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ABUNDANT CONFIGURATIONS IN SUMSETS WITH ONE DENSE

SUMMAND

JOHN T. GRIESMER

Abstract. We analyze sumsets A + B (= {a + b : a ∈ A, b ∈ B}) where A and
B are sets of integers, A is infinite, and B has positive upper Banach density. For
each k, we show that A+B contains at least the expected density of k-term arithmetic
progressions, based on the density of B, in contrast with an example of Bergelson, Host,
Kra, and Rusza. Furthermore, we show that when A is infinite and B has positive upper
Banach density, A+B must contain finite configurations not found in arbitrary sets of
positive density, in contrast with results of Frantzikinakis, Lesigne, and Wierdl on sets
of k-recurrence.

1. Introduction

A recurring theme in additive combinatorics is that sumsets A + B := {a + b :
a ∈ A, b ∈ B} tend to be more structured than their summands A and B. Bourgain
([12]) demonstrated a striking example of this phenomenon: if A,B ⊂ [1, . . . , N ] with
|A| = αN, |B| = βN, then for sufficiently large N (depending on α, β) A+B contains an

arithmetic progression of length approximately eαβ(logN)1/3 . This result was strengthened
and generalized in [13], [25], [32], and [16].

We will be concerned with infinite sets of integers; Section 2.3 is a glossary of relevant
terminology. R. Jin showed that when A,B ⊂ Z both have positive upper Banach
density, A + B must be piecewise syndetic ([27]). This result was strengthened and
generalized in [28],[5],[3], [2], and [23]. A consequence of the main theorem of [5] is
that the density of k-term arithmetic progressions (with certain common differences)
in A + B is close to the maximum of the densities of A and B. Furthermore, A + B
will contain certain kinds of configurations which are not necessarily present in sets of
positive density. These conclusions holds even when A is assumed to satisfy a weaker
hypothesis than positive density, as shown in [23].

As mentioned above, sets B ⊂ Z of positive density need not be as structured as
sumsets A + B. In particular, B need not be piecewise syndetic. Nevertheless, classical
and recent results indicate that sets of positive density contain highly structured subsets.
In particular, Szemerédi’s Theorem on arithmetic progressions guarantees that every set
of positive upper Banach density contains arithmetic progressions of every finite length.

Theorem 1.1 (Szemerédi’s Theorem, [34]). Let E ⊂ Z with d∗(E) > 0. For all k ∈ N,
there exists n ∈ N such that E ∩ E − n ∩ E − 2n ∩ · · · ∩ E − (k − 1)n 6= ∅.
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The methods of [7] show how Furstenberg’s ergodic-theoretic proof ([18]) of Theorem
1.1 gives a qualitatively stronger conclusion:

Theorem 1.2. For all k, δ > 0, there exists C = C(k, δ) > 0 such that

{n : d∗(E ∩ E − n ∩ E − 2n ∩ · · · ∩ E − (k − 1)n) > C(k, δ) − ε}
is syndetic whenever d∗(E) ≥ δ, ε > 0.

Naturally one wonders: what are the optimal values of C(k, δ) in Theorem 1.2? We
will a give standard example in Section 2.2 showing that C(k, δ) ≤ δk for each k ≥ 1.
The following result from [6] shows that C(k, δ) = δk for k = 2, 3, and 4, while C(k, δ)
is much smaller than δk for k > 5.

Theorem 1.3. (1) Let E ⊂ Z with d∗(E) > 0. Then for all ε > 0, the sets

{n : d∗(E ∩ E − n ∩ E − 2n) > d∗(E)3 − ε},
{n : d∗(E ∩ E − n ∩ E − 2n ∩ E − 3n) > d∗(E)4 − ε},

are syndetic.
(2) For all l > 0, there exists E ⊂ Z with d∗(E) > 0 such that

d∗(E ∩ E − n ∩ E − 2n ∩ E − 3n ∩ E − 4n) < d∗(E)l/2

for all n 6= 0.

The set Rk(E) := {n : d∗(E ∩E − n∩E − 2n∩ · · · ∩E − (k − 1)n) > 0} has received
considerable study. For instance, it is known that for all k, Rk(E) contains perfect
squares. Sárkőzy ([33]), and Furstenberg ([18]) independently proved this in the case
k = 2. For k > 2 this is due to Bergelson and Leibman ([8]). The example E = 4Z shows
that R2(E) need not contain numbers of the form n2 + 1, as every square is congruent to
0 or 1 mod 4. More generally, a set S ⊂ Z is called k−1-intersective if for all E ⊂ Z with
d∗(E) > 0, there exists n ∈ S such that d∗(E ∩E−n∩E − 2n∩ · · · ∩E− (k− 1)n) > 0.
Furstenberg ([19]) showed that there is a 1-intersective set S which is not 2-intersective,
while [17] demonstrates the existence of k−1-intersective sets S that are not k-intersective
for all k ≥ 2. The main theorem from [17] is as follows.

Theorem 1.4. For irrational α ∈ R and k ≥ 2, the set Sk,α := {n : nkα mod 1 ∈ (1
4
, 3
4
)}

is k − 1-intersective but not k-intersective.

