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EXOTIC SMOOTH STRUCTURES ON TOPOLOGICAL FIBRE BUNDLES

SEBASTIAN GOETTE AND KIYOSHI IGUSA

ABSTRACT. We use a variation of Hatcher’s construction to construct virtually all stable exotic
smooth structures on compact smooth manifold bundles whose fibers have sufficiently large odd
dimension (at least twice the base dimension plus 3). We show that, rationally stably, such smooth
structures are classified by a cohomology class in the total space and the relative higher Igusa-Klein
(IK) torsion is equal to the push-down of that cohomology class. This answers the question, in the
relative case, of which cohomology classes can occur as relative higher torsion classes.
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0. INTRODUCTION AND OUTLINE

Higher analogues of Reidemeister torsion and Ray-Singer analytic torsion were developed by J.
Wagoner, J.R. Klein, M. Bismut, J. Lott, W. Dwyer, M. Weiss, E.B. Williams, W. Dorabiala, B.

Badzioch, the authors of this paper and many others. ([26], [25], [24], [5], [@], [4], 1], [12],[13],
21, [, 2.

The purpose of this work is to determine to what extent higher Reidemeister torsion distinguishes
between different smooth structures on the same (smoothable) topological manifold bundle and to
determine which cohomology classes occur as higher torsion classes. Since the higher torsion is a
sequence of real cohomology classes which are “stable”, it can only detect the torsion-free part of
the group of stable smooth structures on topological bundles. Following Dwyer, Weiss and Williams
we eschew classical smoothing theory by assuming that we are given a fixed linearization of the
vertical tangent microbundle of a topological manifold bundle. We also assume that there exists at
least one smoothing. With these points in mind, we give a complete answer to these two questions
in the two main theorems of this paper.

The first main result is the Realization Theorem (or Arc de Triomph Theorem [B.1.1]) which says
that the Arc de Triomph construction gives virtually all stable tangential smoothings of a compact
topological manifold bundle which admits at least one smoothing. The second main result relates
the cohomological relative smooth structure class arising from the theory of Dwyer-Weiss-Williams,
with the higher Igusa-Klein (IK) torsion. This is Theorem [3.0.8 which states that the relative higher
IK torsion is the push-down of the relative smooth structure class.

This paper discusses in detail how these (the Arc de Triomph construction and the relative
smooth structure class) are defined and what are their basic properties. The two main theorems
are difficult to state precisely and their proofs are intertwined. The main corollaries however are
easier to state and show how this paper is an extension of earlier work of the first author [I1] in
which a large class of examples of bundles with nontrivial higher torsion was constructed using
Hatcher’s example. The following theorem is a reformulation of Corollary

Theorem 0.0.1. Letp : M — B be a smooth manifold bundle whose base B, fiber X and total space
M are closed oriented smooth manifold. Suppose that dim X = N is odd and at least 2dim B + 3.
Let € H*(B;R) be a cohomology class whose Poincaré dual is the push-down of an integral
homology class in M. Then there exists another smooth bundle p' : M' — B which is fiberwise
tangentially homeomorphic to p so that the relative torsion T™5(M', M) is a nonzero multiple of 0

Fiberwise tangentially homeomorphic (A3.3]) means that there is a homeomorphism f : M — M’
over B covered by a vector bundle isomorphism between the vertical tangent bundles TVf : TVM —
TVM' which is compatible in a certain sense with the topologically defined map of Euclidean bundles
EVf : EYM — EYM' induced by f.

There are two constructions which produce the examples in the theorem above. We call these
the immersed Hatcher handle construction and the Arc de Triomph (AdT) construction. The first
construction is geometrically easier and the second has a better algebraic description.

The group of all stable smooth structures on a smooth bundle is given by a theorem coming
from Dwyer-Weiss-Williams smoothing theory (Appendix [A]) which has the following especially
nice formulation in the case when the base and fiber are closed oriented manifolds (B.2.2)).

Theorem 0.0.2. Let gfg(M) be the space of all stable smooth bundles M' — B which are fiberwise
tangentially homeomorphic to M over B. Then moSE(M) is a finitely generated abelian group and

mSH(M) @R = (P HN T (M;R)
k>0

where N is the fiber dimension.



The element in the cohomology/homology group corresponding to M’ — B is called the (relative)
smooth structure class and will be denoted

o(M', M) e @ HY*(M;R) = €D Haim p—ar(M; R)
k>0 k>0

The two main theorem of this paper can now be stated.

Theorem 0.0.3 (AdT Theorem B.1.1). When N > 2dim B + 3 is odd, the relative smooth struc-
ture classes of the smooth bundles M' — B given by the AdT construction span the vector space
Dio HNHR (M R).

Remark 0.0.4. The group 7T0§%(M ) is finitely generated and the stable smooth structures given by
the AdT construction form a subgroup of full rank, i.e., a subgroup of finite index. So, the AdT
construction gives virtually all stable smooth structures on M — B.

Proposition 0.0.5 (LemmaB.I8]). The AdT construction and the immersed Hatcher construction
are equivalent in the sense that they produce the same set of smooth bundles.

Theorem 0.0.6 (Theorem B.0.8 Corollary B.OIT)). Given a smooth bundle M' — B which is
fiberwise tangentially homeomorphic to M — B, the relative higher torsion class T/5(M', M) is
equal to the image of the relative smooth structure class ©(M', M) under the push-down map:

p. : @ HYTH(MR) — €D H*(B;R)
k>0 k>0

In short: 71K = Py 0O,

This theorem can be interpreted as saying that the relative higher IK-torsion is proportional to
the relative higher DWW-torsion if we define the latter to be the push-down of the relative smooth
structure class. This agrees with the recent theorem of Badzioch, Dorabiala, Klein and Williams
[2] but the two results do not imply each other since the absolute higher torsion (DWW or IK) is
not always defined.

When the fibers are closed even dimensional manifolds, the theorem above still holds by Corollary
B.0I11 However, the relative higher torsion class 7'¥(M’, M) is equal to zero in that case:

(M, M) = 78 (M') = 7%(M) = 0

since 7™ (M) depends only on the vertical tangent bundle of M over B by [22]. This leads to the
following conjecture.

Conjecture 0.0.7 (Rigidity conjecture). The stable smooth structure class vanishes when the fiber
is a closed oriented even dimensional manifold:

M, M) =0

In other words, rationally stably, there are no exotic smooth structures on manifold bundles with
closed oriented even dimensional fibers.

Theorem [LO.G] implies that ©(M’, M) must lie in the kernel of the push-down map p, in the
closed even dimensional fiber case since the higher relative torsion is zero.

0.1. Basic definitions. In Appendix [A] we explain the Dwyer-Weiss-Williams smoothing theory.

This is an expanded version of the handwritten notes by Bruce Williams [28] which explains this

version of their result which is not contained in the final published version of their paper [9]. (It

comes from the introduction of the earlier unpublished version.) In Appendix [B] we add to this

theory the elementary homotopy theory calculation which simplifies the result in the case when

base and fiber are closed and oriented. We also extend the result to the “stratified” case. The
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stratified version is a formal consequence of the standard version. Both follow from the special case
when the base is a disk and the bundle is trivial. But in this case the base has a boundary.

The model that we will use is due to Hatcher. He constructed a disk bundle with an exotic
smooth structure. So, we also need to consider the case when the fiber X has a boundary. The
subbundle of M with fiber 9X is called the vertical or relative boundary 0VM.

0.1.1. Stable smoothing theory. Stabilization of a bundle simply means replacing a smooth bundle
M — B with a linear disk bundle D(n) — B where D(n) is the disk bundle of a vector bundle 7
over M. For example M x D¥ — B is a stabilization of M. Stabilization has the property that
it does not see the boundary in the sense that, we can fix the boundary or not and it makes no
difference after stabilization (Proposition [A.4H]). So, we use whichever is more convenient. We use
the version in which the boundary has a variable smooth structure to compute the stabilization
and we use the version in which the boundary is fixed to give explicit constructions of smooth
structures on M in low dimensions.

From now on we let ¢ = dimB and N = dim X. Suppose that JB is a union of two smooth
¢ — 1 manifolds dyB,d, B which meet along their common boundary. Let Sgﬁo(M ) be the space
of all smooth bundles M’ — B which are tangentially homeomorphic to M relative to

O M = Mé)oB U oM

in the sense that the fiberwise tangential homeomorphism M — M’ is smooth on dyM.

We define this to be a (fiberwise) exotic smooth structure on M over (B,dyB) since M’
represents a new smooth structure on the underlying topological manifold bundle M — B which
agrees with the given structure on My, and on the fiberwise boundary 0"M.

Then DWW smoothing theory tells us that Si—;ﬁo (M) is homotopy equivalent to the space

of section T'p g,pH (M) of the bundle H%(M) over B whose fibers are H”(X) where H”(X) =
Q%°(X 4 A H(x)) is the homology theory whose coefficient spectrum is the space H(x) of stable
h-cobordisms of a point. I'g 5,5 means sections over B which are fixed over 9y 5.

Theorem 0.1.1 (Dwyer-Weiss-Williams, Theorem [A.5.14]). g%,ao (M) ~Tpa5HE(M)
An elementary homotopy calculation shows that
Proposition 0.1.2 (Corollary [B.2.2)). 7T0FB7503H§(M) QR=P, .o Hy—ar(M, My, p; R).

Here My, p is the restriction of M to 01 B. By Poincaré duality we have:

EB Hy 41 (M, My, p) = EB HNT(M, 0 M)
k>0 k>0

where we take homology with coefficients in R

In the special case when X = DY is a disk, we denote the total space by M = E ~ B and we
can use the fundamental theorem of Waldhausen [27] that # (%) is rationally homotopy equivalent
to BO and the calculation of higher torsion to see that we have a sequence of isomorphisms:

ﬂ-ogé,aoB(E) ®R ’Y—E> 71-OFB,E’OB/]_[g(Ej) QR 6—E> @HN+4k(E7 OOE) p—*> @H4k(B7 OOB)
k>0 k>0

The isomorphism 6 is normalized so that this composition is equal to the higher relative IK-torsion
invariant 7% (Proposition [B.2.3).

0.1.2. Stratified smoothing theorem. We show that the isomorphism given by the DWW smoothing

theory is natural with respect to immersions in the following sense. Suppose that L is a compact ¢

manifold with boundary 0L = gL U 01 L and A : L — B is a codimension-0 immersion with image

disjoint from 9y B so that A1 (dB) = &, L. Let A : L — M be an embedding over A and let F be a
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DY bundle diffeomorphic to a neighborhood of the image of X. Then we have a smooth embedding
of bundles:

DN :E—M
An exotic smooth structure E’ on FE relative to 9gF gives an exotic smooth structure on M simply
by
M =(M-E)UFE
since Oy F is the intersection of F with the closure of its complement in M. This defines a mapping
D(N)s : ST gy (E) = Sp gy5(M)
We show, as an easy extension of the naturality of the DWW construction that:

Theorem 0.1.3 (stratified deformation theorem). The following diagram commutes where the

vertical arrows are induced by the embedding D(N) : (E, Ep,1.) — (M, My, B)

TS} 5, (E) TE> WOFL,aorH%(E) — > @y Hy-ax(E, Ep,)

| .

Trogg,ao (M) FY;/I WOFB,@O,H%(M) ’ @k>0 Hq_4k(M7 M31 )
Proof. The left hand square commutes by Corollary [A.5.T9] and the right hand square commutes
by Corollary [B.4.2] O

The composition of the horizontal arrows is by definition the homological smooth structure map
O. So, we can abbreviate this diagram:

7057, 0 (E) O @y Hy—1k(E, Ep,)
lD(Z\)* lD(S\)*
WOgE,aO (M) == @ Hy—a(M, My,)
0.2. Outline of the proofs. The statements and proofs of the main theorems are contained in a
single diagram which contains the above diagram in its middle.
(=1)"2ch

1K

G(L,0L) m) Wogf,ao(E) e @k>0 Hy-4k(E, Ep, ) = @k>0 Hy—ai(L, 01 L)

E;\l \ lD(S\)* LD(X)*/ LA*
top EQ(M,)\,— b

SO/ — 1083 a0 (M) —5>= B0 Ho-11(M, Mo, 5) —— Do Ho-a1(B, 1 B)

SDg 5, (M)
—-— T

(=1)"2ch K

The Arc de Triomph construction can be expressed as a homomorphism
AdT = SD/R (M) — 1085 5, (M)

where SDg/ 800 (M) is the group of all equivalence classes of input data for the Arc de Triomph

construction. This factors through the quotient group S—Dg/ 800 (M) shown in the diagram above.

The AdT Theorem B.1.1] says that AdT is rationally surjective, in other words, the cokernel
is a finite group. The proposition (Lemma B.L]]) that every AdT construction is equivalent to
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an immersed Hatcher construction is formulated more precisely in the statement that we have a
surjective map
Y55 @ G, aL) — SDYy (M)
Here G(L,0yL) is just the group of all homotopy classes of maps L/dyL — G/O.
The other main theorem:
K =p.o e}
is the commutativity of the lower right curved triangle. This follows from the AdT Theorem and
the commutativity of the corresponding upper right curved triangle which is Proposition [B.2.3]

0.2.1. Hatcher’s example and its variations. The basic construction is due to Hatcher. Hatcher’s
construction starts with an n-plane bundle & over a g-manifold L which is trivial over JyL and
which has the property that the associated sphere bundle is fiber homotopically trivial. In other
words, £ gives a mapping
§:L/OL — G/O

We use the notation G(L, dyL) to denote the set of homotopy classes of pointed maps L/9yL — G/O
giving the input data for this construction. Using this data, Hatcher constructed a disk bundle
E™™(&) over B which is homeomorphic to B x D™ but not fiberwise diffeomorphic to any linear
disk bundle. We show (Theorem [[.2.2]) that this construction can be realized in fiber dimension
n+m > 2q+ 3.

Hatcher’s disk bundle can be used to construct what we call “Hatcher handles” (subsection
2.3). These are two thickenings of Hatcher’s disk bundle which we call “negative” and “positive”
suspension of E™™ (¢, n) and denote A™™(&,n) and B™™(£,n). We show that the positive Hatcher
handles B™"™(&,n) can be attached along the top M X 1 of a manifold bundle M x I over B along
an embedding X : L — M which lies over a codimension 0 immersion A : L — B. We call this the
immersed Hatcher construction.

The attaching map for the negative Hatcher handle A™™ (£, n) can deformed to be on top of
the positive Hatcher handle B™™ (&, n) in such a way that they cancel as shown in Figure 211 We
call this the Arc de Triomph construction. This construction has as input data a pair (2, ) where
> is a smooth oriented g-manifold embedded in M with the property that the projection > — B
has only fold singularities. The mapping ¢ : ¥ — G/O gives the data for positive and negative
Hatcher handles to be attached along >, which are the subsets of 3 along which the projection
p: % — B is orientation preserving or reversing, respectively. The group of deformation classes of
such input data we denote SDG/ O(M ). The Arc de Triomph construction thus gives a map

AdT = SDG/R (M) — 18} (M)

which we show to be additive (Proposition B.I.4]). One of the main theorems is that this map is
rationally surjective, i.e., its cokernel is finite.

To prove this we use the computation of the homotopy type of the space of generalized Morse
functions [I8] which implies that there is a fiberwise generalized morse function f : M — I whose
singular set 3(f) together with is vector bundle data & given by the second derivative of f gives

an element of SDG/ o (M ) which maps onto a spanning subset of the real homology group

D Hy-ar(M, Mo, 5) = mSD/5) (M) @ R
k>0

In the main diagram, this is expressed by saying that the curved mapping (— )"2Ch from SD B/ o g(M)

to @j~0 Hg—arx(M, My, p) maps onto a spanning subset. We know from the Appendices that O is
an isomorphism. So, it suffices to show that © o AdT = (—1)"2ch, i.e. that the lower left curved

triangle commutes.
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0.2.2. Higher IK torsion. In order to show the commutativity of the lower part of the main diagram,
we use the computation of higher IK torsion on the upper part of the diagram and the fact that
the middle of the diagram commutes by way of the stratified smoothing theorem and the related
homotopy calculation as proved in the Appendix. The stratified deformation lemma B.2.1] is used
to prove that every AdT construction can be deformed into an immersed Hatcher construction.
This is used to pass to the upper part of the main diagram. Here, the bundle E is a disk bundle.
So, F is homotopy equivalent to its base L and the higher torsion is equal to the smooth structure
class
0 : 1S} oo (B) ® R — @) Hy—an(L, 01 L)
k>0

by definition of the latter.

By passing down to M, we see that the image in the cohomology of M of the smooth structure
class of F maps to the image in the cohomology of B of the higher torsion invariant. By commu-
tativity of the main diagram this implies that the smooth structure class in general maps to the
higher IK torsion. This is the second main theorem.

0.3. Acknowledgements. Research for this project was supported by the DFG special programme
Global Differential Geometry and the National Science Foundation. An earlier version of this work
was presented at the 2006 Arbeitsgemeinshaft at Oberwolfach on “Higher Torsion Invariants in
Differential Topology and Algebraic K-Theory.” This was a very helpful and enjoyable meeting at
which Bruce Williams gave us his famous notes on smoothing theory [28]. The American Institute
of Mathematics in Palo Alto helped us to finish this project by hosting a workshop on higher torsion
in 2009. This was a very productive meeting for which the directors of AIM deserve a lot of credit
for keeping us focused. Finally, the second author would like to thank the organizers of the CMS
meeting at Fredericton, New Brunswick in June, 2010 for the opportunity to present the finished
version of this paper.

1. HATCHER’'S EXAMPLE

Hatcher’s famous construction gives smooth disk bundles over S** which are homeomorphic but
not diffeomorphic to S* x D". The exact statement is given below.

1.1. Homotopy theory. John Klein helped us to find the lowest dimension in which this part of
the construction works.
Suppose that B is a compact smooth g-manifold and 0B = 0yB U 01 B as before. Let

f:B/0B — G/O

be a continuous map, i.e., f is a continuous mapping on B which sends JyB to the basepoint of
G /O, the fiber of BO — BG. This classifies a stable vector bundle over B which is trivial over dyB
and trivial over B as a spherical fibration. Take n > ¢. Then BO,, — BO is ¢ 4+ 1-connected and
therefore this stable vector bundle is given by a unique oriented n-plane bundle £ over B which is
trivial over 0yB.

Remark 1.1.1. Since G/O is rationally homotopy equivalent to BO, the Chern characters of all real
vector bundles £ obtained in this way will span the vector space

B H¥(B.0B;R).

0<k<q/4

Recall that G, is the topological monoid of all unpointed self-homotopy equivalences of S™~.
Taking unreduced suspension we get a mapping G,, — F,, where F,, C Q"S" is the union of the
degree +1 components. It follows from a theorem of Haefliger [15] that (F},, G,) is 2n—3 connected.
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Furthermore, the components of 275" are all homotopy equivalent and 7, G,, = mF), is stable and
thus finite for k¥ < n — 2. (This also follows from the EHP sequence.) Therefore,

[B/0yB, BG,] = [B/0yB, BG]
for n > ¢q. So, the composition
B/8yB % BO, — BG,

is null homotopic for n > ¢. This implies that the sphere bundle S"~1(¢) associated to ¢ is fiberwise
homotopy equivalent to the trivial bundle:

g:S" & ~85S" 1 xB

and this trivialization agrees with the given trivialization over dyB.

Take the fiberwise mapping cone of g. This gives a fibration over B whose fibers are contractible
n-dimensional cell complexes which are homeomorphic to the standard n-disk over 0yB. When we
thicken this up we will get an exotic smooth structure on a trivial disk bundle over B.

Remark 1.1.2. For any space X recall [I [I7] that J(X) is the group of stable vector bundles over
X modulo the equivalence relation that & ~ n if the sphere bundles over ¢ and 7 are fiberwise
homotopy equivalent. The group operation is fiberwise join which corresponds to direct sum of
underlying bundles. If £ is any vector bundle over X then J(§) denotes its image in J(X). If X
is a finite complex then it is well known that J(X) is a finite group. (See, e.g. [I7].) The above
argument shows that if J(§) is trivial in J(B/0yB) and dim¢ > dim B then the sphere bundle of
£ is fiberwise homotopically trivial.

1.2. Thickening. We have a family of finite cell complexes over B which we want to thicken to
get a manifold bundle. If we embed this fibration in DY x B and take a “regular neighborhood” we
will get a smooth N disk bundle over B which is homeomorphic but not diffeomorphic to DY x B.

We start by thickening the trivial sphere bundle S"~! x B to get S"~! x I x D™ x B. This is
the trivial bundle over B with fiber S~ x I x D™. We also need this to be embedded in a trivial
disk bundle D" x D™ x B in a standard way. We can take the obvious embedding

f:8" L x T x D™ D" x D™
given by f(z,y,2) = (%(1 +y)a:,z). Note that S”! x 0 x D™ is mapped into the sides of the
“donut hole” which is the closure of the complement of the image of f in D™ x D™,

We attach an n-handle D" (&)@ D™(n) to this (with 7 necessarily being a complementary bundle
to &) to fill in the donut hole and create a smooth (after rounding corners) bundle over B with fiber
S"Ux I x D™UD" x D™= p"tm
The data needed to attach such a handle embedded in D™ x D™ x B is a smooth embedding of

pairs
D(j) : (D™(€),8"7H(€)) @ D™ (1) — (D", 8" ') x D™ x B
where D™ represents the hemisphere in the boundary of D™*1.
D" Sl T
/\/
% b
|

D(5)(D"(§) x 0)

This embedding D(j) is essentially given by its restriction to the core D™(&) x 0.
8




Lemma 1.2.1. If m > n > q then there is a smooth fiberwise embedding of pairs:
j: (D"(€),8"7H(E)) = (D", 8" ) x D™ x B

over B which is the standard embedding over OgB and which is transverse to S"~' x D™. Further-
more, if m > q+ 3 then this fiberwise embedding will be unique up to fiberwise isotopy.

