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EXOTIC SMOOTH STRUCTURES ON TOPOLOGICAL FIBRE BUNDLES

SEBASTIAN GOETTE AND KIYOSHI IGUSA

Abstract. We use a variation of Hatcher’s construction to construct virtually all stable exotic
smooth structures on compact smooth manifold bundles whose fibers have sufficiently large odd
dimension (at least twice the base dimension plus 3). We show that, rationally stably, such smooth
structures are classified by a cohomology class in the total space and the relative higher Igusa-Klein
(IK) torsion is equal to the push-down of that cohomology class. This answers the question, in the
relative case, of which cohomology classes can occur as relative higher torsion classes.
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0. Introduction and outline

Higher analogues of Reidemeister torsion and Ray-Singer analytic torsion were developed by J.
Wagoner, J.R. Klein, M. Bismut, J. Lott, W. Dwyer, M. Weiss, E.B. Williams, W. Dorabiala, B.
Badzioch, the authors of this paper and many others. ([26], [25], [24], [5], [9], [4], [11], [12],[13],
[21], [3], [2]).

The purpose of this work is to determine to what extent higher Reidemeister torsion distinguishes
between different smooth structures on the same (smoothable) topological manifold bundle and to
determine which cohomology classes occur as higher torsion classes. Since the higher torsion is a
sequence of real cohomology classes which are “stable”, it can only detect the torsion-free part of
the group of stable smooth structures on topological bundles. Following Dwyer, Weiss and Williams
we eschew classical smoothing theory by assuming that we are given a fixed linearization of the
vertical tangent microbundle of a topological manifold bundle. We also assume that there exists at
least one smoothing. With these points in mind, we give a complete answer to these two questions
in the two main theorems of this paper.

The first main result is the Realization Theorem (or Arc de Triomph Theorem 3.1.1) which says
that the Arc de Triomph construction gives virtually all stable tangential smoothings of a compact
topological manifold bundle which admits at least one smoothing. The second main result relates
the cohomological relative smooth structure class arising from the theory of Dwyer-Weiss-Williams,
with the higher Igusa-Klein (IK) torsion. This is Theorem 3.0.8 which states that the relative higher
IK torsion is the push-down of the relative smooth structure class.

This paper discusses in detail how these (the Arc de Triomph construction and the relative
smooth structure class) are defined and what are their basic properties. The two main theorems
are difficult to state precisely and their proofs are intertwined. The main corollaries however are
easier to state and show how this paper is an extension of earlier work of the first author [11] in
which a large class of examples of bundles with nontrivial higher torsion was constructed using
Hatcher’s example. The following theorem is a reformulation of Corollary 3.0.9.

Theorem 0.0.1. Let p :M → B be a smooth manifold bundle whose base B, fiber X and total space
M are closed oriented smooth manifold. Suppose that dimX = N is odd and at least 2 dimB + 3.
Let θ ∈ H4k(B;R) be a cohomology class whose Poincaré dual is the push-down of an integral
homology class in M . Then there exists another smooth bundle p′ : M ′ → B which is fiberwise
tangentially homeomorphic to p so that the relative torsion τ IK(M ′,M) is a nonzero multiple of θ

Fiberwise tangentially homeomorphic (A.3.3) means that there is a homeomorphism f :M →M ′

over B covered by a vector bundle isomorphism between the vertical tangent bundles T vf : T vM →
T vM ′ which is compatible in a certain sense with the topologically defined map of Euclidean bundles
Evf : EvM → EvM ′ induced by f .

There are two constructions which produce the examples in the theorem above. We call these
the immersed Hatcher handle construction and the Arc de Triomph (AdT) construction. The first
construction is geometrically easier and the second has a better algebraic description.

The group of all stable smooth structures on a smooth bundle is given by a theorem coming
from Dwyer-Weiss-Williams smoothing theory (Appendix A) which has the following especially
nice formulation in the case when the base and fiber are closed oriented manifolds (B.2.2).

Theorem 0.0.2. Let S̃sB(M) be the space of all stable smooth bundles M ′ → B which are fiberwise

tangentially homeomorphic to M over B. Then π0S̃
s
B(M) is a finitely generated abelian group and

π0S̃
s
B(M)⊗ R ∼=

⊕

k>0

HN+4k(M ;R)

where N is the fiber dimension.
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The element in the cohomology/homology group corresponding toM ′ → B is called the (relative)
smooth structure class and will be denoted

Θ(M ′,M) ∈
⊕

k>0

HN+4k(M ;R) ∼=
⊕

k>0

HdimB−4k(M ;R)

The two main theorem of this paper can now be stated.

Theorem 0.0.3 (AdT Theorem 3.1.1). When N ≥ 2 dimB + 3 is odd, the relative smooth struc-
ture classes of the smooth bundles M ′ → B given by the AdT construction span the vector space⊕

k>0H
N+4k(M ;R).

Remark 0.0.4. The group π0S̃
s
B(M) is finitely generated and the stable smooth structures given by

the AdT construction form a subgroup of full rank, i.e., a subgroup of finite index. So, the AdT
construction gives virtually all stable smooth structures on M → B.

Proposition 0.0.5 (Lemma 3.1.8). The AdT construction and the immersed Hatcher construction
are equivalent in the sense that they produce the same set of smooth bundles.

Theorem 0.0.6 (Theorem 3.0.8, Corollary 3.0.11). Given a smooth bundle M ′ → B which is
fiberwise tangentially homeomorphic to M → B, the relative higher torsion class τ IK(M ′,M) is
equal to the image of the relative smooth structure class Θ(M ′,M) under the push-down map:

p∗ :
⊕

k>0

HN+4k(M ;R) →
⊕

k>0

H4k(B;R)

In short: τ IK = p∗ ◦Θ.

This theorem can be interpreted as saying that the relative higher IK-torsion is proportional to
the relative higher DWW-torsion if we define the latter to be the push-down of the relative smooth
structure class. This agrees with the recent theorem of Badzioch, Dorabiala, Klein and Williams
[2] but the two results do not imply each other since the absolute higher torsion (DWW or IK) is
not always defined.

When the fibers are closed even dimensional manifolds, the theorem above still holds by Corollary
3.0.11. However, the relative higher torsion class τ IK(M ′,M) is equal to zero in that case:

τ IK(M ′,M) = τ IK(M ′)− τ IK(M) = 0

since τ IK(M) depends only on the vertical tangent bundle of M over B by [22]. This leads to the
following conjecture.

Conjecture 0.0.7 (Rigidity conjecture). The stable smooth structure class vanishes when the fiber
is a closed oriented even dimensional manifold:

Θ(M ′,M) = 0

In other words, rationally stably, there are no exotic smooth structures on manifold bundles with
closed oriented even dimensional fibers.

Theorem 0.0.6 implies that Θ(M ′,M) must lie in the kernel of the push-down map p∗ in the
closed even dimensional fiber case since the higher relative torsion is zero.

0.1. Basic definitions. In Appendix A we explain the Dwyer-Weiss-Williams smoothing theory.
This is an expanded version of the handwritten notes by Bruce Williams [28] which explains this
version of their result which is not contained in the final published version of their paper [9]. (It
comes from the introduction of the earlier unpublished version.) In Appendix B we add to this
theory the elementary homotopy theory calculation which simplifies the result in the case when
base and fiber are closed and oriented. We also extend the result to the “stratified” case. The
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stratified version is a formal consequence of the standard version. Both follow from the special case
when the base is a disk and the bundle is trivial. But in this case the base has a boundary.

The model that we will use is due to Hatcher. He constructed a disk bundle with an exotic
smooth structure. So, we also need to consider the case when the fiber X has a boundary. The
subbundle of M with fiber ∂X is called the vertical or relative boundary ∂vM .

0.1.1. Stable smoothing theory. Stabilization of a bundle simply means replacing a smooth bundle
M → B with a linear disk bundle D(η) → B where D(η) is the disk bundle of a vector bundle η
over M . For example M × Dk → B is a stabilization of M . Stabilization has the property that
it does not see the boundary in the sense that, we can fix the boundary or not and it makes no
difference after stabilization (Proposition A.4.5). So, we use whichever is more convenient. We use
the version in which the boundary has a variable smooth structure to compute the stabilization
and we use the version in which the boundary is fixed to give explicit constructions of smooth
structures on M in low dimensions.

From now on we let q = dimB and N = dimX. Suppose that ∂B is a union of two smooth

q − 1 manifolds ∂0B, ∂1B which meet along their common boundary. Let S̃∂B,∂0(M) be the space

of all smooth bundles M ′ → B which are tangentially homeomorphic to M relative to

∂0M =M∂0B ∪ ∂vM

in the sense that the fiberwise tangential homeomorphism M →M ′ is smooth on ∂0M .
We define this to be a (fiberwise) exotic smooth structure on M over (B, ∂0B) since M ′

represents a new smooth structure on the underlying topological manifold bundle M → B which
agrees with the given structure on M∂0B and on the fiberwise boundary ∂vM .

Then DWW smoothing theory tells us that S̃sB,∂0B(M) is homotopy equivalent to the space

of section ΓB,∂0BH
%
B(M) of the bundle H%

B (M) over B whose fibers are H%(X) where H%(X) =
Ω∞(X+ ∧ H(∗)) is the homology theory whose coefficient spectrum is the space H(∗) of stable
h-cobordisms of a point. ΓB,∂0B means sections over B which are fixed over ∂0B.

Theorem 0.1.1 (Dwyer-Weiss-Williams, Theorem A.5.14). S̃sB,∂0B(M) ≃ ΓB,∂0BH
%
B(M)

An elementary homotopy calculation shows that

Proposition 0.1.2 (Corollary B.2.2). π0ΓB,∂0BH
%
B(M)⊗ R ∼=

⊕
k>0Hq−4k(M,M∂1B ;R).

Here M∂1B is the restriction of M to ∂1B. By Poincaré duality we have:
⊕

k>0

Hq−4k(M,M∂1B)
∼=

⊕

k>0

HN+4k(M,∂0M)

where we take homology with coefficients in R
In the special case when X = DN is a disk, we denote the total space by M = E ≃ B and we

can use the fundamental theorem of Waldhausen [27] that H(∗) is rationally homotopy equivalent
to BO and the calculation of higher torsion to see that we have a sequence of isomorphisms:

π0S̃
s
B,∂0B(E)⊗ R

γE−−→ π0ΓB,∂0BH
%
B(E)⊗ R

θE−→
⊕

k>0

HN+4k(E, ∂0E)
p∗
−→

⊕

k>0

H4k(B, ∂0B)

The isomorphism θE is normalized so that this composition is equal to the higher relative IK-torsion
invariant τ IK (Proposition B.2.3).

0.1.2. Stratified smoothing theorem. We show that the isomorphism given by the DWW smoothing
theory is natural with respect to immersions in the following sense. Suppose that L is a compact q
manifold with boundary ∂L = ∂0L ∪ ∂1L and λ : L→ B is a codimension-0 immersion with image
disjoint from ∂0B so that λ−1(∂B) = ∂1L. Let λ̃ : L →M be an embedding over λ and let E be a
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DN bundle diffeomorphic to a neighborhood of the image of λ̃. Then we have a smooth embedding
of bundles:

D(λ̃) : E →M

An exotic smooth structure E′ on E relative to ∂0E gives an exotic smooth structure on M simply
by

M ′ = (M −E) ∪ E′

since ∂0E is the intersection of E with the closure of its complement in M . This defines a mapping

D(λ̃)∗ : S̃
s
L,∂0L(E) → S̃sB,∂0B(M)

We show, as an easy extension of the naturality of the DWW construction that:

Theorem 0.1.3 (stratified deformation theorem). The following diagram commutes where the

vertical arrows are induced by the embedding D(λ̃) : (E,E∂1L) → (M,M∂1B)

π0S̃
s
L,∂0

(E)

��

∼=

γE // π0ΓL,∂0H
%
L (E)

��

θE //
⊕

k>0Hq−4k(E,E∂1)

��
π0S̃

s
B,∂0

(M)
∼=

γM // π0ΓB,∂0H
%
B (M)

θM //
⊕

k>0Hq−4k(M,M∂1)

Proof. The left hand square commutes by Corollary A.5.19 and the right hand square commutes
by Corollary B.4.2. �

The composition of the horizontal arrows is by definition the homological smooth structure map
Θ. So, we can abbreviate this diagram:

π0S̃
s
L,∂0

(E)

D(λ̃)∗
��

Θ //
⊕

k>0Hq−4k(E,E∂1)

D(λ̃)∗

��
π0S̃

s
B,∂0

(M)
Θ //

⊕
k>0Hq−4k(M,M∂1)

0.2. Outline of the proofs. The statements and proofs of the main theorems are contained in a
single diagram which contains the above diagram in its middle.

G(L, ∂0L)

Σ
λ̃

��

topEn
L(−,η)

//

topEn
+(M,λ̃,−) ))RRRRRRRRRRRRRRR

(−1)n2c̃h

**
π0S̃

s
L,∂0

(E)

D(λ̃)∗
��

Θ
//

τ IK **⊕
k>0Hq−4k(E,E∂1)

D(λ̃)∗

��

∼=
//
⊕

k>0Hq−4k(L, ∂1L)

λ∗

��λ̃∗uujjjjjjjjjjjjjjjjjj

SD
G/O
B,∂0(M)

AdT

//

(−1)n2c̃h

44
π0S̃

s
B,∂0

(M)
Θ

//

τ IK

44

⊕
k>0Hq−4k(M,M∂1B) p∗

//
⊕

k>0Hq−4k(B, ∂1B)

The Arc de Triomph construction can be expressed as a homomorphism

AdT : SD
G/O
B,∂0

(M) → π0S̃
s
B,∂0(M)

where SD
G/O
B,∂0

(M) is the group of all equivalence classes of input data for the Arc de Triomph

construction. This factors through the quotient group SD
G/O
B,∂0(M) shown in the diagram above.

The AdT Theorem 3.1.1 says that AdT is rationally surjective, in other words, the cokernel
is a finite group. The proposition (Lemma 3.1.8) that every AdT construction is equivalent to
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an immersed Hatcher construction is formulated more precisely in the statement that we have a
surjective map ∑

Σλ̃ :
⊕

G(L, ∂0L) ։ SD
G/O
B,∂0(M)

Here G(L, ∂0L) is just the group of all homotopy classes of maps L/∂0L→ G/O.
The other main theorem:

τ IK = p∗ ◦Θ

is the commutativity of the lower right curved triangle. This follows from the AdT Theorem and
the commutativity of the corresponding upper right curved triangle which is Proposition B.2.3.

0.2.1. Hatcher’s example and its variations. The basic construction is due to Hatcher. Hatcher’s
construction starts with an n-plane bundle ξ over a q-manifold L which is trivial over ∂0L and
which has the property that the associated sphere bundle is fiber homotopically trivial. In other
words, ξ gives a mapping

ξ : L/∂0L→ G/O

We use the notation G(L, ∂0L) to denote the set of homotopy classes of pointed maps L/∂0L→ G/O
giving the input data for this construction. Using this data, Hatcher constructed a disk bundle
En,m(ξ) over B which is homeomorphic to B×Dn+m but not fiberwise diffeomorphic to any linear
disk bundle. We show (Theorem 1.2.2) that this construction can be realized in fiber dimension
n+m ≥ 2q + 3.

Hatcher’s disk bundle can be used to construct what we call “Hatcher handles” (subsection
2.3). These are two thickenings of Hatcher’s disk bundle which we call “negative” and “positive”
suspension of En,m(ξ, η) and denote An,m(ξ, η) and Bn,m(ξ, η). We show that the positive Hatcher
handles Bn,m(ξ, η) can be attached along the top M × 1 of a manifold bundle M × I over B along

an embedding λ̃ : L → M which lies over a codimension 0 immersion λ : L → B. We call this the
immersed Hatcher construction.

The attaching map for the negative Hatcher handle An,m(ξ, η) can deformed to be on top of
the positive Hatcher handle Bn,m(ξ, η) in such a way that they cancel as shown in Figure 2.1. We
call this the Arc de Triomph construction. This construction has as input data a pair (Σ, ψ) where
Σ is a smooth oriented q-manifold embedded in M with the property that the projection Σ → B
has only fold singularities. The mapping ψ : Σ → G/O gives the data for positive and negative
Hatcher handles to be attached along Σ+,Σ− which are the subsets of Σ along which the projection
p : Σ → B is orientation preserving or reversing, respectively. The group of deformation classes of

such input data we denote SD
G/O
B,∂0

(M). The Arc de Triomph construction thus gives a map

AdT : SD
G/O
B,∂0

(M) → π0S̃
s
B,∂0(M)

which we show to be additive (Proposition 3.1.4). One of the main theorems is that this map is
rationally surjective, i.e., its cokernel is finite.