In particular, for each irrational α and k ≥ 2 there is a set E ⊂ Z with d∗(E) > 0 and
E ∩ E − n ∩ E − 2n ∩ · · · ∩ E − (k − 1)n = ∅ for all n ∈ Sk,α.

This article will study the kinds of configurations found in sets of the form A + B,
where A ⊂ Z is infinite and B ⊂ Z has positive upper Banach density. Here is a special
case of our main result, which contrasts sharply with Part 2 of Theorem 1.3 and Theorem
1.4.

Theorem 1.5. Let A ⊂ Z be infinite and let d∗(B) > 0. Then for all k ∈ N and all
ε > 0, there exist n ∈ N with

d∗(A+B ∩ A+B − n ∩ A+B − 2n ∩ · · · ∩ A+B − (k − 1)n) ≥ d∗(B)k − ε.(1)
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For all irrational α, there exist n ∈ Sα,j := {m : mjα mod 1 ∈ (1/4, 3/4)} satisfying
(1), and the set of such n is syndetic.

In Section 2 we summarize some background and results from ergodic theory. We will
deduce Theorem 1.5 from Theorem 2.5, an analogous result about measure preserving
systems. Theorem 2.5 will be a fairly straightforward consequence of the main result of
[6], together with a classical result of Leon Green (Lemma 2.1) concerning the spectral
type of nilsystems.

1.1. Stronger hypotheses on A. Supposing both A,B ⊂ Z have positive upper Ba-
nach density, the conclusion of Theorem 2.5 can be strengthened considerably. The
following is implicit in the proof of [5], Theorem I. An explicit proof appears in [23].

Theorem 1.6. Let A,B,⊂ Z. Then for all k ∈ N, ε > 0, there exists n ∈ N such that

d∗(A+B ∩A+B− n∩A+B− 2n∩ · · · ∩A+B− (k− 1)n) ≥ max{d∗(A), d∗(B)}− ε.

In fact, the set of such n is a Bohr set.

Our second result generalizes Theorem 1.6 to cases where d∗(A) = 0, d∗(B) > 0,
including some not covered in [23].

Definition 1.7. Let S := (Sj)j∈N be a sequence of finite subsets of Z. We say that S is
nearly equidistributed if for all all but countably many θ ∈ (0, 2π),

lim
j→∞

1

|Sj|
∑

n∈Sj

einθ = 0.

If the above holds for all θ ∈ (0, 2π), we say that S is equidistributed.

Example 1.8. The following Sj form nearly equidistributed, but not equidistributed
sequences.

(i) Sj = {1, 4, 9, 16, . . . , j2}.
(ii) Sj = {p ≤ j : p is prime}.

The following Sj form equidistributed sequences.

(iii) Sj = {2j, 2j + 1, 2j + 2, . . . , 2j + j − 1}.
(iv) Sj = {⌊15/2⌋, ⌊25/2⌋, ⌊35/2⌋, . . . , ⌊j5/2⌋}.
(v) Sj = {⌊

√
2j5 − πj3⌋ : 1 ≤ m ≤ n}.

Here ⌊x⌋ denotes the greatest integer less than or equal to x.

Example (i) is a special case of Weyl’s theorem on equidistribution, (ii) is due to
Vinogradov, (iii) is classical, (iv) is found in [37], and (v) is found in [11], which has an
extensive bibliography and is otherwise an excellent introduction and reference.

If S = (Sn)n∈N is a sequence of sets of integers and A ⊂ Z, the upper density of A
relative to S is

dS := lim sup
n→∞

|A ∩ Sn|
|Sn|

.
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Theorem 1.9. Suppose that S is a nearly equidistributed sequence, A,B ⊂ Z with
dS(A) > 0, d∗(B) > 0. Then for all ε > 0 and all k ∈ N, there exists n ∈ N such that

d∗(A+B ∩ A+B − n ∩ A+B − 2n ∩ · · · ∩ A+B − (k − 1)n) ≥ d∗(B) − ε.

In fact, there is a Bohr set of such n.

In the next section we consider these issues from an ergodic-theoretic perspective.

1.2. Acknowledgements. The author is pleased to thank Izabella  Laba for financial
support, Izabella  Laba and Malabika Pramanik for helpful discussions, and Vitaly Bergel-
son for clarifying the relationship between this work and the work in [7].

2. Main results

Our results about sets of integers will be deduced from corresponding results in ergodic
theory. First we outline some notation, terminology, and background, then we discuss
some special classes of dynamical systems and some special classes of sets of integers.

2.1. Measure preserving systems. A measure preserving system, or M. P. S., is a
quadruple (X,X, µ, T ), where (X,X, µ) is a measure space with probability measure
µ, and T : X → X is a map preserving X and µ in the sense that T−1X ⊂ X and
µ(T−1D) = µ(D) for all D ∈ X. We will assume T is invertible.

Notation: The symbol X will always be an abbreviation of the sequence of symbols
(X,X, µ, T ), similarly Y will always abbreviate (Y,Y, ν, S).

If X = (X,X, µ, T ) is a M. P. S., a factor of X is a M. P. S. Y = (Y,Y, ν, S) together
with a map π : X → Y satisfying (i) π−1Y ⊂ X, (ii) µ(π−1D) = ν(D) for all D ∈ Y, and
(iii) Sπ(x) = π(Tx) for µ-almost every x ∈ X. We write π : X → Y to specify that Y

is a factor of X with factor map π. If π : X → Y is one-to-one on a set of full measure,
then we say that π is an isomorphism and X and Y are isomorphic.

