturn of the peak illustrated in

the inset of that figure. In contrast, as observed in the inset of Fig. 3.b, the main difference

is that now the main peak of S(k; tw) decreases but seems to stop evolving when tw reaches

t
(c)
w , and this happens to occur before the upturn of the peak towards Seq(k;φ0, TF ′) has a

chance to develop. This is in agreement with what is observed in the simulated quench of

Foffi et al., in which the main peak only decreases without exhibiting any upturn. On the

other hand, our results in the inset of Fig. 3.b also predict that the peak shifts slightly to

the right, but in the simulation results such a shift is not appreciable.

Similarly, in the report of the simulated quench of Foffi et al. [14] no reference is made

15



10
-4

10
-2

10
0

10
2

10
4

10
6

τ/τ0

0

0.2

0.4

0.6

0.8

1

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

τ/τα

0

0.2

0.4

0.6

0.8

1

f S(k
,τ

;t w
)

10
0

10
1

10
2

10
3

t
w

1

10

100

1000

10000

τα

t
w

(a)

(b)

FIG. 4: Theoretical predictions for the dependence of the intermediate scattering function

F (k, τ ; tw) on correlation time τ for the quench to the final state F ′ corresponding to the waiting

times tw/t0 = 0.0, 1.23, 3.84, 140, 490, 975, 1265, and 1522 (≈ t
(c)
w /t0). In inset (a) and in the

main figure the correlation time is scaled, respectively, by t0 and by the relaxation time τα of the

stretched exponential fit of the final relaxation of F (k, τ ; tw). Inset (b) plots τα as a function of

waiting time, with the line being the fit τα ≈ t0.7w (both times in units of t0).

to the low-k peak predicted by our theory according to the illustrative results in Fig 3.a.

Thus, at this stage we cannot make a definitive statement on the level of a fine quantitative

comparison between our theoretical predictions and the simulation results for the evolution

of S(k; tw), partially because of the differences in the model and in the conditions (volume

fraction, for example) in which the quench was performed. While it is clearly desirable to

carry out a systematic comparison on identical conditions, the agreement with important

features observed in the simulation experiments is encouraging.

Let us conclude this exercise by showing the irreversible evolution of the τ -dependence

of the intermediate scattering function F (k, τ ; tw) for the quenching process I → F ′. This

is presented in inset (a) of Fig. 4, where the correlator f(k, τ ; tw) ≡ F (k, τ ; tw)/S(k; tw) is

plotted as a function of the correlation time τ at representative waiting times corresponding

to the snapshots of S(k; tw) of Fig. 3, namely, tw/t0 = 0.0, 1.23, 3.84, 140, 490, 975, 1265,

and 1522 (≈ t
(c)
w /t0). These results illustrate the fact that the decay of the temporal corre-

lation of the fluctuations slows down notoriously as the system ages, developing a two-step

relaxation: the initial β-relaxation to an increasingly better defined plateau, followed by the
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α-relaxation from this plateau. This is a typical behavior observed in the simulation and

experimental studies of aging [1, 8, 10–15]. Another feature associated with aging is the

superposition of the alpha relaxation at different waiting times on a single master curve,

well-fitted by a stretched exponential function f(k, τ ; tw) ≈ A(k; tw) exp[−(τ/τα)
β]. Our

theoretical results also exhibit this scaling property, as demonstrated in the main panel of

Fig. 4. The exponent β is independent of tw (although it may depend on k). For the case

illustrated in the figure we find β ≈ 0.9. The α-relaxation time τα does depend on k and

on tw, and the values of τα corresponding to each waiting time tw are plotted in the inset

(b) of the same figure. At short times, these values are well fitted by a power law τα ≈ tzw

characterized by the exponent z ≈ 0.7. In the simulation experiment of Foffi et al. [14]

this scaling of the correlator is not fully apparent, although “in a crude tentative of data

scaling”, the authors report an exponent z ≈ 0.38. At this point we should mention that,

beyond detailed quantitative issues, the general predicted scenario illustrated in Fig. 4 is

completely similar to that reported in the simulated experiment of Foffi et al. [14], which,

in its turn, was found to be similar to that observed experimentally by Pham et al. [8].