To prove this we use the computation of the homotopy type of the space of generalized Morse
functions [18] which implies that there is a fiberwise generalized morse function f : M → I whose
singular set Σ(f) together with is vector bundle data ξ given by the second derivative of f gives

an element of SD
G/O
B,∂0

(M) which maps onto a spanning subset of the real homology group
⊕

k>0

Hq−4k(M,M∂1B)
∼= π0SD

G/O
B,∂0B

(M)⊗ R

In the main diagram, this is expressed by saying that the curved mapping (−1)n2c̃h from SD
G/O
B,∂0B(M)

to
⊕

k>0Hq−4k(M,M∂1B) maps onto a spanning subset. We know from the Appendices that Θ is

an isomorphism. So, it suffices to show that Θ ◦ AdT = (−1)n2c̃h, i.e. that the lower left curved
triangle commutes.
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0.2.2. Higher IK torsion. In order to show the commutativity of the lower part of the main diagram,
we use the computation of higher IK torsion on the upper part of the diagram and the fact that
the middle of the diagram commutes by way of the stratified smoothing theorem and the related
homotopy calculation as proved in the Appendix. The stratified deformation lemma 3.2.1 is used
to prove that every AdT construction can be deformed into an immersed Hatcher construction.
This is used to pass to the upper part of the main diagram. Here, the bundle E is a disk bundle.
So, E is homotopy equivalent to its base L and the higher torsion is equal to the smooth structure
class

Θ : π0S̃
s
L,∂0L(E)⊗ R →

⊕

k>0

Hq−4k(L, ∂1L)

by definition of the latter.
By passing down to M , we see that the image in the cohomology of M of the smooth structure

class of E maps to the image in the cohomology of B of the higher torsion invariant. By commu-
tativity of the main diagram this implies that the smooth structure class in general maps to the
higher IK torsion. This is the second main theorem.

0.3. Acknowledgements. Research for this project was supported by the DFG special programme
Global Differential Geometry and the National Science Foundation. An earlier version of this work
was presented at the 2006 Arbeitsgemeinshaft at Oberwolfach on “Higher Torsion Invariants in
Differential Topology and Algebraic K-Theory.” This was a very helpful and enjoyable meeting at
which Bruce Williams gave us his famous notes on smoothing theory [28]. The American Institute
of Mathematics in Palo Alto helped us to finish this project by hosting a workshop on higher torsion
in 2009. This was a very productive meeting for which the directors of AIM deserve a lot of credit
for keeping us focused. Finally, the second author would like to thank the organizers of the CMS
meeting at Fredericton, New Brunswick in June, 2010 for the opportunity to present the finished
version of this paper.

1. Hatcher’s example

Hatcher’s famous construction gives smooth disk bundles over S4k which are homeomorphic but
not diffeomorphic to S4k ×Dn. The exact statement is given below.

1.1. Homotopy theory. John Klein helped us to find the lowest dimension in which this part of
the construction works.

Suppose that B is a compact smooth q-manifold and ∂B = ∂0B ∪ ∂1B as before. Let

f : B/∂0B → G/O

be a continuous map, i.e., f is a continuous mapping on B which sends ∂0B to the basepoint of
G/O, the fiber of BO → BG. This classifies a stable vector bundle over B which is trivial over ∂0B
and trivial over B as a spherical fibration. Take n > q. Then BOn → BO is q + 1-connected and
therefore this stable vector bundle is given by a unique oriented n-plane bundle ξ over B which is
trivial over ∂0B.

Remark 1.1.1. Since G/O is rationally homotopy equivalent to BO, the Chern characters of all real
vector bundles ξ obtained in this way will span the vector space

⊕

0<k≤q/4

H4k(B, ∂0B;R).

Recall that Gn is the topological monoid of all unpointed self-homotopy equivalences of Sn−1.
Taking unreduced suspension we get a mapping Gn → Fn where Fn ⊂ ΩnSn is the union of the
degree ±1 components. It follows from a theorem of Haefliger [15] that (Fn, Gn) is 2n−3 connected.
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Furthermore, the components of ΩnSn are all homotopy equivalent and πkGn ∼= πkFn is stable and
thus finite for k ≤ n− 2. (This also follows from the EHP sequence.) Therefore,

[B/∂0B,BGn] ∼= [B/∂0B,BG]

for n > q. So, the composition

B/∂0B
ξ
−→ BOn → BGn

is null homotopic for n > q. This implies that the sphere bundle Sn−1(ξ) associated to ξ is fiberwise
homotopy equivalent to the trivial bundle:

g : Sn−1(ξ) ≃ Sn−1 ×B

and this trivialization agrees with the given trivialization over ∂0B.
Take the fiberwise mapping cone of g. This gives a fibration over B whose fibers are contractible

n-dimensional cell complexes which are homeomorphic to the standard n-disk over ∂0B. When we
thicken this up we will get an exotic smooth structure on a trivial disk bundle over B.

Remark 1.1.2. For any space X recall [1, 17] that J(X) is the group of stable vector bundles over
X modulo the equivalence relation that ξ ∼ η if the sphere bundles over ξ and η are fiberwise
homotopy equivalent. The group operation is fiberwise join which corresponds to direct sum of
underlying bundles. If ξ is any vector bundle over X then J(ξ) denotes its image in J(X). If X
is a finite complex then it is well known that J(X) is a finite group. (See, e.g. [17].) The above
argument shows that if J(ξ) is trivial in J(B/∂0B) and dim ξ > dimB then the sphere bundle of
ξ is fiberwise homotopically trivial.

1.2. Thickening. We have a family of finite cell complexes over B which we want to thicken to
get a manifold bundle. If we embed this fibration in DN ×B and take a “regular neighborhood” we
will get a smooth N disk bundle over B which is homeomorphic but not diffeomorphic to DN ×B.

We start by thickening the trivial sphere bundle Sn−1 × B to get Sn−1 × I ×Dm × B. This is
the trivial bundle over B with fiber Sn−1 × I ×Dm. We also need this to be embedded in a trivial
disk bundle Dn ×Dm ×B in a standard way. We can take the obvious embedding

f : Sn−1 × I ×Dm →֒ Dn ×Dm

given by f(x, y, z) =
(
1
2(1 + y)x, z

)
. Note that Sn−1 × 0 × Dm is mapped into the sides of the

“donut hole” which is the closure of the complement of the image of f in Dn ×Dm.
We attach an n-handle Dn(ξ)⊕Dm(η) to this (with η necessarily being a complementary bundle

to ξ) to fill in the donut hole and create a smooth (after rounding corners) bundle over B with fiber

Sn−1 × I ×Dm ∪Dn ×Dm ∼= Dn+m

The data needed to attach such a handle embedded in Dn × Dm × B is a smooth embedding of
pairs

D(j) : (Dn(ξ), Sn−1(ξ))⊕Dm(η) → (Dn, Sn−1)×Dm ×B

where Dm represents the hemisphere in the boundary of Dm+1.

Dn Sn−1 × I

Dm

D(j)(Dn(ξ)× 0)

This embedding D(j) is essentially given by its restriction to the core Dn(ξ)× 0.
8



Lemma 1.2.1. If m > n > q then there is a smooth fiberwise embedding of pairs:

j : (Dn(ξ), Sn−1(ξ)) → (Dn, Sn−1)×Dm ×B

over B which is the standard embedding over ∂0B and which is transverse to Sn−1 ×Dm. Further-
more, if m ≥ q + 3 then this fiberwise embedding will be unique up to fiberwise isotopy.

Proof. When q = 0, this holds by transversality. So suppose q > 0. We use [20, Thm 6.5] which
says that the inclusion

Emb((Dn, Sn−1), (W n+m, ∂0W )) → Map((Dn, Sn−1), (W n+m, ∂0W ))

of the smooth embedding space into the mapping space is c-connected where

c = m− n− 1 + min(s, n,m− 2, n +m− 4)

and s is the connectivity of the pair (W,∂0W ). In our case s = n−1. So the conditionm > n > q > 0
implies that c ≥ q giving the existence part of the lemma and if m ≥ q + 3 then either m ≥ n+ 2
or n ≥ q + 2 and we get c > q which implies the uniqueness part. �

The embedding j gives an m-dimensional normal bundle η for ξ and a smooth codimension 0
embedding

D(j) : Dn(ξ)⊕Dm(η) → Dn ×Dm ×B

Restricting this to ∂Dn(ξ)⊕Dm(η) we get a fiberwise embedding

S(j) : Sn−1(ξ)⊕Dm(η) → Sn−1 ×Dm ×B

We can use S(j) to construct a smooth bundle (with corners rounded):

En,m(ξ) = Dn(ξ)⊕Dm(η) ∪S(j) S
n−1 × I ×Dm ×B.

We can also use D(j) to embed this in the trivial disk bundle of the same dimension:

F (j) = D(j) ∪ f : En,m(ξ) →֒ Dn ×Dm ×B

This is Hatcher’s example. Since m > q, the m-plane bundle η is the stable complement to
ξ and is thus uniquely determined. If m ≥ q + 3 then, up to fiberwise diffeomorphism, E(ξ) is
independent of the choice of j. Finally, we note the crucial point that the bundle E(ξ) is canonically
diffeomorphic to the trivial bundle over ∂0B. Summarizing the construction above and the easy
calculation of the higher torsion of this bundle we get the following well known theorem.

Theorem 1.2.2. Suppose that B is a smooth q-manifold and m > n > q. Suppose that ξ is an
n-plane bundle over B which is trivial over ∂0B ⊂ ∂B so that J(ξ) = 0 ∈ J(B/∂0B). Then
Hatcher’s construction gives a smooth bundle En,m(ξ) over B with fiber Dn+m. This bundle is
fiberwise diffeomorphic to the trivial bundle over ∂0B and fiberwise homeomorphic to the trivial
bundle over B with fiber Dn+m. Furthermore its higher IK-torsion in degree 4k is given by

τ IK2k (En,m(ξ)) = (−1)k+nζ(2k + 1)12ch4k(ξ ⊗ C) ∈ H4k(B, ∂0B;R)

where ζ is the Riemann zeta function.

Remark 1.2.3. If we use the normalized chern character

c̃h4k(ξ) = (−1)kζ(2k + 1)12ch4k(ξ ⊗ C)

then the statement of the theorem simplifies to

τ IK2k (En,m(ξ)) = (−1)nc̃h4k(ξ)
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Proof. The higher torsion is calculated using the Framing Principle from [21, 23]. Here we use the
version in [22] which says that, given a smooth handlebody structure on the fibers with handles
attached in the same order for each fiber, the axiomatic higher torsion is defined and equal to a
linear combination of the suitably normalized chern characters of the bundles giving the core and
cocores of the handle. For IK torsion the coefficient for the cocore is zero and the coefficient for
the core is (−1)kζ(2k + 1) which is what we are using.

The bundle is topologically trivial by the Alexander trick. (The topological group of homeomor-
phism of the disk Dn+m which are the identity on the southern hemisphere is contractible.) �

Take q = 4k, n = 4k + 1,m ≥ 4k + 2, B = S4k and using the well known fact that the order of
the image of the J-homomorphism J : π4k−1O → πs4k−1, which we denote ak, is the denominator
of Bk/4k where Bk is the k-th Bernoulli number [1], we get the following.

Corollary 1.2.4. For any k > 0, N ≥ 8k + 3 Hatcher’s construction gives a smooth N -disk
bundle over S4k which is tangentially homeomorphic to DN × S4k but has higher torsion invariant
τ2k ∈ H4k(S4k;R) equal to ζ(2k+1)ak times the generator of H4k(S4k;Z) for k odd and half of that
number when k is even. In both cases this gives a nontrivial element of π4k−1Diff(D

N)/ON ⊗ R.

Proof. It follows from Bott periodicity ([6], [17, 18.9]) that the chern character of the stable complex
vector bundle over S2k corresponding to a generator of π2kBU = Z is equal to a generator of
H2k(S2k;Z). Also, the homotopy fiber sequence BO → BU → Ω6BO given by the inclusion map
O → U implies that the generator of π4kBO maps to the generator of π4kBU for k even and to
twice the generator when k is odd. The generator of the kernel of the J-homomorphism is ak times
this element. By the theorem above, the higher torsion of this exotic bundle is given by multiplying
this element by 1

2ζ(2k + 1) giving the formula in the corollary up to sign. �

2. Variations of Hatcher’s construction

We need several variations and extensions of Hatcher’s construction in order to construct a
full rank subgroup of the group of all possible tangential smooth on a smooth manifold bundle
with sufficiently large odd dimensional fibers. The idea is to construct “positive” and “negative”
“suspensions” of Hatcher’s basic construction which will cancel. We call this the “Arc de Triomph”
construction due to the appearance of the figures used to explain the construction. Since the
stabilization of bundles with even dimensional fibers includes bundles whose fiber dimensions are
arbitrarily large and odd, this construction also produces “all” stable tangential smooth structures
on bundles with even dimensional fibers.

2.1. Arc de Triomph: basic construction. There are two “suspensions” of En,m to one higher
dimension. We will see that their union is trivial:

En,m+1(ξ) ∪En+1,m(ξ) ∼= Dn+m+1 ×B

This is in keeping with the calculation of their higher torsions:

τ IK2k (E
n,m+1(ξ)) + τ IK2k (E

n+1,m(ξ)) = (−1)nc̃h4k(ξ) + (−1)n+1c̃h4k(ξ) = 0

and the Additivity Axiom from [22] which says that the higher torsion of a union is the sum of
torsions of the pieces.

The positive suspension of En,m(ξ) is defined simply as the product (with corners rounded):

σ+E
n,m(ξ) = En,m(ξ)× I

An examination of the definitions shows that this is the same as En,m+1(ξ).
The negative suspension of En,m(ξ) uses the embedding F (j) : En,m →֒ Dn ×Dm × B and

is defined as follows.

σ−E
n,m(ξ) = Dn ×Dm × [−1, 0] ×B ∪F (j)×0 E

n,m(ξ)× I ∪F (j)×1 D
n ×Dm × [1, 2] ×B

10



This is a subbundle of Dn×Dm× [−1, 2]×B. We claim that σ−E
n,m(ξ) is a model for En+1,m(ξ)

over B in the sense that the construction of En+1,m(ξ), which may not be unique, could give
σ0E

n,m(ξ). Lemma 1.2.1 then tells us that we have uniqueness after stabilizing just once:

σ−E
n,m(ξ)× I ∼= En+1,m(ξ)× I = En+1,m+1(ξ)

since m+ 1 ≥ q + 3. To verify this claim note that σ−E
n,m(ξ) contains the trivial bundle over B

with fiber
F = Dn ×Dm × [−1, 0] ∪ Sn−1 × I ×Dm × [0, 1] ∪Dn ×Dm × [1, 2]

which is diffeomorphic to Sn ×Dm+1 after its corners are rounded. On this is attached the n + 1
handle Dn(ξ) ⊕ Dm(η) × I which is which is equivalent to Dn+1(ξ) ⊕ Dm(η) after corners are
rounded. Since Dn+1(ξ) is the core of this handle, the result is En+1,m(ξ).

When we take the union of the positive and negative suspensions of En,m(ξ), they cancel. This
will follow from the following lemma which does not require proof.

Lemma 2.1.1. Suppose that E0, E1 are compact smooth manifold bundles over B with the same
fiber dimension. Let f : E0 → E1 be a smooth embedding over B. Then

E0 × [0, 1] ∪f×1 E1 × [1, 2]

is fiberwise diffeomorphic to E1 × I after rounding off corners.

Remark 2.1.2. The example that we have in mind is

En,m(ξ)× [0, 1] ∪F (j)×1 D
n ×Dm × [1, 2] ×B ∼= Dn ×Dm × I ×B

We denote the construction on the left by V n,m(ξ).

Next we use another trivial lemma:

Lemma 2.1.3. Suppose that ∂vE1 = ∂0E1 ∪ ∂1E1 where ∂iE1 are smooth manifold bundles over B
with the same fiberwise boundary. Let f, g : ∂0E1 → ∂vE0 be smooth embeddings over B which are
fiberwise isotopic. Then E0 ∪f E1 and E0 ∪g E1 are fiberwise diffeomorphic over B after rounding
off the corners.

In our example, ∂0E0 will be a disk bundle. So, we need the following well-known lemma.

Lemma 2.1.4. Suppose that D is a smooth disk bundle over B and E is any smooth manifold
bundle over B. Let f, g : D → E be smooth embeddings over B which agree over ∂0B. Then f, g
are isotopic if and only if they are fiberwise tangentially homotopic fixing ∂0B.

Proof. Necessity of the condition is clear. To prove necessity, we triangulate the base and construct
the isotopy over the simplices one at a time. Thus it suffices to consider the case N = Dq and
∂0B = Sq−1. In this case both bundles are trivial so f, g are maps

f, g : Dq → Emb(DN , F )

which agree on Sq−1 and whose 1-jets are homotopic fixing the boundary. Here F is the fiber of
E → B. But the derivative at the origin map from the embedding space Emb(DN , F ) to the space
of N -frames in F is a homotopy equivalence since embeddings on disks can be uniformly contracted
to the middle and made isotopic to the exponential map on the N -disk in the tangent bundle of F
given by the N -frame. Therefore an isotopy of the 1-jet is locally equivalent to an isotopy of the
embedding. �

We use the last two lemmas for

(E1, ∂0E1) = (En,m(ξ)× [0, 1] ∪F (j)×1 D
n ×Dm × [1, 2] ×B,En,m(ξ)× 0)

and E0 =M × [−1, 0] with

M = En,m(ξ) ∪h×idB D
n ×Dm ×B

11



where h is an orientation reversing diffeomorphism

∂(Dn ×Dm) ⊃ Dn+m−1
0

h
−→ Dn+m−1

1 ⊂ Sn−1 × 1×Dm

between a fixed n + m − 1 disk on the boundary of Dn × Dm and a fixed n + m − 1 disk in
Sn−1 × 1 × Dm (the outside surface of the donut). The pasting map h needs to be orientation
reversing in order for orientations of the two pieces to agree. It is a special case of the first trivial
Lemma 2.1.1 that M is fiberwise diffeomorphic to En,m(ξ). Note that h is unique up to isotopy
assuming that n ≥ 2.