Proof. When g = 0, this holds by transversality. So suppose ¢ > 0. We use [20, Thm 6.5] which
says that the inclusion

Emb((D", 8™ 1), (W"™ 9yW)) — Map((D", S" 1), (W™™ 9yW))
of the smooth embedding space into the mapping space is c-connected where
c=m-—n—1+min(s,n,m —2,n+m —4)

and s is the connectivity of the pair (W, 9yW). In our case s = n—1. So the conditionm >n > ¢ >0
implies that ¢ > ¢ giving the existence part of the lemma and if m > ¢ 4+ 3 then either m > n + 2
or n > g+ 2 and we get ¢ > ¢ which implies the uniqueness part. O

The embedding j gives an m-dimensional normal bundle n for ¢ and a smooth codimension 0
embedding

D(j) : D"(&{) & D™(n) — D" x D™ x B
Restricting this to 9D™(§) @ D™(n) we get a fiberwise embedding
S(j): S HE) @ D™(n) — S"L x D™ x B
We can use S(j) to construct a smooth bundle (with corners rounded):
E™™(&) = D™&) ® D™(n) Ug(;y S™ ' x I x D™ x B.
We can also use D(j) to embed this in the trivial disk bundle of the same dimension:
F(j) = D(j) U f s E™"(€) = D" x D™ x B

This is Hatcher’s example. Since m > ¢, the m-plane bundle 7 is the stable complement to
¢ and is thus uniquely determined. If m > ¢ + 3 then, up to fiberwise diffeomorphism, E(§) is
independent of the choice of j. Finally, we note the crucial point that the bundle E(£) is canonically
diffeomorphic to the trivial bundle over 0yB. Summarizing the construction above and the easy
calculation of the higher torsion of this bundle we get the following well known theorem.

Theorem 1.2.2. Suppose that B is a smooth q-manifold and m > n > q. Suppose that & is an
n-plane bundle over B which is trivial over 0yB C 0B so that J(§) = 0 € J(B/0yB). Then
Hatcher’s construction gives a smooth bundle E™™ (&) over B with fiber D"T™. This bundle is
fiberwise diffeomorphic to the trivial bundle over OgB and fiberwise homeomorphic to the trivial
bundle over B with fiber D"™. Furthermore its higher IK-torsion in degree 4k is given by

Toi (B™M(€)) = (=1)F"¢(2k + 1) gchay, (€ © C) € H'™(B, 0yB;R)
where ¢ is the Riemann zeta function.
Remark 1.2.3. If we use the normalized chern character
chap(§) = (~1)F¢(2k + 1)3char(§ ® C)

then the statement of the theorem simplifies to

(B (€)) = (—1)"char(€)

©



Proof. The higher torsion is calculated using the Framing Principle from [21], 23]. Here we use the
version in [22] which says that, given a smooth handlebody structure on the fibers with handles
attached in the same order for each fiber, the axiomatic higher torsion is defined and equal to a
linear combination of the suitably normalized chern characters of the bundles giving the core and
cocores of the handle. For IK torsion the coefficient for the cocore is zero and the coefficient for
the core is (—1)*¢(2k + 1) which is what we are using.

The bundle is topologically trivial by the Alexander trick. (The topological group of homeomor-
phism of the disk D™ which are the identity on the southern hemisphere is contractible.) ]

Take g = 4k,n = 4k + 1,m > 4k + 2, B = S* and using the well known fact that the order of
the image of the J-homomorphism J : 74,10 — m§;, _,, which we denote ay, is the denominator
of By /4k where By is the k-th Bernoulli number [I], we get the following.

Corollary 1.2.4. For any k > 0,N > 8k + 3 Hatcher’s construction gives a smooth N -disk
bundle over S* which is tangentially homeomorphic to DN x S* but has higher torsion invariant
Tor € H*(S*:R) equal to ((2k+1)ay, times the generator of H*(S*:Z) for k odd and half of that
number when k is even. In both cases this gives a nontrivial element of T4,_1Diff(DY)/On @ R.

Proof. Tt follows from Bott periodicity ([6], [I7, 18.9]) that the chern character of the stable complex
vector bundle over S corresponding to a generator of my, BU = Z is equal to a generator of
H?F(S?F,7). Also, the homotopy fiber sequence BO — BU — Q9BO given by the inclusion map
O — U implies that the generator of m4, BO maps to the generator of my, BU for k even and to
twice the generator when k is odd. The generator of the kernel of the J-homomorphism is a; times
this element. By the theorem above, the higher torsion of this exotic bundle is given by multiplying
this element by %C (2k + 1) giving the formula in the corollary up to sign. O

2. VARIATIONS OF HATCHER’'S CONSTRUCTION

We need several variations and extensions of Hatcher’s construction in order to construct a
full rank subgroup of the group of all possible tangential smooth on a smooth manifold bundle
with sufficiently large odd dimensional fibers. The idea is to construct “positive” and “negative”
“suspensions” of Hatcher’s basic construction which will cancel. We call this the “Arc de Triomph”
construction due to the appearance of the figures used to explain the construction. Since the
stabilization of bundles with even dimensional fibers includes bundles whose fiber dimensions are
arbitrarily large and odd, this construction also produces “all” stable tangential smooth structures
on bundles with even dimensional fibers.

2.1. Arc de Triomph: basic construction. There are two “suspensions” of E™™ to one higher
dimension. We will see that their union is trivial:

En,m-l—l(g) U En—l—l,m(f) o~ Dn+m+1 % B
This is in keeping with the calculation of their higher torsions:
7ok (B"H(€)) 4 mags (BT (€)) = (—1)"chag(6) + (=1)" chay(§) = 0

and the Additivity Axiom from [22] which says that the higher torsion of a union is the sum of
torsions of the pieces.
The positive suspension of E™™ () is defined simply as the product (with corners rounded):

oL B (E) = E(g) x
An examination of the definitions shows that this is the same as E™™*1(¢).
The negative suspension of E™™ (&) uses the embedding F'(j) : E™™ < D" x D™ x B and
is defined as follows.
o_E™™M(€) = D" x D™ x [=1,0] X B Up(jyxo E™™(§) X I Up(jyx1 D" x D™ x [1,2] x B
10



This is a subbundle of D™ x D™ x [~1,2] x B. We claim that o_ E™™(£) is a model for E"T5m(¢)
over B in the sense that the construction of E"+1(¢), which may not be unique, could give
ooE™™(€). Lemma [L2.1] then tells us that we have uniqueness after stabilizing just once:

O'_En7m(§) N En+l’m(§) x [ = En+1’m+l(§)

since m + 1 > ¢ + 3. To verify this claim note that o_ E™™ (&) contains the trivial bundle over B
with fiber
F=D"xD™x[-1,00US" 1 x I x D™ x[0,1]]UD" x D™ x [1,2]

which is diffeomorphic to S™ x D™*! after its corners are rounded. On this is attached the n + 1
handle D"(¢) @ D™(n) x I which is which is equivalent to D"*1(¢) @ D™(n) after corners are
rounded. Since D"t1(¢) is the core of this handle, the result is E*H1™(¢).

When we take the union of the positive and negative suspensions of E™™ (), they cancel. This
will follow from the following lemma which does not require proof.

Lemma 2.1.1. Suppose that Ey, 1 are compact smooth manifold bundles over B with the same
fiber dimension. Let f: Ey — E1 be a smooth embedding over B. Then
Ey x [0,1] Usyx1 By x [1,2]
18 fiberwise diffeomorphic to E1 X I after rounding off corners.
Remark 2.1.2. The example that we have in mind is
E™M(&) x [0,1] Up(jyx1 D" x D™ x [1,2] x B D" x D™ x I x B
We denote the construction on the left by V™™ (¢).
Next we use another trivial lemma:

Lemma 2.1.3. Suppose that O'E1 = 0gE1 U 01 E1 where 0; E1 are smooth manifold bundles over B
with the same fiberwise boundary. Let f,q : OgE1 — O"Ey be smooth embeddings over B which are
fiberwise isotopic. Then Eg Uy E1 and Eq U, By are fiberwise diffeomorphic over B after rounding
off the corners.

In our example, 0y Ey will be a disk bundle. So, we need the following well-known lemma.

Lemma 2.1.4. Suppose that D is a smooth disk bundle over B and E is any smooth manifold
bundle over B. Let f,g: D — E be smooth embeddings over B which agree over OgB. Then f,g
are isotopic if and only if they are fiberwise tangentially homotopic firing 0y B.

Proof. Necessity of the condition is clear. To prove necessity, we triangulate the base and construct
the isotopy over the simplices one at a time. Thus it suffices to consider the case N = DY and
OoB = S9!, In this case both bundles are trivial so f, g are maps

f.g: D?— Emb(DV, F)

which agree on S9! and whose 1-jets are homotopic fixing the boundary. Here F' is the fiber of
E — B. But the derivative at the origin map from the embedding space Emb(DN , ) to the space
of N-frames in F' is a homotopy equivalence since embeddings on disks can be uniformly contracted
to the middle and made isotopic to the exponential map on the N-disk in the tangent bundle of F
given by the N-frame. Therefore an isotopy of the 1-jet is locally equivalent to an isotopy of the
embedding. O

We use the last two lemmas for
(B1,00E71) = (E™™(§) x [0,1] Upj)x1 D™ x D™ x [1,2] x B, E™™(&) x 0)
and Ey = M x [—1,0] with

M = E™™(£) Upyigy D" x D™ x B
11



where h is an orientation reversing diffeomorphism
a(D" x D™) > pptmt Iy primel o gn=ly g pm

between a fixed n + m — 1 disk on the boundary of D™ x D™ and a fixed n +m — 1 disk in
S"=1 x 1 x D™ (the outside surface of the donut). The pasting map h needs to be orientation
reversing in order for orientations of the two pieces to agree. It is a special case of the first trivial
Lemma 2.1.T] that M is fiberwise diffeomorphic to E™™(§). Note that h is unique up to isotopy
assuming that n > 2.

In our example of Lemma 2.1.3] the mapping f : 9gF1 — 0"Ey is simply the inclusion map

fEY(E) x0C M x0C0E
and g : Oy F1 — 0YFy is the embedding;:

Fi
g EP(€) x 0 29 D DM x B C M x 0 C 9'E;

Since f, g are tangentially homotopic maps on disk bundles, they are isotopic. But, when we attach

Eq on top of D™ x D™ x B x [—1,0] using the map F(j) we get exactly the negative suspension

o_E™™(£). So, we have a diffeomorphism which preserves all the corner sets:

M x [_170] Ug E = U—En’m(g) Uhxidg O'-i-En’m(f)

and
M x [_170] Uf E1 = V”’m(é) UhxidB D" x D™ x B x [_1’0] o~ Dn+m+1 < B
where V™™ () is given in Remark 2.1.2] Since h is unique up to isotopy, any two choices of h will

produce fiberwise diffeomorphic bundles. So we get the following. (See Figure 2J1 The notation
Ey = A™™(&,n) is from subsection [2.3])

Proposition 2.1.5 (basic cancellation lemma). The oriented union of the positive and negative
suspensions of E™"™(&) glued together along fixred n + m disk bundles in the fized parts of their
boundary is fiberwise diffeomorphic to the trivial n +m + 1 disk bundle over B:

0B (€) Upian 04 E™(€) = D1 x B,

2.2. Twisted version. Remark[[LT.Tland the main theorem (Corollary [B:2.2]) of Appendix[Blshow
that, rationally stably, all exotic smooth structures on trivial disk bundles are given by Hatcher’s
example. Now we consider nontrivial disk bundles.

Stably, it is easy to construct exotic smooth structures on nontrivial linear disk bundles. If we

start with any vector bundle &y over B which is trivial over 0yB, we can take the associated disk
bundle DV (&). The fiberwise product

DM (&) @ E™™(€)

with corners rounded is a smooth disk bundle fiberwise homeomorphic to D™ (&) x D™*™ with the
same higher torsion as E™" () since I K torsion has the property that it is invariant under passage
to linear disk bundles.

Corollary 2.2.1. Given any linear disk bundle D™ (&) over B which is trivial over 0oB, the
collection of all stable smooth structures on D™ (&) given by Hatcher’s construction spans the
vector space
083 5, (DY (%)) @ R = P H*(B, 00 B; R)
k>0
12
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FicURE 1. Positive and negative Hatcher handles are cancelled using Arc de Triomph
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Now we give the unstable version of the last corollary and use it to define “Hatcher handles”.
Suppose that (B, 9yB) is a manifold pair as before with dim B = ¢. Let &, n be vector bundles over
B of dimension n,m so that & is trivial over 9yB and J(§) = 0 € J(B/dyB). As in Lemma [[.2.1]
we have the following.

Lemma 2.2.2. If m > n > q then there is a smooth fiberwise embedding of pairs:
J = (D(€),8"7H(€)) — (D", 8"7) x D™ (n)

over B which is a standard linear embedding over 9gB and which is transverse to ST~! x D™(n).
Furthermore, if m > q + 3 then this fiberwise embedding is unique up to fiberwise isotopy.

Let 1o be the unique m-plane bundle over B so that £®ny = € @&n where €” is the trivial n-plane
bundle over B. Then the embedding given by the lemma thickens to a codimension 0 fiberwise
embedding

(D), S(7) : (D™(€),8"7H(&)) @ D™ (o) = (D", 5"~") x D™(n)
which is a standard linear embedding over JyB. Let E™™ (&, n) denote the n + m disk bundle over
B given by
E™™(&,m) = D"(€) ® D™ (10) Ug(jy S" 1 x I x D™ (n)
with corners rounded. Up to fiberwise diffeomorphism, this is independent of the choice of ¢ if
m > q+ 3. As before we have a fiberwise embedding F'(j) : E™™(&,n) < D™ x D™(n) and we can
define the positive and negative suspensions of E™"™(§) to be

o EM(E,n) = EMT(E ) x 1
which is fiberwise diffeomorphic to E™™*1(¢ n) after corners are rounded and
o E"M(&,n) = D" x D™(n) x [=1,0] Up(jxo E™™(§,m) X T Up(j)x1 D™ x D™ (n) x [1,2]

which is a model for E"T5™(¢,n). As before, the Framing Principle implies that the higher IK
torsion of this bundle is the normalized Chern character of ¢:

Theorem 2.2.3. E™"™(&,n) is a smooth n+m disk bundle over B which is fiberwise diffeomorphic
to the linear disk bundle D"t™(n) over dyB and fiberwise homeomorphic to D" *™(n) over B.
Furthermore,

(B (E,n)) = (—1)"cha(€) € H*(B,8B;R)

Remark 2.2.4. This theorem can be stated as the commutativity of the following diagram:

G(B,dyB)
Ey (_1)n£
S: T 1k
T0S g 9,(D (1)) Dyoo H*(B,9yB;R)

where G(B, 0yB) is the group of all homotopy classes of pointed maps & : B/JyB — G/O. Here
E"™(—,n) is the map which sends £ to the direct limit of E™"™(&,n) as m goes to oo.

Since the torsion of a linear disk bundle is trivial, the torsion of the disk bundle E™™(,n) is
equal to the torsion of the h-cobordism bundle given by deleting a neighborhood of a section. The
fiberwise boundary of E™™(&,n) is a smooth n +m — 1 dimensional sphere bundle over B which is
fiberwise tangentially homeomorphic to the linear sphere bundle S"+™~1(n).

Corollary 2.2.5. Suppose that n +m — 1 is odd. Then the vertical boundary O"E™™(&,n) of this
disk bundle is a smooth sphere bundle which is fiberwise tangentially homeomorphic to the linear
sphere bundle S™"1(n) and fiberwise diffeomorphic to this bundle over OgB and the difference
torsion is twice the normalized chern character of &:

(O EM™(€,m), ST () = (—1)"2cha(€) € H*(B,00B; R)
14



In particular, assuming that & is rationally nontrivial, this gives an exotic smooth structure on
SrEm=(n).

Proof. All axiomatic higher torsion invariants satisfy the equation
ok (E) = 5701(0'E) + 372k (DE)

where O'E' is the fiberwise boundary of £ and DE is the fiberwise double of E and the double
of E™™(&,1n), having closed even dimensional manifold fibers, has the same higher torsion as the
linear sphere bundle S™*™(n):

IR (Q'B"(E,m)) = 2mak(E"(E,m)) — o (S™T(0) = (—1)"2¢har(€) — 2char(n)
Ton (S™TY) = —2chai ()
The difference (—1)"2chyi(§) is the relative torsion. O

2.3. Hatcher handles. Suppose that p: M — B is a smooth manifold bundle whose fiber dimen-
sion is N = n + m where m > n > q. Let s : B — M be a smooth section of p with image in the
fiberwise interior of M. Since m = N —n > g+ 1, the space of n frames in RV is ¢ + 1-connected.
So there exists a smooth fiberwise embedding f : D™ x B — M equal to s along the zero section
section and f is uniquely determined up to isotopy by s. Let 1 be the vertical normal bundle to
the image of f in M. This is the unique m plane bundle over B which is stably isomorphic to the
pull back along s of the vertical tangent bundle of M. Then f extends to a fiberwise embedding
D(s): D" x D™(n) — M

whose image is a tubular neighborhood of the image of the section s and D(s) is determined up
to isotopy by s. We will use this embedding D(s) to attach positively and negatively suspended
Hatcher disk bundles to the top M x 1 of the bundle M x I — B. We call these positive and
negative Hatcher handles.

2.3.1. Positive Hatcher handles. Let ho : D} < S™ 1 x I be a fixed smooth embedding where
Dy = D™ is a copy of the standard n-disk. Taking the product with D™ (n) we get a fiberwise
embedding of Dj x D™(n) into E™™(&,n):

h = ho X idpm(y : D§ x D™(n) = S" ' x I x D™(n) € E™™(&,n)
Using these two maps we can attach o E™"™(§,n) to M x I to get
E™(M,5,8) = M x [0,1] Ups)x1 Dy x D™(n) x [1,2] Unxa E™™(&,m) x [2,3]
We can write this more succinctly as
EY™(M,5,6) = M x I Upeg) B™™(&,n)
where B™™(£,n) is the positive Hatcher handle given by
BM(g,m) = D x D™ (n) x I Upxy E™™(&m) x [L,2]

attached on its base 9gB™"™(&,n) = Di x D™(n) x 0. Since the bundle pair (B™™(¢,n),dp) is
fiberwise homeomorphic to the disk bundle pair D™ x D™(n) x (I,0), the bundle E""™ (M, s,§) is
fiberwise homeomorphic to the bundle M x I. However, E?_m(M ,8,&) is a smooth bundle (when
corners are rounded) whose fibers are h-cobordisms.

Theorem 2.3.1. Let T be a closed fiberwise tubular neighborhood of s(B) in M. Then there is a
fiberwise homeomorphism M x I — E"™ (M, s,€) which is the identity (and thus a diffeomorphism)
on M x 0 and a diffeomorphism on the closure of (M —T) x I. Furthermore the difference torsion
is the same as the IK-torsion of E™™(&,n):

T(EP™(M,s,6), M x I) = 7(E™™(&,1)) = (—1)"ch(€) € H*(B,0)B;R)
15



M x1

FIGURE 2. (Positive Hatcher handle) The positive suspension o E™™({,n) is at-
tached to the top M x 1 of M x I by the “stem” D{ x D™(n) x I.

Remark 2.3.2. This theorem can be viewed as the commutativity of the diagram:

G(B780B)
E™(—n) (—1D)"ch
ER(M,s,—)
WOSEQO (D(n)) - WOSJSB,aO(M) Ty Do H*(B,0,B;R)

TIK

Let M' = 0, E}"™ (M, s,€) be the top boundary of the h-cobordism bundle E"™ (M, s, §).

Corollary 2.3.3. M’ is fiberwise tangentially homeomorphic to M and, if the fiber dimension
N = n+m of M’ is odd, then the relative IK torsion is equal to twice the normalized chern
character of &:

T(M', M) = (—=1)"2chs,(€) € H*(B, 9, B; R)

2.3.2. Negative Hatcher handles. Attaching the negative suspension of E™™ (&, n) to the top of M x T
is very similar but easier since the attaching map will be simply the map D(s) from D" x D™ (n) C
Oo_E™™(&,n) into M x 1 C "M x I. However,

M x I Upgx1 D" x D™(n) x [1,2] = M x I

since we can pull D™ x D™ (n) x I into M x I. Therefore, M x [Uo_E™™(&,n) can more economically
be described by attaching the base 9y A™™ (&, n) = E™™(&,n) x 0 of the negative Hatcher handle

AM™(E m) = E™M(E,m) x I Up(j)x1 D™ x D™(n) x [1,2]
to the top of M x I using the composite map

(&) =2 D" x D) 2% M

The negative Hatcher handle is shown in Figure [l and also in the top figure in Figure 2.1] where
A™™ (€, m) = Eyp. The argument above shows that M x I Uo_E™™(£,n) is fiberwise diffeomorphic
to:

Eﬁ’m(M,S,f) =Mx1I Ub(s)F(j) A" (Em)
with higher difference torsion given by
T(EM"™ (M, 5,6), M x I) = —r(E""(&,)) = (=1)" ' chai(€) € H'™*(B,0,B; R)
16



D™ x D™(n) x [1,2]

(transparent)

Emm(E,m) % [0,1]

M x 1

FIGURE 3. (Negative Hatcher handle) A™™(£,n) is attached to the top M x 1 of
M x I along its base E™™(&,n) x 0.