Every factor Y of X determines a T -invariant σ-algebra π−1Y ⊂ X, and conversely,
associated to every T -invariant σ-algebra B ⊂ X, there is a factor Y such that π−1Y =
B, up to µ-measure 0. Given a factor π : X → Y we may abuse notation and write
Y for π−1Y. We may then identify L2(ν) with the space of π−1Y-measurable square-
integrable functions, and consider the conditional expectation map f 7→ E(f |π−1Y), or
f 7→ E(f |Y) with our abuse of notation. When f ∈ L2(µ),E(f |Y) agrees with the
orthogonal projection of f on the closed subspace of Y-measurable functions in L2(µ).

Supposing πi : X → Yi is a directed collection of factors of X = (X,X, µ, T ), we say
that X is an inverse limit of the Yi if the σ-algebras π−1

i Yi generate X (up to µ-measure
0).

A system X = (X,X, µ, T ) is called ergodic if µ(T−1D) = µ(D) implies µ(D) = 0 or
µ(D) = 1. Equivalently, X is ergodic if the only functions f ∈ L2(µ) satisfying f ◦T = f
are constant µ-almost everywhere.
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2.2. Taxonomy of measure preserving systems. Here we describe the special classes
of systems we consider in the sequel.

Kronecker systems. If Z is a compact abelian group and α ∈ Z is such that {nα :
n ∈ Z} is dense in Z, consider the map Rα : Z → Z given by Rα(z) = z + α. Then Rα

preserves the Haar measure m of Z, and (Z,Z, m,Rα) is an ergodic M. P. S. Such systems
are called Kronecker systems. Kronecker systems have discrete spectrum, meaning L2(m)
is spanned by the eigenvectors of T - those functions satisfying f ◦T = λf for some λ ∈ C.
The Halmos-von Neumann theorem ([24] or [22]) says that every ergodic M. P. S. having
discrete spectrum is isomorphic to a Kronecker system.

Every M. P. S. X has a maximal factor with discrete spectrum, namely, the factor
corresponding to the σ-algebra generated by the eigenvectors of T. If X is ergodic, this
factor is called the Kronecker factor, and is isomorphic to a Kronecker system, by the
Halmos-von Neumann theorem.

Nilsystems. Fix k, and let G be a k-step nilpotent Lie group, and Γ ⊂ G a discrete
subgroup such that G/Γ is compact. Then G/Γ has a Borel probability measure µ
invariant under the action of G, that is µ(g ·DΓ) = µ(DΓ) for every Borel set D ⊂ G. If
g ∈ G, we consider the M. P. S. (X,X, µ, Tg), where X = G/Γ,X is the Borel σ-algebra of
G/Γ, and Tgx = g ·x. Such a M .P. S. is called a k-step nilsystem, or simply a nilsystem.

The correlation sequences of nilsystems are particularly nice; the following description
of such sequences is essentially due to Leon Green.

Lemma 2.1. If (X,X, µ, T ) is a nilsystem with Kronecker factor (Z,Z, m,Rα), and
f ∈ L2(µ) with E(f |Z) = 0, then for all g ∈ L2(µ),

lim
n→∞

∫

f ◦ T n · g dµ = 0.

This is a slightly different formulation of what is proved in [1], Chapter 5, and tech-
nically Green’s result does not imply the above statement. A result of Parry ([31]) does
imply the above statement; we outline the deduction of Lemma 2.1 from Parry’s result
in Section 4.

A special class of nilsystems is formed by taking repeated group extensions of torus
rotations. If Z = Td is the d-dimensional torus and α ∈ Z is such that {nα : n ∈ N} is
dense in Z, then (Z,Z, m,Rα) is an ergodic M. P. S. If ψ : Z → Z is an affine map (a
homomorphism plus a constant) we may form a new M. P. S. (Z×Z,Z⊗Z, m×m, Tα,ψ)
where Tα,ψ(x, y) = (x + α, y + ψ(x)). For instance, when Z = T and ψ(x) = 2x + α, we
have T n(0, 0) = (nα, n2α).

If p is a polynomial of degree d, this construction may be iterated, as shown in [19], to
obtain an ergodic system on Zd such that T n(0, . . . , 0) has p(n)α as its last coordinate.
It is known that the resulting system (Zd,Z⊗d, md, T ) is actually a d-step nilsystem, see,
for instance [9].

Weakly mixing systems. A system X is said to be weakly mixing if the only eigen-
functions of T are constant almost everywhere. Furstenberg ([18]) showed that X is
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weakly mixing if and only if for all k ∈ N and all f ∈ L2(µ),

lim
N−M→∞

1

N −M

N−1
∑

n=M

∣

∣

∫

f · f ◦ T n · f ◦ T 2n · · · · · f ◦ T (k−1)n dµ−
(

∫

f dµ
)k∣

∣ = 0,

or equivalently that for all ε > 0,

d∗
{

n :
∣

∣

∫

f · f ◦ T n · f ◦ T 2n · · · · · f ◦ T (k−1)n dµ−
(

∫

f dµ
)k

∣

∣ > ε
}

= 0.