In our example of Lemma 2.1.3, the mapping f : ∂0E1 → ∂vE0 is simply the inclusion map

f : En,m(ξ)× 0 ⊆M × 0 ⊆ ∂vE0

and g : ∂0E1 → ∂vE0 is the embedding:

g : En,m(ξ)× 0
F (j)
−−−→ Dn ×Dm ×B ⊆M × 0 ⊆ ∂vE0

Since f, g are tangentially homotopic maps on disk bundles, they are isotopic. But, when we attach
E1 on top of Dn ×Dm × B × [−1, 0] using the map F (j) we get exactly the negative suspension
σ−E

n,m(ξ). So, we have a diffeomorphism which preserves all the corner sets:

M × [−1, 0] ∪g E1 = σ−E
n,m(ξ) ∪h×idB σ+E

n,m(ξ)

and

M × [−1, 0] ∪f E1 = V n,m(ξ) ∪h×idB D
n ×Dm ×B × [−1, 0] ∼= Dn+m+1 ×B

where V n,m(ξ) is given in Remark 2.1.2. Since h is unique up to isotopy, any two choices of h will
produce fiberwise diffeomorphic bundles. So we get the following. (See Figure 2.1. The notation
E1 = An,m(ξ, η) is from subsection 2.3.)

Proposition 2.1.5 (basic cancellation lemma). The oriented union of the positive and negative
suspensions of En,m(ξ) glued together along fixed n + m disk bundles in the fixed parts of their
boundary is fiberwise diffeomorphic to the trivial n+m+ 1 disk bundle over B:

σ−E
n,m(ξ) ∪h×idB σ+E

n,m(ξ) ∼= Dn+m+1 ×B.

2.2. Twisted version. Remark 1.1.1 and the main theorem (Corollary B.2.2) of Appendix B show
that, rationally stably, all exotic smooth structures on trivial disk bundles are given by Hatcher’s
example. Now we consider nontrivial disk bundles.

Stably, it is easy to construct exotic smooth structures on nontrivial linear disk bundles. If we
start with any vector bundle ξ0 over B which is trivial over ∂0B, we can take the associated disk
bundle DN (ξ0). The fiberwise product

DN (ξ0)⊕ En,m(ξ)

with corners rounded is a smooth disk bundle fiberwise homeomorphic to DN (ξ0)×D
n+m with the

same higher torsion as En,m(ξ) since IK torsion has the property that it is invariant under passage
to linear disk bundles.

Corollary 2.2.1. Given any linear disk bundle DN (ξ0) over B which is trivial over ∂0B, the
collection of all stable smooth structures on DN (ξ0) given by Hatcher’s construction spans the
vector space

π0S̃
s
B,∂0(D

N (ξ0))⊗R ∼=
⊕

k>0

H4k(B, ∂0B;R)
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Figure 1. Positive and negative Hatcher handles are cancelled using Arc de Triomph
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Now we give the unstable version of the last corollary and use it to define “Hatcher handles”.
Suppose that (B, ∂0B) is a manifold pair as before with dimB = q. Let ξ, η be vector bundles over
B of dimension n,m so that ξ is trivial over ∂0B and J(ξ) = 0 ∈ J(B/∂0B). As in Lemma 1.2.1
we have the following.

Lemma 2.2.2. If m > n > q then there is a smooth fiberwise embedding of pairs:

j : (Dn(ξ), Sn−1(ξ)) → (Dn, Sn−1)×Dm(η)

over B which is a standard linear embedding over ∂0B and which is transverse to Sn−1 ×Dm(η).
Furthermore, if m ≥ q + 3 then this fiberwise embedding is unique up to fiberwise isotopy.

Let η0 be the uniquem-plane bundle over B so that ξ⊕η0 ∼= ǫn⊕η where ǫn is the trivial n-plane
bundle over B. Then the embedding given by the lemma thickens to a codimension 0 fiberwise
embedding

(D(j), S(j)) : (Dn(ξ), Sn−1(ξ)) ⊕Dm(η0) →֒ (Dn, Sn−1)×Dm(η)

which is a standard linear embedding over ∂0B. Let En,m(ξ, η) denote the n+m disk bundle over
B given by

En,m(ξ, η) = Dn(ξ)⊕Dm(η0) ∪S(j) S
n−1 × I ×Dm(η)

with corners rounded. Up to fiberwise diffeomorphism, this is independent of the choice of g if
m ≥ q +3. As before we have a fiberwise embedding F (j) : En,m(ξ, η) →֒ Dn ×Dm(η) and we can
define the positive and negative suspensions of En,m(ξ) to be

σ+E
n,m(ξ, η) = En,m(ξ, η) × I

which is fiberwise diffeomorphic to En,m+1(ξ, η) after corners are rounded and

σ−E
n,m(ξ, η) = Dn ×Dm(η)× [−1, 0] ∪F (j)×0 E

n,m(ξ, η)× I ∪F (j)×1 D
n ×Dm(η)× [1, 2]

which is a model for En+1,m(ξ, η). As before, the Framing Principle implies that the higher IK
torsion of this bundle is the normalized Chern character of ξ:

Theorem 2.2.3. En,m(ξ, η) is a smooth n+m disk bundle over B which is fiberwise diffeomorphic
to the linear disk bundle Dn+m(η) over ∂0B and fiberwise homeomorphic to Dn+m(η) over B.
Furthermore,

τ IK2k (En,m(ξ, η)) = (−1)nc̃h4k(ξ) ∈ H4k(B, ∂0B;R)

Remark 2.2.4. This theorem can be stated as the commutativity of the following diagram:

G(B, ∂0B)

(−1)n c̃h

((RRRRRRRRRRRRRR
En(−,η)

wwoooooooooooo

π0S̃
s
B,∂0

(D(η))
τ IK //

⊕
k>0H

4k(B, ∂0B;R)

where G(B, ∂0B) is the group of all homotopy classes of pointed maps ξ : B/∂0B → G/O. Here
En(−, η) is the map which sends ξ to the direct limit of En,m(ξ, η) as m goes to ∞.

Since the torsion of a linear disk bundle is trivial, the torsion of the disk bundle En,m(ξ, η) is
equal to the torsion of the h-cobordism bundle given by deleting a neighborhood of a section. The
fiberwise boundary of En,m(ξ, η) is a smooth n+m− 1 dimensional sphere bundle over B which is
fiberwise tangentially homeomorphic to the linear sphere bundle Sn+m−1(η).

Corollary 2.2.5. Suppose that n +m− 1 is odd. Then the vertical boundary ∂vEn,m(ξ, η) of this
disk bundle is a smooth sphere bundle which is fiberwise tangentially homeomorphic to the linear
sphere bundle Sm+n−1(η) and fiberwise diffeomorphic to this bundle over ∂0B and the difference
torsion is twice the normalized chern character of ξ:

τ IK2k (∂vEn,m(ξ, η), Sn+m−1(η)) = (−1)n2c̃h4k(ξ) ∈ H4k(B, ∂0B;R)
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In particular, assuming that ξ is rationally nontrivial, this gives an exotic smooth structure on
Sn+m−1(η).

Proof. All axiomatic higher torsion invariants satisfy the equation

τ2k(E) = 1
2τ2k(∂

vE) + 1
2τ2k(DE)

where ∂vE is the fiberwise boundary of E and DE is the fiberwise double of E and the double
of En,m(ξ, η), having closed even dimensional manifold fibers, has the same higher torsion as the
linear sphere bundle Sn+m(η):

τ IK2k (∂
vEn,m(ξ, η)) = 2τ2k(E

n,m(ξ, η)) − τ IK2k (S
n+m(η)) = (−1)n2c̃h4k(ξ)− 2c̃h4k(η)

τ IK2k (S
n+m−1) = −2c̃h4k(η)

The difference (−1)n2c̃h4k(ξ) is the relative torsion. �

2.3. Hatcher handles. Suppose that p :M → B is a smooth manifold bundle whose fiber dimen-
sion is N = n +m where m > n > q. Let s : B → M be a smooth section of p with image in the
fiberwise interior of M . Since m = N − n > q + 1, the space of n frames in RN is q + 1-connected.
So there exists a smooth fiberwise embedding f : Dn × B → M equal to s along the zero section
section and f is uniquely determined up to isotopy by s. Let η be the vertical normal bundle to
the image of f in M . This is the unique m plane bundle over B which is stably isomorphic to the
pull back along s of the vertical tangent bundle of M . Then f extends to a fiberwise embedding

D(s) : Dn ×Dm(η) →֒M

whose image is a tubular neighborhood of the image of the section s and D(s) is determined up
to isotopy by s. We will use this embedding D(s) to attach positively and negatively suspended
Hatcher disk bundles to the top M × 1 of the bundle M × I → B. We call these positive and
negative Hatcher handles.

2.3.1. Positive Hatcher handles. Let h0 : Dn
0 →֒ Sn−1 × I be a fixed smooth embedding where

Dn
0 = Dn is a copy of the standard n-disk. Taking the product with Dm(η) we get a fiberwise

embedding of Dn
0 ×Dm(η) into En,m(ξ, η):

h = h0 × idDm(η) : D
n
0 ×Dm(η) →֒ Sn−1 × I ×Dm(η) ⊆ En,m(ξ, η)

Using these two maps we can attach σ+E
n,m(ξ, η) to M × I to get

En,m+ (M,s, ξ) =M × [0, 1] ∪D(s)×1 D
n
0 ×Dm(η)× [1, 2] ∪h×2 E

n,m(ξ, η) × [2, 3]

We can write this more succinctly as

En,m+ (M,s, ξ) =M × I ∪D(s) B
n,m(ξ, η)

where Bn,m(ξ, η) is the positive Hatcher handle given by

Bn,m(ξ, η) = Dn
0 ×Dm(η)× I ∪h×1 E

n,m(ξ, η) × [1, 2]

attached on its base ∂0B
n,m(ξ, η) = Dn

0 × Dm(η) × 0. Since the bundle pair (Bn,m(ξ, η), ∂0) is
fiberwise homeomorphic to the disk bundle pair Dn ×Dm(η) × (I, 0), the bundle En,m+ (M,s, ξ) is
fiberwise homeomorphic to the bundle M × I. However, En,m+ (M,s, ξ) is a smooth bundle (when
corners are rounded) whose fibers are h-cobordisms.

Theorem 2.3.1. Let T be a closed fiberwise tubular neighborhood of s(B) in M . Then there is a
fiberwise homeomorphism M×I → En,m+ (M,s, ξ) which is the identity (and thus a diffeomorphism)
on M × 0 and a diffeomorphism on the closure of (M − T )× I. Furthermore the difference torsion
is the same as the IK-torsion of En,m(ξ, η):

τ(En,m+ (M,s, ξ),M × I) = τ(En,m(ξ, η)) = (−1)nc̃h4k(ξ) ∈ H4k(B, ∂0B;R)
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M × 1

Figure 2. (Positive Hatcher handle) The positive suspension σ+E
n,m(ξ, η) is at-

tached to the top M × 1 of M × I by the “stem” Dn
0 ×Dm(η) × I.

Remark 2.3.2. This theorem can be viewed as the commutativity of the diagram:

G(B, ∂0B)

(−1)n c̃h

))RRRRRRRRRRRRRR
En(−,η)

wwnnnnnnnnnnnn

En
+(M,s,−)��

π0S̃
s
B,∂0

(D(η)) s∗
//

τ IK
55

π0S̃
s
B,∂0

(M)
τ IK

//
⊕

k>0H
4k(B, ∂0B;R)

Let M ′ = ∂1E
n,m
+ (M,s, ξ) be the top boundary of the h-cobordism bundle En,m+ (M,s, ξ).

Corollary 2.3.3. M ′ is fiberwise tangentially homeomorphic to M and, if the fiber dimension
N = n + m of M ′ is odd, then the relative IK torsion is equal to twice the normalized chern
character of ξ:

τ(M ′,M) = (−1)n2c̃h4k(ξ) ∈ H4k(B, ∂0B;R)

2.3.2. Negative Hatcher handles. Attaching the negative suspension of En,m(ξ, η) to the top ofM×I
is very similar but easier since the attaching map will be simply the map D(s) from Dn×Dm(η) ⊆
∂vσ−E

n,m(ξ, η) into M × 1 ⊆ ∂vM × I. However,

M × I ∪D(s)×1 D
n ×Dm(η)× [1, 2] ∼=M × I

since we can pullDn×Dm(η)×I intoM×I. Therefore,M×I∪σ−E
n,m(ξ, η) can more economically

be described by attaching the base ∂0A
n,m(ξ, η) = En,m(ξ, η)×0 of the negative Hatcher handle

An,m(ξ, η) = En,m(ξ, η) × I ∪F (j)×1 D
n ×Dm(η)× [1, 2]

to the top of M × I using the composite map

En,m(ξ, η)
F (j)
−−−→ Dn ×Dm(η)

D(s)
−−−→M

The negative Hatcher handle is shown in Figure 3 and also in the top figure in Figure 2.1 where
An,m(ξ, η) = E1. The argument above shows that M × I ∪ σ−E

n,m(ξ, η) is fiberwise diffeomorphic
to:

En,m− (M,s, ξ) =M × I ∪D(s)F (j) A
n,m(ξ, η)

with higher difference torsion given by

τ(En,m− (M,s, ξ),M × I) = −τ(En,m(ξ, η)) = (−1)n+1c̃h4k(ξ) ∈ H4k(B, ∂0B;R)
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En,m(ξ, η) × [0, 1]

Dn ×Dm(η)× [1, 2]

(transparent)
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M × 1

Figure 3. (Negative Hatcher handle) An,m(ξ, η) is attached to the top M × 1 of
M × I along its base En,m(ξ, η)× 0.

2.3.3. Cancellation of Hatcher handles. We will take the “union” of the two constructions given
above and attach both positive and negative Hatcher handles along the same section s : B → M
and show that they cancel. As before, we have a smooth embedding

D(s) : Dn ×Dm(η) →M

whose image is a tubular neighborhood of s(B). inside this disk bundle we create two smaller
isomorphic disk bundles using embedding:

j+, j− : Dn ×Dm(η) → Dn ×Dm(η)

given by j+(x, y) = (13(x+en), y) where en is the last unit vector of Dn and j−(x, y) = (13(x−en), y).
Since they are less than half as wide, these two embeddings are disjoint. Suppose that En,m(ξ, η)
is a Hatcher disk bundle as in the construction above. We first attach the positive Hatcher handle
Bn,m(ξ, η) along its base ∂0B

n,m(ξ, η) = Dn × Dm(η) × 0 to the top M × 1 of M × I using the
fiberwise embedding D(s) ◦ j−. Next we attach the negative Hatcher handle An,m(ξ, η) to the top
of M × I along its base ∂0A

n,m(ξ, η) = En,m(ξ, η) using the composite map

En,m(ξ, η)
F (j)
−−−→ Dn ×Dm(η)

j+
−→ Dn ×Dm(η)

D(s)
−−−→M

Let T be the image of D(s) with corners rounded. Thus T is a Dn+m-bundle over B. Let
S = ∂vT be the fiberwise boundary of T . This is a sphere bundle over B. After attaching the
positive and negative Hatcher handles to the top of M × I we get a new bundle

W =M × I ∪D(s)◦j− B
n,m(ξ, η) ∪D(s)◦j+◦F (j) A

n,m(ξ, η)

Note that since Bn,m(ξ, η) and An,m(ξ, η) are both attached in the interior of T , this new bundle
is the union of C × I and T × I ∪ B ∪ A where C is the closure of M − T and A,B denote the
Hatcher handles.

Proposition 2.3.4 (second cancellation lemma). W is fiberwise diffeomorphic to M × I after
rounding corners and this diffeomorphism is the identity on C × I and on M × 0.