2.3.3. Cancellation of Hatcher handles. We will take the “union” of the two constructions given
above and attach both positive and negative Hatcher handles along the same section s : B — M
and show that they cancel. As before, we have a smooth embedding

D(s): D" x D™(n) - M

whose image is a tubular neighborhood of s(B). inside this disk bundle we create two smaller
isomorphic disk bundles using embedding:

J4>J—+ D" x D™(n) — D" x D™(n)
given by ji(z,y) = (%(JH—en), y) where e,, is the last unit vector of D™ and j_(z,y) = (%(:E—en), Y).
Since they are less than half as wide, these two embeddings are disjoint. Suppose that E™™ (£, n)
is a Hatcher disk bundle as in the construction above. We first attach the positive Hatcher handle
B™™(&,n) along its base dgB™"™(&,n) = D™ x D™(n) x 0 to the top M x 1 of M x I using the

fiberwise embedding D(s) o j_. Next we attach the negative Hatcher handle A™™(&,n) to the top
of M x I along its base JyA™™(&,m) = E™™(§,n) using the composite map

(g, 5) =2 D" x D™(n) T D" x D™ () % M

Let T be the image of D(s) with corners rounded. Thus 7" is a D"t™-bundle over B. Let
S = OYT' be the fiberwise boundary of 7. This is a sphere bundle over B. After attaching the
positive and negative Hatcher handles to the top of M x I we get a new bundle

W =M x I Up(s)ej_ B"™(&,1) Up(s)ej,ori) A (&)

Note that since B™"™(£,n) and A™"™(£,n) are both attached in the interior of 7', this new bundle
is the union of C' x I and T' x I U B U A where C is the closure of M — T and A, B denote the
Hatcher handles.

Proposition 2.3.4 (second cancellation lemma). W is fiberwise diffeomorphic to M x I after
rounding corners and this diffeomorphism is the identity on C' x I and on M x 0.

Proof. The argument is almost the same as in Proposition I8l Since dgA™™(§,n) = E™™(&,n)
is a disk bundle attached using the same tangential data as B™"™(§,n), there is an isotopy of the
attaching map D(s) o j1 o F'(j) of the negative Hatcher handle A™™ (&, n) to the mapping

B, m) — EMT(E,m) x 1.C (E™M™(E,m) U Dy x D™(n)) x I =B™™(&,n)
17



placing A™™(&,n) onto the top sides E™™(&,m) x 1 of the positive Hatcher handle B™™(&,n) =
E™™(&,m) U D x D™(n) x I. After moving the attaching map, A™™(£,n) is attached on top of
E™™(&,m) x I and their union is

V(g m) = EMTE n) x TUA™M™(E,n) = EM(E,n) < [0,2] U D" x D™(n) = A™™(E, 1)

which is attached on M x 1 along the image of D(s) o j_ by the “stem” Dy x D™(n). By Lemma
2T V™™(&,n) UDE x D™(n) is fiberwise diffeomorphic to D™ x D™(n) U Dy x D™(n). This is a
linear disk bundle and, therefore, attaching this to the top of T'x I gives a bundle X diffeomorphism
of T'x I fixing S x I. This sequence of deformations and diffeomorphisms gives a differomorphism
TxITUBUAZX=T x I which is the identity on S x I and therefore, can be pasted with C' x [ to
give a fiberwise diffeomorphism W =C x TUT x ITUBUA = M x I as claimed. O

2.4. Immersed Hatcher handles. Since “Hatcher handles” are attached in a neighborhood of
one point, they can be attached at several points at the same time.

Let L be a ¢ manifold with boundary 0L = 0y LU0 L where 9yL, 01 L are ¢— 1 manifolds meeting
along their common boundary. Let A : L — B be an immersion so that A=!(9;B) = ;L and let
\: L — M be an embedding over A. Suppose as before that m > n > ¢ and let

D(\) : D" x D™(n) < M

be a smooth embedding over A : L — B where 7 is the pull-back along A : L — M of the stable
vertical tangent bundle of M.

Let £ be an n-plane bundle over L which is trivial over 0y L so that J(§) =0 € J(L/0;L) and
let 79 be the unique m-plane bundle over L so that £ & ny = 7. We define W = E}"™ (M, A, €) to
be the smooth h-cobordism bundle over B so that 9yW = M given by

EY™(M, €)= M x T Up sy B"™(&m)

where B™™ (£, n) is the positive Hatcher handle parametrized by L. This Hatcher handle needs to
be “tapered off” along JyL. A more precise description of this is as follows.
First we note that the smooth disk bundle over L given by

E}™ g, m) = D" x D™(n) x U B™™(&,n)

is fiberwise diffeomorphic to D™ x D™ x I over dy L. We choose such a diffeomorphism. Let T be the

image of D(\) : D" x D™(n) — M. So T x I C M x I is fiberwise diffeomorphic to D™ x D™ (n) x I.
The smooth h-cobordism bundle E"™ (M, A,§) can then be given by:

EY™(M,N€) = (M —T) x TUE}™ ' (&,n)

Theorem 2.4.1 (torsion of immersed Hatcher handle). The higher IK difference torsion of this
bundle with respect to M x I is the image under the mapping

Aot H™(L,00L) = Hy_43,(L, 1 L) — Hy_44x(B,0B) = H*(B,d,B)
of the normalized chern character of &:

7—2]15(E—7-7m(M75‘7§)7M X I) = A ((_1)712};419(6)) S H4k(B,80B;R)
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Remark 2.4.2. This theorem can be viewed as the commutativity of the diagram:

(=1)"ch

E/)/\

n(—ﬂ? ~
G(L, 0y L) —— mS} 5, (D(n)) i Do H*(L,00L; R)

N s
m | l

WOS}SBﬁO(M) LIK 69l~€>0 H4k(B7aoB;R)

The commutativity of the upper curved triangle is Theorem [2.2.3]

To prove this, we need to recall the precise statement of the Framing Principle from [23]. Suppose
that W — B is a smooth h-cobordism bundle with fiberwise boundary equal to

OW =MUI'M x I UM,

and f: W — I is a fiberwise generalized Morse function equal to 0 on M and 1 on M; and equal to
projection to I on 0"M x I. Suppose that the fiberwise singular set X(f) of f does not meet Wy, p.
In particular, Wy,p = My,p X I. We are in the restricted case when the birth death points of f
are framed in the sense that the negative eigenspace bundle of D?f is trivial over the birth-death
points. This implies that, over the set ¥;(f) of Morse points of f of index 7, the negative eigenspace
bundle of D?f is trivial along 9yX;(f) which is equal to the set of birth-death points to which ¥;(f)
converges. The Framing Principle was proved in this restricted case in [21].

In general, the negative eigenspace bundle is a well defined stable vector bundle £ = £(f) on
the entire singular set X(f). It is defined as follows. At each index ¢ critical point = of f let
£(x) = &(x) @ V77 where €V is the trivial bundle with dimension N —i and N = n 4+ m + 1 is
the dimension of the fiber of W — B. This defines an N-plane bundle over 3;(f). At each cubic
point we identify the positive cubic direction with the positive first coordinate direction in eV =7,
This has the effect of pasting together these N-plane bundles over 3;(f) and 3;11(f) along their
common boundary for each i. The result is an N-plane bundle over all of X(f).

The projection mapping p : (X(f),0%(f)) — (B,01B) induces a map in cohomology using
Poincaré duality assuming that B is oriented. (If B is not oriented then just replace it with the
disk bundle of the orientation line bundle.)

py s HY(3(f)) = Hyi(S(), 05(f)) = Hy—+(B,01B) = H*(B, 8 B)
Similarly, for each index ¢ we have the push-down operator:
P s HY(5i(f), 00%i(f)) = Hy—s (3i(f), 0134(f)) = Hg—«(B,01B) = H*(B, 9 B)

where 01%;(f) = X;(f)NOX(f) and 9pX;(f) is the set of birth-death points in the closure of ¥;(f).
We use the orientation for ¥;(f) which agrees with the orientation of B and we take the orientation
of X(f) which agrees with the orientation of X;(f) for ¢ even. As a result of these sign conventions
we have the following observation.

Lemma 2.4.3. In the restricted case when the birth-death points of f are framed, then the image
under py of the Chern character of £(f) is equal to the the alternating sum of images under the
push-down operators:

ps t H(Si(f), 805i(f)) — H'™(B, 8B)
of the Chern character of & = &|%;(f):
P2 (char(§ ®C) = > (~1)'pu(char(& @ C) € H*(B, 0o B)
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Theorem 2.4.4 (Relative Framing Principle). Suppose that the manifold B and the stable bundle
¢ = &(f) and both oriented. Then the degree 4k higher relative IK torsion invariant TH(W, M) €
H*(B,0yB;R) is given by the higher torsion of the family of acyclic chain complexes C(f) given
by f plus the push down of the normalized chern character of &:

(W, M) = 1o, (C(f)) + pZ (chax(€)) € H™(B, 0 B)

Proof. The published version of the Framing Principle [23] assumes that dyB is empty. However,
the relative case follows easily from the absolute case in the present setting where we have an h-
cobordism bundle W. Just take the base dgyW = M and embed it into the boundary of a very large
dimensional trivial disk bundle B x D~. Let vy be the vertical normal bundle of M in B x SN—1
and let vy be the extension of vy to W. Then we have a new bundle:

A= B x DY UD(vy)

over B. Since D(vy) is an h cobordism bundle, this is a smooth N-disk bundle over B (after
rounding off corners). By additivity and invariance after passing to linear disk bundles, we have:

W, M) = (D(vw,va) = 7(A, B x D) = 78(A)

But, A is a disk bundle over B which is trivial over dpB. So, we can collapse JypB to a point to
get a new bundle A over B/dyB. The Framing Principle for A — B/ B is then equivalent to the
relative Framing Principle for (W, M).

To do this more precisely, we do the same trick as before, removing a tube 7' = D(vp7) x I in a
collar neighborhood of B x SV~! and replace it with W. The new fiberwise Morse function will be
equal to the distance squared from the origin in B x DY — T and equal to f (rescaled to match)
on W. Now we collapse the bundle over dyB. By construction, the fiberwise generalized Morse
function will factor through this quotient bundle and the original Framing Principle applies. ]

Proof of Theorem [2.4.1, We will start with a fiberwise oriented Morse function on the bundle
E}™(&,m) — L and then modify it to give a fiberwise oriented generalized Morse function which
is framed on the birth-death set.

The bundle E, = E}"™(&,n) is obtained from D™ x D™(n) x I by attaching two handle with
cores of dimension n — 1 and n. This means it has a fiberwise Morse function f : E;, — I which
is equal to the projection map to I in a neighborhood of the bottom D™ x D™(n) x 0 and sides
d(D™ x D™(n)) x I. Furthermore f will have two critical points over every point ¢ € L. These
critical points ¢, y; have index n — 1 and n respectively. The vertical tangent bundle of E, splits as
"1 @ (n @ €') along the section x; of E where the trivial n — 1 plane bundle "' is the negative
eigenspace of D2 f; along ;. The vertical tangent bundle of Ey, along y; splits as & ® (1o @ €') where
the homotopically trivial £ is the negative eigenspace bundle.

Along 9y L, the bundle £ is trivial and the handle corresponding to ¥, is in cancelling position
with the handle corresponding to x; since they are both standard linear handle along dyL by
construction. This implies that these critical points can be cancelled along a birth-death set of
index n — 1. Since the negative eigenspace bundle ¢ is trivial along this set, this is a framed birth-
death set. The new singular set 3(f) is now a g-manifold with boundary lying over 0, L. It has a
framed birth-death set and Morse sets in two indices X, (f) and X, _1(f). The descending bundles
are &,_1 = €1 and &, = €. These are oriented bundle since they are homotopically trivial. Also
the cellular chain complex is trivial at every point. Therefore, by the Framing Principle, the higher
relative IK torsion of E7"™(&,7) is

T (EP™(€,m), D™ x D™ () x I) = (—1)"chay,(€) € H*(L, 00 L; R)

From this fiberwise oriented generalized Morse function we can construct a fiberwise oriented

generalized Morse function F on E7"™ (M, \,€) = (M —T) x I U E;, by taking projection to I on
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the~ﬁrst piece (M —T') x I and f on the second piece Er. The singular set of F' is the image under
D()) of the singular set of f. Consider the following commuting diagram.

Sa(f) —S= 3(f) 22w ()
N0 )b
L B

This implies that the image of the push-down of the chern character of £ along the map p is equal
to the image of the chern character of £ under A. So, by the relative Framing Principle, we have

TI(EY™ (M, A, €), M) = (—1)"p.(char(€)) = (—1)" Au(char(€))

as claimed. O

3. MAIN THEOREMS

There are two main theorems in this paper. The first concerns the set of possible higher torsion
invariants of exotic smooth structures on smooth manifold bundles.

The second theorem is that, rationally stably, the immersed Hatcher construction gives all
possible exotic smooth structures on smooth manifold bundles with odd dimensional fibers. This
is a combination of the following two theorems. First recall from Appendix [B] that

Wogg’ao ® R = @ 4k M M81B7 R)
k>0

and the image of an exotic smooth structure M’ on M is denoted
On (M) =O(M', M) € @ Hy_sp(M, My, 5; R)
k>0
and we call it the rational exotic structure class.
Theorem 3.0.5. When the fiber dimension is odd, the rational exotic structure class ©(M', M)
given by the immersed Hatcher construction Eﬁ’m(M,)\,f) is the image of the Poincaré dual of

twice the normalized chern character of § under the map in homology induced by the embedding
A (L,alL) — (M, M81B)

M@ H™(L,00L) = @ Hyar(L, 1 L) — @) Hy—ar(M, My, )
k>0 k>0 k>0
Thus:
O(M', M) = (~1)"\.(2¢h(£))
where Eﬁ(g) = k0 E\H4k(§) as defined in Remark [L.Z.3

Remark 3.0.6. By definition of the normalized chern character, the exotic structure class ©(M’, M)
lies in the image of

P Hyax (M, My, ; (2k + 1)Q)
k>0

In particular, ©(M’, M) is a scalar multiple of an integral class in every degree.
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Proof. The proof will show the commutativity of the following diagram which is a slightly stronger
statement:

(=1)"2ch

///\

G(L, L) — 7083 5 (E) Dyoo Hy—ar(L, L)

top B} (. 1K
~ lD(S\)* - A
top BT (M,\,— Ase

ﬂ-ogg,a() (M) [} @k>0 Hq_4k(M7 MalB) D > ®k>0 Hq—4k; (B, 813)

The middle portion can be expanded into the following diagram where £ = D™ x pm(n) is the disk
bundle over L which is diffeomorphic to a tubular neighborhood of the image of A : L — M.

PRI

Wogf,ao(E) TE WOrL,aoH%(E) Ton Diso Ho-ar(E, Eoy) = Dr0 Ho-an(L, 01 L)

D@*l l L A

TS 5, (M) L ol B0 H o (M) Sl Di~o Hy—arx (M, Mp,)
Om

The straight horizontal maps in the second diagram are isomorphisms of vector spaces after
tensoring with R and the vertical maps are all induced by A\ : L — B, A : L — M and D(}) :
E — M. The left hand square commutes by the stratified smoothing theorem (Corollary [A.5.19)).
The square in the middle commutes by the stratified homotopy calculation (Corollary [B.4.2]). The
triangle on the right commutes since it comes from a commuting diagram of spaces. The composition
of the top three arrows is equal to 7'¥ by normalization of §z (Proposition [B:2.3). The bottom
curved triangle commutes by definition: ©j; := 670vs. Therefore, the second diagram commutes.
So, the middle quadrilateral in the first diagram commutes.

If we look at the top of the immersed Hatcher handle we get an element

top(E:L_’m(M, 5‘7 é)) € g%,@g (M)

which, by construction is the image of the Hatcher disk bundle top(E}"™(E,0,§)) € g}j o, () under

the stratified map S 1.00(E) — §fB g, (M). By Corollary 2225 and Proposition [B.2.3] the composition
of the horizontal mapping on the top row of the first diagram gives the higher IK torsion invariant
of the top E’ of the h-cobordism bundle E'""(E, 0,£)

PR (E) = (~1)"26h(c)
since the bottom of E is a linear disk bundle over L. The theorem follows. O

Proposition 3.0.7. The vector space @~ Hq—ar(M, My, p;R) is spanned by the images of the
possible maps

G(L,0L) — € Hy—sx(M, Mp, 5; R)
k>0

given by X, o (—1)"2;:\5 = O otop B (M, X, —) in the theorem above.
This proposition is proved below using the Arc de Triomph construction.

Theorem 3.0.8. When the fiber dimension N of M — B is odd and B is oriented, the higher 1K
relative torsion of an exotic smooth structure M’ on M over (B,dyB) is given by

(M, M) = p,O(M', M).
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the image of the rational exotic smooth structure class ©(M', M) under the push-down mapping ps
as indicated in the following commuting diagram.

ﬂ-ogg,a() (M) [ @k>0 Hq_4k(M7 MalB) D > ®k>0 Hq—4k; (B, 813)

T

1K

Proof. The map p, is R-linear, and Theorem [3.0.5] and Proposition B.07 above say that the im-
mersed Hatcher construction gives generators for mSj o) (M) ®R = @o0 Hg—ar(M, My, p) and
ps sends these generators to their higher relative IK-torsion. The theorem follows. O

We have the following immediate corollary.

Corollary 3.0.9. If M is a smooth bundle over B and both fiber and base are oriented manifolds
with odd fiber dimension N > 2q + 3 then the possible values of the higher IK-relative torsion
TIK(M', M) for M' an exotic smooth structure on M which agrees with M over 9yB will span the
1mage of the push-down map

pe - @ HNTH (M, 00M;R) — @D H*(B, 00 B; R)
k>0 k>0

where oM = Mp,p U 0"M.

Remark 3.0.10. By Remark B.0.6] we recover the theorem first proved in [22] that the higher IK-
torsion lies in the image of

P B (B, 9oB; ((2k + 1)Q)

k>0

Corollary 3.0.11. Theorem [3.0.8 also holds in the case when the fiber dimension is even.

Proof. If M, M’ — B have even dimensional fibers then M’ x I, M x I — B have odd dimensional
fibers and we have:

M M) =M x I,M x I) = p,OM' x I,M x I) = p,0(M' M)

by Theorem B8 since both 7% and © are stable invariants. O

3.1. Arc de Triomph 2. Proposition B.0.7] follows from the Arc de Triomph construction and
the stratified deformation lemma B2l The Arc de Triomph construction is an extension of the
Hatcher construction which rationally stably produces all exotic smooth structures on a compact
manifold bundle. The stratified deformation lemma shows that each AdT construction can be
deformed into an immersed Hatcher construction.

We explained the basic construction in subsection 2.1l It only remains to describe the full
construction and prove the following theorem.

Theorem 3.1.1 (Arc de Triomph Theorem). The AdT construction gives virtually all stable exotic
smooth structures on a compact manifold bundle with odd dimensional fibers.

Remark 3.1.2. If M — B is a smooth bundle whose fibers are even dimensional, the AdT construc-
tion rationally stably produces all exotic smooth structures on M x I — B. By definition these are
stable smooth structures on M — B. So, the theorem implies that the AdT construction produces
virtually all stable smooth structures on all compact manifold bundles.
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3.1.1. AdT construction. The Arc de Triomph construction goes as follows. Suppose that M — B
is a smooth manifold bundle over a compact oriented g-manifold B with odd fiber dimension
N = n+m where m > n > q. Suppose 0B = 0yBU 0, B where JyB, 0; B meet along their common
boundary. Then we will construct an element of §]s3 a8 M).

Definition 3.1.3. By a stratified set over B with coefficients in X we mean a pair (X,) where
> is a compact smooth oriented ¢ manifold together with a smooth mapping 7 : ¥ — B sending 0%
to OB and ¢ : ¥ — X is a continuous mapping so that 7 : ¥ — B has only fold singularities and
the singular set 3¢ is a ¢ — 1 submanifold of ¥ transverse to 0X. Let ¥4 and ¥_ be the closures
of the subsets of ¥ — ¥y on which the map 7 : ¥ — B is orientation preserving and orientation
reversing, respectively. Thus X_ NY¥4 =Yg and X_ U X4 = 3.

We say that (X,1) is a stratified subset of a smooth bundle M over B if ¥ is a smooth
submanifold of M and w : ¥ — B is the restriction of p : M — B.