Bergelson ([4]) extended this characterization to show that X is weakly mixing if and
only if for every k and every k − 1-tuple of polynomials p1, . . . , pk−1,

d∗
{

n :
∣

∣

∫

f · f ◦ T p1(n) · f ◦ T p2(n) · · · · · f ◦ T pk−1(n) dµ−
(

∫

f dµ
)k∣

∣ > ε
}

= 0.

Rigid systems. A system X is called rigid if there is an increasing sequence {nj}j∈N
satisfying limn→∞ f ◦ T n = f weakly for all f ∈ L2(µ). There are weakly mixing, rigid
systems X, and with the appropriate topology on the set G of invertible Lebesgue-
measure preserving transformations of [0, 1], the set of weakly mixing, rigid systems is a
dense Gδ in G. See [36] for details. The existence of such a system leads to the following
examples, showing that our main theorem is sharp in one sense.

Example 2.2. Let X be a rigid, weakly mixing M. P. S., D ∈ X, and pi : Z → Z, i =
1, . . . , k polynomials. For all ε > 0, there exists A ⊂ Z such that DA :=

⋃

a∈A T
aD

satisfies µ(DA) < µ(D) + ε/2. Since X is weakly mixing, we have

d∗
{

n : µ
(

DA ∩
k−1
⋂

i=1

T−pi(n)DA

)

> µ(DA)k + ε} = 0.

In particular, the above set of integers is not syndetic.

2.3. Sets of integers. Here we summarize the various properties of sets of integers
recently studied; the terminology is mainly to describe the sets of differences n when the
intersection d∗(E ∩ E − n ∩ · · · ∩ E − (k − 1)n) is large, if E ⊂ Z is a set with some
special structure.

For S ⊂ Z, the upper Banach density is the number d∗(S) := limM→∞ supN∈Z
|A∩[N,N+M ]|
N+M−1

.

A set S ⊂ Z is called syndetic, if one of the following equivalent conditions holds: (i)
there exists a finite F ⊂ Z such that F + S = Z, (ii) S ∩ R 6= ∅ whenever R is a set
containing arbitrarily long finite intervals.

R is called thick if R contains intervals of every finite length, and S is called piecewise
syndetic if S = S ′ ∩ R where S ′ is syndetic and R is thick.

Examples of syndetic sets are given by certain dynamical systems. A topological
system (X, T ) is called minimal if X contains no closed T -invariant subset. For such
(X, T ), the set {n : T nx ∈ U} is syndetic whenever U ⊂ X is open and x ∈ X. When
viewed as topological systems, Kronecker systems and nilsystems are minimal, and the
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sets of entry times arising therefrom have distinguished properties. Following [5], S ⊂ Z

is called a Bohr set if there is a Kronecker system (Z,Z, m,Rα) and a set U ⊂ Z such
that {n : nα ∈ U} ⊂ S. Following [5], S is called piecewise Bohr if S = S ′ ∩R, where S ′

is Bohr and R is thick.

Following [26], S is called Nil-Bohr if there is a nilsystem Z = (Z,Z, µZ, T ) and an
open U ⊂ Z and x ∈ X with {n : T nx ∈ U} ⊂ S, and S is called piecewise Nil-Bohr
if S = S ′ ∩ R where S ′ is Nil-Bohr and R is thick. If Z is a k-step nilsystem, then
“Nil-Bohr” may be specialized to “Nilk-Bohr.”

A special class of Nilk-Bohr sets is given by polynomial orbits of Kronecker systems:
if Z is a Kronecker system and p : Z → Z is a polynomial with p(0) = 0, then for all
neighborhoods U of 0, the set Rp,U := {n : p(n)α ∈ U} is a Nilk-Bohr set (see [9]).
Furthermore, the intersection of finitely many such Rp,U is again an Nilk-Bohr set. This
leads to the following multiple recurrence result for Kronecker systems.

Theorem 2.3. Let (Z,Z, m,Rα) be a Kronecker system, and let p1, . . . , pk−1 : Z → Z be
polynomials of degree at most d. For all D ⊂ Z and all ε > 0,

{n : µ(D ∩D − p1(n)α ∩D − p2(n)α ∩ · · · ∩D − pk−1(n)α) > µ(D) − ε}
is Nild-Bohr.

Note that a (piecewise) syndetic set S remains such after removing a set of upper
Banach density zero: S \A is (piecewise) syndetic if d∗(A) = 0. We say that S is almost
Bohr (or almost Nilk-Bohr) if S = S ′\A, where S ′ is Bohr (or Nilk-Bohr), and d∗(A) = 0.

2.4. The correspondence principle. Furstenberg ([18]) established a general principle
relating finite configurations in sets of positive density to measure preserving systems.
We use a version of this principle from [6], modified slightly to deal with sumsets.

Proposition 2.4 (cf. [6], Proposition 3.1). Let B ⊂ Z. Then there is an ergodic M. P. S.
X = (X,X, µ, T ) with D ∈ X satisfying µ(D) = d∗(B) and

µ(T−n1DA ∩ T−n2DA ∩ · · · ∩ T−nkDA) ≤ d∗(A+B − n1 ∩A+B − n2 ∩ · · · ∩ A+B − nk)

where DA =
⋃

a∈A T
aD, for all finite A ⊂ Z and all n1, . . . , nk ∈ Z.