Proof. The argument is almost the same as in Proposition 2.1.5. Since ∂0A
n,m(ξ, η) = En,m(ξ, η)

is a disk bundle attached using the same tangential data as Bn,m(ξ, η), there is an isotopy of the
attaching map D(s) ◦ j+ ◦ F (j) of the negative Hatcher handle An,m(ξ, η) to the mapping

En,m(ξ, η) → En,m(ξ, η)× 1 ⊂ (En,m(ξ, η) ∪Dn
0 ×Dm(η)) × I = Bn,m(ξ, η)
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placing An,m(ξ, η) onto the top sides En,m(ξ, η) × 1 of the positive Hatcher handle Bn,m(ξ, η) =
En,m(ξ, η) ∪ Dn

0 × Dm(η) × I. After moving the attaching map, An,m(ξ, η) is attached on top of
En,m(ξ, η) × I and their union is

V n,m(ξ, η) = En,m(ξ, η) × I ∪An,m(ξ, η) = En,m(ξ, η)× [0, 2] ∪Dn ×Dm(η) ∼= An,m(ξ, η)

which is attached on M × 1 along the image of D(s) ◦ j− by the “stem” Dn
0 ×Dm(η). By Lemma

2.1.1, V n,m(ξ, η) ∪Dn
0 ×Dm(η) is fiberwise diffeomorphic to Dn ×Dm(η) ∪Dn

0 ×Dm(η). This is a
linear disk bundle and, therefore, attaching this to the top of T×I gives a bundleX diffeomorphism
of T × I fixing S × I. This sequence of deformations and diffeomorphisms gives a differomorphism
T × I ∪ B ∪ A ∼= T × I which is the identity on S × I and therefore, can be pasted with C × I to
give a fiberwise diffeomorphism W = C × I ∪ T × I ∪B ∪A ∼=M × I as claimed. �

2.4. Immersed Hatcher handles. Since “Hatcher handles” are attached in a neighborhood of
one point, they can be attached at several points at the same time.

Let L be a q manifold with boundary ∂L = ∂0L∪∂1L where ∂0L, ∂1L are q−1 manifolds meeting
along their common boundary. Let λ : L → B be an immersion so that λ−1(∂1B) = ∂1L and let

λ̃ : L→M be an embedding over λ. Suppose as before that m > n > q and let

D(λ̃) : Dn ×Dm(η) →֒M

be a smooth embedding over λ : L → B where η is the pull-back along λ̃ : L → M of the stable
vertical tangent bundle of M .

Let ξ be an n-plane bundle over L which is trivial over ∂1L so that J(ξ) = 0 ∈ J(L/∂1L) and

let η0 be the unique m-plane bundle over L so that ξ ⊕ η0 ∼= η. We define W = En,m+ (M, λ̃, ξ) to
be the smooth h-cobordism bundle over B so that ∂0W =M given by

En,m+ (M, λ̃, ξ) =M × I ∪D(λ̃) B
n,m(ξ, η)

where Bn,m(ξ, η) is the positive Hatcher handle parametrized by L. This Hatcher handle needs to
be “tapered off” along ∂0L. A more precise description of this is as follows.

First we note that the smooth disk bundle over L given by

En,m+1
L (ξ, η) = Dn ×Dm(η)× I ∪Bn,m(ξ, η)

is fiberwise diffeomorphic to Dn×Dm×I over ∂0L. We choose such a diffeomorphism. Let T be the
image of D(λ̃) : Dn×Dm(η) →M . So T ×I ⊆M×I is fiberwise diffeomorphic to Dn×Dm(η)×I.
The smooth h-cobordism bundle En,m+ (M, λ̃, ξ) can then be given by:

En,m+ (M, λ̃, ξ) = (M − T )× I ∪ En,m+1
L (ξ, η)

Theorem 2.4.1 (torsion of immersed Hatcher handle). The higher IK difference torsion of this
bundle with respect to M × I is the image under the mapping

λ∗ : H
4k(L, ∂0L) ∼= Hq−4k(L, ∂1L) → Hq−4k(B, ∂1B) ∼= H4k(B, ∂0B)

of the normalized chern character of ξ:

τ IK2k (E
n,m
+ (M, λ̃, ξ),M × I) = λ∗

(
(−1)nc̃h4k(ξ)

)
∈ H4k(B, ∂0B;R)
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Remark 2.4.2. This theorem can be viewed as the commutativity of the diagram:

G(L, ∂0L)
En

L(−,η) //

En
+(M,λ̃,−) ((QQQQQQQQQQQQQQ

(−1)n c̃h

**
π0S̃

s
L,∂0

(D(η))

D(λ̃)∗
��

τ IK
//
⊕

k>0H
4k(L, ∂0L;R)

λ∗
��

π0S̃
s
B,∂0

(M)
τ IK

//
⊕

k>0H
4k(B, ∂0B;R)

The commutativity of the upper curved triangle is Theorem 2.2.3.

To prove this, we need to recall the precise statement of the Framing Principle from [23]. Suppose
that W → B is a smooth h-cobordism bundle with fiberwise boundary equal to

∂vW =M ∪ ∂vM × I ∪M1

and f : W → I is a fiberwise generalized Morse function equal to 0 on M and 1 on M1 and equal to
projection to I on ∂vM × I. Suppose that the fiberwise singular set Σ(f) of f does not meet W∂0B .
In particular, W∂0B

∼= M∂0B × I. We are in the restricted case when the birth death points of f
are framed in the sense that the negative eigenspace bundle of D2f is trivial over the birth-death
points. This implies that, over the set Σi(f) of Morse points of f of index i, the negative eigenspace
bundle of D2f is trivial along ∂0Σi(f) which is equal to the set of birth-death points to which Σi(f)
converges. The Framing Principle was proved in this restricted case in [21].

In general, the negative eigenspace bundle is a well defined stable vector bundle ξ = ξ(f) on
the entire singular set Σ(f). It is defined as follows. At each index i critical point x of f let
ξ(x) = ξi(x) ⊕ ǫN−i where ǫN−i is the trivial bundle with dimension N − i and N = n +m+ 1 is
the dimension of the fiber of W → B. This defines an N -plane bundle over Σi(f). At each cubic
point we identify the positive cubic direction with the positive first coordinate direction in ǫN−i.
This has the effect of pasting together these N -plane bundles over Σi(f) and Σi+1(f) along their
common boundary for each i. The result is an N -plane bundle over all of Σ(f).

The projection mapping p : (Σ(f), ∂Σ(f)) → (B, ∂1B) induces a map in cohomology using
Poincaré duality assuming that B is oriented. (If B is not oriented then just replace it with the
disk bundle of the orientation line bundle.)

pΣ∗ : H∗(Σ(f)) ∼= Hq−∗(Σ(f), ∂Σ(f)) → Hq−∗(B, ∂1B) ∼= H∗(B, ∂0B)

Similarly, for each index i we have the push-down operator:

p∗ : H
∗(Σi(f), ∂0Σi(f)) ∼= Hq−∗(Σi(f), ∂1Σi(f)) → Hq−∗(B, ∂1B) ∼= H∗(B, ∂0B)

where ∂1Σi(f) = Σi(f)∩∂Σ(f) and ∂0Σi(f) is the set of birth-death points in the closure of Σi(f).
We use the orientation for Σi(f) which agrees with the orientation of B and we take the orientation
of Σ(f) which agrees with the orientation of Σi(f) for i even. As a result of these sign conventions
we have the following observation.

Lemma 2.4.3. In the restricted case when the birth-death points of f are framed, then the image
under pΣ∗ of the Chern character of ξ(f) is equal to the the alternating sum of images under the
push-down operators:

p∗ : H
∗(Σi(f), ∂0Σi(f)) → H4k(B, ∂0B)

of the Chern character of ξi = ξ|Σi(f):

pΣ∗ (ch4k(ξ ⊗ C) =
∑

i

(−1)ip∗(ch4k(ξi ⊗ C) ∈ H∗(B, ∂0B)
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Theorem 2.4.4 (Relative Framing Principle). Suppose that the manifold B and the stable bundle
ξ = ξ(f) and both oriented. Then the degree 4k higher relative IK torsion invariant τ IK2k (W,M) ∈
H4k(B, ∂0B;R) is given by the higher torsion of the family of acyclic chain complexes C(f) given
by f plus the push down of the normalized chern character of ξ:

τ IK2k (W,M) = τ2k(C(f)) + pΣ∗ (c̃h4k(ξ)) ∈ H4k(B, ∂0B)

Proof. The published version of the Framing Principle [23] assumes that ∂0B is empty. However,
the relative case follows easily from the absolute case in the present setting where we have an h-
cobordism bundleW . Just take the base ∂0W =M and embed it into the boundary of a very large
dimensional trivial disk bundle B ×DN . Let νM be the vertical normal bundle of M in B × SN−1

and let νW be the extension of νM to W . Then we have a new bundle:

∆ = B ×DN ∪D(νW )

over B. Since D(νW ) is an h cobordism bundle, this is a smooth N -disk bundle over B (after
rounding off corners). By additivity and invariance after passing to linear disk bundles, we have:

τ IK(W,M) = τ IK(D(νW , νM ) = τ IK(∆, B ×DN ) = τ IK(∆)

But, ∆ is a disk bundle over B which is trivial over ∂0B. So, we can collapse ∂0B to a point to
get a new bundle ∆ over B/∂0B. The Framing Principle for ∆ → B/∂0B is then equivalent to the
relative Framing Principle for (W,M).

To do this more precisely, we do the same trick as before, removing a tube T = D(νM )× I in a
collar neighborhood of B×SN−1 and replace it with W . The new fiberwise Morse function will be
equal to the distance squared from the origin in B ×DN − T and equal to f (rescaled to match)
on W . Now we collapse the bundle over ∂0B. By construction, the fiberwise generalized Morse
function will factor through this quotient bundle and the original Framing Principle applies. �

Proof of Theorem 2.4.1. We will start with a fiberwise oriented Morse function on the bundle
En,mL (ξ, η) → L and then modify it to give a fiberwise oriented generalized Morse function which
is framed on the birth-death set.

The bundle EL = En,mL (ξ, η) is obtained from Dn × Dm(η) × I by attaching two handle with
cores of dimension n − 1 and n. This means it has a fiberwise Morse function f : EL → I which
is equal to the projection map to I in a neighborhood of the bottom Dn × Dm(η) × 0 and sides
∂(Dn × Dm(η)) × I. Furthermore f will have two critical points over every point t ∈ L. These
critical points xt, yt have index n−1 and n respectively. The vertical tangent bundle of EL splits as
ǫn−1 ⊕ (η⊕ ǫ1) along the section xt of EL where the trivial n− 1 plane bundle ǫn−1 is the negative
eigenspace of D2ft along xt. The vertical tangent bundle of EL along yt splits as ξ⊕ (η0⊕ ǫ

1) where
the homotopically trivial ξ is the negative eigenspace bundle.

Along ∂0L, the bundle ξ is trivial and the handle corresponding to yt is in cancelling position
with the handle corresponding to xt since they are both standard linear handle along ∂0L by
construction. This implies that these critical points can be cancelled along a birth-death set of
index n− 1. Since the negative eigenspace bundle ξ is trivial along this set, this is a framed birth-
death set. The new singular set Σ(f) is now a q-manifold with boundary lying over ∂1L. It has a
framed birth-death set and Morse sets in two indices Σn(f) and Σn−1(f). The descending bundles
are ξn−1 = ǫn−1 and ξn = ξ. These are oriented bundle since they are homotopically trivial. Also
the cellular chain complex is trivial at every point. Therefore, by the Framing Principle, the higher
relative IK torsion of En,mL (ξ, η) is

τ IK2k (E
n,m
L (ξ, η),Dn ×Dm(η) × I) = (−1)nc̃h4k(ξ) ∈ H

4k(L, ∂0L;R)

From this fiberwise oriented generalized Morse function we can construct a fiberwise oriented
generalized Morse function F on En,m+ (M, λ̃, ξ) = (M − T ) × I ∪ EL by taking projection to I on
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the first piece (M −T )× I and f on the second piece EL. The singular set of F is the image under

D(λ̃) of the singular set of f . Consider the following commuting diagram.

Σn(f)
⊂ //

≃

$$HH
HH

HH
HH

HH
Σ(f)

��

D(λ̃) // Σ(F )

p

��
L

λ // B

This implies that the image of the push-down of the chern character of ξ along the map p is equal
to the image of the chern character of ξ under λ. So, by the relative Framing Principle, we have

τ IK4k (E
n,m
+ (M, λ̃, ξ),M) = (−1)np∗(c̃h4k(ξ)) = (−1)nλ∗(c̃h4k(ξ))

as claimed. �

3. Main Theorems

There are two main theorems in this paper. The first concerns the set of possible higher torsion
invariants of exotic smooth structures on smooth manifold bundles.

The second theorem is that, rationally stably, the immersed Hatcher construction gives all
possible exotic smooth structures on smooth manifold bundles with odd dimensional fibers. This
is a combination of the following two theorems. First recall from Appendix B that

π0S̃
s
B,∂0(M)⊗ R ∼=

⊕

k>0

Hq−4k(M,M∂1B ;R)

and the image of an exotic smooth structure M ′ on M is denoted

ΘM (M ′) = Θ(M ′,M) ∈
⊕

k>0

Hq−4k(M,M∂1B ;R)

and we call it the rational exotic structure class.

Theorem 3.0.5. When the fiber dimension is odd, the rational exotic structure class Θ(M ′,M)

given by the immersed Hatcher construction En,m+ (M, λ̃, ξ) is the image of the Poincaré dual of
twice the normalized chern character of ξ under the map in homology induced by the embedding
λ̃ : (L, ∂1L) → (M,M∂1B)

λ̃∗ :
⊕

k>0

H4k(L, ∂0L) ∼=
⊕

k>0

Hq−4k(L, ∂1L) →
⊕

k>0

Hq−4k(M,M∂1B)

Thus:

Θ(M ′,M) = (−1)nλ̃∗(2c̃h(ξ))

where c̃h(ξ) =
∑

k>0 c̃h4k(ξ) as defined in Remark 1.2.3.

Remark 3.0.6. By definition of the normalized chern character, the exotic structure class Θ(M ′,M)
lies in the image of

⊕

k>0

Hq−4k(M,M∂1B; ζ(2k + 1)Q)

In particular, Θ(M ′,M) is a scalar multiple of an integral class in every degree.
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Proof. The proof will show the commutativity of the following diagram which is a slightly stronger
statement:

G(L, ∂0L)
topEn

L
(−,η)

//

topEn
+(M,λ̃,−) ((RRRRRRRRRRRRRR

(−1)n2c̃h

,,
π0S̃sL,∂0(E)

D(λ̃)∗
��

τ IK
//
⊕

k>0Hq−4k(L, ∂L)

λ∗

��λ̃∗ttjjjjjjjjjjjjjjjjjj

π0S̃
s
B,∂0

(M)
Θ

//
⊕

k>0Hq−4k(M,M∂1B) p∗
//
⊕

k>0Hq−4k(B, ∂1B)

The middle portion can be expanded into the following diagram where E = Dn×Dm(η) is the disk

bundle over L which is diffeomorphic to a tubular neighborhood of the image of λ̃ : L→M .

π0S̃
s
L,∂0

(E)

D(λ̃)∗
��

γE
//

τ IK ,,
π0ΓL,∂0H

%
L (E)

��

θE

//
⊕

k>0Hq−4k(E,E∂1)

��

∼=
//
⊕

k>0Hq−4k(L, ∂1L)

λ̃∗uujjjjjjjjjjjjjjjjj

π0S̃
s
B,∂0

(M)
γM //

ΘM

55
π0ΓB,∂0H

%
B(M)

θM //
⊕

k>0Hq−4k(M,M∂1)

The straight horizontal maps in the second diagram are isomorphisms of vector spaces after
tensoring with R and the vertical maps are all induced by λ : L → B, λ̃ : L → M and D(λ̃) :
E → M . The left hand square commutes by the stratified smoothing theorem (Corollary A.5.19).
The square in the middle commutes by the stratified homotopy calculation (Corollary B.4.2). The
triangle on the right commutes since it comes from a commuting diagram of spaces. The composition
of the top three arrows is equal to τ IK by normalization of θE (Proposition B.2.3). The bottom
curved triangle commutes by definition: ΘM := θM ◦γM . Therefore, the second diagram commutes.
So, the middle quadrilateral in the first diagram commutes.

If we look at the top of the immersed Hatcher handle we get an element

top(En,m+ (M, λ̃, ξ)) ∈ S̃sB,∂0(M)

which, by construction is the image of the Hatcher disk bundle top(En,m+ (E, 0, ξ)) ∈ S̃sL,∂0(E) under

the stratified map S̃sL,∂0(E) → S̃sB,∂0(M). By Corollary 2.2.5 and Proposition B.2.3 the composition
of the horizontal mapping on the top row of the first diagram gives the higher IK torsion invariant
of the top E′ of the h-cobordism bundle En,m+ (E, 0, ξ)

τ IK(E′) = (−1)n2c̃h(ξ)

since the bottom of E is a linear disk bundle over L. The theorem follows. �

Proposition 3.0.7. The vector space
⊕

k>0Hq−4k(M,M∂1B;R) is spanned by the images of the
possible maps

G(L, ∂0L) →
⊕

k>0

Hq−4k(M,M∂1B ;R)

given by λ̃∗ ◦ (−1)n2c̃h = ΘM ◦ topEn+(M, λ̃,−) in the theorem above.

This proposition is proved below using the Arc de Triomph construction.

Theorem 3.0.8. When the fiber dimension N of M → B is odd and B is oriented, the higher IK
relative torsion of an exotic smooth structure M ′ on M over (B, ∂0B) is given by

τ IK(M ′,M) = p∗Θ(M ′,M).
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the image of the rational exotic smooth structure class Θ(M ′,M) under the push-down mapping p∗
as indicated in the following commuting diagram.