Let SDé(’aO (M) be the set of stratified deformation classes of stratified subsets (X,v) of M
over B with coefficients in X so that 7X is disjoint from JyB. By a stratified deformation of
stratified subsets (X,1) ~ (X/,v) of M we mean a stratified subset (L,p) of M x I over B x I
with coefficients in X so that the image of ¥ x I in B x [ is disjoint from JyB x I and so that
(3,9), (X',9) are (M, ¢) restricted to B x 0, B x 1 respectively.

The coefficients that we are interested in are X = BSO, classifying oriented stable vector bundles
over ¥ and X = G/O = SG/SO classifying vector bundles with homotopy trivializations of the
corresponding spherical fibration. This latter is the input for Hatcher construction and the Arc de
Triomph construction will be a mapping

G/O s
AdT = SD/R (M) = 8 5, (M)

The claim is that this map is rationally split surjective. In other words, rationally stably, all exotic
tangential smoothings on M are given by the construction that we will now give.

The idea of the construction is to attach negative Hatcher handles along 3 and positive Hatcher
handles along ¥, and have them cancel along y. The map ¢ : ¥ — G/O gives the bundle £ in
the Hatcher handle.

Suppose that m > n > g and M — B is a smooth bundle with fiber dimension m + n which we
assume is odd (2¢ + 3 is the minimum). Suppose we have a stratified subset ¥ C M with coefficient
map 1 : 3 — G/O. This gives a stable vector bundle £ over X. Let n be the unique m-plane bundle
over . isomorphic to the pull-back of the vertical tangent bundle of M and let n_,ny,no be the
restrictions of 7 to %_, 3, ng. Then we have an embedding

D(’ﬁ'+) : D" x Dm(?']+) — M

lying over the restriction 7 : ¥y — B of m to X;. This gives a tubular neighborhood of X,.
Replacing + with — we get D(7_) lying over w_ giving a thickening of ¥_. The embeddings
D(7y) and D(7_) are disjoint except near ¥g. To correct this we move D(7_) slightly to in the
fiber direction near Xy so that the images of D(7) and D(7_) are disjoint everywhere. We do this
move systematically by moving in the direction of, say, the last coordinate vector e, in D"™. The
result will be that the image of D(7_) will no longer contain ¥_ close to X.

Do this in such a way that there is an embedding

D(ﬁ'o) : D™ x D(T]o) — M

So that D(7_)(z,y) = D(fro)(%(x +en),y) and D(74)(x,y) = D(ﬁo)(%(:n —éen),y). Or, start with
embedding D(7y) and move the mappings D(7y), D(7_) vertically (along the fibers) so that they
land in the two halves of the image of D(7() as indicated.
Take the bundle M x I over B and, using the map D(7;) we attach the positive Hatcher handle
B™™(&,my) along its base 9y B™"™(&,m+) = D™ x D™(n4) x 0 to the top M x 1 of M x I. Then we
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attach the negative Hatcher handle A™™ (&, n_) to the top of M x I using the composite map

B¢ 5-) T D" x D™ (n-) 25 M
Since the images of D(74) and D(7_) are disjoint, these attachments are disjoint.

Over 7(X() we have a positive and negative Hatcher handle attached on the interior of the image
of D(7g). Next, we slide the attachment map for the negative Hatcher handle until it “cancels”
the positive Hatcher handle. It is very easy to see how this works. Over g the negative Hatcher
handle A™™(&,ng) is attached along its base dg A™™(&,n9) = E™™(&,m9) and the positive Hatcher
handle is

Bn’m(§7770) = D" x Dm(TIO) Unx1 En’m(§77]0) X [172]

We can slide the base of E™"™(&,n9) of A™™(&,n9) along the top of the M x 1UB™™ (£, n;.) until it is
equal to E™™(&,n9) x 2 C B™™(&,m9). We can do this in a precise way since we are working inside
of the model which is the image of D(7g) in M x 1. We extend this deformation to A™" (£, n-).
Then we will have the desired bundle over B whose fibers are h-bordisms with base equal to the
original bundle M. We call this new bundle W (X, ) (suppressing n,m):

W(E,¢) =M xTUB™™(&ny)UA"™ (€ n-)

To be sure, we need to round off the corners. And we also need to taper off the cancelling Hatcher
handles along ¥¢. But, along ¥, the two Hatcher handles cancel and we have a local diffeomorphism
of W(X,4) with M x I near ¥y. Using this diffeomorphism we can identify W with M x I along
this set and we have a smooth bundle over B. The local diffeomorphism exists by Proposition 2.3.4]
The reason that we have a bundle at the end is because, in a neighborhood of the AdT construction
along Yy we either have two Hatcher handles, which are a smooth continuation of what we have
at X or we have M x I locally (which means we are only looking at the portion in the image of
D(7p)) and there we are using the diffeomorphism given by Proposition 2:3.4] to identify M x I
with the M x I with the pair of Hatcher handles attached. So, we have local triviality and thus a
smooth bundle. W — B. Let

AdT (3, 1) = top(W (2, )

with tangential homeomorphism given by W. If we have any deformation of (X,1) then we can
apply the same construction to this stratified set over B x I and we get a isotopy between the two
constructions showing that AdT(X,v) changes by an isotopy. Thus we get the following lemma.

Proposition 3.1.4. The AdT construction as described above gives a well defined mapping
AdT = SD/R (M) — 185 5, (M)

from the set of stratified deformation classes of stratified subsets (3,1) of M with coefficients in
G /O to the space of stable tangential smoothings of M. Furthermore, this mapping is a homomor-

phism of additive groups where addition in SDg/ CS(M ) is given by disjoint union and addition in

ﬁoggﬁo (M) is given by the little cubes operad on the stabilization.
Proof. 1t is clear that S Dg/ a(g (M) is a monoid with addition given by disjoint union using transitivity
to make any two stratifies subsets of M disjoint by a small perturbation. We also have additive
inverse given modulo 2 by changing the orientation of 3 which switches X_ <> ¥,. By “modulo
2” we mean that the sum of (3,v) with (3,v) with the orientation of ¥ reversed is an element of
order 2 (twice of it is zero). The proof of this is as follows.

If we add ¥ with another copy ¥’ having ¥ and Y reversed then we can cancel the interiors of
¥ _ with its copy ¥/, which has orientation + producing a fold line ¥, and similarly for ¥ cancelling

25



its copy X’ along ;. This leaves a small tubular neighborhood of Yy having a cross-section in the
shape of a figure 8:
i
Yo —— X

Sy 5

Yo b

Since the width is arbitrarily small the bundle data &, 7 only changes along the length of 3y not
along this cross section. This cannot be cancelled since it has an odd number of crossing in the
picture. (There is no actual intersection.) However, two copies of this stratified set will cancel since
it is equivalent to its mirror image. The two copies can simply be merged together.

To show that the mapping AdT is additive, we take two smooth structures 61, 65 on the stabilized
M x D=1 x I which by the stabilization construction are equal to the original smooth structure on
(M x D=1y x TUM x D**~1 x 0 and on the complements of E1 x D* and E; x D?¥ respectively.
By transversality, these two subsets, the supports of the two exotic smooth structures are disjoint.
Therefore, by Proposition [AL5.10] 6; + 05 is given by changing the smooth structure of both E; and
E5. This show that SdT is additive. O

Remark 3.1.5. The proof above shows that the inverse of (3,v) € SDG/O(M) is given by (X', 1))
which is (3, v) with the orientation of ¥ reversed plus an element of the form (X0,%0) x F where F'
is the “figure 8” one-dimensional stratified set in the diagram above (in the proof of Lemma B.1.4)).

Proposition 3.1.6. If ¢ : ¥ — G/O is trivial then so is AdT(X,v). Therefore, AdT induces a
homomorphism

AdT : 5D/,

Where S—Dg{a (M) is the quotient of SDG/O( M) by all (3,v) where 1 is null homotopic.

o (M) = 1083 5, (M)

Proof. 1If v is constant then the positive and negative Hatcher handles in the Arc de Triomph
construction are standard disk bundles and attaching these to the top of M x I will not change its
fiber diffeomorphism type. g

3.1.2. Homotopy calculation. To prove Theorem [B.I1.1]l we need calculations in the form of more
commuting diagrams.
Let .
ch = SD$/5 (M) — € Hy-an (M, 0, M)
k>0
be the mapping given by sending (3,%) to the image of the normalized chern character of the
bundle £ under the mapping

c@PHE* ) =P Hp-ai(2,05) = J*@ _a(M, 0, M)

induced by the inclusion j : (3,0%X) — (M,01M). Since ¢ is an oriented bundle, the Framing
Principle applies to prove the following.

Lemma 3.1.7. The following diagram commutes where 75 = ZT% is the total IK-higher torsion.

S—DB,ao(M) 7705183,60(]\/[) @k>0 Hq—4k(M’ M81B) e @k>0 Hq—4k(Ba 61B)

AdT
(=1)"2ch TiK

This assumes that n+ m is odd. Homology and cohomology have coefficients in R.
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Although we claim that the Framing Principle implies this lemma, we don’t need to verify it

since this lemma follows from the next lemma.
Lemma 3.1.8. FEvery element of S—Dg{g)(M) s in the tmage of a homomorphism
——=G/0O
S5 : G(L,8L) — 5Dy (M)

where X : (L,81L) — (B,d1B) is a codimension 0 immersion covered by an embedding X : L — M
which makes the following diagram commute.

—1)"2¢ch
G(L, L) - Do Hyax(L, 01 L)

Eil W_) /
X

G/0 ST Wogfgﬁo (M) @k>0 Hq—4k(M’ M81B)

SDga,(M)
\/

(=1)™2ch

Proof of Lemma [3.1.7 First we note that both maps coming out of SDg/ 8(3 (M) factor through

S—Dg/ g)(M ). Each element then lifts to G(L,0yL). Next we chase the diagram at the beginning

of the proof of Theorem B.0.5] to show that the two images of this element in @ H,_4,(B,01) are
equal. The diagram in Lemma [3.1.8 above shows that the two images obtained are the same as the
two images in the diagram of Lemma [B.1.7] which we are proving. O

Proof of Lemma[Z 1.8 The mapping X5 takes a map & : L — G//O which is trivial over doL and
produces a stratified subset
E5(8) = (5,9)

where ¥ is two copies of L, thus X_ =2 ¥, = [, glued together along 9y and embedded in M using
two small perturbations of the embedding A : L — M. The mapping psi is equal to £ on ¥ and is
trivial on X_. Since 1 is trivial on X_, the negative Hatcher handles in W (X, ) are standard disk
bundles. So, the bundle AdT'(X,) will not change if we remove these “trivial” Hatcher handles.
The result is then equivalent to the immersed Hatcher handle. This shows that the triangle in the
diagram commutes. Commutativity of the (curved) square follows from the definition of ch(§) on

S Dg/ aoo > hamely that it is the push-forward along the embedding D(X) : E — M of the normalized
chern character of £ as a bundle over L.

It remains to prove the elementwise surjectivity statement. This follows from the stratified
deformation lemma [3.2.T] whose proof we leave until the end. This lemma shows that any stratified
subset (X,%) of M can be deformed so that every component of X_ is contained in a disjoint
contractible subset of . Then we can deform v so that it is constant on each component of > _

and therefore also on ¥y. Then let (L,0yL) = (X4,%0) and let A : L — B be the map 74 : ¥y — B.
Let X : L — M be the inclusion map of ¥;. Then we claim that the image of (3,1)) in S—Dg’/aoo(M)
is equal to the image ¥5(£4) of & = ¢[X 1 € G(L,0pL). Since we started with an arbitrary element

of SDg/ aoo (M) this will prove the lemma.

To see that (3,7) and X5(&4) are equal in S—Dg((Z(M), we just take the difference ¥5(£4) —
(3,7). The negative of (X,1) given in Remark is (X,¢) + (X0,%0) X F where ¥/ is ¥
with orientation reversed. But v is trivial on ¥y. Therefore, the second summand is trivial. So
Y5(&4) — (B,9) = B5(64) + (X', 9). But then, ¥ = X has the same G/O coefficient map as
35 (&4) has on its positive part. Therefore, the interior of the negative part of X’ cancels the interior
of the positive part of ¥5(£;) by a stratified deformation. The result has trivial coefficient map to

G/O and therefore is trivial in S—Dg/ (Z(M ) as claimed. O
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3.1.3. Proof of the AdT Theorem. The Arc de Triomph Theorem BTl will follow from the following
first version of the theorem.

Lemma 3.1.9. The mapping
G/O 2ch
SDB,/ao (M) - @ Haim p—ax (M, 01;R)
k>0

is rationally surjective in the sense that its image generates @y~ o Haim —ar (M, 01;R) as a vector
space over R.

Proof. Consider the bundle M x I — B and consider an arbitrary fiberwise generalized Morse
function f: M x I — I which agrees with the projection map over dypB and in a neighborhood of
the vertical boundary. Thus f = pr; on the set

A=0,M xTUM x{0,1}

Let X(f) be the fiberwise singular set. This is a stratified subset of M x I disjoint from the set A
since the projection to B has only fold singularities and the Morse point set which are the regular
points of the projection X(f) — B are stratified by index i. We will use just the sign (—1)* making
3+ into the set of Morse points of even index and ¥_ the set of odd index Morse points of f. It is
important to note that X(f) is a manifold with boundary and 0X(f) = X(f) N My, g x I.

The singular set is the inverse image of zero under the vertical derivative D¥(f) of f and therefore
a framed manifold with boundary. (Add the vertical normal bundle to see the framing.) Since the
space of all smooth functions on M x I equal pr; on A is contractible and contains a function
without critical points, this framed manifold is framed null cobordant and represents the trivial
element of the fiberwise framed cobordism group of M relative to My, g which is moI'p 9,QB(M)
where Qp(M) is the bundle over B with fiber Q(X4) = Q®°X>°(X,) over b € B if X is the fiber
of M x I over b.

The negative eigenspace of D?(f) gives a stable vector bundle ¢ over X(f). So X(f), together
with & gives a stratified subset of M x I with coefficients in BO = colim BO(k). Since %(f) is a
framed manifold with boundary which is framed null cobordant when we ignore this vector bundle,
we get an element of the kernel of the map from the fiberwise framed cobordism group of BO x M
to that of M. This kernel is my of the fiber of the map:

vl PB730QB(BO X M) — PB,{)OQB(M)

In [18], it is shown that the space of generalized Morse functions on a manifold X is dim X-
equivalent to Q(BO A X ;). If we apply that theorem fiberwise, we get that the space of fiberwise
generalized Morse functions on M x I has the n + m — ¢ homotopy type of the fiber of the map ~
above.

However, it is a standard homotopy argument to show that there is a split surjection

Q(BOAX.) — Q®°(BO A Xy)

which is rationally equivalent to the homology of X in every 4th degree since BO is rationally
equivalent to [[,.q K (Z,4k). Therefore, mo(fiber(y)) has a split summand which is rationally
isomorphic to the group:
H := @ Hq—4k(M7 M61B; Q)
k>0

by the basic homotopy calculation (Corollary [B.22.2)) of Appendix [Bl

This implies that a set of generators for the vector space H @R is given by taking the normalized
chern character of all possible stratified sets (£,¢) € S Dg%o (M xI) given by all fiberwise generalized
Morse functions on M x I fixing the subspace A. Using the fact that the group J(X) is finite with

order, say k, we know that J(¢F) = 0 in J(X) and therefore lifts to a map ¥ — G/O. So, these
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various stratified sets (X, &F) € SDg/ 800 (M x I) will have normalized chern characters generating

the vector space H ® R as claimed. ]

Lemma 3.1.10. The following diagram commutes

SDG/S (M) ————> w08}, 5, (M) —5> Bjsg Hy-ax(M, Moy, p)

(=1)"2ch
where © : M' — ©(M', M) gives the rational exotic structure class of M'.

This lemma proves the Arc de Triomph Theorem B. I T since we just proved in Lemma [B.T.9 that
the normalized chern character is rationally surjective and we know by the smoothing theorem that
O is a rational isomorphism.

Proof. Take the diagram from Lemma [3.1.8 and add the arrow ©:

(=1)"2ch
G(LvaOL) @k>0 Hq—4k(L781L)
l W—)
25
25
SDB,/aO(M) - 085 9,(M) —g= Do Ho-ar(M, Mo, p)
(=1)™2ch

The outside curved square commutes by Theorem [3.0.5l The map X5 can be chosen to hit any
element of S—Dg/ aOO(M ) by the previous lemma. Therefore, the curved triangle at the bottom
commutes. This implies the lemma since the maps factor uniquely through S—Dg/ aOO(M )- O

3.2. Stratified deformation lemma. It remains to prove the following lemma which was used
to show that each Arc de Triomph construction can be deformed into an immersed Hatcher con-
struction.

Lemma 3.2.1 (Stratified Deformation Lemma). If the fiber dimension of M is > q + 2, then any

element of SDg/aOO(M) is represented by a stratified subset (X,1)) of M with the property that the
components of %_ are contained in disjoint contractible subsets of 3.

Proof. This is the same proof which appears in [19] on page 446-447 with five figures and in [23] on
page 73 with one figure. We repeat is here since the statements are not the same, only analogous.

The dimension hypothesis implies that all deformations of ¥ in M can be made into isotopies
of smooth embeddings over B by transversality. So, we will not concern ourselves with that point.

Suppose that 9;B is empty. Then we will deform any (X, ) into the desire shape. When 0, B
is nonempty, we double B along 0; B and double M along My, p and similarly for (X,). Then do
the deformation Z/2 equivariantly. The fixed point sets of the Z/2 action on the new B and new
M are the original 0; B and My, .

First choose an equivariant triangulation of >_ so that the fixed point set is a subcomplex and
so that each simplex maps monomorphically into B. Then we will cut apart the set >_ by deleting
a tubular neighborhood of each simplex starting with the lowest dimension. If we let S denote
what is left of the original set ¥_, then, at the end, the set S will be a disjoint union of g-disks.

At each step in the deformation, a new component of ¥_ will be introduced which will be
contained in a ¢-disk subset of ¥ which is disjoint from S and from all the other ¢-disks. Each
step of the deformation will be Z/2 equivariant and will alter the set X only in an arbitrarily small
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neighborhood of the set S. Consequently, the ¢-disks containing the new components of »_ will
not be touched.

The deformation starts with the vertices of S = X_. Let v be a vertex in the interior of S. Then
we can introduce a “trivial lens” (L,%) in M near v. By definition, this is an embedded ¢ sphere
in M which is the union of two ¢-disks L = L_ U Ly so that the projection map L — B has fold
singularities along L1 = L_ N Ly and so that the interior of each ¢ disk maps diffeomorphically
onto an open neighborhood of p(v) in B. Choose the map v : L — BO to be constant and equal to
¥ (v). Then we can cancel a small neighborhood of v in S with a small neighborhood of the center
point of L. This changes S in the desired way and introduces a new component of > which is a
g-disk.

Suppose by induction that the m — 1 skeleton of S has been removed where m > 1. Let D™ be
an m-disk embedded in S with boundary Sm=1 C 9S. In order to eliminate D™ we need another
m-disk A embedded in ¥ so that the projections of A and D™ to B are equal and so that D""UA™
forms a lens. We need to construct this disk.

Let S ! be a sphere in the interior of ¥, which is parallel to S™ 1 and lies over the image
of D™ in B. Over that sphere, we create a “tube” T', a product of an m — 1 sphere with a trivial
lens of dimension ¢ —m + 1. Then T_ = T, = §™~1 x D4+ The mapping to BO should agree
with w]Slm_l. Then we can cancel a tubular neighborhood of S~ ! with a tubular neighborhood
of the core S™~! x x of T_. Then the new component C of ¥._ will be a collar neighborhood of the
boundary of S™~! x Di—m+l.

Cxgm1lxgi—myr

This has two boundary components. The outer boundary component S™~! x 9= x 1 will also
be the boundary of Ty = §™~! x DI~™+l and C is an external collar for 7, making T U C' =
T, =2 8™~ 1 x DI=™*1 We can make this set contractible by adding an m-disk A_. To do this we
use the disk D™ C S as a path along with to embed a disk A with map to BO given by ¢|C™ and
use this to do surgery on S™ ! x % x 0 on the inside boundary component of C. This performs a
deformation of (X,1) which makes the new component of ¥_ together with T into a disk and the
new Y, contains an m-disk Ay which, together with D™ forms a lens which can be cancelled.
When D™ lies in the fixed point set, this can be done equivariantly and when D™ is not contained
in the fixed point set, it will be disjoint from it and this can all be done away from the fixed point
set and the mirror image of D" can be eliminated in the analogous way making the deformation
Z/2 equivariant in both cases. Thus the deformation works as promised, proving the lemma. [

This completes the proof of all the theorems in this paper.

APPENDIX A. SMOOTHING THEORY

This paper has two appendices. The first is an exposition on Dwyer-Weiss-Williams smoothing
theory as outlined in the short notes of Williams [28], the second explains the homotopy calculation
needed to convert the DWW homotopically defined smoothing invariant into a cohomology class.

The important results explained in Appendix[Al Smoothing Theory are the following

e (Theorem [A.5.14]) The space of stable tangential smoothings of a compact manifold bundle
is homotopy equivalent to the space of sections of the corresponding H” bundle.