Proof. Following [6], let X ⊂ {0, 1}Z be the orbit closure of 1B under the shift T,
where (Tx)(n) = x(n + 1). Let D = {x ∈ X : x(0) = 1}, and repeat the steps of [6],
Proposition 3.1 with DA =

⋃

a∈A T
aD replacing D, noting that the indicator function

1DA
is continuous. �

2.5. Sets of k-recurrence and k-intersective sets. As presented in [18], [17], a set
S ⊂ Z is called a set of k − 1-recurrence if for every M. P. S. X, and every D ∈ X with
µ(D) > 0, there exists n ∈ S such that

µ(D ∩ T−nD ∩ T−2nD ∩ · · · ∩ T−(k−1)D) > 0.

Similarly, S is called k−1-intersective if for all B ⊂ Z with d∗(B) > 0, there exists n ∈ S
with

d∗(B ∩ B − n ∩ B − 2n ∩ · · · ∩B − (k − 1)n) > 0.
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It is shown in [21] that for all k, the k − 1-intersective sets are exactly the sets of k − 1-
recurrence, so in the sequel we speak only of sets of k − 1-recurrence.

We may consider more general forms of recurrence. Let p1, . . . , pk−1 : Z → Z be
functions, and write ~p := (p1, . . . , pk−1). Call a set S ⊂ Z a set of ~p-recurrence if for
every M. P. S. X and every D ∈ X, there exists n ∈ S such that µ(D ∩ T−p1(n)D ∩
T−p2(n)D ∩ · · · ∩ T−pk−1(n)D) > 0, and call ~p recurrent if N is a set of ~p-recurrence.

Some variations on this definition will be useful. Call S a frequent set of ~p-recurrence
if for every M. P. S. X and all D ∈ X with µ(D) > 0, the set of n satisfying µ(D ∩
T−p1(n)D ∩ T−p2(n)D ∩ · · · ∩ T−pk−1(n)D) > 0 has positive upper Banach density.

Finally, call S a set of ~p-recurrence for Kronecker systems if S satisfies the definition
of “set of ~p-recurrence” with “M .P. S. ” replaced by “Kronecker system.”

Theorem 2.5. Let pi : Z → Z be polynomials, i = 1, . . . , k − 1. Suppose that S is a set
of frequent ~p-recurrence for Kronecker systems. Then for all ergodic M. P. S. s X, all
D ∈ X, all infinite A ⊂ Z, and all ε > 0,

Rε :=
{

n : µ(DA ∩ T−p1(n)DA ∩ T−p2(n)DA ∩ · · · ∩ T−pk(n)DA) > µ(DA)k − ε
}

is almost Nilr-Bohr where r = deg(~p), where DA =
⋃

a∈A T
aD, furthermore, d∗(S∩Rε) >

0. If the pi are linear, then Rε is almost Bohr.

It will be more convenient to consider functions rather than sets, so we reformulate
Theorem 2.5 as follows.

Theorem 2.6. Let pi : Z → Z be polynomials, i = 1, . . . , k − 1. Suppose that S is a
frequent set of ~p-recurrence for Kronecker systems. Then for every ergodic M. P. S. X,
f : X → [0, 1], infinite A ⊂ Z, and all ε > 0, there exists a finite A′ ⊂ A such that

Rε :=
{

n :

∫

fA′ · fA′ ◦ T p1(n) · fA′ ◦ T p2(n) · · · · · fA′ ◦ T pk−1(n) dµ >
(

∫

f dµ
)k

− ε
}

is almost Nilr-Bohr, where r = deg(~p), where fA′ = 1
|A′|

∑

a∈A′ f ◦ T−a. If the pi are

linear, then R is almost Bohr. Furthermore, d∗(S ∩ Rε) > 0.

Theorem 2.5 follows from Theorem 2.6 by taking f = 1D, and noting that 1DA′
≥ fA′

whenever A′ ⊂ A.
From Theorem 2.5 and Proposition 2.4 we deduce the following combinatorial corollary.

Corollary 2.7. Let pi : Z → Z be polynomials, i = 1, . . . , k − 1. Suppose that S is
a frequent set of ~p-recurrence for Kronecker systems. Then for every set B ⊂ Z with
d∗(B) > 0,

Rε :=
{

n : d∗(A+B∩A+B−p1(n)∩A+B−p2(n)∩· · ·∩A+B−pk−1(n)) > d∗(B)k−ε
}

is almost Nilr-Bohr, where r = deg(~p). If the pi are linear, then R is almost Bohr.
Furthermore, d∗(S ∩R) > 0.



ABUNDANT CONFIGURATIONS IN SUMSETS WITH ONE DENSE SUMMAND 9

We can deduce Theorem 1.5 by noting that for each irrational α, Sα,k ∩ R is syndetic
whenever R is a Bohr set; this follows from Weyl’s theorem on equidistribution, or from
the topological recurrence methods in [19]. Removing a set of upper Banach density 0
will not affect syndeticity, so the conclusion remains even when R is almost Bohr.