π0S̃
s
B,∂0

(M)
Θ

//

τ IK

44

⊕
k>0Hq−4k(M,M∂1B) p∗

//
⊕

k>0Hq−4k(B, ∂1B)

Proof. The map p∗ is R-linear, and Theorem 3.0.5 and Proposition 3.0.7 above say that the im-

mersed Hatcher construction gives generators for π0S̃
s
B,∂0

(M) ⊗ R ∼=
⊕

k>0Hq−4k(M,M∂1B) and
p∗ sends these generators to their higher relative IK-torsion. The theorem follows. �

We have the following immediate corollary.

Corollary 3.0.9. If M is a smooth bundle over B and both fiber and base are oriented manifolds
with odd fiber dimension N ≥ 2q + 3 then the possible values of the higher IK-relative torsion
τ IK(M ′,M) for M ′ an exotic smooth structure on M which agrees with M over ∂0B will span the
image of the push-down map

p∗ :
⊕

k>0

HN+4k(M,∂0M ;R) →
⊕

k>0

H4k(B, ∂0B;R)

where ∂0M =M∂0B ∪ ∂vM .

Remark 3.0.10. By Remark 3.0.6, we recover the theorem first proved in [22] that the higher IK-
torsion lies in the image of

⊕

k>0

H4k(B, ∂0B; ζ(2k + 1)Q)

Corollary 3.0.11. Theorem 3.0.8 also holds in the case when the fiber dimension is even.

Proof. If M,M ′ → B have even dimensional fibers then M ′ × I,M × I → B have odd dimensional
fibers and we have:

τ IK(M ′,M) = τ IK(M ′ × I,M × I) = p∗Θ(M ′ × I,M × I) = p∗Θ(M ′,M)

by Theorem 3.0.8 since both τ IK and Θ are stable invariants. �

3.1. Arc de Triomph 2. Proposition 3.0.7 follows from the Arc de Triomph construction and
the stratified deformation lemma 3.2.1. The Arc de Triomph construction is an extension of the
Hatcher construction which rationally stably produces all exotic smooth structures on a compact
manifold bundle. The stratified deformation lemma shows that each AdT construction can be
deformed into an immersed Hatcher construction.

We explained the basic construction in subsection 2.1. It only remains to describe the full
construction and prove the following theorem.

Theorem 3.1.1 (Arc de Triomph Theorem). The AdT construction gives virtually all stable exotic
smooth structures on a compact manifold bundle with odd dimensional fibers.

Remark 3.1.2. If M → B is a smooth bundle whose fibers are even dimensional, the AdT construc-
tion rationally stably produces all exotic smooth structures on M × I → B. By definition these are
stable smooth structures on M → B. So, the theorem implies that the AdT construction produces
virtually all stable smooth structures on all compact manifold bundles.
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3.1.1. AdT construction. The Arc de Triomph construction goes as follows. Suppose that M → B
is a smooth manifold bundle over a compact oriented q-manifold B with odd fiber dimension
N = n+m where m > n > q. Suppose ∂B = ∂0B∪∂1B where ∂0B, ∂1B meet along their common

boundary. Then we will construct an element of S̃sB,∂0B(M).

Definition 3.1.3. By a stratified set over B with coefficients in X we mean a pair (Σ, ψ) where
Σ is a compact smooth oriented q manifold together with a smooth mapping π : Σ → B sending ∂Σ
to ∂B and ψ : Σ → X is a continuous mapping so that π : Σ → B has only fold singularities and
the singular set Σ0 is a q − 1 submanifold of Σ transverse to ∂Σ. Let Σ+ and Σ− be the closures
of the subsets of Σ − Σ0 on which the map π : Σ → B is orientation preserving and orientation
reversing, respectively. Thus Σ− ∩ Σ+ = Σ0 and Σ− ∪Σ+ = Σ.

We say that (Σ, ψ) is a stratified subset of a smooth bundle M over B if Σ is a smooth
submanifold of M and π : Σ → B is the restriction of p :M → B.

Let SDX
B,∂0

(M) be the set of stratified deformation classes of stratified subsets (Σ, ψ) of M
over B with coefficients in X so that πΣ is disjoint from ∂0B. By a stratified deformation of
stratified subsets (Σ, ψ) ≃ (Σ′, ψ′) of M we mean a stratified subset (L,ϕ) of M × I over B × I
with coefficients in X so that the image of Σ × I in B × I is disjoint from ∂0B × I and so that
(Σ, ψ), (Σ′, ψ′) are (M,ϕ) restricted to B × 0, B × 1 respectively.

The coefficients that we are interested in areX = BSO, classifying oriented stable vector bundles
over Σ and X = G/O = SG/SO classifying vector bundles with homotopy trivializations of the
corresponding spherical fibration. This latter is the input for Hatcher construction and the Arc de
Triomph construction will be a mapping

AdT : SD
G/O
B,∂0

(M) → S̃sB,∂0(M)

The claim is that this map is rationally split surjective. In other words, rationally stably, all exotic
tangential smoothings on M are given by the construction that we will now give.

The idea of the construction is to attach negative Hatcher handles along Σ− and positive Hatcher
handles along Σ+ and have them cancel along Σ0. The map ψ : Σ → G/O gives the bundle ξ in
the Hatcher handle.

Suppose that m > n > q and M → B is a smooth bundle with fiber dimension m+ n which we
assume is odd (2q+3 is the minimum). Suppose we have a stratified subset Σ ⊂M with coefficient
map ψ : Σ → G/O. This gives a stable vector bundle ξ over Σ. Let η be the uniquem-plane bundle
over Σ isomorphic to the pull-back of the vertical tangent bundle of M and let η−, η+, η0 be the
restrictions of η to Σ−,Σ+, η0. Then we have an embedding

D(π̃+) : D
n ×Dm(η+) →֒M

lying over the restriction π+ : Σ+ → B of π to Σ+. This gives a tubular neighborhood of Σ+.
Replacing + with − we get D(π̃−) lying over π− giving a thickening of Σ−. The embeddings
D(π̃+) and D(π̃−) are disjoint except near Σ0. To correct this we move D(π̃−) slightly to in the
fiber direction near Σ0 so that the images of D(π̃+) and D(π̃−) are disjoint everywhere. We do this
move systematically by moving in the direction of, say, the last coordinate vector en in Dn. The
result will be that the image of D(π̃−) will no longer contain Σ− close to Σ0.

Do this in such a way that there is an embedding

D(π̃0) : D
n ×D(η0) →M

So that D(π̃−)(x, y) = D(π̃0)(
1
3 (x+ en), y) and D(π̃+)(x, y) = D(π̃0)(

1
3 (x− en), y). Or, start with

embedding D(π̃0) and move the mappings D(π̃+),D(π̃−) vertically (along the fibers) so that they
land in the two halves of the image of D(π̃0) as indicated.

Take the bundleM × I over B and, using the map D(π̃+) we attach the positive Hatcher handle
Bn,m(ξ, η+) along its base ∂0B

n,m(ξ, η+) = Dn×Dm(η+)× 0 to the top M × 1 of M × I. Then we
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attach the negative Hatcher handle An,m(ξ, η−) to the top of M × I using the composite map

En,m(ξ, η−)
F (j)
−−−→ Dn ×Dm(η−)

D(π̃−)
−−−−→M

Since the images of D(π̃+) and D(π̃−) are disjoint, these attachments are disjoint.
Over π(Σ0) we have a positive and negative Hatcher handle attached on the interior of the image

of D(π̃0). Next, we slide the attachment map for the negative Hatcher handle until it “cancels”
the positive Hatcher handle. It is very easy to see how this works. Over Σ0 the negative Hatcher
handle An,m(ξ, η0) is attached along its base ∂0A

n,m(ξ, η0) = En,m(ξ, η0) and the positive Hatcher
handle is

Bn,m(ξ, η0) = Dn ×Dm(η0) ∪h×1 E
n,m(ξ, η0)× [1, 2]

We can slide the base of En,m(ξ, η0) of A
n,m(ξ, η0) along the top of theM×1∪Bn,m(ξ, η+) until it is

equal to En,m(ξ, η0)× 2 ⊆ Bn,m(ξ, η0). We can do this in a precise way since we are working inside
of the model which is the image of D(π̃0) in M × 1. We extend this deformation to An,m(ξ, η−).
Then we will have the desired bundle over B whose fibers are h-bordisms with base equal to the
original bundle M . We call this new bundle W (Σ, ψ) (suppressing n,m):

W (Σ, ψ) =M × I ∪Bn,m(ξ, η+) ∪A
n,m(ξ, η−)

To be sure, we need to round off the corners. And we also need to taper off the cancelling Hatcher
handles along Σ0. But, along Σ0, the two Hatcher handles cancel and we have a local diffeomorphism
of W (Σ, ψ) with M × I near Σ0. Using this diffeomorphism we can identify W with M × I along
this set and we have a smooth bundle over B. The local diffeomorphism exists by Proposition 2.3.4.
The reason that we have a bundle at the end is because, in a neighborhood of the AdT construction
along Σ0 we either have two Hatcher handles, which are a smooth continuation of what we have
at Σ0 or we have M × I locally (which means we are only looking at the portion in the image of
D(π̃0)) and there we are using the diffeomorphism given by Proposition 2.3.4 to identify M × I
with the M × I with the pair of Hatcher handles attached. So, we have local triviality and thus a
smooth bundle. W → B. Let

AdT (Σ, ψ) = top(W (Σ, ψ))

with tangential homeomorphism given by W . If we have any deformation of (Σ, ψ) then we can
apply the same construction to this stratified set over B × I and we get a isotopy between the two
constructions showing that AdT (Σ, ψ) changes by an isotopy. Thus we get the following lemma.

Proposition 3.1.4. The AdT construction as described above gives a well defined mapping

AdT : SD
G/O
B,∂0

(M) → π0S̃
s
B,∂0(M)

from the set of stratified deformation classes of stratified subsets (Σ, ψ) of M with coefficients in
G/O to the space of stable tangential smoothings of M . Furthermore, this mapping is a homomor-

phism of additive groups where addition in SD
G/O
B,∂0

(M) is given by disjoint union and addition in

π0S̃
s
B,∂0

(M) is given by the little cubes operad on the stabilization.

Proof. It is clear that SD
G/O
B,∂0

(M) is a monoid with addition given by disjoint union using transitivity
to make any two stratifies subsets of M disjoint by a small perturbation. We also have additive
inverse given modulo 2 by changing the orientation of Σ which switches Σ− ↔ Σ+. By “modulo
2” we mean that the sum of (Σ, ψ) with (Σ, ψ) with the orientation of Σ reversed is an element of
order 2 (twice of it is zero). The proof of this is as follows.

If we add Σ with another copy Σ′ having Σ− and Σ+ reversed then we can cancel the interiors of
Σ− with its copy Σ′

+ which has orientation + producing a fold line Σa and similarly for Σ+ cancelling
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its copy Σ′
− along Σb. This leaves a small tubular neighborhood of Σ0 having a cross-section in the

shape of a figure 8:

Σ0
Σ−

Σ+

MMMMMMMMMMMMM Σa

Σ′
0 Σ′

−

Σ′

+

qqqqqqqqqqqqq

Σb

Since the width is arbitrarily small the bundle data ξ, η only changes along the length of Σ0 not
along this cross section. This cannot be cancelled since it has an odd number of crossing in the
picture. (There is no actual intersection.) However, two copies of this stratified set will cancel since
it is equivalent to its mirror image. The two copies can simply be merged together.

To show that the mapping AdT is additive, we take two smooth structures θ1, θ2 on the stabilized
M×D2k−1×I which by the stabilization construction are equal to the original smooth structure on
∂v(M×D2k−1)×I∪M×D2k−1×0 and on the complements of E1×D

2k and E2×D
2k respectively.

By transversality, these two subsets, the supports of the two exotic smooth structures are disjoint.
Therefore, by Proposition A.5.10, θ1+θ2 is given by changing the smooth structure of both E1 and
E2. This show that SdT is additive. �

Remark 3.1.5. The proof above shows that the inverse of (Σ, ψ) ∈ SD
G/O
B,∂0

(M) is given by (Σ′, ψ)

which is (Σ, ψ) with the orientation of Σ reversed plus an element of the form (Σ0, ψ0)×F where F
is the “figure 8” one-dimensional stratified set in the diagram above (in the proof of Lemma 3.1.4).

Proposition 3.1.6. If ψ : Σ → G/O is trivial then so is AdT (Σ, ψ). Therefore, AdT induces a
homomorphism

AdT : SD
G/O
B,∂0(M) → π0S̃

s
B,∂0(M)

Where SD
G/O
B,∂0(M) is the quotient of SD

G/O
B,∂0

(M) by all (Σ, ψ) where ψ is null homotopic.

Proof. If ψ is constant then the positive and negative Hatcher handles in the Arc de Triomph
construction are standard disk bundles and attaching these to the top of M × I will not change its
fiber diffeomorphism type. �

3.1.2. Homotopy calculation. To prove Theorem 3.1.1 we need calculations in the form of more
commuting diagrams.

Let

c̃h : SD
G/O
B,∂0

(M) →
⊕

k>0

Hq−4k(M,∂1M)

be the mapping given by sending (Σ, ψ) to the image of the normalized chern character of the
bundle ξ under the mapping

c̃h(ξ) ∈
⊕

H4k(Σ) ∼=
⊕

Hq−4k(Σ, ∂Σ)
j∗
−→

⊕
Hq−4k(M,∂1M)

induced by the inclusion j : (Σ, ∂Σ) → (M,∂1M). Since ξ is an oriented bundle, the Framing
Principle applies to prove the following.

Lemma 3.1.7. The following diagram commutes where τ IK =
∑
τ IK2k is the total IK-higher torsion.

SD
G/O
B,∂0(M)

AdT

//

(−1)n2c̃h

44
π0S̃

s
B,∂0

(M)

τ IK

44

⊕
k>0Hq−4k(M,M∂1B) p∗

//
⊕

k>0Hq−4k(B, ∂1B)

This assumes that n+m is odd. Homology and cohomology have coefficients in R.
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Although we claim that the Framing Principle implies this lemma, we don’t need to verify it
since this lemma follows from the next lemma.

Lemma 3.1.8. Every element of SD
G/O
B,∂0(M) is in the image of a homomorphism

Σλ̃ : G(L, ∂0L) → SD
G/O
B,∂0(M)

where λ : (L, ∂1L) → (B, ∂1B) is a codimension 0 immersion covered by an embedding λ̃ : L → M
which makes the following diagram commute.

G(L, ∂0L)

Σ
λ̃

��

topEn
+(M,λ̃,−)

))SSSSSSSSSSSSSS

(−1)n2c̃h
//
⊕

k>0Hq−4k(L, ∂1L)

Σ
λ̃ttjjjjjjjjjjjjjjjjj

SD
G/O
B,∂0(M)

AdT

//

(−1)n2c̃h

44
π0S̃

s
B,∂0

(M)
⊕

k>0Hq−4k(M,M∂1B)

Proof of Lemma 3.1.7. First we note that both maps coming out of SD
G/O
B,∂0

(M) factor through

SD
G/O
B,∂0(M). Each element then lifts to G(L, ∂0L). Next we chase the diagram at the beginning

of the proof of Theorem 3.0.5 to show that the two images of this element in
⊕
Hq−4k(B, ∂1) are

equal. The diagram in Lemma 3.1.8 above shows that the two images obtained are the same as the
two images in the diagram of Lemma 3.1.7 which we are proving. �

Proof of Lemma 3.1.8. The mapping Σλ̃ takes a map ξ : L → G/O which is trivial over ∂0L and
produces a stratified subset

Σλ̃(ξ) = (Σ, ψ)

where Σ is two copies of L, thus Σ−
∼= Σ+

∼= L, glued together along ∂0L and embedded inM using
two small perturbations of the embedding λ̃ : L→M . The mapping psi is equal to ξ on Σ+ and is
trivial on Σ−. Since ψ is trivial on Σ−, the negative Hatcher handles in W (Σ, ψ) are standard disk
bundles. So, the bundle AdT (Σ, ψ) will not change if we remove these “trivial” Hatcher handles.
The result is then equivalent to the immersed Hatcher handle. This shows that the triangle in the

diagram commutes. Commutativity of the (curved) square follows from the definition of c̃h(ξ) on

SD
G/O
B,∂0B

, namely that it is the push-forward along the embedding D(λ̃) : E →M of the normalized

chern character of ξ as a bundle over L.
It remains to prove the elementwise surjectivity statement. This follows from the stratified

deformation lemma 3.2.1 whose proof we leave until the end. This lemma shows that any stratified
subset (Σ, ψ) of M can be deformed so that every component of Σ− is contained in a disjoint
contractible subset of Σ. Then we can deform ψ so that it is constant on each component of Σ−

and therefore also on Σ0. Then let (L, ∂0L) = (Σ+,Σ0) and let λ : L→ B be the map π+ : Σ+ → B.

Let λ̃ : L→M be the inclusion map of Σ+. Then we claim that the image of (Σ, ψ) in SD
G/O
B,∂0(M)

is equal to the image Σλ̃(ξ+) of ξ+ = ξ|Σ+ ∈ G(L, ∂0L). Since we started with an arbitrary element

of SD
G/O
B,∂0

(M) this will prove the lemma.