1 = S 0,8(M) = T a5 HE(M)
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e (Corollary [A5T9) If X : (L,0,L) — (B,01B) is a codimension 0 immersion covered by a

codimension 0 embedding of bundles D()\) : E — W then we get a commuting diagram:

TE
7 oon(B) —==TLa "] (E)

| |

o Y™

B.005(M) —= Lo, HE (M)

Appendix [Al is divided into five parts:

(1) Spaces of manifolds. We describe the smoothing problem as the homotopy fiber of the
forgetful mapping from the space of smooth manifolds to the space of topological manifold.

(2) The functor EM . Since every microbundle contains a Euclidean bundle, every paracompact
topological manifold M has a tangent Euclidean bundle EM.

(3) Linearized Euclidean bundle V M. This is a vector bundle which is topologically equivalent
to the tangent Euclidean bundle EM. l.e., VM is EM with additional structure making it
into a vector bundle. By classical smoothing theory, this additional structure exists if and
only if M is smoothable. If M is smooth, then we can take VM to be the usual tangent
bundle T'M.

(4) Tangential smoothing. This refers to a homeomorphism f : My — M; between smooth
manifolds together with a vector bundle morphism T'f : T'My — T M7 between their tangent
bundles which is compatible with the topological derivative Ef : EMy — EM;. There is
also an equivalent formulation given by a continuous family of topological manifolds M;,t €
[0, 1] which have linear Euclidean bundles V M, so that V. My = T My and V My = T M.

(5) Smoothing theorems. After stabilization, the core of a linearized topological bundle has a
unique smoothing up to contractible choice compatible with the linearization. Furthermore,
the linearization extends uniquely up to homotopy to the complement of the core which
is an internal fiberwise collar for the bundle. This finally leads to the main smoothing
theorems as explained above.

A.1. Spaces of manifolds. First we recall the basic construction which is that a compact topo-
logical /smooth manifold bundle M — E — B is equivalent to a mapping from B to the space
of topological/smooth manifolds which are homeomorphic/diffeomorphic to M. This leads us to
consider two spaces of manifolds: topological manifolds and smooth manifolds and the homotopy
fiber of the forgetful map
¢ Sd(n) = Si(n)

which is the space of all smoothings of a fixed topological n-manifold. We also need one other space
of manifolds: topological manifolds with linear structures on their tangent Euclidean bundles. We
will discuss this after we recall the theory of Euclidean bundles in the next section.

A.1.1. Topological manifolds. Let S*(n) be the set of all compact topological n-submanifolds of R>
so that
(M,0M) C ([0,00) x R*,0 x R*)

This condition allows us to attach a canonical external open collar C' = M x [0,1) C [0,1) x R*.
Instead of defining a topology on the space S*(n) we will take the easy approach of making it into
a simplicial set. So, let St(n) be the simplicial set whose k-simplices are continuous A* families
of compact topological n-manifolds M;,t € A*. By a continuous family we mean a mapping
f: A¥ — S*(n) with the property that its adjoint

W ={(t,z) € Al x R® |z € M} C AF x R®

is a fiber bundle over A* with fiber f(t) = M;.
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There is a tautological bundle over the geometric realization |S.(n)| whose fibers are compact
n-manifolds embedded in R*°. The inverse image of a simplex is the corresponding manifold W
given above. Since this bundle contains all possible W, it is universal, i.e., any compact n-manifold
bundle p : E — B over a triangulated space B is classified by a mapping B — S%(n) which is
continuous on each simplex of B in the above sense. Therefore, we get a simplicial map

simp B — St(n)

from the set of simplices of B to Si(n) which sends a k-simplex o to p~!(0) € Sk(n) (assuming
that a fiberwise embedding F < B x R has been chosen). This proves the following well-known
theorem where Homeo(M) is the group of homeomorphisms of M with the compact-open topology.

Theorem A.1.1. The geometric realization of S(n):
|SL(n)| ~ H BHomeo(M)

18 the disjoint union over all homeomorphism classes of compact n-manifolds M of the classifying
space of Homeo(M). O

A.1.2. Smooth manifolds. We define a smoothing of a topological manifold M without boundary
to be continuous mapping « : M — R*>° whose image is an immersed smooth submanifold. We call
«a an “immersion”.

Definition A.1.2. If M is a topological manifold and N is a smooth manifold we define an
immersion to be a continuous mapping « : M — N so that for every x € M there is an open
neighborhood U of x in M so that « is an embedding on U with image «(U) a smooth submanifold
of N with smooth boundary. If M, is a family of topological manifolds without boundary forming
the fibers of a bundle W — B over a smooth manifold B then by a family of immersions we mean
a continuous family of maps oy : My — N giving an immersion o : W — N x B.

If U is an open subset of the interior of a topological manifold M we define a smoothing of U to
be an immersion o : U — R>*. We defined a smoothing of a closed subset A of M to be the germ of
a smoothing of a neighborhood of A in the interior of M. Thus a smoothing of A is an equivalence
class of smoothings in open neighborhoods of A where two such smoothings are equivalent if they
agree on a third smaller neighborhood of A. When we pass to manifold bundles we always define
these open neighborhoods to be uniform open neighborhoods meaning they are open subsets of the
total space of the bundle.

If M is a manifold with boundary then we define a smoothing of M to be the germ of a smoothing
of a neighborhood of M in M’ = M UC where C' = 9M x [0, 1) is the standard external open collar
for M. Smoothings of closed subsets of M are defined similarly.

The key point about this version of the definition of smoothing is that it is clearly excisive in
the following sense.

Proposition A.1.3. If M is the union of two closed subsets M = AU B, then a smoothing o of
M is the same as a pair of smoothings aa,ap for A and B which agree on AN B.

Proof. The smoothings a4, ap are given by immersions on neighborhoods of A, B in M’ which
agree on the intersection. This gives an immersion defined on a neighborhood of M in M’. O

Let S%(n) be the set of all pairs (M, o) where M is an element of S*(n), i.e. a compact topological
submanifold of R> and « is a smoothing of M. Let S&(n) denote the simplicial set whose k-simplices
are pairs (W, ) where W € S(n) and a : W — R* x B is an immersion over B.

Note that there is a simplicial forgetful map

p:8i(n) = Sin)

which is given in every degree by projection to the first coordinate: (W, a) = W.
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Theorem A.1.4. The geometric realization of Sd(n):

|84 (n)| ~ [ BDiff (M)

is the disjoint union over all diffeomorphism classes of compact n-manifolds M of the classifying
space of the group Diff (M) of diffeomorphisms of M with the C*° topology. O

Our definition of smoothing also gives us an exponential map
par : TM — M’

defined in some neighborhood U (M) of the zero section of the tangent bundle TM C M xR*°. This
is given by the inverse function theorem as the second coordinate of the inverse of 7w : M x M' — T M
given by 7(z,y) = 7 (a/(y) — a(x)) where 7, is orthogonal projection to the tangent plane to (M)
at a(x) translated to the origin.

A.1.3. Homotopy fiber of . Given a single topological manifold X, the space of smoothings a of
X is homeomorphic to the space of all pairs (X, a). This is the same as the inverse image of X
(and its degeneracies) under the simplicial forgetful map ¢ : S¢ — S.. An elementary argument
shows that this space is the homotopy fiber of the simplicial map . More generally, the space of
smoothings of a continuous AF family Wy of topological manifolds is homotopy equivalent to the
space of smoothings of Wy which we define as follows.

Definition A.1.5. Suppose Wy is a A* family of topological n-manifolds, i.e. (Wy — A¥) € St (n).
Then, a smoothing of Wy is defined to be a pair (W, a)) where

(1) W is a continuous A¥ x I family of topological manifolds,
(2) W|A* x 0 = Wy,
(3) a is a smoothing of Wy = W|AF x 1.

Since W is topologically isomorphic to Wy x I, the space of smoothings of W} is homotopy
equivalent to the space of actual smoothings of W,. Homotopy smoothings have some additional
properties which we state without proof.

Let Sf/ d(n) denote the simplicial set whose k-simplices are smoothings (W, «) of k-simplices
Wy € Sl(n) as defined above. We have the following observation.

Proposition A.1.6. The simplicial forgetful map Sf/d(n) — Sd(n) sending (W,a) to (W1, a) is a
homotopy equivalence. ]

Proposition A.1.7. If X € S}(n) let Sf/d(X) denote the simplicial subset of Sf/d(n) whose k-

simplices are the smoothings of X x A*. Then |Sf/d(X)| 1s the homotopy fiber of the forgetful
map

]+ [Sd(n)| = [Si(n)]
over X € S{(n). O

More generally, given any topological manifold bundle Wy — B where B is a smooth manifold,
we define a smoothing of Wy to be a topological embedding o : Wy — B x R* over B whose image
is a smooth submanifold of B x R®. Smooth AF families of such embeddings form a simplicial set
which represents the space of all homotopy liftings of the classifying map B — |St(n)| to [Sd(n)],
in other words a point in the homotopy fiber of the map

[S2(n)F = |Se(n)|P.

We call this the space of fiberwise smoothings of Wy.
By a fiberwise smoothing of Wy we mean a pair (W, ) where W is a topological manifold bundle
over B x I which is equal to W over B x 0 and « is a smoothing of W|B x 1. Taking A* families we

can form a simplicial set which we call the space of fiberwise smoothings of Wy. As in Proposition
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[AT.6 it is clear that this space is homotopy equivalent to the space of actual smoothings of a
topological bundle. However, smoothings makes it easier to compare two different smoothings of
the same bundle.

Suppose that f : Wy — Wi is a homeomorphism between two smooth bundles over B. We can
construct the associated smoothing

W:W(]XIUfwl

where Wy is identified with Wy x I using the homeomorphism f. The problem is to determine
whether there is a smooth structure on W which extends the given smooth structure on Wy and Wj.
If f is smooth then we can take the smooth structure on W induced from Wy x I. Using our strict
definitions, this would be given by the family of smoothings h; = (1 — t)ag + tag o f : Wy — R
This will be a family of embeddings if we assume that the smoothings «; of W; have image in
linearly independent subspaces of R*, if not we can simply pass through a third smoothing with
this property.

Proposition A.1.8. Suppose that f : Wy — W1 is a fiberwise homeomorphism between smooth
bundles over B and suppose that f is homotopic through continuous fiberwise embeddings over B to
a smooth embedding. Then there is a smooth structure on the fiberwise interior of W which agrees
with the smooth structure on Wy and Wi.

Proof. The continuous image of the fiberwise interior of W; under a topological embedding f; :
Wy — Wy is a smooth manifold. Therefore, the image of f; gives the desired smoothing. O

In classical smoothing theory, a smoothing of a topological manifold is given by a lifting of the
tangent microbundle to a linear bundle. In other words, a vector bundle structure on the topological
tangent bundle gives a smoothing of a single manifold. This is not true for a topological manifold
bundle W — B. If we choose a vector bundle structure on the vertical topological tangent bundle of
the topological bundle W — B we have a further obstruction to smoothing. To study this question
we need to construct a third space of manifolds: compact topological manifolds with vector bundle
structures on their topological tangent bundles. We call these “linearized manifolds.”

A.2. The functor EM. A compact topological manifold M has a topological tangent bundle
m: EM — M

which is called the tangent Fuclidean bundle of M. The fiber 7~!(z) is homeomorphic to an open
ball neighborhood of z in M. This section gives the basic properties of Euclidean bundles in general
and the functorial properties of the tangent Euclidean bundle of a manifold.

A.2.1. Euclidean bundles. A Fuclidean bundle is a fiber bundle
. F— B

with fiber R"™ and structure group Homeo(R",0), the group of homeomorphisms of R" fixing 0
with the compact open topology. By a Fuclidean subbundle of E we mean an open subset Fy C F
which includes the zero section and which is also a Euclidean bundle. A morphism of Euclidean
bundles Ey — E; over B is a fiberwise open embedding which preserves the zero section, i.e., an
isomorphism of Ey with a subbundle of F;.

Lemma A.2.1 (Kistor). Let E — B be a Euclidean bundle over a finite cell complex B and let
Ey be a Fuclidean subbundle of E. Then Ey is fiberwise isotopic to E firing a neighborhood of the
zero section. IL.e., there is a continuous one-parameter family of Euclidean morphisms f; : Ey — E
which are the identity in a neighborhood of the zero section so that fy is the inclusion map and fi
18 a homeomorphism. O

Remark A.2.2. The conclusion of this lemma can be rephrased as saying that there is a Euclidean
subbundle of £ x I — B x I which is equal to Ey over B x 0 and equal to F over B x 1.
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Proposition A.2.3. If E, E’ are Euclidean bundles over B with isomorphic subbundles g : Eg =
E{, then there is an isomorphism ¢ : E — E' which agrees with ¢o in some neighborhood of the
zero section.

Proof. E = Ey =~ E| = E' by the lemma. O

Lemma A.2.4. Let E — B be a Euclidean bundle over a finite dimensional CW-compler B and
let Eqy be a subbundle of the restriction E|A of E to a subcomplex A C B. Then there is a Fuclidean
subbundle Ejy of E so that Ey = E{|A.

Proof. Assuming that we have constructed E{, over A U B* we can extend E{ to AU B**+1 one
(k + 1)-cell at a time using the lemma as rephrased in the remark. O

A.2.2. Microbundles. A (topological) microbundle over B is defined to be a space E containing B
with inclusion map s : B — E and retraction 7 : & — B so that B is covered by open subsets U
of E for which 7(U) = U N B and so that 7|U : U — U N B is a Euclidean bundle.

A morphism of topological microbundles Ey — E; over B is defined to be the germ along B of a
fiberwise homeomorphism f : Ey — F; which is the identity on B. Thus, f is only defined in some
neighborhood of B and any two such maps are equivalent if they agree on some neighborhood of
B in Eo.

Theorem A.2.5 (Kistor,Masur). Suppose that B is (the realization of ) a finite dimensional, locally
finite simplicial complex and m : E — B is a microbundle. Then E contains an open neighborhood
Ey of s(B) so that (Ey,s(B)) is a Euclidean bundle over B. Furthermore, Eqy is unique up to
1somorphism.

Remark A.2.6. This implies that any topological microbundle over B is microbundle isomorphic to
a Euclidean bundle which is uniquely determined up to isomorphism.

Proof. We can refine the triangulation of B so that each simplex is contained in one of the open
sets U. This gives a Euclidean bundle E, over each simplex o. Since B is locally finite and finite
dimensional we can choose the E, so that E, C E.|o for all 0 C 7. Then a Euclidean bundle E,
can be constructed over the n-skeleton of B by induction on n: Ej already exists. Given E,, we
can extend F, to each n + 1 simplex using Lemma [A. 2.4l This shows existence.

To prove the uniqueness, we take any two Euclidean bundles and use the above argument to
construct a third Euclidean bundle which is a subbundle of both. By Kistor’s Lemma [A.2.7] all
three Fuclidean bundles are isomorphic. O

Corollary A.2.7. If B is dominated by a finite dimensional locally finite simplicial complex (for
example a paracompact topological manifold) then any microbundle over B contains a Euclidean
bundle neighborhood of its section.

Proof. If B is a retract of a nice space X then any microbundle over B pulls back to a microbundle
over X which contains a Euclidean bundle which restricts to a Euclidean bundle neighborhood of
the section of the original microbundle.

Any paracompact n-manifold M satisfies this condition since each component of M is second
countable and therefore can be properly embedded in R?"*!. This is an exercise in Munkres. The
Tietze extension theorem can be used to show that M is a retract of a neighborhood which we can
take to be simplicial. ]

A.2.3. Tangent Fuclidean bundle. The discussion above implies the well-known fact that every
paracompact topological manifold M has a tangent Euclidean bundle: we first attach the standard
external open collar C' = 9M x [0, 1) and embed M in the open manifold M’ = MUC. The tangent
microbundle of M is the equivalence class of p; : M x M' — M (projection to the first coordinate),
together with the diagonal section A : M — M x M’.
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Definition A.2.8. If M is a topological manifold with external open collar C' = 9M x [0,1) and
m: ' — M is a Euclidean bundle then a topological exponential map is defined to be a continuous
map

n:E—-M =MuUC
so that

(1) n(s(z)) = « for all z € M where s : M — FE is the zero section,
(2) 1 maps each fiber E, = 7~!(z) homeomorphically onto an open neighborhood of z in M’.

We call (E,n) = (E,s,m,n) a tangent Euclidean bundle for M.

If (E,n) is a tangent Euclidean bundle for M then the germ of E around s(B) is the tangent
microbundle of M. To see this note that the two mappings m, 7 form an open embedding (m,7n) :
E — M x M' by invariance of domain. The image of (7,7n) determines (E,n) up to isomorphism.
We say that (Eg,n9) is contained in (E1,n7) if the image of Ey in M x M’ is contained in the image
of F. Kistor’s theorem on the existence and uniqueness of Euclidean bundles can be stated as
follows in the case of the tangent microbundle.

Theorem A.2.9. Any paracompact topological manifold M has a tangent Fuclidean bundle. Fur-
thermore, for any two tangent Fuclidean bundles, there exists a third Euclidean bundle which is
contained in both. O

In the case where M is a smooth manifold, we note that EM is also a smooth manifold although
the smooth structure of EM along M depends on a choice of extensions o’ of the smooth structure
of M to M’'. Also we have a canonical exponential map pys : TM — M’ defined in a neighborhood
U(M) of the zero section and this gives us a diffeomorphism of bundles between EM and U(M).

A.2.4. Vertical tangent Euclidean bundle. We are interested in the case when p : M — B is a
bundle over a finite complex B with fiber X a compact topological manifold. In this case we
first add the external collar C' = 9"M x [0,1) where 9"M is the vertical boundary of M, i.e. the
bundle over B with fiber X. Then M’ = M U C is an open manifold bundle over B with fiber
X' = X UO0X x [0,1). The fiber product M & M’ is a bundle over B with fiber X x X’ and the
vertical tangent microbundle is the neighborhood germ of the fiberwise diagonal AM in M & M’.

Since M is a compact and finite dimensional it is dominated by a finite complex. Therefore, any
microbundle over M contains a Euclidean bundle. In particular, there exists a Euclidean bundle
7w : EYM — M unique up to isomorphism and an open embedding

(m,m): EYM — M & M’

over M sending the zero section to the fiberwise diagonal.

We call (EYM,n) a wvertical tangent Euclidean bundle for M 2y B and n : EYM — M’ the
fiberwise topological exponential map. As before, (EVM,n) is given up to isomorphism by the image
of the embedding (w,n) : EYM — M & M'.

A.2.5. Topological derivative. Any homeomorphism f : My — M; induces a homeomorphism f’ :
M} — M{ by sending (x,t) € IMy x [0,1) to (f(x),t) € OM; x [0,1). This gives a map of tangent
microbundles:

My x M, —T v s
pll lpl
MO ! Ml

This morphism of microbundles is the topological derivative of f. (If E — B, E’ — B’ are bundles
or microbundles, then a morphism E — E’ over a map f : B — B’ is defined to be a morphism
between E and the pull-back f*E’ over B.)
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Choosing Euclidean subbundles of the microbundles, we can represent the topological derivative
by an isomorphism of Euclidean bundles Ef. If my : EMy — My is a tangent Euclidean bundle
for My with embedding (mo,n0) : EMy < My x M/, then m; = fomy: EMy — M; is evidently a
tangent Euclidean bundle for M; with embedding (m1,7m1) = (f % f")(70,m0) : EMo — My x M]. In
other words, there is an isomorphism of Euclidean bundles Ef : EMy — EM; over f as indicated
in the following commuting diagrams.

Ef Lf
EMO —_— EM1 EM(] —_— EM1
f ;L /
M0—>M1 MO—>M1

We call Ef the topological (Euclidean) derivative of f.

Similarly, if f : My — M; is a fiberwise homeomorphism between two topological manifold
bundles over the same space B, we get an isomorphism of Euclidean bundles EVf : EYMy — EVM,
over f compatible with the fiberwise exponential maps as indicated in the following diagrams in
which all arrows commute with the projection to B.

EVf EVf

E'My —1= EYM, E'My —1= EVM;
T
My —L— My, —

We call Ef the fiberwise or vertical topological (Euclidean) derivative of f.

A.3. Linearized Euclidean bundle VM. The first step to finding a smooth structure on a topo-
logical manifold is to impose a linear structure on the tangent Euclidean bundle.

A.3.1. Linearization. We define a linearization of a Euclidean bundle 7 : E — M to be the germ
along the zero section of a vector bundle structure on E. Since this is a germ, it is a structure on
the microbundle of E. A linearization makes the microbundle linear. A linearization of E is the
same as a lifting of the structure map of E to BGL(n,R):

BGL(n,R)

7
-
-
-
-

M — BHomeo(R"™,0)

A linearization of E can also be viewed as an equivalence class [A] of a topological microbundle
morphism A : V — E where V is a vector bundle over B, two such morphisms A : V — E, X :
V! — E being equivalent if A = \ o) for some linear isomorphism 1 : V' — V’. In particular, V is
well-defined up to isomorphism. We call 1) the comparison map for X\, \'. If A\, \ are inequivalent
linearizations of E, we also get a comparison map ¢» = (\)~!'X: V — V’ which is a nonlinear map
germ between vector spaces.