Remark. The systems of polynomials (p1, . . . , pk−1) for which N is a set of recurrence are
characterized in [10]

2.6. Questions.

2.6.1. Optimality. Can Theorem 2.5 be improved? Although Example 2.2 shows that

R′ := {n : d∗(A+B ∩ A+B − n ∩ · · · ∩ A+B − (k − 1)n) ≥ C}
is not necessarily syndetic for C > d∗(B)k, our methods do not resolve the following.

Question 2.8. If A,B ⊂ Z, with A infinite, d∗(B) > 0, and ε > 0, does there exist
n ∈ N with

d∗(A+B ∩A+B − n ∩A+B − 2n ∩ · · · ∩ A+B − (k − 1)n) > d∗(B) − ε?

If not, can d∗(B) be replaced by some quantity larger than d∗(B)k to obtain an affirmative
answer?

Similarly, if X is an ergodic M. P. S. and D ⊂ X with µ(D) > 0 and A ⊂ Z is infinite,
does there exist n ∈ N, with

µ(DA ∩ T−nDA ∩ T−2nDA ∩ · · · ∩ T−(k−1)nDA) ≥ µ(D) − ε?

2.6.2. Generalizations to Zd. For S ⊂ Zd, one can define the upper Banach density

d∗(S) := limM→∞ supN∈Zd
|S∩(N+IM)|

|IM |
, where IM is the cube [0,M ]d. Many of the results

about sumsets in Z generalize naturally to sumsets in Zd, as in [28] and [3]. Similarly,
Szemerédi’s theorem generalizes to this setting, as shown [20]. Our main result, however,
breaks down under the naive generalization to Z2 : for all l ∈ N there exists B ⊂ Z2 with
d∗(B) > 0 and A ⊂ Z2 infinite with

d∗(A+B∩A+B−(n,m)∩A+B−2(n,m)∩A+B−3(n,m)∩A+B−4(n,m)) ≤ 1

2
d∗(B)l

for all (n,m) ∈ Z
2 with m 6= 0: take the example B0 from 1.3 and let B = Z× B0, A =

Z× {0}.
In this example we still have

d∗(A+B − (n, 0) ∩ A+B − 2(n, 0) ∩ · · · ∩A+B − 4(n, 0)) = d∗(B)

for all n ∈ Z, which raises the following question.

Question 2.9. Are there infinite sets A,B ⊂ Z2 with d∗(B) > 0 such that for all
(n,m) ∈ Z2 \ (0, 0)

d∗(A+B∩A+B−(n,m)∩A+B−2(n,m)∩A+B−3(n,m)∩A+B−4(n,m)) ≤ 1

2
d∗(B)5.

If so, can the exponent 5 be improved?
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The matter of optimal recurrence in Zd is still under investigation; for configurations
of 3 points in an arbitrary set of positive density, the best known results are due to Q.
Chu ([15]).

2.7. Characteristic factors. If pi : Z → Z, i = 1, . . . , k − 1 are polynomials and
X = (X,X, µ, T ) is a M. P. S. with f ∈ L2(µ), consider the correlation sequence

I~p(f ;n) =

∫

f · f ◦ T p1(n) · f ◦ T p2(n) · · · · · f ◦ T pk−1(n) dµ.

For a given ergodic X, there is a factor Z = (Z,Z, ν, S) of X such that the sequences
I~p(f ;n) are largely unaffected by replacing f with E(f |Z). Furthermore, Z is an inverse
limit of nilsystems.

Proposition 2.10 ([6], Corollary 4.6, cf. [30]). Let X be an ergodic M. P. S. and let
p1, . . . , pk−1 : Z → Z be polynomials. Then there is a factor Z of X such that

d∗{n : |I~p(f ;n) − I~p(E(f |Z);n)| > ε} = 0(2)

for all ε > 0. Furthermore, Z is an inverse limit of nilsystems.

The combination of the above theorem with the following lemma is essentially the
proof of Theorem 2.5.

Lemma 2.11. Let Z be an inverse limit of ergodic nilsystems, with Kronecker factor Z1,
and let A ⊂ Z be infinite. If f ∈ L2(µ) is orthogonal to L2(Z1), then there is a sequence
{an}n∈N of elements of A such that

lim
N→∞

1

N

N
∑

n=1

f ◦ T−an = 0

in L2(µ).

Proof. We use the following fact: if (xn)n∈N is a bounded sequence of vectors in a
Hilbert space such that xn → 0 weakly, then there is a subsequence (x′n)n∈N such that

limN→∞

∥

∥

1
N

∑N
n=1 xn

∥

∥ = 0.
By Theorem 2.1, limn→∞

∫

f ◦ T n · g dµ = 0 for all g ∈ L2(µ). In particular, we can

choose a sequence of elements {a′n}∞n=1 of A with limn→∞

∫

f ◦ T−a′n · g dµ = 0 for all

g ∈ L2(µ), and a subsequence {an}n∈N of {a′n}n∈N such that limN→∞
1
N

∑N
n=1 f ◦T−an = 0

in norm. �

Lemma 2.11 leads immediately to a proof of Theorem 2.6, specialized to inverse limits
of nilsystems.