To see that (Σ, ψ) and Σλ̃(ξ+) are equal in SD
G/O
B,∂0(M), we just take the difference Σλ̃(ξ+) −

(Σ, ψ). The negative of (Σ, ψ) given in Remark 3.1.5 is (Σ′, ψ) + (Σ0, ψ0) × F where Σ′ is Σ
with orientation reversed. But ψ is trivial on Σ0. Therefore, the second summand is trivial. So
Σλ̃(ξ+) − (Σ, ψ) = Σλ̃(ξ+) + (Σ′, ψ). But then, Σ′

− = Σ+ has the same G/O coefficient map as
Σλ̃(ξ+) has on its positive part. Therefore, the interior of the negative part of Σ′ cancels the interior
of the positive part of Σλ̃(ξ+) by a stratified deformation. The result has trivial coefficient map to

G/O and therefore is trivial in SD
G/O
B,∂0(M) as claimed. �
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3.1.3. Proof of the AdT Theorem. The Arc de Triomph Theorem 3.1.1 will follow from the following
first version of the theorem.

Lemma 3.1.9. The mapping

SD
G/O
B,∂0

(M)
2c̃h
−−→

⊕

k>0

HdimB−4k(M,∂1;R)

is rationally surjective in the sense that its image generates
⊕

k>0HdimB−4k(M,∂1;R) as a vector
space over R.

Proof. Consider the bundle M × I → B and consider an arbitrary fiberwise generalized Morse
function f : M × I → I which agrees with the projection map over ∂0B and in a neighborhood of
the vertical boundary. Thus f = prI on the set

A = ∂0M × I ∪M × {0, 1}

Let Σ(f) be the fiberwise singular set. This is a stratified subset of M × I disjoint from the set A
since the projection to B has only fold singularities and the Morse point set which are the regular
points of the projection Σ(f) → B are stratified by index i. We will use just the sign (−1)i making
Σ+ into the set of Morse points of even index and Σ− the set of odd index Morse points of f . It is
important to note that Σ(f) is a manifold with boundary and ∂Σ(f) = Σ(f) ∩M∂1B × I.

The singular set is the inverse image of zero under the vertical derivative Dv(f) of f and therefore
a framed manifold with boundary. (Add the vertical normal bundle to see the framing.) Since the
space of all smooth functions on M × I equal prI on A is contractible and contains a function
without critical points, this framed manifold is framed null cobordant and represents the trivial
element of the fiberwise framed cobordism group of M relative to M∂1B which is π0ΓB,∂0QB(M)
where QB(M) is the bundle over B with fiber Q(X+) = Ω∞Σ∞(X+) over b ∈ B if X is the fiber
of M × I over b.

The negative eigenspace of D2(f) gives a stable vector bundle ξ over Σ(f). So Σ(f), together
with ξ gives a stratified subset of M × I with coefficients in BO = colimBO(k). Since Σ(f) is a
framed manifold with boundary which is framed null cobordant when we ignore this vector bundle,
we get an element of the kernel of the map from the fiberwise framed cobordism group of BO×M
to that of M . This kernel is π0 of the fiber of the map:

γ : ΓB,∂0QB(BO ×M) → ΓB,∂0QB(M)

In [18], it is shown that the space of generalized Morse functions on a manifold X is dimX-
equivalent to Q(BO ∧X+). If we apply that theorem fiberwise, we get that the space of fiberwise
generalized Morse functions on M × I has the n+m− q homotopy type of the fiber of the map γ
above.

However, it is a standard homotopy argument to show that there is a split surjection

Q(BO ∧X+) → Ω∞(BO ∧X+)

which is rationally equivalent to the homology of X in every 4th degree since BO is rationally
equivalent to

∏
k>0K(Z, 4k). Therefore, π0(fiber(γ)) has a split summand which is rationally

isomorphic to the group:

H :=
⊕

k>0

Hq−4k(M,M∂1B ;Q)

by the basic homotopy calculation (Corollary B.2.2) of Appendix B.
This implies that a set of generators for the vector space H⊗R is given by taking the normalized

chern character of all possible stratified sets (Σ, ξ) ∈ SDBO
B,∂0

(M×I) given by all fiberwise generalized

Morse functions on M × I fixing the subspace A. Using the fact that the group J(Σ) is finite with
order, say k, we know that J(ξk) = 0 in J(Σ) and therefore lifts to a map Σ → G/O. So, these
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various stratified sets (Σ, ξk) ∈ SD
G/O
B,∂0

(M × I) will have normalized chern characters generating
the vector space H ⊗ R as claimed. �

Lemma 3.1.10. The following diagram commutes

SD
G/O
B,∂0

(M)
AdT

//

(−1)n2c̃h

44
π0S̃

s
B,∂0

(M)
Θ

//
⊕

k>0Hq−4k(M,M∂1B)

where Θ :M ′ 7→ Θ(M ′,M) gives the rational exotic structure class of M ′.

This lemma proves the Arc de Triomph Theorem 3.1.1 since we just proved in Lemma 3.1.9 that
the normalized chern character is rationally surjective and we know by the smoothing theorem that
Θ is a rational isomorphism.

Proof. Take the diagram from Lemma 3.1.8 and add the arrow Θ:

G(L, ∂0L)

Σ
λ̃

��

topEn
+(M,λ̃,−)

))SSSSSSSSSSSSSS

(−1)n2c̃h
//
⊕

k>0Hq−4k(L, ∂1L)

Σ
λ̃ttjjjjjjjjjjjjjjjjj

SD
G/O
B,∂0(M)

AdT

//

(−1)n2c̃h

44
π0S̃

s
B,∂0

(M)
Θ

//
⊕

k>0Hq−4k(M,M∂1B)

The outside curved square commutes by Theorem 3.0.5. The map Σλ̃ can be chosen to hit any

element of SD
G/O
B,∂0(M) by the previous lemma. Therefore, the curved triangle at the bottom

commutes. This implies the lemma since the maps factor uniquely through SD
G/O
B,∂0(M). �

3.2. Stratified deformation lemma. It remains to prove the following lemma which was used
to show that each Arc de Triomph construction can be deformed into an immersed Hatcher con-
struction.

Lemma 3.2.1 (Stratified Deformation Lemma). If the fiber dimension of M is ≥ q + 2, then any

element of SD
G/O
B,∂0

(M) is represented by a stratified subset (Σ, ψ) of M with the property that the

components of Σ− are contained in disjoint contractible subsets of Σ.

Proof. This is the same proof which appears in [19] on page 446-447 with five figures and in [23] on
page 73 with one figure. We repeat is here since the statements are not the same, only analogous.

The dimension hypothesis implies that all deformations of Σ in M can be made into isotopies
of smooth embeddings over B by transversality. So, we will not concern ourselves with that point.

Suppose that ∂1B is empty. Then we will deform any (Σ, ψ) into the desire shape. When ∂1B
is nonempty, we double B along ∂1B and double M along M∂1B and similarly for (Σ, ψ). Then do
the deformation Z/2 equivariantly. The fixed point sets of the Z/2 action on the new B and new
M are the original ∂1B and M∂1B.

First choose an equivariant triangulation of Σ− so that the fixed point set is a subcomplex and
so that each simplex maps monomorphically into B. Then we will cut apart the set Σ− by deleting
a tubular neighborhood of each simplex starting with the lowest dimension. If we let S denote
what is left of the original set Σ−, then, at the end, the set S will be a disjoint union of q-disks.

At each step in the deformation, a new component of Σ− will be introduced which will be
contained in a q-disk subset of Σ which is disjoint from S and from all the other q-disks. Each
step of the deformation will be Z/2 equivariant and will alter the set Σ only in an arbitrarily small
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neighborhood of the set S. Consequently, the q-disks containing the new components of Σ− will
not be touched.

The deformation starts with the vertices of S = Σ−. Let v be a vertex in the interior of S. Then
we can introduce a “trivial lens” (L,ψ) in M near v. By definition, this is an embedded q sphere
in M which is the union of two q-disks L = L− ∪ L+ so that the projection map L → B has fold
singularities along L1 = L− ∩ L+ and so that the interior of each q disk maps diffeomorphically
onto an open neighborhood of p(v) in B. Choose the map ψ : L→ BO to be constant and equal to
ψ(v). Then we can cancel a small neighborhood of v in S with a small neighborhood of the center
point of L+. This changes S in the desired way and introduces a new component of Σ− which is a
q-disk.

Suppose by induction that the m− 1 skeleton of S has been removed where m ≥ 1. Let Dm be
an m-disk embedded in S with boundary Sm−1 ⊆ ∂S. In order to eliminate Dm we need another
m-disk ∆ embedded in Σ+ so that the projections of ∆ and Dm to B are equal and so that Dm∪∆m

forms a lens. We need to construct this disk.
Let S

′m−1 be a sphere in the interior of Σ+ which is parallel to Sm−1 and lies over the image
of Dm in B. Over that sphere, we create a “tube” T , a product of an m− 1 sphere with a trivial
lens of dimension q−m+1. Then T− ∼= T+ ∼= Sm−1 ×Dq−m+1. The mapping to BO should agree
with ψ|S

′m−1. Then we can cancel a tubular neighborhood of S
′m−1 with a tubular neighborhood

of the core Sm−1×∗ of T−. Then the new component C of Σ− will be a collar neighborhood of the
boundary of Sm−1 ×Dq−m+1:

C ∼= Sm−1 × Sq−m × I

This has two boundary components. The outer boundary component Sm−1 × Sq−m × 1 will also
be the boundary of T+ ∼= Sm−1 × Dq−m+1 and C is an external collar for T+ making T+ ∪ C ∼=
T+ ∼= Sm−1 ×Dq−m+1. We can make this set contractible by adding an m-disk ∆−. To do this we
use the disk Dm ⊆ S as a path along with to embed a disk ∆ with map to BO given by ψ|Cm and
use this to do surgery on Sm−1 × ∗ × 0 on the inside boundary component of C. This performs a
deformation of (Σ, ψ) which makes the new component of Σ− together with T+ into a disk and the
new Σ+ contains an m-disk ∆+ which, together with Dm forms a lens which can be cancelled.

WhenDm lies in the fixed point set, this can be done equivariantly and whenDm is not contained
in the fixed point set, it will be disjoint from it and this can all be done away from the fixed point
set and the mirror image of Dm can be eliminated in the analogous way making the deformation
Z/2 equivariant in both cases. Thus the deformation works as promised, proving the lemma. �

This completes the proof of all the theorems in this paper.

Appendix A. Smoothing theory

This paper has two appendices. The first is an exposition on Dwyer-Weiss-Williams smoothing
theory as outlined in the short notes of Williams [28], the second explains the homotopy calculation
needed to convert the DWW homotopically defined smoothing invariant into a cohomology class.

The important results explained in Appendix A: Smoothing Theory are the following

• (Theorem A.5.14) The space of stable tangential smoothings of a compact manifold bundle

is homotopy equivalent to the space of sections of the corresponding H% bundle.

γM : S̃sB,∂0B(M)
≃
−→ ΓB,∂0BH

%
B (M)
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• (Corollary A.5.19) If λ : (L, ∂1L) → (B, ∂1B) is a codimension 0 immersion covered by a

codimension 0 embedding of bundles D(λ̃) : E →W then we get a commuting diagram:

S̃sL,∂0L(E)
γE

≃
//

��

ΓL,∂0LH
%
L (E)

��
S̃sB,∂0B(M)

γM

≃
// ΓB,∂0BH

%
B(M)

Appendix A is divided into five parts:

(1) Spaces of manifolds. We describe the smoothing problem as the homotopy fiber of the
forgetful mapping from the space of smooth manifolds to the space of topological manifold.

(2) The functor EM . Since every microbundle contains a Euclidean bundle, every paracompact
topological manifold M has a tangent Euclidean bundle EM .

(3) Linearized Euclidean bundle VM . This is a vector bundle which is topologically equivalent
to the tangent Euclidean bundle EM . I.e., VM is EM with additional structure making it
into a vector bundle. By classical smoothing theory, this additional structure exists if and
only if M is smoothable. If M is smooth, then we can take VM to be the usual tangent
bundle TM .

(4) Tangential smoothing. This refers to a homeomorphism f : M0 → M1 between smooth
manifolds together with a vector bundle morphism Tf : TM0 → TM1 between their tangent
bundles which is compatible with the topological derivative Ef : EM0 → EM1. There is
also an equivalent formulation given by a continuous family of topological manifoldsMt, t ∈
[0, 1] which have linear Euclidean bundles VMt so that VM0 = TM0 and VM1 = TM1.

(5) Smoothing theorems. After stabilization, the core of a linearized topological bundle has a
unique smoothing up to contractible choice compatible with the linearization. Furthermore,
the linearization extends uniquely up to homotopy to the complement of the core which
is an internal fiberwise collar for the bundle. This finally leads to the main smoothing
theorems as explained above.

A.1. Spaces of manifolds. First we recall the basic construction which is that a compact topo-
logical/smooth manifold bundle M → E → B is equivalent to a mapping from B to the space
of topological/smooth manifolds which are homeomorphic/diffeomorphic to M . This leads us to
consider two spaces of manifolds: topological manifolds and smooth manifolds and the homotopy
fiber of the forgetful map

ϕ : Sd• (n) → St•(n)

which is the space of all smoothings of a fixed topological n-manifold. We also need one other space
of manifolds: topological manifolds with linear structures on their tangent Euclidean bundles. We
will discuss this after we recall the theory of Euclidean bundles in the next section.

A.1.1. Topological manifolds. Let St(n) be the set of all compact topological n-submanifolds of R∞

so that

(M,∂M) ⊂ ([0,∞) × R∞, 0× R∞)

This condition allows us to attach a canonical external open collar C = ∂M × [0, 1) ⊂ [0, 1)×R∞.
Instead of defining a topology on the space St(n) we will take the easy approach of making it into
a simplicial set. So, let St•(n) be the simplicial set whose k-simplices are continuous ∆k families
of compact topological n-manifolds Mt, t ∈ ∆k. By a continuous family we mean a mapping
f : ∆k → St(n) with the property that its adjoint

W = {(t, x) ∈ ∆t × R∞ |x ∈Mt} ⊆ ∆k × R∞

is a fiber bundle over ∆k with fiber f(t) =Mt.
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There is a tautological bundle over the geometric realization |St•(n)| whose fibers are compact
n-manifolds embedded in R∞. The inverse image of a simplex is the corresponding manifold W
given above. Since this bundle contains all possibleW , it is universal, i.e., any compact n-manifold
bundle p : E → B over a triangulated space B is classified by a mapping B → St(n) which is
continuous on each simplex of B in the above sense. Therefore, we get a simplicial map

simp B → St•(n)

from the set of simplices of B to St•(n) which sends a k-simplex σ to p−1(σ) ∈ Stk(n) (assuming
that a fiberwise embedding E →֒ B × R∞ has been chosen). This proves the following well-known
theorem where Homeo(M) is the group of homeomorphisms ofM with the compact-open topology.

Theorem A.1.1. The geometric realization of St•(n):

|St•(n)| ≃
∐

BHomeo(M)

is the disjoint union over all homeomorphism classes of compact n-manifolds M of the classifying
space of Homeo(M). �

A.1.2. Smooth manifolds. We define a smoothing of a topological manifold M without boundary
to be continuous mapping α :M → R∞ whose image is an immersed smooth submanifold. We call
α an “immersion”.

Definition A.1.2. If M is a topological manifold and N is a smooth manifold we define an
immersion to be a continuous mapping α : M → N so that for every x ∈ M there is an open
neighborhood U of x in M so that α is an embedding on U with image α(U) a smooth submanifold
of N with smooth boundary. If Mt is a family of topological manifolds without boundary forming
the fibers of a bundle W → B over a smooth manifold B then by a family of immersions we mean
a continuous family of maps αt :Mt → N giving an immersion α : W → N ×B.

If U is an open subset of the interior of a topological manifold M we define a smoothing of U to
be an immersion α : U → R∞. We defined a smoothing of a closed subset A of M to be the germ of
a smoothing of a neighborhood of A in the interior of M . Thus a smoothing of A is an equivalence
class of smoothings in open neighborhoods of A where two such smoothings are equivalent if they
agree on a third smaller neighborhood of A. When we pass to manifold bundles we always define
these open neighborhoods to be uniform open neighborhoods meaning they are open subsets of the
total space of the bundle.

IfM is a manifold with boundary then we define a smoothing ofM to be the germ of a smoothing
of a neighborhood of M in M ′ =M ∪C where C = ∂M × [0, 1) is the standard external open collar
for M . Smoothings of closed subsets of M are defined similarly.

The key point about this version of the definition of smoothing is that it is clearly excisive in
the following sense.

Proposition A.1.3. If M is the union of two closed subsets M = A ∪ B, then a smoothing α of
M is the same as a pair of smoothings αA, αB for A and B which agree on A ∩B.