A linearization of a topological manifold M is defined to be a linearization of its tangent mi-
crobundle. This is given by a microbundle morphism

AN VM — EM

for some vector bundle VM. We call the pair (M, V M) a linearized manifold. A fiberwise lineariza-
tion of a topological manifold bundle W — B is defined to be a linearization VYW of the vertical
tangent microbundle of W over B. Thus, a homotopy of linearizations of M is given by a fiberwise
linearization of M x I over I.
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We note that a microbundle morphism A : VM — EM carries the same information as an
exponential map pu : U — M’ where U is a neighborhood of the zero section of VM. As we
remarked already, such a structure exists if M is a smooth manifold. Then we have a smooth
exponential map (inverse to orthogonal projection in R*)

par s UM) — M

where U(M) is a neighborhood of the zero section in T'M. This gives a microbundle morphism
TM — EM making (M,TM) into a linearized topological manifold. We call this the canonical
linearization of M.

There is a problem that the topological derivative of a smooth map Mgy — M is not covered by
a linear map of canonical linearizations. So, instead we use smooth linearizations. A linearization
(or fiberwise linearization) A : VM — EM of a smooth manifold M will be called smooth if V M
has a smooth structure compatible with the linear structure so that A is a diffeomorphism in some
neighborhood of the zero section. We note that the smooth structure on VM is unique if it exists
and the comparison map 1 between any two smooth linearizations is also smooth. Note that the
derivative of 1) along the zero section gives an isomorphism of vector bundles V' — V’. Therefore,
any smooth linearization of a smooth manifold is canonically isomorphic to its tangent bundle as
a vector bundle.

Proposition A.3.1. For any compact smooth manifold M, the space of smooth linearizations
w:TM — EM with fixed derivative along the zero section is convex and thus contractible. O

Suppose My, M7 are smooth manifolds with canonical linearizations \; : TM; — EM, and
f: My — M is a diffeomorphism with tangent map T'f : TMy — T'M;. Then the map germs

o, Ef Yol oTf:TMy— EM,

are smooth linearizations of M, with the same derivative, namely the identity, along the zero
section. Therefore, there is a 1-parameter family of smooth linearizations py : TMy — EMj all
having the same derivative going from g = Ao to g1 = Ef 1o A; o Tf. This is an example of a
(smooth) tangential homeomorphism of smooth manifolds.

A.3.2. Stabilizing linearizations. Suppose that (M, V M) is a linearized manifold with exponential
map germ g : VM — M'. Then any vector bundle p : L — M will be seen to have an induced
linearization on the (noncompact) manifold L. We will usually restrict to a disk bundle D(L) which
is compact.

We choose an extension L' — M’ of the vector bundle L to M’ and assume we have a Gauss
map v : L' — RV i.e. a continuous map which is a linear monomorphism on each fiber. This gives
a metric on L' and allows us to take the e-disk bundle D(L’). Over any two points z,y € M’ we
also have a linear map between fibers of L':

T,
ﬂy.Lx—>Ly

given by orthogonal projection in RY. When 2 = y this is the identity map on L,. Therefore, for
some neighborhood U of  in M’ we get an isomorphism of vector bundles 7f, : U x L, = L'|U
given by

i (y, w) = FZ(U)) eL,CL'U.

The vector bundle of the linearization of L induced by VM will be the pull-back p*(VM & L)
of the direct sum VM @ L. The exponential map on the restriction of p*(VM @ L) to the zero
section M C L is the map

n:VMeL—L

given on the fiber V, M x L, over x € M by [t = m{; o (u, X id) or

(v, w) =7 o (w)
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for some neighborhood U of z in M’.

Since this construction is continuous on the input data, it also works for vector bundles L over
fiberwise linearized manifold bundles (M, VVM) over a manifold B to produce a linearization of the
Euclidean bundle VVM @& L over M.

Proposition A.3.2. An extension of this exponential map to all of L exists and is well-defined
up to homotopy. Furthermore, if M, VM, L,p,~ are smooth then i and its extension to L will be
smooth. O

Since M C L is a deformation retract, this follows from the following important lemma.

Lemma A.3.3 (Linearization extension lemma). Suppose that W — B is a topological manifold
bundle and K C W is a fiberwise deformation retract of W. Then any linearization V of EYW |K
extends to all of W and any two such extensions are homotopic rel K. Furthermore, if W,V are
smooth, then this extension will also be smooth.

Proof. Choose a fiberwise deformation retraction r, : W — W of W to K. Then r; is covered by
a deformation retraction 7, : EYW — EYW of the Euclidean bundle EYW to EYW|K which we can
take to be fiberwise smooth in the smooth case and 7 gives an isomorphism (7). between EW
and the pull-back rj(EYW|K) of EW|K to W. If A : V. — EYW|K is a linearization of E'W |K

then
*(\ ~ \—1
v A e pw k) T g
is a linearization of EW which will be fiberwise smooth in the smooth case and (7). o r{ (\) is a
deformation of any linearization A : V' — EYW extending A to this one. O

A.3.3. Tangential homeomorphisms. Two linearizations of a manifold M are equivalent if they lie
in the same path component of the space of linearizations of M, in other words there is a fiberwise
linearization of M x I which agrees with these linearizations at the endpoints. Two linearized
manifolds are equivalent if there is a homeomorphism between them so that the linearization of
one manifold is equivalent to the pull back of the linearization of the other manifold. We will make
these definitions more precise and extend them to manifold bundles over B.

i. tangential homeomorphism
By a tangential homeomorphism between linearized manifolds we mean a triple:

(£, Vo)« (Mo, VM, No) — (M, V My, \r)

where
(1) f: My — My is a homeomorphism,
(2) Vf:VMy— VM is a nonsingular linear map over f, and
(3) put : VMy — EMy is a one parameter family of linearizations of My going from py = Ao to
H1 = Ef_l oNoVf:

1%
VM, —L v

lﬂl l)\l
EM, —L EMy

A fiberwise tangential homeomorphism between fiberwise linearized manifolds bundles is defined
similarly.

ii. deformation of linearized manifolds
Suppose that W — [ is a compact manifold bundle over the unit interval together with a
fiberwise linearization VYW — EYIW. This is equivalent to the one parameter family of linearized
manifolds (M, V M;) where M; = Wt with linearization VM, = VW t.
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Note that a tangential homeomorphism (f, V' f, us) : (Mo, V My) — (My,V M) also gives a one
parameter family of linearized manifolds
(Mt, VMt) = (M(),,U,t : VM() — EMQ)

going from (My, V My) to (My,V M) if we identify (Mo, V My, p1) = (M, V My, A1) via the isomor-
phism (f,V f).
Conversely, we have the following.

Proposition A.3.4. A one parameter family of linearized manifolds (M, V M) gives a tangential
homeomorphism (Mg, V My) ~ (M, V My) which is uniquely determined up to a contractible choice.

Proof. Since bundles over I are trivial, there exist homeomorphisms f; : My — M; equal to the
identity for ¢ = 0 covered by nonsingular vector bundle maps V f; : V. My — V M; giving us a one
parameter family of linearizations u; : V My — E My making the following diagram commute.

VM~ v

ll/‘t \LAt
Eft

EMy, —~ EM,

So (Mg, V M) is isomorphic to (My,n; : VMy — EMy) by (g, Vge) for every t € I. This in turn
gives an equivalence of linearized manifolds
(90, V' go,nt 0 Vgo) : (Mo, V> Mo) ~ (My,V M).

The choices that we made are the product structures for bundles over I. The space of such product
structures is contractible. O

iii. example
Suppose that My is a smooth manifold bundle over B and W is a smooth manifold bundle over
B which is a topological manifold bundle over B x I so that 771(0) = My and 7= (1) = M; are
smooth manifold bundles over B where 7 is the composition 7 : W — B x I — I. Then we will
obtain two tangential homeomorphisms between the smooth bundles My x I, My x I and W.
(a) The first is
(f, Vo) (Mo x I,T"My x I) — (My x I,T"My x I)

Since W is a bundle over B x I, W is homeomorphic to My x I over B x I. This gives a homeo-
morphism
fe: Mo — My =na""(t)
of bundles over B and we let
f=fixady: MyxI— M x1.
The smooth structure on W gives a linearization of the stabilized Euclidean bundle of M;:
g s TYW M, — EM,; @ €*
This gives a fiberwise linearization of the bundle M; x I over B which is smooth for ¢ = 0,1. So,
by the proposition above, we get a tangential homeomorphism of the stabilization
M() x I — Ml x I.
(b) The second tangential homeomorphism is between the two smooth manifold bundles
Mo x 1T —W

First, we add an external collar My x[—1.0] to the bottom of W. This gives W+ = WU, Mo x[—1, 0]

a bundle over B which is fiberwise diffeomorphic to W. But W™ has a new projection map

7 Wt — [-1,1]. Let Wy,t € I be the 1-parameter family of topological manifolds given by
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Wy = m~1[—1,t]. Since W; is topologically embedded in the smooth manifold bundle W+ of the
same dimension, WW; obtains a linearization from the smooth linearization of W*. The linearization
is smooth for t = 0,1 since Wy, W; are smooth submanifolds of W*. This gives a l-parameter
family of linearized topological manifold bundles going from Wy = Mg x [ to Wi, = W+ = W as
claimed.

A.3.4. Tangential homeomorphism of smooth manifolds. By the discussion in the last subsection, a
tangential homeomorphism between two smooth manifolds (with canonical linearizations) is given
up to contractible choice by a fiberwise linearized topological bundle over I which is smooth over
the end points. We call this a “tangential (topological) concordance” between the two smooth
manifolds. To avoid repetition, we give the formal definition only for bundles.

Definition A.3.5. By a fiberwise tangential concordance between two smooth manifold bundles
My — B, M1 — B over the same base we mean a linearized topological manifold bundle W — B x [
so that Wy = W|B x 0 and W7 = W|B x 1 are smooth fiberwise linearizations of (the underlying
topological manifold bundles of) My and M;.

When we represent a fiberwise tangential concordance by a fiberwise tangential homeomorphism
(f,V f, ) we would like to say that we can choose V f : TYMy — T'M; to be smooth. However,
this is not possible without changing the smooth structure of TVMy since V f is a map over the
continuous map f which is not, in general, homotopic to a diffeomorphism.

Proposition A.3.6. If the vertical tangent bundle of My is trivial then any fiberwise tangential
concordance between My and My is represented by a fiberwise tangential homeomorphism (f,V f, jut)
where Vf : TMy — TVMy is smooth, using the smooth structure TVMy = My x R"™ and the
given smooth structure on TVMy. Furthermore the space of all such tangential homeomorphisms
representing the same tangential concordance is contractible.

Proof. The space of smooth nonsingular bundle maps M; x R™ — TYM; over M; is homotopy
equivalent to Map(M;,O(n)) which is homotopy equivalent to the space of nonsingular continuous
bundle maps My x R™ — TVM; over f. O

In fact, we can choose f : My — M; to be a smooth embedding on the core of My and we can
choose V f to be smooth over that core.

A.4. Tangential smoothing. Given a linearized topological manifold (My,V M), a tangential
smoothing of (Mg, V My) is a smooth manifold M; together with a tangential homeomorphism
(Mo, V My) ~ (M7, TM). In this section we express this as a point in the homotopy fiber of a map
between moduli spaces of manifolds with smooth and linear structures.

A.4.1. Space of linearized manifolds. Let St(n) be the set of all linearized n-manifolds. For con-
creteness, we take these to be triples (M, V, u) where M C R is a compact topological n-manifold
embedded in R®, 7 : V — M is an n-plane bundle over M and p : V — M’ = M UC is a
topological exponential map. As before, C = OM x [0, 1) is the standard external collar for M.

Let Si(n) be the simplicial set whose k-simplices are continuous A* families of linearized n-
manifolds. This is a space which lies between the moduli spaces S¢(n) and Si(n) in the sense that

the simplicial forgetful map ¢ : S¢(n) — Si(n) factors through St(n):

Si(n)
7 Pt
S:l(n>/ - \Sﬁ<n>
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The second map ¥ : vaE(n) — SL(n) is the simplicial forgetful map given by projection to the first
coordinate: ¢!(M,V,u) = M. But, we are mainly interested in the first map

7 : Sdn) — Si(n).

This simplicial map is defined by taking a A* family of smooth manifolds to the underlying family
of topological manifolds with canonical linearizations.

A.4.2. Homotopy fiber of ¢. If we write down the definition it will be obvious that the homotopy
fiber of ¢ is the space of tangential smoothings of a fixed linearized topological manifold.

Definition A.4.1. For any linearlized topological manifold (M,V M) let Sf/d(M, VM) be the

simplicial set whose k-simplices are tangential smoothings of the trivial bundle M x AF — AF with
fiberwise linearization A x id : VM x A¥ — EM x AF.

Proposition A.4.2. Sf/d(M, V M) is the homotopy fiber of the forgetful functor
7:8ln) = Sin)
over (M, VM) € :S'E(n) O
MO@\generally, if (M,VVM) is a fiberwise linearized manifold bundle over B, we can define a

space S;/d(M ) of fiberwise tangential smoothings of (M, VVM). This is the homotopy fiber of the
map

et |S4n)|P — |SE(n)|P

over the map B — |Si(n)| classifying the linearized bundle (M, VYM) and we are interested in 7
of this space. However, this set may be empty. We need at least one smoothing (My, VM) to
make it nonempty. This smoothing can be used as a base point and the other smoothings will be
call “exotic (fiberwise tangential) smoothings.”

Definition A.4.3. If My — B is a smooth manifold bundle, then an exotic (fiberwise tangential)
smoothing of My is defined to be another smooth manifold bundle M; — B which is fiberwise
tangentially homeomorphic to M.

—

If A is a submanifold of 9B and P is a smooth subbundle of M then we define S;/i(M , P) to

be the (simplicial) subspace of S]tg/d(M ) consisting of fiberwise tangential smoothings of (M, VM)
which are equal to the given smoothing on P U M4 where M = p~1(A).

A.4.3. Stabilization. By stabilization we mean taking direct limit with respect to all linear disk bun-

—~—

dles. In particular we replace the tangential smoothing space S]tg/i(Mo) with the stable tangential
smoothing space

P

Sh.4(Mo) = Tim S (D(€))

where the direct limit is with respect to all linear disk bundles £ over M.

Stabilization is used to make the tangent bundle trivial. We take the disk bundle of the normal
bundle D(v). If we replace My with D(v) x D™ with corners rounded then this new My has a
smooth spine Jy = D(r)~ which is a smooth manifold bundle. It has a core Ky which is fiberwise
diffeomorphic to My and whose complement My — Kj is an internal collar neighborhood of the
fiberwise boundary 0"My. Thus My — K is diffeomorphic to 0"My x [0, 1).

i. corners
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There is one problem: We need to know that corners can be rounded off in a canonical way. But,
for our purposes, this is easy since any two ways of rounding off corners will clearly be tangentially
homeomorphic and we have the following lemma.

Lemma A.4.4. If My, My are two smooth bundles over B which are fiberwise tangentially home-
omorphic then their tangential smoothing spaces are simplicially homotopy equivalent:

S (M) ~ 84 (My).

Proof. The fiberwise tangential homeomorphism gives a one parameter family of linearized topo-
logical manifold bundle W} g

One important example was given in subsubsubsection [A.3.3(iii). Given a smooth bundle W —
B which fibers topologically over B x [ in such a way that the inverse image of B x 0 and B x 1
are smooth bundles My and My, then W defines a tangential homeomorphism My x [ — M x 1.
In other words M x I becomes a point in the stable tangential smoothing space of My. We denote
this by
top(W) € Si a(Mo)
This is represented by M; in the sense that M; and top(W) are stably equivalent.

ii. flat sides
Stabilization can also be given by the simple process of taking products with disks:

83 4(Mo) = lim 3% (Mo x D")

The reason is that trivial disk bundles are cofinal in the directed system of all disk bundles over
M. Since corners are not a problem, we can also use cubes I instead of disks D™.

Another cofinal system is given by the space of tangential smoothings W of My x I"™ x I which
are “flat” on My x I"™ x 0 in the sense that the tangential homeomorphism

LV ) MxI"xI—W
is induced by a tangential homeomorphism
(8()f, Vvaof) M x I x 0 — oW

in a neighborhood of M x I™ x 0. This is only a restriction on the tangential map VVf and
homotopy ' since any homeomorphism f as above induces a homeomorphism dyf on M x I"™ x 0.
The “flatness” condition is that the maps

e VM x I" x I) — V(W)

should send V(M x I"™ x 0 to VI(OoW).

It is easy to see that “flat on one side” smoothings form a cofinal system. When we pass from a
smoothing of W to a smoothing of W x I we always have a tangential smoothing which is flat on
one side (in fact on both sides). Similarly, when we stabilize “flat on one side” smoothings we first
forget the flatness on one side then take the product with an interval.

iii. smoothness of the boundary

Finally, we need the fact that, after stabilization, tangential smoothings of M which are fixed
on the vertical boundary 0M give the same thing as those which don’t fix the boundary. We will
formulate this more precisely and prove it in the next section.

Suppose that 0B = 0pB U 01 B where 0yB and 91 B meet along their boundary 00yB = 901 B.
The the boundary of the total space M is equal to OM = 9yM U 01 M where OgM = 0"M U My,
be the union of the vertical boundary 0"M of M and the restriction Map,p of M to 0yB and
M = My, p.

43



Let Sg%o (M, 9"M) be the space of tangential smoothings of M which are fixed on dyM. This

is a subspace of Sg%o 5(M).

Proposition A.4.5. After stabilization we get a homotopy equivalence:

lim S}, 5 (D(M), D(0"M)) ~ lim S}/% ,(D(M))

where both limits are with respect to all linear disk bundles D(M) over M and D(O'M) is the
restriction of D(M) to 0"M.

A.5. Smoothing theorems. Given a smooth bundle p : My — B and a smooth submanifold A of
0B, we would like to determine the set of all isotopy classes of exotic fiberwise smoothings of M)

which are equal to the given smoothing over A. By definition this is my of the space Sgi(Mo) of
all tangential smoothings of My:

(fs V¥, ug) =+ (Mo, TMo, No) — (M, TMy, A1)
which are trivial over A. This lies in the null component of Sgi‘(Mo) if and only if f : My —
M is isotopic to a fiberwise diffeomorphism and uy is isotopic to a family of smooth fiberwise
linearizations of Mj.

When we stabilize My will contain a core K which is My minus an internal fiberwise collar and
a spine Jy which is a high codimensional submanifold of Ky. Thus Ky will be a smooth manifold
bundle diffeomorphic to My and both Ky and .Jy will be fiberwise deformation retracts of Mj.

It will follow from standard immersion theory that (f, VVf) is isotopic to a smooth embedding on
the core Ky in such a way that pf becomes isotopic to a smooth linearization over the core. What
will remain is the question of smoothability of the internal collar. The extension of the smooth
linearization is automatic by the linearization extension lemma [A3.3] So we have a classical
smoothing problem whose obstruction space is well known to be a homology theory.

A.5.1. Smoothing of disk bundles. We will go over the simplest example: disk bundles.

i. the problem We are given two smooth bundles My, My over B with fiber D™, a smooth n-
dimensional disk, which are fiberwise diffeomorphic over a submanifold A of B and a fiberwise
tangential homeomorphism

(fa va7 M:ﬁl) : (M07TVM07)\0) - (MlvTvMb)‘l)

which agree with the given diffeomorphism over A. We want to find an isotopy of f rel A to a
diffeomorphism over B in a way compatible with the tangential data given by VVf, uy.

ii. spines and cores

The first step is to choose a spine. The spine of a disk is any interior point and the spine of a
disk bundle is any section which lies in the interior. Let sg, s; be smooth sections of My, My with
images Jy, J1 in the fiberwise interiors so that s; = f o sg over A. We will choose a small standard
disk bundle neighborhood Ky of the image Jy of sg.

Next, we deform f : My — M; so that it takes Jy to Ji. Since the fibers are contractible, the
sections s; and f o sg of My are homotopic rel A. We can use the topological ambiant isotopy
theorem to extend this to an isotopy of f rel A to a homeomorphism taking Jy to J;. (However,
this example of the ambiant isotopy theorem is an easy exercise.)

Lemma A.5.1. Any topological isotopy of f rel A can be extended to VVf and py to give an isotopy
of the tangential homeomorphism (f, VVf, uy).
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Proof. Consider the tangential homeomorphism as a l-parameter family of linearized manifolds
(My, V My, piy) together with a family of homeomorphisms f; : My — M; which is the identity on
B x0UA x I. To prove the lemma we take the same family of linearized manifold bundles with a
new family of homeomorphisms. O

iii. extending the smooth structure to the core

Let (M, VVMy, uy, J;) be the l-parameter family of linearized manifolds over B with a given
choice of spine which is smooth over B x 0UA X I UB x 1.

Let Vi = VYMy|J;, By = EYM,|J; considered as bundles over B and let y; : V; — E; the mi-
crobundle isomorphism given by the restriction of u; : VVM; — EYM; to J;. Then V; will be a
vector bundle over B and E; will be a Euclidean bundle over B which is fiberwise homeomorphic
to a neighborhood of J;. Since continuous isomorphisms of smooth vector bundles are isotopic to
smooth vector bundle isomorphisms, we can choose a family of vector bundle isomorphisms Vp = V;
which is the identity for t = 0 and smooth for ¢ = 1 and we can do this relative to A. This gives
a smooth structure on V; for all ¢ which agrees with the smooth structure over A and over the
endpoints.