Regarding the low-k peak predicted by our theory (see Fig 3), let us notice that, although

the final temperature of the quench is still above the spinodal temperature for this isochore,

the asymptotic approach of S(k; tw) to the non-equilibrium structure S(a)(k) is strongly

suggestive of some form of arrested spinodal decomposition. In fact, preliminary calculations

using our theory indicate that the scenario described in the main panel and the inset of

our Fig. 3.a above, regarding this low-k peak and the phenomenon of arrested spinodal

decomposition, is also predicted to occur at lower concentrations, in qualitative agreement

with experimental observations (see Fig. 4.b and 4.c of Lu et al. [12]). Further comparisons

and analysis lie, however, outside the scope of this illustrative presentation of the possible

applications of the non-equilibrium SCGLE theory to the description of dynamic arrest

phenomena, including aging, in instantaneously quenched uniform systems.

IV. CONCLUDING REMARKS.

In this manner, in section III we have illustrated with a number of quantitative predictions

for a specific model system (involving hard sphere plus short-ranged attractive interactions)

the predictive nature of a generic theory of the non-equilibrium irreversible evolution of the
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state of a homogeneous system subjected to a homogeneous and instantaneous quenching

process. This theory is summarized by the self-consistent system of equations in Eqs. (2.12)-

(2.18). The time-evolving state of the system was described in terms of the static structure

factor S(k; tw) and of the τ -dependence of the intermediate scattering function F (k, τ ; tw)

as a function of the waiting time tw after the quench.

The specific process discussed corresponds to the sudden isochoric quench from an ini-

tial fluid state (φ0, T
∗

I ) to a final state near the “attractive glass” transition. We observed

that if the final state is also ergodic, the structure relaxes to its value equilibrium value

Seq(k;φ0, T
∗

F ), whereas if the final state is in the dynamically arrested state, the struc-

ture saturates asymptotically to a non-equilibrium value S(a)(k;φ0, T
∗

F ). In the latter case,

S(k; tw) develops a non-equilibrium low-k peak that indicates the appearance of spatial het-

erogeneities of average size λ1(tw) ≈ 2π/k1(tw), with k1 being the position of this emerging

low-k maximum. The emergence of this peak is associated with the vicinity of the gas-liquid

spinodal region. Regarding the evolution of the dynamics with aging time, the theory pre-

dicts that the intermediate scattering function F (k, τ ; tw) develops a two-step relaxations as

the system ages. The theory also predicts the superposition of the alpha relaxation at differ-

ent waiting times on a single master curve, well-fitted by a stretched exponential function,

as observed in the simulation and experimental studies of aging.

Let us stress that the theory proposed in section II, however, is not limited to instanta-

neous quench processes; in principle it is easily extendable to other quench “programs” by

going one step back and use Eq. (2.11) instead of Eq. (2.13). In this manner, a number

of relevant questions could readily be addressed, such as the dependence of the aging of

S(k; tw) and F (k, τ ; tw) on the quench protocol. Furthermore, in reality the theory of irre-

versible relaxation in colloidal dispersions developed in Ref. [21], and summarized in Sec.

II, is not even limited to spatially homogeneous non-equilibrium states. The present work,

however, was meant to provide the first exploratory application of this general theory in

the simplest possible conditions. The specific results reported here suggest that this theory

provides a qualitatively and quantitatively sound basis for the first-principles theoretical dis-

cussion of the complex non-equilibrium phenomena associated with the aging of structural

glass-forming colloidal systems.
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[31] P. E. Ramı́rez-González and M. Medina-Noyola, J. Phys.: Cond. Matter, 21, 75101 (2009).
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035701 (2009).

[35] L. Onsager, Phys. Rev. 37, 405 (1931).

[36] L. Onsager, Phys. Rev. 38, 2265 (1931).

[37] L. Onsager and S. Machlup, Phys. Rev. 91, 1505 (1953).

[38] S. Machlup and L. Onsager, Phys. Rev. 91, 1512 (1953).

[39] J. Keizer, Statistical Thermodynamics of Nonequilibrium Processes, Springer-Verlag (1987).

[40] M. Medina-Noyola and J. L. del Rı́o-Correa, Physica 146A, 483 (1987).

[41] M. Medina-Noyola, Faraday Discuss. Chem. Soc. 83, 21 (1987).

[42] J. Bergenholtz and M. Fuchs, Phys. Rev. E, 59, 5706 (1999).

20



[43] J. S. Høye and L. Blum, J. Stat. Phys. 16 399 (1977).

[44] D. A. McQuarrie Statistical Mechanics, Harper & Row (New York, 1973).

[45] H. E. Cook, Acta Metall. 18, 297 (1970).

21


	I Introduction.
	II non-equilibrium self-consistent generalized Langevin equation theory
	A General NE-SCGLE theory.
	B Instantaneous homogeneous quench.

	III Illustrative application.
	IV Concluding remarks.
	 References