Theorem 2.12. Let Z be an inverse limit of ergodic nilsystems, f : Z → [0, 1]. Let
p1, . . . , pk−1 : Z → Z be polynomials such that N is a set of ~p-recurrence, and let A ⊂ Z

be infinite. Then for all ε > 0, there exists a finite A′ ⊂ A with fA′ := 1
|A′|

∑

a∈A′ f ◦ T−a

such that
{

n : I~p(fA′ ;n) >
(

∫

f dµ
)k

− ε
}

is Nilr-Bohr, where r = deg ~p.
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Proof. First note that we can assume that Z is actually a nilsystem, since we can
approximate f in L2(µ) by functions which are measurable with respect to some nilsystem
factor of Z. Applying Cauchy-Schwarz and the triangle inequality, we see that |I~p(f) −
I~p(g)| < δ whenever ‖f − g‖L2(µ) < δ/2k.

Let Z1 = (Z1,Z1, m1, Rα) be the Kronecker factor of Z. Write f = g + h, where
E(g|Z1) = 0, and h is Z1-measurable. By Lemma 2.11, there exists a sequence {an}n∈N
of elements of A satisfying limN→∞

1
N

∑N
n=1 g ◦ T−an = 0 in L2(µ). Let A′ = {an : 1 ≤

n ≤ N} for some N satisfying ‖ 1
N

∑N
n=1 g ◦ T−an = 0‖ < ε/2k. Then fA′ = gA′ + hA′ ,

where ‖gA′‖ < ε/2k. Thus

|I~p(fA′;n) − I~p(hA′ ;n)| ≤ ε/2(3)

for all n. Since hA′ is Z1-measurable, we can interpret I~p(hA′ ;n) as I~p(h̃A′;n), where

h̃A′ : Z1 → [0, 1] is measurable, and h̃A′(T pi(n)z) = hA′(z + pi(n)α). Thus

I~p(h̃A′ ;n) =

∫

h̃A′(z) · h̃A′(z + p1(n)α) · · · · h̃A′(z + pk−1(n)α) dµ.(4)

Since ~p is a recurrent set of polynomials, we know that, for every neighborhood U of
0 ∈ Z1, the set

{n : pi(n)α ∈ U for i = 1, . . . , k}
Is Nilr-Bohr. For a sufficiently small neighborhood U, pi(n)α ∈ U implies that the integral

in (4) is at least
∫ (

hA′

)k
dµ−ε/2. Since

∫ (

hA′

)k
dµ ≥

(∫

hA dµ
)k

=
(∫

f dµ
)k
, equations

(3) and (4) imply the desired conclusion. �

Proof of Theorem 2.6. Let X be an arbitrary ergodic system, let ~p be a polyno-
mial vector as in the hypothesis, and let Z be the factor of X guaranteed to exist
by Proposition 2.10. Let f : X → [0, 1], let h = E(f |Z), and choose A′ ⊂ A so

that R := {n : I~p(hA′ ;n) ≥
(∫

f dµ
)k − ε/2} is Nilr-Bohr, as Theorem 2.12 allows.

By (2), |I~p(hA′;n) − I~p(fA′ ;n)| < ε on a set R′ = R \ E, where d∗(E) = 0. Hence

I~p(fA′ , n) >
(∫

f dµ
)k

for n ∈ R′.
By hypothesis, the given set S is a frequent set of ~p-recurrence, so d∗(S ∩R) > 0, and

d∗(S ∩R′) > 0, as was to be shown. Since R′ is almost Nilr-Bohr, we are done. �

3. Proof of theorem 1.9

Given an M. P. S. (X,X, µ, T ), we consider the correlation sequences
∫

f ◦ T n · g. By
Herglotz’s theorem, one can write

∫

f ◦ T n · g dµ =

∫

e2πinθ dσ(θ)

where σ is a complex measure on T. The eigenvalues of T correspond to the atoms of σ,
so that σ is atomless whenever f is orthogonal to all eigenfunctions of T.

The following variation on Wiener’s lemma establishes estimates on σ̂(n) :
∫

e2πinθ dσ(θ).
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Lemma 3.1. Let σ be an atomless complex measure on [0, 1], and suppose that S =
(Sj)j∈N is a nearly equidistributed sequence of finite subsets of Z. Then for all ε > 0,

dS{n : |σ̂(n)| > ε} = 0.

The proof is essentially the same as the proof of Wiener’s lemma when Sj = {1, . . . , j}.

Proof of Theorem 1.9. Let (X,X, µ, T ) be an ergodic M. P. S. with Kronecker factor
π : X → Z = (Z,Z, m,Rα), and let D ∈ X. Let (Sj)j∈N be a nearly equidistributed
sequence, and let A ⊂ Z with dS(A) > 0. We will show that DA :=

⋃

a∈A T
−aD contains

a set of the form π−1(K), where K ⊂ Z and m(K) ≥ µ(D). Thus,

µ(DA ∩ T−n1DA ∩ · · · ∩ T−nkDA) ≥ m(K ∩K − n1α ∩K − n2α ∩ · · · ∩K − nk−1α)

The conclusion then follows from the fact that the map Zk−1 → R given by (z1, . . . , zk−1) 7→
m(K ∩K − z1 ∩K − z2 ∩ · · · ∩K − zk−1) is continuous in (z1, . . . , zk).