Proof. The smoothings αA, αB are given by immersions on neighborhoods of A,B in M ′ which
agree on the intersection. This gives an immersion defined on a neighborhood of M in M ′. �

Let Sd(n) be the set of all pairs (M,α) whereM is an element of St(n), i.e. a compact topological
submanifold of R∞ and α is a smoothing ofM . Let Sd• (n) denote the simplicial set whose k-simplices
are pairs (W,α) where W ∈ St•(n) and α : W → R∞ ×B is an immersion over B.

Note that there is a simplicial forgetful map

ϕ : Sd• (n) → St•(n)

which is given in every degree by projection to the first coordinate: ϕk(W,α) =W .
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Theorem A.1.4. The geometric realization of Sd• (n):

|Sd• (n)| ≃
∐

BDiff(M)

is the disjoint union over all diffeomorphism classes of compact n-manifolds M of the classifying
space of the group Diff(M) of diffeomorphisms of M with the C∞ topology. �

Our definition of smoothing also gives us an exponential map

µM : TM →M ′

defined in some neighborhood U(M) of the zero section of the tangent bundle TM ⊂M×R∞. This
is given by the inverse function theorem as the second coordinate of the inverse of π :M×M ′ → TM
given by π(x, y) = πx(α

′(y)−α(x)) where πx is orthogonal projection to the tangent plane to α(M)
at α(x) translated to the origin.

A.1.3. Homotopy fiber of ϕ. Given a single topological manifold X, the space of smoothings α of
X is homeomorphic to the space of all pairs (X,α). This is the same as the inverse image of X
(and its degeneracies) under the simplicial forgetful map ϕ : Sd• → St•. An elementary argument
shows that this space is the homotopy fiber of the simplicial map ϕ. More generally, the space of
smoothings of a continuous ∆k family W0 of topological manifolds is homotopy equivalent to the
space of smoothings of W0 which we define as follows.

Definition A.1.5. SupposeW0 is a ∆k family of topological n-manifolds, i.e. (W0 → ∆k) ∈ Stk(n).
Then, a smoothing of W0 is defined to be a pair (W,α) where

(1) W is a continuous ∆k × I family of topological manifolds,
(2) W |∆k × 0 =W0,
(3) α is a smoothing of W1 =W |∆k × 1.

Since W is topologically isomorphic to W0 × I, the space of smoothings of W0 is homotopy
equivalent to the space of actual smoothings of W0. Homotopy smoothings have some additional
properties which we state without proof.

Let S
t/d
• (n) denote the simplicial set whose k-simplices are smoothings (W,α) of k-simplices

W0 ∈ Stk(n) as defined above. We have the following observation.

Proposition A.1.6. The simplicial forgetful map S
t/d
• (n) → Sd• (n) sending (W,α) to (W1, α) is a

homotopy equivalence. �

Proposition A.1.7. If X ∈ St0(n) let S
t/d
• (X) denote the simplicial subset of S

t/d
• (n) whose k-

simplices are the smoothings of X × ∆k. Then |S
t/d
• (X)| is the homotopy fiber of the forgetful

map
|ϕ| : |Sd• (n)| → |St•(n)|

over X ∈ St0(n). �

More generally, given any topological manifold bundle W0 → B where B is a smooth manifold,
we define a smoothing of W0 to be a topological embedding α : W0 → B×R∞ over B whose image
is a smooth submanifold of B ×R∞. Smooth ∆k families of such embeddings form a simplicial set
which represents the space of all homotopy liftings of the classifying map B → |St•(n)| to |Sd• (n)|,
in other words a point in the homotopy fiber of the map

|Sd• (n)|
B → |St•(n)|

B .

We call this the space of fiberwise smoothings of W0.
By a fiberwise smoothing ofW0 we mean a pair (W,α) whereW is a topological manifold bundle

over B×I which is equal toW0 over B×0 and α is a smoothing ofW |B×1. Taking ∆k families we
can form a simplicial set which we call the space of fiberwise smoothings of W0. As in Proposition
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A.1.6, it is clear that this space is homotopy equivalent to the space of actual smoothings of a
topological bundle. However, smoothings makes it easier to compare two different smoothings of
the same bundle.

Suppose that f : W0 → W1 is a homeomorphism between two smooth bundles over B. We can
construct the associated smoothing

W =W0 × I ∪f W1

where W1 is identified with W0 × I using the homeomorphism f . The problem is to determine
whether there is a smooth structure onW which extends the given smooth structure onW0 andW1.
If f is smooth then we can take the smooth structure on W induced from W0 × I. Using our strict
definitions, this would be given by the family of smoothings ht = (1 − t)α0 + tα1 ◦ f : W0 → R∞.
This will be a family of embeddings if we assume that the smoothings αi of Wi have image in
linearly independent subspaces of R∞, if not we can simply pass through a third smoothing with
this property.

Proposition A.1.8. Suppose that f : W0 → W1 is a fiberwise homeomorphism between smooth
bundles over B and suppose that f is homotopic through continuous fiberwise embeddings over B to
a smooth embedding. Then there is a smooth structure on the fiberwise interior of W which agrees
with the smooth structure on W0 and W1.

Proof. The continuous image of the fiberwise interior of Wt under a topological embedding ft :
Wt →W1 is a smooth manifold. Therefore, the image of ft gives the desired smoothing. �

In classical smoothing theory, a smoothing of a topological manifold is given by a lifting of the
tangent microbundle to a linear bundle. In other words, a vector bundle structure on the topological
tangent bundle gives a smoothing of a single manifold. This is not true for a topological manifold
bundleW → B. If we choose a vector bundle structure on the vertical topological tangent bundle of
the topological bundleW → B we have a further obstruction to smoothing. To study this question
we need to construct a third space of manifolds: compact topological manifolds with vector bundle
structures on their topological tangent bundles. We call these “linearized manifolds.”

A.2. The functor EM. A compact topological manifold M has a topological tangent bundle

π : EM →M

which is called the tangent Euclidean bundle of M . The fiber π−1(x) is homeomorphic to an open
ball neighborhood of x inM . This section gives the basic properties of Euclidean bundles in general
and the functorial properties of the tangent Euclidean bundle of a manifold.

A.2.1. Euclidean bundles. A Euclidean bundle is a fiber bundle

π : E → B

with fiber Rn and structure group Homeo(Rn, 0), the group of homeomorphisms of Rn fixing 0
with the compact open topology. By a Euclidean subbundle of E we mean an open subset E0 ⊆ E
which includes the zero section and which is also a Euclidean bundle. A morphism of Euclidean
bundles E0 → E1 over B is a fiberwise open embedding which preserves the zero section, i.e., an
isomorphism of E0 with a subbundle of E1.

Lemma A.2.1 (Kistor). Let E → B be a Euclidean bundle over a finite cell complex B and let
E0 be a Euclidean subbundle of E. Then E0 is fiberwise isotopic to E fixing a neighborhood of the
zero section. I.e., there is a continuous one-parameter family of Euclidean morphisms ft : E0 → E
which are the identity in a neighborhood of the zero section so that f0 is the inclusion map and f1
is a homeomorphism. �

Remark A.2.2. The conclusion of this lemma can be rephrased as saying that there is a Euclidean
subbundle of E × I → B × I which is equal to E0 over B × 0 and equal to E over B × 1.
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Proposition A.2.3. If E,E′ are Euclidean bundles over B with isomorphic subbundles ϕ0 : E0
∼=

E′
0 then there is an isomorphism ϕ : E → E′ which agrees with ϕ0 in some neighborhood of the

zero section.

Proof. E ∼= E0
∼= E′

0
∼= E′ by the lemma. �

Lemma A.2.4. Let E → B be a Euclidean bundle over a finite dimensional CW-complex B and
let E0 be a subbundle of the restriction E|A of E to a subcomplex A ⊆ B. Then there is a Euclidean
subbundle E′

0 of E so that E0 = E′
0|A.

Proof. Assuming that we have constructed E′
0 over A ∪ Bk we can extend E′

0 to A ∪ Bk+1 one
(k + 1)-cell at a time using the lemma as rephrased in the remark. �

A.2.2. Microbundles. A (topological) microbundle over B is defined to be a space E containing B
with inclusion map s : B → E and retraction π : E → B so that B is covered by open subsets U
of E for which π(U) = U ∩B and so that π|U : U → U ∩B is a Euclidean bundle.

A morphism of topological microbundles E0 → E1 over B is defined to be the germ along B of a
fiberwise homeomorphism f : E0 → E1 which is the identity on B. Thus, f is only defined in some
neighborhood of B and any two such maps are equivalent if they agree on some neighborhood of
B in E0.

Theorem A.2.5 (Kistor,Masur). Suppose that B is (the realization of) a finite dimensional, locally
finite simplicial complex and π : E → B is a microbundle. Then E contains an open neighborhood
E0 of s(B) so that (E0, s(B)) is a Euclidean bundle over B. Furthermore, E0 is unique up to
isomorphism.

Remark A.2.6. This implies that any topological microbundle over B is microbundle isomorphic to
a Euclidean bundle which is uniquely determined up to isomorphism.

Proof. We can refine the triangulation of B so that each simplex is contained in one of the open
sets U . This gives a Euclidean bundle Eσ over each simplex σ. Since B is locally finite and finite
dimensional we can choose the Eσ so that Eσ ⊆ Eτ |σ for all σ ⊆ τ . Then a Euclidean bundle En
can be constructed over the n-skeleton of B by induction on n: E0 already exists. Given En, we
can extend En to each n+ 1 simplex using Lemma A.2.4. This shows existence.

To prove the uniqueness, we take any two Euclidean bundles and use the above argument to
construct a third Euclidean bundle which is a subbundle of both. By Kistor’s Lemma A.2.1, all
three Euclidean bundles are isomorphic. �

Corollary A.2.7. If B is dominated by a finite dimensional locally finite simplicial complex (for
example a paracompact topological manifold) then any microbundle over B contains a Euclidean
bundle neighborhood of its section.

Proof. If B is a retract of a nice space X then any microbundle over B pulls back to a microbundle
over X which contains a Euclidean bundle which restricts to a Euclidean bundle neighborhood of
the section of the original microbundle.

Any paracompact n-manifold M satisfies this condition since each component of M is second
countable and therefore can be properly embedded in R2n+1. This is an exercise in Munkres. The
Tietze extension theorem can be used to show that M is a retract of a neighborhood which we can
take to be simplicial. �

A.2.3. Tangent Euclidean bundle. The discussion above implies the well-known fact that every
paracompact topological manifold M has a tangent Euclidean bundle: we first attach the standard
external open collar C = ∂M× [0, 1) and embedM in the open manifoldM ′ =M ∪C. The tangent
microbundle of M is the equivalence class of p1 :M ×M ′ →M (projection to the first coordinate),
together with the diagonal section ∆ :M →M ×M ′.
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Definition A.2.8. If M is a topological manifold with external open collar C = ∂M × [0, 1) and
π : E →M is a Euclidean bundle then a topological exponential map is defined to be a continuous
map

η : E →M ′ =M ∪ C

so that

(1) η(s(x)) = x for all x ∈M where s :M → E is the zero section,
(2) η maps each fiber Ex = π−1(x) homeomorphically onto an open neighborhood of x in M ′.

We call (E, η) = (E, s, π, η) a tangent Euclidean bundle for M .

If (E, η) is a tangent Euclidean bundle for M then the germ of E around s(B) is the tangent
microbundle of M . To see this note that the two mappings π, η form an open embedding (π, η) :
E →֒M ×M ′ by invariance of domain. The image of (π, η) determines (E, η) up to isomorphism.
We say that (E0, η0) is contained in (E1, η1) if the image of E0 inM ×M ′ is contained in the image
of E1. Kistor’s theorem on the existence and uniqueness of Euclidean bundles can be stated as
follows in the case of the tangent microbundle.

Theorem A.2.9. Any paracompact topological manifold M has a tangent Euclidean bundle. Fur-
thermore, for any two tangent Euclidean bundles, there exists a third Euclidean bundle which is
contained in both. �

In the case whereM is a smooth manifold, we note that EM is also a smooth manifold although
the smooth structure of EM along ∂M depends on a choice of extensions α′ of the smooth structure
of M to M ′. Also we have a canonical exponential map µM : TM →M ′ defined in a neighborhood
U(M) of the zero section and this gives us a diffeomorphism of bundles between EM and U(M).

A.2.4. Vertical tangent Euclidean bundle. We are interested in the case when p : M → B is a
bundle over a finite complex B with fiber X a compact topological manifold. In this case we
first add the external collar C = ∂vM × [0, 1) where ∂vM is the vertical boundary of M , i.e. the
bundle over B with fiber ∂X. Then M ′ = M ∪ C is an open manifold bundle over B with fiber
X ′ = X ∪ ∂X × [0, 1). The fiber product M ⊕M ′ is a bundle over B with fiber X ×X ′ and the
vertical tangent microbundle is the neighborhood germ of the fiberwise diagonal ∆M in M ⊕M ′.

SinceM is a compact and finite dimensional it is dominated by a finite complex. Therefore, any
microbundle over M contains a Euclidean bundle. In particular, there exists a Euclidean bundle
π : EvM →M unique up to isomorphism and an open embedding

(π, η) : EvM →֒M ⊕M ′

over M sending the zero section to the fiberwise diagonal.

We call (EvM,η) a vertical tangent Euclidean bundle for M
p
−→ B and η : EvM → M ′ the

fiberwise topological exponential map. As before, (EvM,η) is given up to isomorphism by the image
of the embedding (π, η) : EvM →֒M ⊕M ′.

A.2.5. Topological derivative. Any homeomorphism f : M0 → M1 induces a homeomorphism f ′ :
M ′

0 →M ′
1 by sending (x, t) ∈ ∂M0 × [0, 1) to (f(x), t) ∈ ∂M1 × [0, 1). This gives a map of tangent

microbundles:

M0 ×M ′
0

f×f ′ //

p1

��

M1 ×M ′
1

p1

��
M0

f // M1

This morphism of microbundles is the topological derivative of f . (If E → B,E′ → B′ are bundles
or microbundles, then a morphism E → E′ over a map f : B → B′ is defined to be a morphism
between E and the pull-back f∗E′ over B.)
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Choosing Euclidean subbundles of the microbundles, we can represent the topological derivative
by an isomorphism of Euclidean bundles Ef . If π0 : EM0 → M0 is a tangent Euclidean bundle
for M0 with embedding (π0, η0) : EM0 →֒ M0 ×M ′

0 then π1 = f ◦ π0 : EM0 → M1 is evidently a
tangent Euclidean bundle forM1 with embedding (π1, η1) = (f × f ′)(π0, η0) : EM0 →M1×M

′
1. In

other words, there is an isomorphism of Euclidean bundles Ef : EM0 → EM1 over f as indicated
in the following commuting diagrams.

EM0

π0

��

Ef // EM1

π1

��

EM0

η0
��

Ef // EM1

η1
��

M0
f // M1 M ′

0

f ′ // M ′
1

We call Ef the topological (Euclidean) derivative of f .
Similarly, if f : M0 → M1 is a fiberwise homeomorphism between two topological manifold

bundles over the same space B, we get an isomorphism of Euclidean bundles Evf : EvM0 → EvM1

over f compatible with the fiberwise exponential maps as indicated in the following diagrams in
which all arrows commute with the projection to B.

EvM0

��

Evf // EvM1

��

EvM0

η0
��

Evf // EvM1

η1
��

M0
f // M1 M ′

0

f ′ // M ′
1

We call Evf the fiberwise or vertical topological (Euclidean) derivative of f .

A.3. Linearized Euclidean bundle VM. The first step to finding a smooth structure on a topo-
logical manifold is to impose a linear structure on the tangent Euclidean bundle.

A.3.1. Linearization. We define a linearization of a Euclidean bundle π : E → M to be the germ
along the zero section of a vector bundle structure on E. Since this is a germ, it is a structure on
the microbundle of E. A linearization makes the microbundle linear. A linearization of E is the
same as a lifting of the structure map of E to BGL(n,R):

BGL(n,R)

��
M

88q
q

q
q

q
q // BHomeo(Rn, 0)

A linearization of E can also be viewed as an equivalence class [λ] of a topological microbundle
morphism λ : V → E where V is a vector bundle over B, two such morphisms λ : V → E,λ′ :
V ′ → E being equivalent if λ = λ′ ◦ψ for some linear isomorphism ψ : V → V ′. In particular, V is
well-defined up to isomorphism. We call ψ the comparison map for λ, λ′. If λ, λ′ are inequivalent
linearizations of E, we also get a comparison map ψ = (λ′)−1λ : V → V ′ which is a nonlinear map
germ between vector spaces.

A linearization of a topological manifold M is defined to be a linearization of its tangent mi-
crobundle. This is given by a microbundle morphism

λ : VM → EM

for some vector bundle VM . We call the pair (M,VM) a linearized manifold. A fiberwise lineariza-
tion of a topological manifold bundle W → B is defined to be a linearization V vW of the vertical
tangent microbundle of W over B. Thus, a homotopy of linearizations of M is given by a fiberwise
linearization of M × I over I.
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We note that a microbundle morphism λ : VM → EM carries the same information as an
exponential map µ : U → M ′ where U is a neighborhood of the zero section of VM . As we
remarked already, such a structure exists if M is a smooth manifold. Then we have a smooth
exponential map (inverse to orthogonal projection in R∞)

µM : U(M) →M ′

where U(M) is a neighborhood of the zero section in TM . This gives a microbundle morphism
TM → EM making (M,TM) into a linearized topological manifold. We call this the canonical
linearization of M .