Using the microbundle isomorphism pu; @ V; — FE; we get a family of smoothings for a neigh-
borhood of J; in M; which is compatible with VVM,; over J;. By definition, u; will be a smooth
linearization of F;. By the linearization extension lemma [A.3.3] we can extend this to a new fiber-
wise linearization of M; which is smooth in a neighborhood of J; (and everywhere where it was
already smooth). Furthermore this new linearization will be isotopic to the old one.

iv. smoothing the collar

The situation is the following. We have a l-parameter family of linearized manifold bundles
(M, VVMy, i) together with a smoothing over the core K; which is a disk bundle in the interior of
M;. We also have a smoothing over B x 0U A x I UB x 1 which is compatible with the linearization.

The key point is that smoothing is ezcisive (Proposition [A-1.3]). Therefore, we may remove the
interior of the core K;. If we stabilize M; one more, replacing it with M; x [—1, 1], we will have the
smooth core K} x[—1,0] which meets the boundary. Then, after excising the interior of this new core
and rounding off the corners, we get M; x [—1, 1]—int Ky x [—1,0) which is a topological h-cobordism
bundle over B whose fibers are h-cobordisms of D™ and therefore homeomorphic to D™ x I which
have a smooth structure on the base D™ x 0 and sides 0D"™ x I and over Bx 0U A x [ UB x 1.

This can be rephrased as follows. We have a continuous mapping of pairs

(BxI,Bx0UAxIUB x1)— (Cob'(D"),Cob%(D"))

where Cob! (M) is the space of topological h-cobordisms W C R> of M which are fixed on the base

M x 0 and the boundary, M x I and Cob®(M) is the space of pairs (W, a) where W € Cobt(M) and

a is a smoothing of W which agrees with a fixed standard smoothing on M x 0 U dM x I. These

spaces are topologized as geometric realizations of simplicial subsets of S*(n + 1) and S%(n + 1).
We use the following facts:

(1) Cob'(D™) is contractible by the Alexander trick.
(2) Cob?(D™) is an n-fold loop space since it has an action of the little n-cubes operad.
(3) The smooth structure to be fixed over B x 0.

Therefore, we can trivialize the smooth structure over B x 0 by multiplying by its inverse. The
smooth structure over A x I can also be made trivial in homotopy unique way. The map to Cob” (D™)
contains no homotopy information. So, we are reduced to a map

B/A — Cob?(D")

where B/A means smashing A to a point.
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Theorem A.5.2. If My is a smooth disk bundle over B and A is a submanifold of B then the
space of stable fiberwise tangential smoothings of B rel A is homotopy equivalent to the space of all
pointed maps

B/A — H(x)
where
H (%) := colim Cob®(D")
18 the stable smooth h-cobordism space of a point. O

v. higher torsion calculation

We use the well-known fact that H(x) is rationally homotopy equivalent to BO. This was
first shown by Farrell and Hsiang and later Hatcher gave an explicit map G/O — H(x) and
conjectured that it was nontrivial. This was first proved by Bokstedt and later by Igusa using
higher Reidemeister torsion. See [22] for an elementary explanation of this.

We note that §]§ 4(B,0) is the space which classifies stable exotic smooth structures on linear
disk bundles over B which are trivial over A. (B — B is the unique D° bundle over B with trivial
vertical tangent bundle 0.) The theorem shows that

Sh.a(B) ~ Map(B/A, H()).
Corollary A.5.3. Wogg’A(B) s an abelian group and we have an isomorphism

K 7T0§%7A(B) QR @H4k(B,A;R)
k>0
given by sending any smooth disk bundle EE — B which is linear over A and any tangential home-
omorphism of E to a linear disk bundle to

TH(E) =Y mi(E) € QH" (B, AR)
k>0

We note that 7'(E) ignores the tangential data. If we took a different axiomatic higher torsion
theory (such as the nonequivariant higher analytic torsion) we would need to subtract the higher
torsion of the linear bundle for which E is an exotic smooth structure.

A.5.2. immersion theory. We are now looking at a stabilized exotic tangential smoothing (W, VW)
of the bundle My — B which is given by a tangential homeomorphism (f, VVf, u) between the two
smooth bundles My, My over B. After stabilizing My has a high codimensional spine Jy which is
a smooth submanifold bundle of My with trivial vertical normal bundle in M,. We also have a
core Ko which is a small tubular neighborhood of Jy. We also need to assume that Jy contains a
submanifold bundle Py so that f is already a smooth embedding in a neighborhood of Py and W
is smooth in a neighborhood of Py x I U W4 where A is a submanifold of B.

By standard immersion theory ([16],[14]), there is a fiberwise immersion g : Ky — M; over B
which is regularly fiberwise homotopic to (f,VVf) restricted to Ky. Since the spine has a high
codimension, we have by transversality that g is an embedding on Jy. By replacing the core Kj
with a smaller core we may also assume that ¢ is an embedding on Ky. We may also assume that
g is equal to f in a neighborhood of Py and over A.

Immersion theory tells us that that f, g are fiberwise homotopic (fixing a neighborhood of Fy) by
a one parameter family of continuous maps h; : Ko — My over B rel A and the fiberwise derivative
TVg : TYKy — TYM; is homotopic through nonsingular linear maps V'h; to the vector bundle map
VVf. Given any € > 0 we can choose the immersion g and the homotopy h; to be within € of f and
that hy = f = g over A and near P, for all .

Proposition A.5.4. After stabilization, we can choose (hy,V'h;) so that hy : Ky — My is a
fiberwise topological embedding for all t € I.
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Proof. First, we can reduce the structure group of the linear bundle VW over W to O(n). Then
we get a linear e-disk bundle DYW over W which, as a bundle over B x I, is linearized with vertical
Euclidean bundle isomorphic to VYW @& VVIV. This is a stabilization. So, it suffices to prove the
theorem for DIV

The idea of the proof is the following. The interior of the disk bundle DWW is homeomorphic
to the total space of the vertical tangent Euclidean bundle EYW. So, the corresponding tangential
homeomorphism, when restricted to the core of DVM, is given by the topological vertical derivative
EYf of f. The topological derivative EYg of g is a smooth embedding. Therefore, it suffices to show
that EVf and EYg are homotopic through fiberwise topological embeddings.

The total space of EVK is the set of all pairs (x, y) in the same fiber of M over B so that x € K
and y € BYx) where BY(z) is the open e-ball neighborhood of z in the fiber of My — B. Inside
of this space we have the following two subspaces where § << € is the number so that Ky = Los
where L, the open w-neighborhood of the spine Jjy:

U5 = {(‘Tay) € EVKO ’.’L’ € L(;,d(ﬂ?,y) < 6}

U5/2 - {(‘Tvy) € E'Ky ‘ Y€ L5/2,d($,y) < 5/2}

Then Us/y C Us. We will show that the restrictions of EVf, E¥g to Us/y are isotopic and that the
isotopy agrees with the given homotopy.

The embedding EYf maps (z,y) € Us to (f(z), f(y)) € EYM; by definition. For every fixed
x € Lg, this mapping sends = x Bs(x) to f(z) x EVf,(Bs) by the mapping Ef, (EVf restricted to
the fiber of EYMy — My over z) on the second factor. But the homotopy V'h; is an isotopy from
EYf to EYg. Therefore, the embedding EVf is isotopic to the embedding which sends x x Bs(x) to
f(z) x EYg,(Bs) by the mapping Eg, on the second factor.

By definition of EYg, this new embedding is

fxg:(zy) = (f(),9(y)-
So, EVf|Us is isotopic to (f x g)|Us. By the same argument, E'g|Us/, is isotopic to (f x g)|Us/a-
Since Us/p C Us, we get an isotopy from EVf|Us/, to EVg|Us/2. And this isotopy will be fixed near
Py and over A. As was already shown, these are the stabilized versions of f and g on a small
tubular neighborhood of the spine of M. So, we are done. O

A.5.3. smoothing of the core.

Theorem A.5.5. There is no stable obstruction to finding a smoothing of the core of W. Le.,
after stabilizing, the one parameter family of linearized topological manifolds bundles (Mg, VVMy, uY)
has a smoothing compatible with the linearization in some tubular neighborhood of the spine J,.
Furthermore, this smoothing will be equal to the given smoothing of W on Py x I U Wy if W is
already smooth on this set.

Remark A.5.6. By replacing B with B x I and A with A x I U B x {0,1}, we conclude that the
smoothing of the core is unique up to homotopy.

Proof. By the proposition above, we may assume that this 1-parameter family of linearized mani-
folds is given by a tangential homotopy equivalence (f, VVf, uy) where My, M, are smooth manifold
bundles over B which are diffeomorphic over A and f : My — M; is a smooth embedding on the
core Ky and VVf is the vertical derivative of f along K. Returning to the 1-parameter family
of manifold bundles (M, V¥M;), this implies that we have a continuous family of submanifolds
Jy € My which are smooth submanifolds for ¢ = 0,1 and these submanifolds have tubular neigh-
borhoods which have product structures: K; = J;” x D™. where J;' is J; with an external closed
collar attached.

After stabilization, we may assume that the vector bundle VVM; is trivial: VM, = M, x RFt”
where k is the dimension of the fiber of J; — B. The vertical tangent Euclidean bundle will also
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be trivial: EYM, = M, x R¥*™ and the linearization is given by a family of microbundle morphisms
we o VVMy — EYM,; which is smooth for ¢ = 0,1 and on the restriction of VM, to VVK;. This is
equivalent to a family of mappings

fir : My, — Homeo(R*™)

By the first lemma below, we can assume, after stabilization, that this map has image in the
subgroup of all homeomorphisms of RFT™ having the form g(z,y) = (x,9.(y)), i.e., they are RF
families of homeomorphisms of R"™.

Along J] the spine with an open external collar, we now have a linearization

e 2 VM| JE = J) x REF™ — BYM,|J] = J] x RE+?

which commutes with the projection to J/ x R¥. Now restrict this to the fiber over J; x 0. This
gives a family of linearizations
n:J; xR — J, x R"

This is a map from a smooth linear bundle to a Euclidean bundle which, by the topological expo-
nential map is homeomorphic to a neighborhood of J; in M;. We can use this map to change the
smooth structure in this neighborhood so that 1 is a smooth map. By the second lemma below, we
can deform the original linearization to a linearization which is smooth in a neighborhood of the
spine. This will contain a somewhat smaller core but it is enough to prove the theorem. O

It remains to prove the two lemmas used in the theorem.

Lemma A.5.7. The image of the stabilization map o : Homeo(R¥*") — Homeo(R¥ k) given
by o(f)(z,y,2) = (f(z,y),2) can be deformed into the subgroup of all homeomorphisms of RETn+F
having the form g(x,y,z) = (x,9.(y,2))). Furthermore this deformation will always send smooth
maps to smooth maps.

Proof. The deformation is given by rotation. Let pg be the linear and thus smooth automorphism
of RFt7+k given by the matrix

cosfIl, 0 —sinbl

Py = 0 I, 0
sinfl, 0 cosflI
Then, pgoo(f)op_p,0 <60 < m/2is the desired deformation. O

Lemma A.5.8. Let G be the subgroup of Homeo(RF*™) consisting of homeomorphisms g having
the form g(z,y) = (x,9.(y)) and so that gy is a smooth diffeomorphism. Let Gy be the subgroup
consisting of diffeomorphisms of RF¥T™ which lie in G. Then Gy is a deformation retract of G.

Proof. This is given by the Alexander trick:

gt(:Evy) = (:Evgtm(y))
for 0 <t < 1. If g is smooth then so is g'. U

A.5.4. ignoring the boundary. We are now ready to prove Proposition [A.4.5] which says that, after
stabilization, smoothings which are fixed on the vertical boundary and those which are not form
homotopy equivalent spaces. The reason is that, after rounding corners, the core is diffeomorphic
to the union of the core with the stabilized vertical boundary. So, after smoothing the core we
cannot distinguish between the two spaces.

First, we use the “flat on one side” observation (subsubsection [A.4.3]) to stabilize and have a
flat side 9yW C W which is tangentially homeomorphic to D(M) x 0 C D(M) x I where D(M)
is a linear disk bundle over M. On the flat side we can make f smooth on the core Ky x 0 using
the theorem above. (Equivalently, we can smooth the core of D(M) and then stabilize to get a
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smoothing of Ky x I and then forget the smoothing on all but Ky x 0. However, uniqueness up to
homotopy of this second method is not as easy to see.)

By construction of the core Ky, the complement of K¢ in D(M) is a product of 9"D(M) with an
interval. Therefore, the pair (D(M) x I, Kj) is, after rounding corners, diffeomorphic to (D(M) x
I,D(M) % 0) and (W, Kj) is a tangential smoothing of that pair. If we apply the same construction
to a tangential smoothing of D(M) x I which is fixed on D(0YM) x I, we make the homeomorphism
f smooth on D(0"M) x I U Ky x 0 where K is a neighborhood of the spine Jy = M which
is the zero section of the disk bundle D(M). But D(0"M) x I is a disk bundle over 0"M x [
which is an external collar for M and Ky is a disk bundle over M of the same dimension. So,
together they form a disk bundle over M with an external collar (after rounding corners). Thus
there is a diffeomorphism of D(M) x I with corners rounded which takes D(O"M) x I U Ky x I
to D(M) x 0, making the two stabilized tangential homeomorphisms equivalent. This proves the
following extension of Proposition [A.4.5

Theorem A.5.9. After stabilization we get homotopy equivalences:

hmsg/fgoB( (M >,D<aVM>>~hmsggoB< (M)):liglsggoB(D(M)xI,D(M)xO)

where all three limits are with respect to all linear disk bundles D(M) over M and D(0"M) is the
restriction of D(M) to O"M.

We removed the tilde from the last version of stabilization since, by the linearization extension
lemma[A-33] the linearization of a smoothing of (D (M) x I, D(M) x 0) is unique up to contractible
choice.

A.5.5. little cubes operad. Using the third form of stabilization given in the theorem above, we can
see the infinite loop space structure on the stabilized smoothing space ‘SJSB, % p(M). Recall that the
space C(n) of k little n cubes in I™ is given by k disjoint embeddings y; : I"™ — I"™ which are given
by affine linear maps y;(z) = a;x + b; where a; are positive real numbers and b; € I™.

o C(n) x SP% 5(D(M) x I D(M) x I")* — SS9, 5(D(M) x I"*1, D(M) x I")

a(y;le"' 7Wk) = D(M) X In+1 UyHWZ
where the base of each W; is attached to the top of D(M) x I"*! using the map
Lpary X yi : Wi = D(M) x I" x 0 — D(M) x I" x 1

and the resulting corners are rounded.
There is an easier way to describe the addition operation in the case when the supports of the

exotic smooth structures are disjoint. An element of S;/%O (M, C) is said to have support in the

closure of the complement of C' in M.

Proposition A.5.10. The addition operation on the stable smoothing space ‘fS'V%’aOB(M) given by
the little cubes operad action described above is given unstably on smooth structures on M with
disjoint supports S; C M — "M by W = > W; which is equal to M in the complement of [[S; and
equal to W; on S;.

We will only apply this proposition to the group structure on Wogg’ao p(M).
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Proof. We will prove that the following diagram commutes up to homotopy for any y € Ci(n)
where C; is the closure of the complement of .S; in M.

d _X_ ot/
II Sg,aoB(M’ Ci) Sg,aoB(M’ NCi)

l |

Ss alyi-) G
HSB,BQB(M) B,aoB(M)

Note that, except for X, these maps are only defined up to homotopy.

Suppose that (M;) is an element of the upper left corner. Thus M; is a tangential smoothing
of M over (B,0yB) with support in S;. If we stabilize by taking a product with a disk, we get
M, x DN x I which is a smooth structure on M x DV x I with support in S; x DV x I. Using the
smoothing of the core on one flat side argument explained in great depth in this section, we make
the tangential homeomorphism smooth on the core which equivalent to S; x DY x 0. By conjugating
by a smooth isotopy (after rounding corners) we can make the tangential homeomorphism smooth
on S; x (DN x 0UdDN x I). Call this new bundle W; with base dgW; = M x DV x 0. At this
point we can use the uniqueness of linearization lemma to ignore the linearization. This brings us
to the lower left corner of the diagram.

The little cubes operation now produces the smooth bundle

M x DN x Tu, [T

Since W; has bottom and sides equal to M x (D x 0UdDY x I), we can lower W; into M x DV x I
to make

M x DN x I =[] M x (DY) x TU]]W:

This is a family of smooth bundles giving a homotopy of the mapping from the upper left to the
lower right of our diagram. Since this new smooth structure on M x DY x I has support in the
union of S; x y;(DY) x I and the S; are disjoint, we can expand the embeddings y; : DV — DV
until they are the identity and obtain an isotopy of the structure. The result is a smooth structure
on M x DN x I given by W; on S; x DY x I which is a description of the stabilization of > M;.
So, we have shown that the diagram commutes up to homotopy. ]

A.5.6. Morlet’s Theorem. Since D(M) can be chosen to have a trivial tangent bundle and can be
stabilized by taking a limit with respect to all trivial disk bundles, we can now use the following
theorem of Burghelea and Lashof which follows from Morlet’s comparison theorem. (See [7], [8,
Thm HJ.)

Theorem A.5.11. Let X be a compact smooth manifold with trivial tangent bundle. Then the space
of stable smooth structures on X x I equal to the standard smooth structure on X x 0U 00X x I is
a homology theory in X.

Let H%(X ) denote this homology theory of X. This the homology theory associated to the
spectrum of H(x):
HA(X) = Q®(X 1 AH()).
(See the section on homotopy theory below.) Then the theorem above together with the smoothing
of the core theorem gives the following.
Corollary A.5.12.
Spi gror (X x DF) = QFp%(X)

We can extend this calculation to the general case using the following lemma.
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Lemma A.5.13 (fibration lemma). We have a fibration sequence:
Shoy(M) = SH(M) — 85, 5(M)

Proof. If we choose a collar neighborhood C' of dyB in B and a topological product structure Mg =
My, x I we can easily extend deformations of smooth structures of M over dyB to deformations
(with support in M¢) of the smooth structure of M. O

From the basic case given in Corollary [A.5.12] and the fibration lemma we can conclude the
general case:

Theorem A.5.14 (main smoothing theorem). Let W — B be a compact smooth manifold bundle.
Then

gjsg,ao(W) ~TpaHE(W)

where ’Hg’(W) is the fiberwise H” homology bundle of W over B, i.e. the bundle whose fiber over
be B is H*(Wy) where Wy, = p~(b).

Remark A.5.15. Since the fibers of ’Hg’(W) — B are infinite loop spaces and H(*) has finite type
[10], this implies that 0S5 8, (W) is a finitely generated abelian group.

Proof. Choose a smooth triangulation of B so that dpB and 01 B are subcomplexes. Let A be a
subcomplex of B containing the k — 1 skeleton and let ¢ be a k simplex of B. Then we have a
mapping between two fibration sequences:

S5 00 (Wa) ——= 83, (Wauy) —= S5(Wa)

0,00

| | |

Uy o0 HE(W,) —= Tase (W) —= TaHE(W)

We use the excisiveness of smoothing to identify §2U07 AWaue) = Nfr,ao(Wo)- Since o is con-
tractible, W, is a product bundle W, = ¢ x W}. So, « is a homotopy equivalence by Corollary
[A512 If 7 is a homotopy equivalence then S will be a homotopy equivalence. Therefore, by
induction SE(W) ~ T’ B?—[%’(W). Another map of fibration sequences proves the relative version
stated in the theorem. g

A.5.7. Stratified smoothing theorem. We will use the following trivial observation to extend the
main smoothing theorem to the “stratified” case.

Lemma A.5.16 (additivity of smoothing). Suppose that E; are disjoint smooth bundles over B.
Then

—_~

ST B 115~ TSP B0
The basic case of the stratified smoothing theorem is the following. Suppose that M is a smooth

bundle over B and E is a codimension 0 subbundle of M which is a disjoint union of bundles:
E =] E;. Then clearly,

—_~ —~ —~—

Sy% (B,0'E) = Si% (M,C) C Sy (M,0'M)

where C' is the closure of the complement of E in M.
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Lemma A.5.17. After stabilization we get homotopy equivalences v, Yy compatible with inclusion
i the sense that the following diagram commutes.

o YE

500 (B) === Tpo,HE(E)

-k

Y™

8300 (M) —=> T oy HE(M)

Suppose that W is a smooth bundle over B and we have a smooth triangulation of B so that
0y B is a subcomplex. Over each simplex o of B, suppose we have a smooth codimension-0 compact
manifold subbundle £, C W,. Since o is contractible, F, = F' X o for some compact manifold F'.
Suppose that E. C E, for all 7 C 0. Suppose also that E, is empty for all o C dyB. For example,
we could let B, = 0 if 0 C 9yB and E, = W, otherwise. We let E C W be the union over all
simplices o of the restriction of F, to the interior of . We say that F is a stratified bundle over B
since the restriction of E to each open simplex is a (trivial) bundle. More precisely, F is a stratified
subbundle of W. B

Let S3(E) be the subspace of S 5 (W) of all tangential stable smoothings of W which have
support in the interior of E, over the interior of each o for every simplex o. Thus, we consider
smoothings of £ which are fixed on the vertical boundary 0'F of E.