Write f = 1D, and write f = g+h, where g = E(f |Z), h ⊥ L2(Z). We will estimate 1DA

from below, noting that for all finite A′ ⊂ A, fA′ := 1
|A′|

∑

a∈A′ f ◦T−a ≤ 1DA
(pointwise).

In particular, if f0 is a weak limit of the averages fA′, then f0 ≤ 1DA
. We will show

that some weak limit f0 satisfies f0(x) > 0 for some x ∈ π−1(K), where K ⊂ Z with
m(K) ≥ µ(D).

Now h is orthogonal to the eigenfunctions of T, so for a given φ ∈ L2(µ) we can write
∫

h ◦ T n · φ, dµ =

∫

e2πinθ dσ

where σ is an atomless complex measure on [0, 1]. Choose a subsequence (S ′
j)j∈N from S

so that limj→∞
|A∩Sj |

|Sj |
= dS(A), and write Aj for A∩S ′

j . By Lemma 3.1, we have that for

all ε > 0,

dS

{

n :
∣

∣

∫

h ◦ T n · φ dµ
∣

∣ > ε
}

= 0,

so

lim
j→∞

1

|Aj|
∑

a∈Aj

∫

h ◦ T−a · φ dµ = 0.

By a diagonalization procedure, we may now pick a sequence an of elements of A so that

(i) limN→∞
1
N

∑N
n=1 h ◦ T−an = 0 (weakly in L2(µ)).

(ii) f0 := limN→∞
1
N

∑N
n=1 f ◦ T−an exists in L2(µ).

Since f is nonnegative and bounded above by 1, so is f0, and
∫

f0, dµ ≥
∫

f dµ = µ(D).
Hence f0 is positive on a set of measure at least µ(D). By (i) and the splitting f = g+h,
the limit f0 is measurable with respect to π−1(Z). We may now take K = {x : f0(x) > 0}.
�
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4. Appendix.

Let G be a nilpotent Lie group, and let Γ be a discrete subgroup of G such that
X := G/Γ is compact. Let τ ∈ G, and let T : X → X be the translation TxΓ = τxΓ,
which preserves the natural projection of Haar measure µ on X. Suppose that T is
ergodic. We want to show that when f is orthogonal to the eigenfunctions of T, then
(X,X, µ, T ), then limn→∞

∫

f ◦ T n · g dµ = 0 for all g ∈ L2(µ). We derive this as a
corollary of the following result.

Theorem 4.1 (cf. [31], Theorem 3). Let H be a connected, simply connected nilpotent
Lie group, with Γ ⊂ H a discrete subgroup and X := H/Γ compact with Haar measure
µ. Let A : H → H be a unipotent automorphism and a ∈ H. Suppose that the map
S : X → X given by ShΓ = aA(h)Γ is ergodic. Then the operator given by f 7→ f ◦ S
has countable Lebesgue spectrum in the orothocomplement of the space spanned by the
eigenfunctions of S. In particular if f is orthogonal to the eigenfunctions of S, then
∫

f ◦ Sn · g dµ→ 0 as n→ ∞.

Here “unipotent” means the map B(h) := A(h)h−1 satisfies Bn(h) = eG, for some n
and all h.

Assuming G is as above, Let Go be the connected component of G. Passing to the
universal cover of Go, we may assume Go is simply connected. When X is connected,
we have G = GoΓ, so τ can be written as tγ, where t ∈ Go and γ ∈ Γ. Also G/Γ ≡
Go/(Γ ∩Go). Writing

TxΓ = tγxΓ = tγxγ−1Γ,

we can consider T as an action on X ′ := Go/(Γ ∩ Go). This action has the form xΓ 7→
tAxΓ, where A is a unipotent automorphism of Go (note that all inner automorphisms of
a nilpotent Lie group are unipotent). We can apply Theorem 4.1 to obtain our conclusion.

In general, X may not be connected, but X will have finitely many connected com-
ponents X1, . . . , Xr which are permuted by T. In this case, the map T r! : X1 → X1 will
be ergodic, so we may apply the above argument to T r!. A simple argument then shows
that the desired conclusion holds for T as well.
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Cambridge University Press, Cambridge, 1990, pp. 105–109.

[13] B. J. Green, Arithmetic progressions in sumsets, Geometric and Functional Analysis 12 (2002),
584–597. Preprint available at http://www.dpmms.cam.ac.uk/∼bjg23/preprints.html

[14] K. Chipeniuk, M. Hamel, On sums of sets of primes with positive relative density, to appear in the
Journal of the London Mathematical Society, prepreint available at arxiv.org/abs/0912.4910

[15] Q. Chu, Multiple recurrence for two commuting transformations, Ergodic Theory and Dynamical
Systems, to appear. Preprint available at arxiv.org/abs/0912.3381

[16] E. Croot and O. Sisask, A probabilistic technique for finding almost-periods of convolutions, preprint,
available at arxiv.org/abs/1003.2978

[17] N. Frantzikinakis, E. Lesigne, M. Wierdl, Sets of k-recurrence but not (k + 1)-recurrence,
Annales de l’Institut Fourier (Grenoble) 56 (2006), 839–849. Preprint available at
www.msci.memphis.edu/∼nfrntzkn/publications.html

[18] H. Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic
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