Let Hg’ (E) denote the stratified subbundle of H%(W) which is equal to H*(E,) over the interior
of o for every simplex o.

Theorem A.5.18 (stratified smoothing theorem).

S3(E) ~TpHE(E).
Proof. The argument is the same as in the main smoothing theorem, but it is short and worth
repeating. Let A be a subcomplex of B containing the k& — 1 skeleton and let o be a k-simplex.
Then we have a mapping of fiber sequences:

S5 90 (E) S50 (Bave) — S5 (Ea)

! i |
Lo00HE (Ee) —> T ave HE(E) —= TaHE(E)

o

« is a homotopy equivalence by the theorem and ~ is a homotopy equivalence by induction on the
size of A. So f is a homotopy equivalence and the theorem follows. O

We are interested in the following special case. Suppose that L is a compact smooth g-manifold
(¢ = dim B) with 0L = 9yL U 0L where 9yL,0; L meet along a corner set 90L. Suppose that
A : L — B is a smooth immersion so that A™1(9;B) = 9;L and \(9pL) meets OB transversely
along A(OOL). (See Figuredl) Assume that the immersion A is self-transverse, so that there exists
a smooth triangulation of B for which the number of inverse image points in L is constant on each
open simplex.

Let 7 : £ — L be a compact manifold bundle with the same dimension as W and let N:E—W
be a smooth codimension 0 embedding over A : L — B. It follows then that A= (Wy,5) = Es, L.
Also, the image in W of the complement of Ey 7, in E is a stratified subbundle of W over B. Call
this image E°. A fiberwise smooth structure for E over L which is equal to the given smooth
structure over dyL is equivalent to a fiberwise smooth structure on W with support in E°:

Si.a0(E) = SH(E) C S ,(W)
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o B

FI1GURE 4. In this example, L is a square and A : . — B maps 01 L = two opposite
sides into 01 B. The diamond shaped region is covered twice by A(L).

This implies that
TroyHf () ~ TpHE(E) € Tpa,5HE (W)
The statement that we need is the following.

Corollary A.5.19. The following diagram commutes.

83 0,0 (E) S (E?) 8% 005 (W)

"
’YEl: ’YEél: “/Wl/:

H -
Lo HP(E) —==TpHE(E®) —=Tpa,sH (W)

APPENDIX B. HOMOTOPY THEORY

In Appendix [Bl we calculate, rationally, my of the spaces of sections obtained in Appendix [Al
The main results are the following.

e (Corollary [B.2.2]) Suppose that the base B and fiber X of M — B are oriented manifolds.
Then

molBasHAE(M) @ R = (P Hy_yp(M, 01 M;R) = @ HN*(M, 00 M; R)
k>0 k>0
where ¢ = dim B, N = dim X and dyM, 01 M are the two parts of the boundary of M given
by 1M = My, B and OgM = M@()B U oM.
e (Corollary [B:42] and Corollary A5.19) If A : (L,8,L) — (B,8;B) and D()\) : E — W are
as above, we get the following commuting diagram where 01 E = Ey, p and all vertical maps
are induced by D()).

* IR

”ng,aoL( ) @R —— mol g, HY(E) @ R —>92 DBioo Hy—ar(E, 01 E;R)

R |

7083, 6,5(W) © R — =100 5 g, sHE(W) © R ——> Do Hoar(W, 1 W3 R)

The computation of mol'p g, B’H%(M ) ® R is an exercise in elementary homotopy theory which
we will now explain. First we need to recall the definition of generalized homology.

B.1. Review of generalized homology. We assume that all our spaces are Hausdorff and

homotopy equivalent to CW-complexes. Suppose that G is a prespectrum, i.e., a collection of

pointed spaces Gy, G1,- -+ and pointed maps X.G,, — G,41 (which is equivalent to a pointed map

Gn — QGpy1). Then, for any pointed space X, we get another prespectrum X A G with n-th space

X NG, since (X AG,p) =2 X A XG,. Two prespectra are considered to be the same if the spaces
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G,, and structure maps XG,, — G,+1 agree for sufficiently large n. Therefore, G,, need only be
defined for large n.

If ¢ is an m-dimensional vector bundle and €* is the trivial k-plane bundle over the same
base space then the Thom space D(§ @ €*)/S(€ @ €¥) of € @ €* is the k-fold suspension of the
Thom space D(§)/S(§) of . Define a prespectrum 7'(§) starting in degree m so that T(&),,+k =
D(¢ @ €¥)/S(€ @ ¢¥). This is the suspension spectrum of the formally desuspended usual Thom
space:

T(§) = %""D(£)/5(E)

It is well-defined on the stable vector bundle associated to . If £ is oriented then the Thom
Isomorphism Theorem tells us that the reduced homology of T'(§) is isomorphic to the homology
of the base space of &.

Associated to any prespectrum G we have the space

QG := colim O"G,,

We will assume that the maps G,, — QG,,+1 are embeddings. Then 2°°G is an infinite loop space
since QG = Q(Q®F) where F}, = G, 11 is the delooping of G which we denote F' = Q~1G.

The homology/reduced homology groups of a space X with coefficients in the spectrum associ-
ated to G are defined to be the homotopy groups:

H,(X;G) = m(Q°(X+ AG)) = colim mp+(X+ A Gg)

H,(X;G) :=m,(Q°(X AG)) = colim 7, 11, (X A Gy)

where X, = X [][* is X with an added disjoint basepoint. DWW, section 8, explains how any
homotopy functor G gives an “excisive” functor G%(X) ~ X, AG(*) and when G(X) is a spectrum
valued functor, meaning G,,(X) = QG,,4+1(X), they used the notation,

G7(X) = colim Q"G (X) ~ Q% (X, A G(%))

We will also use the notation
GH(X) = Q®(X A G(%))

so that G*(X) = @%(X+). Then G is a functor that takes cofibration sequences to fibration
sequences and homotopy push-out squares to homotopy pull-back squares. In particular:

%

(B.1) GhXVY)~TX) x G(Y)

07" (X) ~ G (2X)
GH(D(€)/5(€)) = Q™ GH(T(¢)).
B.2. Fiberwise homology. Suppose that X — E & B is a fiber bundle where B is a compact
oriented smooth g-manifold. Then let G%’ (E) be the bundle over B with fiber G*(X). Since the
fibers are pointed, this bundle has a trivial section.

If A C B is a cofibration let I's AG7%(E) be the space of sections of G%(E) which are trivial on
A. This is an infinite loop space since

TpAGR(E) 2 Q"5 A(Q7*G)E(E)

where Q7 *G = {G}.4,,}. In particular, 7T0FB7AG(7§(E) is an abelian group.
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B.2.1. Theorem and corollary. Suppose that 0B is a union of two ¢ — 1 dimensional submanifolds
0yB, 01 B which meet along their common boundary 00gB = 001 B. For any A C B we use the
notation E4 = p~1(A). Then

Theorem B.2.1 (basic homotopy calculation). There is a natural homotopy equivalence

—%
Tp.0,8GE(E) ~ QG (T(€)/T(&1))
where T'(§) is the Thom space of the pull-back & of the stable normal bundle of B to E and T(&1) C
T'(&) is the subspace given by restricting £ to Eg, .

The proof of this fact is very similar to the proof of Poincaré duality and is explained below.
Here is the example that we have in mind.

Corollary B.2.2. Let H(X) be the space of stable h-cobordisms of X. Then
WOFB@OBHB ®RN@ 4]<:EE61B7R)
k>0

where ¢ = dim B.
Proof. By the theorem we have

w0l B (B) 2 Ho(T(§)/T(&1); H(%)).
But we have a rational equivalence of infinite loop spaces
H(x) ~g G/O ~q [ [ K(Z,4k).
k>0
So, rationally we have:
Hy(T(€)/T(&1); H(x) =0 @ Hy-ar(T(€)/T (1)) =0 D Hy-1x(E, Eo, )
k>0 k>0

using the Thom isomorphism theorem at the last step. Extend scalars to R to get the result. [

B.2.2. definition of 6,0. To make a specific choice for the isomorphism in Corollary [B.2.2] we need
a specific rational homotopy equivalence

H(x) ~q [ K(Z,4k)

k>0

This is equivalent to choosing a fixed rational cohomology class in [, H 4 (H(x); Q). We take
this to be the higher IK-torsion invariant which is a real cohomology class

KGHH4k(H*

k>0

which comes from an element of [],., H**(H(*); ((2k + 1)Q) by [22].
With this choice we get a natural isomorphism

Ok : 7ol p.a,sHE(E) ® R = D Hy—ar(E, Eg, 5;R)
k>0
Combining this with the homotopy equivalence gfg 0 (E) = T'pa, B’H%(E) given by Theorem
(A5.14)) we obtain a natural isomorphism
Op: ﬂogi—;’ao(E) QR = @Hq_4k(E, Ey B;R).
k>0
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Proposition B.2.3. In the case when E — B is a linear disk bundle, the composition

~S S) ~ ~
708300 (E) = €D Hy—sk(E, Ep, 5; R) = @D Hy_ar(B, 01 B;R) = 5 H**(B, 9, B; R)
k>0 k>0 k>0
1s equal to the higher IK-torsion invariant:
Op(E) ="M(E E) =r"M(E") ¢ @ H*¥(B,0B;R)
k>0
Proof. This follows from the definition of O and the fact that 7'¥(E) = 0 for linear disk bundles
making 7'(E', E) = 7'8(E") — r'8(B) = 7IK(E"). O

B.3. Proof of the theorem. We prove Theorem [B.2.1lfirst in the special case when B is a compact
g-manifold embedded in D? and JyB is empty (so 1B = 0B). In that case the normal bundle of
B is trivial, so T(¢) = Ey and T'(§)/T'(&1) = E/Epp. Let
%
op : TpGR(E) — QG (E/Eyp)

be the map given as follows. Take the inclusion of F into the trivial bundle B x F via the map
(p,idg) : E — B x E. This induces a map

Yp : TGR(E) = TpGE(B x E) = Map(B,G*(E)).

For any v € FBG%(E) the mapping ¥5(7) : B — G*(E) sends 0B into G*(FEpp). So, it induces
a mapping

on(y) : DI/5971 = D1/(D7 — intB) = BJOB 220 G*(E ) Eyp)
representing an element of ek (E/FEpp). Inthe relative case, ¥ p g,p)(7) sends 01 B into G”*(Ep, )
and 0y B into * = G*()) € G*(FEa,5). So Y(p,9,8)(7) induces a mapping
_ —%
eB.oop)(7) : D1/ST — B/OB — G"(E/Ey, g)

giving an element of el (E/Ey, B).
Lemma B.3.1. Suppose that B is a compact q-manifold embedded in D?. Then the mapping
o5 : TpGE(E) — QG (E/Eyp)
described above is a homotopy equivalence.
Suppose for a moment that this is true.

Proof of Theorem [B.2.1l. Consider the next case when B is a compact g-manifold embedded in the
interior of D7 and 0B = 0pBUO1B. Let C = 0y B x I be an external collar neighborhood for 9y B in
DY so that J = BUC ~ B and BNC = 9yB. Then the bundle E over B extends a bundle E; — J
which is unique up to isomorphism and the mappings ¢, oc, ¢ (p,9,5) are compatible making the
following diagram commute.

T'p.0,8G5(E) I,GF(Ey) TcGE(Ec)

\L%O(B,E)B) lSDJ lsoc

% % %
WG (E/Es ) — QUG (E;/Ey;) — QG (Ec/Esc)

The top row is a fibration sequence since I'p 5, BG%(E) =T J7CG?J(E 7) and the bottom row is a
fibration sequence since
E/EalB — EJ/E@J — Ec/Eg)C
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is a cofibration sequence. Since ¢, pc are homotopy equivalences by the lemma above, the induced
map ¢(p,g,B) 15 also a homotopy equivalence and T'(§)/T'(§1) = E/Es, B, so the theorem holds in
this case.

In the general case we choose an embedding B < DI%™ and let v be the n-dimensional normal
bundle of B. Let & be the pull back of v to E and let D(v), S(v), D(§), S(§) be the corresponding
disk and sphere bundles. Then D(¢), S(§) are the pull-backs of D(v),S(v) to E and therefore,
D(§) — D(v) is a fibration with fiber X and S(§) = D({)g(,). Since D(v) is an ¢ + n manifold
in DI (B,8yB) ~ (D(v), D(v)s,5) and the closure of the complement of 9yD(v) = D(v)g,p in
dD(v) is 01 D(v) = S(v) U D(v)s, B, we have:

T'5.08G%(E) G (T(€)/T (&)

:l E

FD(V)vD(V)BOBG%(u)(D(g)) - Qq+"a%(D(€)/D(§)alp(u))
where ¢ = ©(pw), D) o05) is a homotopy equivalence by the first part of the proof. O
Proof of Lemma [B.31. Suppose first that B = D9. Then
PpGH(E) = Map(D*, (X)) = G*(X) = Q/G" (29(X,)) = Q°G " (E/Eop)

and this homotopy equivalence is given by ¢p.

In general we can choose a finite covering of B by closed ¢-disks A; which is a “good covering”
in the sense that the intersection of any finite number of A; is either empty or homeomorphic to an
g-disk. Let C'= A;U---UA,_; and B = C'U 4. By induction on k we know that ¢c, pcna, and
¢4, are homotopy equivalences. Now look at the commuting cubical diagram given by mapping
each object of the left hand square to the corresponding object of the right hand square in the
following diagrams.

LG (E) L, G% (Eay) G (E|B) QG (E|Ay)
LeGE(Be) —=LancG,nc(Banc) QIG" (E|C) — QIG " (E|Ay N O)

Here E|C = E¢/Epc = E/Ep_inc and similarly for C replaced with B, Ay, Ay N C. Since the
functors X — I’ XG;VE(E x) and Q"@% send cofiber squares to fiber squares, both squares are fiber
squares. This implies that ¢ : TpGR(E) — el (E|B) is a homotopy equivalence as claimed. [

B.4. Stratified bundles. We recall the setup used in the stratified smoothing subsection
We have a codimension 0 immersion A : (L,01L) — (B, 01 B) covered by an embedding of smooth
bundles A : E — W of the same dimension. By the Corollary [A.5.10] of the stratified smooth-
ing Theorem [A.5.18] we have the following commuting diagram where the maps p are homotopy
equivalences.

s H qs < s
LﬁoL(E) ~ SB(E(S) SB,aoB(W)

wEl wl vwl

H -
T Loy HE(E) —==TpHE(E®) —Tpo,sHE (W)

We need to prove that our calculation of the bottom three terms is compatible with the two
arrows.
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Theorem B.4.1 (stratified homotopy calculation). The following diagram commutes for any ho-
mology theory G%

C

Lo, G1(E) —= TpGE(E) Upa,8G5(W)
%l Wl
QG (T(Ep) /T €0 1) - QG (T(€) /T w)

Here § = p*vp is the pull-back of the normal bundle v of B to W and {g = N€. The bottom
arrow is induced by the inclusion T(§g) — T(§) given by A : E — W. The mapping u is the natural
homotopy equivalence described below.

Since A : L — B is a codimension 0 immersion, the normal bundle of B pulls back to the normal
bundle of L: v;, = A*vg. Since po A=)lom:E— B, it follows that {g = 5\*5 = 1*vr. So, both
vertical arrows in the diagram are the homotopy equivalences of the previous theorem.

The mapping p can be described as follows. For any b € B let xq,--- ,x; be the elements of
L — 8L which map to b. Then E = [[A(E,). So

GH(E)) ~ [[G*(\EL,)

where the projection map (Eg )+ — (S\Ex .)+ is the identity on S\Exl and sends the other components
to the disjoint base point. (Then apply 6%(X+) = G*(X).)

There is a sixth space which can be inserted in the middle of the bottom arrow of the above
diagram: Qqé%(T(g 59)/T (€5, s)) where Egs is the restriction of the bundle ¢ to E° and & g is
the restriction of & to 9, E% = E° N Woa, B-

The case that interests us is G = H where, using the Thom Isomorphism Theorem we have the
following.

Corollary B.4.2. The following diagram commutes where both horizontal arrows are induced by
the embedding A : E — W.

ol Lot HY(E) @ R ol oo HE(W) @R

o

A
Do Ho-ak(E, 01 E;R) Do Hg—ak(W, 01 W3 R)

Lemma B.4.3. There is a homotopy equivalence p FL@OLG%(E) — FBG%(E‘S) which sends 7 to
the section u(vy) which sends b € B to (y(x;)); € [[ GP(\E,,).

As before the proof relies on the lemma which does the case when BY is embedded in D9Y.
Lemma B.4.4. Suppose that B? is embedded in the q-disk D*. Then
0 © Yotk Yall
TGR(E®) ~ T g, GR(E) ~ QIG" (E° | ESp) ~ QIG " (E/Ea, 1)
Furthermore the mapping ¢p : FBG%’(E‘S) — Qq@%(E‘S/EgB) giving this homotopy equivalence is

natural with respect to restriction and inclusion as explained below.
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Naturality with respect to inclusion means that the following diagram commutes assuming that
Ego g is empty. The vertical maps in the diagram are induced by the inclusion E° — W.

TpGH(E?) QG (B /By

| |

PB,d, .
U5.0,5G (W) —= QIG* (W/Wo, 5)

Naturality with respect to restriction means that the following diagram commutes assuming that
A C B is a g-submanifold transverse to the image of A\ : L — B.

©B —%
TpGR(EY) == QG (E° | E),)

| |

¢ —%
DAG%(ES) —= Q4G (B /ES,)

The vertical arrow on the left is given by restriction of sections to A and the vertical arrow on the
right is induced by the quotient map E°/ Eg B — E} )/ Eg A-

Proof. The proof is basically the same as the proof of Lemmal[B.3.1l First we consider the elemental
case in which B = D? and L is a disjoint union of disks L; with embeddings \; : L; — B so that
/\i_l(aB) = 01L;. Let E; be the image of E,. Then each E; falls into one of three elemental cases:

(0) 01L; is empty. Then
LpGH(E:) = T1,01,G, (B) = Map(Li/0Ly, G*(E)) = Q'G*(E;) = /G (Bi-)
(1) 01L; and OpL; are ¢ — 1 disks. In this case,
T3GR(E;) ~ + =~ QUG (Ei/Es, 1.,)
(2) 01L; = OB = S9! and Oy L; is empty. Then

FpGE(E) = Map(B, GM(E)) = GM(E,) =~ @G (Ei/Eiop)
Therefore,
TsGE(E;) ~ QG (E:i/E; o)
for each i and we conclude that
TpGH(E’) = [[TsGH(E:) ~ [[ QT (Ei/Eiop) ~ QG (B Ey).

In general we can choose a finite covering of B by closed ¢-disks A; which is a “good covering”
in the sense that the intersection of any finite number of A; is either empty or homeomorphic to
an ¢-disk and the restriction of F to each of these disks is elemental as described above. It is easy
to do this very explicitly. First subdivide once to make sure the triangulation is sufficiently fine.
Choose any fixed positive € < 1/q + 1. For every simplex o take the set N (o) of all points b € B so
that t; < e for every barycentric coordinate t; of b corresponding to a vertex v; not in o. Then N (o)
is a polyhedron, being given by linear inequalities of barycentric coordinates and it is the closure
of its interior which contains o as a deformation retract and is thus contractible. Therefore N (o)
is a ¢-disk. Also, it is obvious that N(o) N N (1) = N(o N 7). Also, similar arguments show that
each component of L over N(o) is a ¢ disk and falls into one of the three cases discussed above. So
A; = N(o;) form a good covering.

The rest of the proof is almost word-for-word the same as the second half of the proof of Lemma
B30 except that we need E to be replaced with E? and we need two more commuting squares

with B replaced by L and C' and Ag replaced by their inverse images in L. Then we have four fiber
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squares in which corresponding terms are homotopy equivalent by induction on k proving the first
part of the lemma.
It remains to show that the mapping

op : TpGR(E®) — QIG " (B°/ES )

which gives the homotopy equivalence is natural with respect to inclusion and restriction. But
this A section v of G%(E?) sends a point b € B to v(b) € G*(F,) C GR(E?). The corresponding

map ¢p(y) : D1/S971 — @%(E/EaB) sends b € B C D to v(b) € G*(E,) — @%(E/EaB). This
is clearly compatible with inclusion: we simply map these images into larger sets. This is also
compatible with restriction: the points b € A are sent to the same points as before and b ¢ A are
sent to the basepoint by both v and p4(7). O

Proof of stratified homotopy calculation. In the general case we choose an embedding B? « DIt™
and let v be the n-dimensional normal bundle of B. Let & be the pull back of v to E and let
D(v),S(v),D(£),S(&) be the corresponding disk and sphere bundles. Then D(§),S(€) are the
pull-backs of D(v), S(v) to E and therefore, D(§) — D(v) is a fibration with fiber X and S(¢) =
D(§)s@)- Since D(v) is an ¢ +n manifold in DI*", (B, 0yB) ~ (D(v), D(v)a, ) and the closure of
the complement of dyD(v) = D(v)g,p in 0D(v) is 1D(v) = S(v) U D(v)g, B, we have:

T5.0,8G%(E) G (T(€)/T (&)

:l E

D), 00)ay5 Gt (P(E) ——= QUG (D(€)/D(€) 5, p1)

where ¢ = ©(pw), D) o05) is a homotopy equivalence by the first part of the proof. 0
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