There is a problem that the topological derivative of a smooth map M0 →M1 is not covered by
a linear map of canonical linearizations. So, instead we use smooth linearizations. A linearization
(or fiberwise linearization) λ : VM → EM of a smooth manifold M will be called smooth if VM
has a smooth structure compatible with the linear structure so that λ is a diffeomorphism in some
neighborhood of the zero section. We note that the smooth structure on VM is unique if it exists
and the comparison map ψ between any two smooth linearizations is also smooth. Note that the
derivative of ψ along the zero section gives an isomorphism of vector bundles V → V ′. Therefore,
any smooth linearization of a smooth manifold is canonically isomorphic to its tangent bundle as
a vector bundle.

Proposition A.3.1. For any compact smooth manifold M , the space of smooth linearizations
µ : TM → EM with fixed derivative along the zero section is convex and thus contractible. �

Suppose M0,M1 are smooth manifolds with canonical linearizations λi : TMi → EMi and
f :M0 →M1 is a diffeomorphism with tangent map Tf : TM0 → TM1. Then the map germs

λ0, Ef
−1 ◦ λ1 ◦ Tf : TM0 → EM0

are smooth linearizations of M0 with the same derivative, namely the identity, along the zero
section. Therefore, there is a 1-parameter family of smooth linearizations µt : TM0 → EM0 all
having the same derivative going from µ0 = λ0 to µ1 = Ef−1 ◦ λ1 ◦ Tf . This is an example of a
(smooth) tangential homeomorphism of smooth manifolds.

A.3.2. Stabilizing linearizations. Suppose that (M,VM) is a linearized manifold with exponential
map germ µ : VM → M ′. Then any vector bundle p : L → M will be seen to have an induced
linearization on the (noncompact) manifold L. We will usually restrict to a disk bundle D(L) which
is compact.

We choose an extension L′ → M ′ of the vector bundle L to M ′ and assume we have a Gauss
map γ : L′ → RN , i.e. a continuous map which is a linear monomorphism on each fiber. This gives
a metric on L′ and allows us to take the ǫ-disk bundle Dǫ(L

′). Over any two points x, y ∈ M ′ we
also have a linear map between fibers of L′:

πxy : Lx → Ly

given by orthogonal projection in RN . When x = y this is the identity map on Lx. Therefore, for
some neighborhood U of x in M ′ we get an isomorphism of vector bundles πxU : U × Lx ∼= L′|U
given by

πxU(y,w) = πxy (w) ∈ Ly ⊆ L′|U.

The vector bundle of the linearization of L induced by VM will be the pull-back p∗(VM ⊕ L)
of the direct sum VM ⊕ L. The exponential map on the restriction of p∗(VM ⊕ L) to the zero
section M ⊂ L is the map

µ : VM ⊕ L→ L

given on the fiber VxM × Lx over x ∈M by µ = πxU ◦ (µx × id) or

µ(v,w) = πxµx(v)(w)
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for some neighborhood U of x in M ′.
Since this construction is continuous on the input data, it also works for vector bundles L over

fiberwise linearized manifold bundles (M,V vM) over a manifold B to produce a linearization of the
Euclidean bundle V vM ⊕ L over M .

Proposition A.3.2. An extension of this exponential map to all of L exists and is well-defined
up to homotopy. Furthermore, if M,V vM,L, p, γ are smooth then µ and its extension to L will be
smooth. �

Since M ⊂ L is a deformation retract, this follows from the following important lemma.

Lemma A.3.3 (Linearization extension lemma). Suppose that W → B is a topological manifold
bundle and K ⊆ W is a fiberwise deformation retract of W . Then any linearization V of EvW |K
extends to all of W and any two such extensions are homotopic rel K. Furthermore, if W,V are
smooth, then this extension will also be smooth.

Proof. Choose a fiberwise deformation retraction rt : W → W of W to K. Then rt is covered by
a deformation retraction r̃t : E

vW → EvW of the Euclidean bundle EvW to EvW |K which we can
take to be fiberwise smooth in the smooth case and r̃1 gives an isomorphism (r̃1)∗ between EvW
and the pull-back r∗1(E

vW |K) of EvW |K to W . If λ : V → EvW |K is a linearization of EvW |K
then

r∗1V
r∗1(λ)−−−→ r∗1(E

vW |K)
(r̃1)

−1
∗

−−−−→ EvW

is a linearization of EvW which will be fiberwise smooth in the smooth case and (r̃t)∗ ◦ r
∗
t (λ) is a

deformation of any linearization λ : V → EvW extending λ to this one. �

A.3.3. Tangential homeomorphisms. Two linearizations of a manifold M are equivalent if they lie
in the same path component of the space of linearizations of M , in other words there is a fiberwise
linearization of M × I which agrees with these linearizations at the endpoints. Two linearized
manifolds are equivalent if there is a homeomorphism between them so that the linearization of
one manifold is equivalent to the pull back of the linearization of the other manifold. We will make
these definitions more precise and extend them to manifold bundles over B.

i. tangential homeomorphism
By a tangential homeomorphism between linearized manifolds we mean a triple:

(f, V f, µt) : (M0, V M0, λ0) → (M1, V M1, λ1)

where

(1) f :M0 →M1 is a homeomorphism,
(2) V f : VM0 → VM1 is a nonsingular linear map over f , and
(3) µt : VM0 → EM0 is a one parameter family of linearizations of M0 going from µ0 = λ0 to

µ1 = Ef−1 ◦ λ1 ◦ V f :

VM0
V f //

µ1
��

VM1

λ1
��

EM0
Ef // EM1

A fiberwise tangential homeomorphism between fiberwise linearized manifolds bundles is defined
similarly.

ii. deformation of linearized manifolds
Suppose that W → I is a compact manifold bundle over the unit interval together with a

fiberwise linearization V vW → EvW . This is equivalent to the one parameter family of linearized
manifolds (Mt, V Mt) where Mt =W |t with linearization VMt = V vW |t.
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Note that a tangential homeomorphism (f, V f, µt) : (M0, V M0) → (M1, V M1) also gives a one
parameter family of linearized manifolds

(Mt, V Mt) = (M0, µt : VM0 → EM0)

going from (M0, V M0) to (M1, V M1) if we identify (M0, V M0, µ1) ∼= (M1, V M1, λ1) via the isomor-
phism (f, V f).

Conversely, we have the following.

Proposition A.3.4. A one parameter family of linearized manifolds (Mt, V Mt) gives a tangential
homeomorphism (M0, V M0) ≃ (M1, V M1) which is uniquely determined up to a contractible choice.

Proof. Since bundles over I are trivial, there exist homeomorphisms ft : M0 → Mt equal to the
identity for t = 0 covered by nonsingular vector bundle maps V ft : VM0 → VMt giving us a one
parameter family of linearizations µt : VM0 → EM0 making the following diagram commute.

VM0
V ft //

µt

��

VMt

λt
��

EM0
Eft // EMt

So (Mt, V Mt) is isomorphic to (M1, ηt : VM1 → EM1) by (gt, V gt) for every t ∈ I. This in turn
gives an equivalence of linearized manifolds

(g0, V g0, ηt ◦ V g0) : (M0, V M0) ≃ (M1, V M1).

The choices that we made are the product structures for bundles over I. The space of such product
structures is contractible. �

iii. example
Suppose that M0 is a smooth manifold bundle over B and W is a smooth manifold bundle over

B which is a topological manifold bundle over B × I so that π−1(0) = M0 and π−1(1) = M1 are
smooth manifold bundles over B where π is the composition π : W → B × I → I. Then we will
obtain two tangential homeomorphisms between the smooth bundles M0 × I,M1 × I and W .

(a) The first is

(f, V vf, µvt) : (M0 × I, T vM0 × I) → (M1 × I, T vM1 × I)

Since W is a bundle over B × I, W is homeomorphic to M0 × I over B × I. This gives a homeo-
morphism

ft :M0 →Mt = π−1(t)

of bundles over B and we let

f = f1 × idI :M0 × I →M1 × I.

The smooth structure on W gives a linearization of the stabilized Euclidean bundle of Mt:

µt : T
vW |Mt → EvMt ⊕ ǫ1

This gives a fiberwise linearization of the bundle Mt × I over B which is smooth for t = 0, 1. So,
by the proposition above, we get a tangential homeomorphism of the stabilization

M0 × I →M1 × I.

(b) The second tangential homeomorphism is between the two smooth manifold bundles

M0 × I →W

First, we add an external collarM0×[−1.0] to the bottom ofW . This givesW+ =W∪M0M0×[−1, 0]
a bundle over B which is fiberwise diffeomorphic to W . But W+ has a new projection map
π : W+ → [−1, 1]. Let Wt, t ∈ I be the 1-parameter family of topological manifolds given by
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Wt = π−1[−1, t]. Since Wt is topologically embedded in the smooth manifold bundle W+ of the
same dimension, Wt obtains a linearization from the smooth linearization ofW+. The linearization
is smooth for t = 0, 1 since W0,W1 are smooth submanifolds of W+. This gives a 1-parameter
family of linearized topological manifold bundles going from W0

∼= M0 × I to W1 = W+ ∼= W as
claimed.

A.3.4. Tangential homeomorphism of smooth manifolds. By the discussion in the last subsection, a
tangential homeomorphism between two smooth manifolds (with canonical linearizations) is given
up to contractible choice by a fiberwise linearized topological bundle over I which is smooth over
the end points. We call this a “tangential (topological) concordance” between the two smooth
manifolds. To avoid repetition, we give the formal definition only for bundles.

Definition A.3.5. By a fiberwise tangential concordance between two smooth manifold bundles
M0 → B,M1 → B over the same base we mean a linearized topological manifold bundleW → B×I
so that W0 = W |B × 0 and W1 = W |B × 1 are smooth fiberwise linearizations of (the underlying
topological manifold bundles of) M0 and M1.

When we represent a fiberwise tangential concordance by a fiberwise tangential homeomorphism
(f, V f, µt) we would like to say that we can choose V f : T vM0 → T vM1 to be smooth. However,
this is not possible without changing the smooth structure of T vM0 since V f is a map over the
continuous map f which is not, in general, homotopic to a diffeomorphism.

Proposition A.3.6. If the vertical tangent bundle of M0 is trivial then any fiberwise tangential
concordance between M0 and M1 is represented by a fiberwise tangential homeomorphism (f, V f, µt)
where V f : T vM0 → T vM1 is smooth, using the smooth structure T vM0

∼= M1 × Rn and the
given smooth structure on T vM1. Furthermore the space of all such tangential homeomorphisms
representing the same tangential concordance is contractible.

Proof. The space of smooth nonsingular bundle maps M1 × Rn → T vM1 over M1 is homotopy
equivalent to Map(M1, O(n)) which is homotopy equivalent to the space of nonsingular continuous
bundle maps M0 × Rn → T vM1 over f . �

In fact, we can choose f : M0 → M1 to be a smooth embedding on the core of M0 and we can
choose V f to be smooth over that core.

A.4. Tangential smoothing. Given a linearized topological manifold (M0, V M0), a tangential
smoothing of (M0, V M0) is a smooth manifold M1 together with a tangential homeomorphism
(M0, V M0) ≃ (M1, TM1). In this section we express this as a point in the homotopy fiber of a map
between moduli spaces of manifolds with smooth and linear structures.

A.4.1. Space of linearized manifolds. Let S̃t(n) be the set of all linearized n-manifolds. For con-
creteness, we take these to be triples (M,V, µ) whereM ⊆ R∞ is a compact topological n-manifold
embedded in R∞, π : V → M is an n-plane bundle over M and µ : V → M ′ = M ∪ C is a
topological exponential map. As before, C = ∂M × [0, 1) is the standard external collar for M .

Let S̃t•(n) be the simplicial set whose k-simplices are continuous ∆k families of linearized n-
manifolds. This is a space which lies between the moduli spaces Sd• (n) and St•(n) in the sense that

the simplicial forgetful map ϕ : Sd• (n) → St•(n) factors through S̃t•(n):

S̃t•(n)
ψt

##FF
FF

FF
FF

F

Sd• (n)

ϕ̃
;;wwwwwwww
ϕ // St•(n)
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The second map ψt : S̃t•(n) → St•(n) is the simplicial forgetful map given by projection to the first
coordinate: ψt(M,V, µ) =M . But, we are mainly interested in the first map

ϕ̃ : Sd• (n) → S̃t•(n).

This simplicial map is defined by taking a ∆k family of smooth manifolds to the underlying family
of topological manifolds with canonical linearizations.

A.4.2. Homotopy fiber of ϕ̃. If we write down the definition it will be obvious that the homotopy
fiber of ϕ̃ is the space of tangential smoothings of a fixed linearized topological manifold.

Definition A.4.1. For any linearlized topological manifold (M,VM) let S̃
t/d
• (M,VM) be the

simplicial set whose k-simplices are tangential smoothings of the trivial bundleM ×∆k → ∆k with
fiberwise linearization λ× id : VM ×∆k → EM ×∆k.

Proposition A.4.2. S̃
t/d
• (M,VM) is the homotopy fiber of the forgetful functor

ϕ̃ : Sd• (n) → S̃t•(n)

over (M,VM) ∈ S̃t0(n). �

More generally, if (M,V vM) is a fiberwise linearized manifold bundle over B, we can define a

space S̃
t/d
B (M) of fiberwise tangential smoothings of (M,V vM). This is the homotopy fiber of the

map

ϕ̃∗ : |S
d
• (n)|

B → |S̃t•(n)|
B

over the map B → |S̃t•(n)| classifying the linearized bundle (M,V vM) and we are interested in π0
of this space. However, this set may be empty. We need at least one smoothing (M0, V

vM0) to
make it nonempty. This smoothing can be used as a base point and the other smoothings will be
call “exotic (fiberwise tangential) smoothings.”

Definition A.4.3. If M0 → B is a smooth manifold bundle, then an exotic (fiberwise tangential)
smoothing of M0 is defined to be another smooth manifold bundle M1 → B which is fiberwise
tangentially homeomorphic to M0.

If A is a submanifold of ∂B and P is a smooth subbundle of M then we define
˜
S
t/d
B,A(M,P ) to

be the (simplicial) subspace of S̃
t/d
B (M) consisting of fiberwise tangential smoothings of (M,V vM)

which are equal to the given smoothing on P ∪MA where MA = p−1(A).

A.4.3. Stabilization. By stabilization we mean taking direct limit with respect to all linear disk bun-

dles. In particular we replace the tangential smoothing space
˜
S
t/d
B,A(M0) with the stable tangential

smoothing space

S̃sB,A(M0) := lim
→

˜
S
t/d
B,A(D(ξ))

where the direct limit is with respect to all linear disk bundles ξ over M0.
Stabilization is used to make the tangent bundle trivial. We take the disk bundle of the normal

bundle D(ν). If we replace M0 with D(ν) × Dm with corners rounded then this new M0 has a
smooth spine J0 = D(ν)− which is a smooth manifold bundle. It has a core K0 which is fiberwise
diffeomorphic to M0 and whose complement M0 − K0 is an internal collar neighborhood of the
fiberwise boundary ∂vM0. Thus M0 −K0 is diffeomorphic to ∂vM0 × [0, 1).

i. corners
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There is one problem: We need to know that corners can be rounded off in a canonical way. But,
for our purposes, this is easy since any two ways of rounding off corners will clearly be tangentially
homeomorphic and we have the following lemma.

Lemma A.4.4. If M0,M1 are two smooth bundles over B which are fiberwise tangentially home-
omorphic then their tangential smoothing spaces are simplicially homotopy equivalent:

S̃
t/d
B (M0) ≃ S̃

t/d
B (M1).

Proof. The fiberwise tangential homeomorphism gives a one parameter family of linearized topo-
logical manifold bundle Wt �

One important example was given in subsubsubsection A.3.3(iii). Given a smooth bundleW →
B which fibers topologically over B × I in such a way that the inverse image of B × 0 and B × 1
are smooth bundles M0 and M1, then W defines a tangential homeomorphism M0 × I → M1 × I.
In other words M1× I becomes a point in the stable tangential smoothing space of M0. We denote
this by

top(W ) ∈ S̃sB,A(M0)

This is represented by M1 in the sense that M1 and top(W ) are stably equivalent.

ii. flat sides
Stabilization can also be given by the simple process of taking products with disks:

S̃sB,A(M0) = lim
→

˜
S
t/d
B,A(M0 ×Dn)

The reason is that trivial disk bundles are cofinal in the directed system of all disk bundles over
M0. Since corners are not a problem, we can also use cubes In instead of disks Dn.

Another cofinal system is given by the space of tangential smoothings W of M0 × In × I which
are “flat” on M0 × In × 0 in the sense that the tangential homeomorphism

(f, V vf) :M × In × I →W

is induced by a tangential homeomorphism

(∂0f, V
v∂0f) :M × In × 0 → ∂0W

in a neighborhood of M × In × 0. This is only a restriction on the tangential map V vf and
homotopy µv since any homeomorphism f as above induces a homeomorphism ∂0f on M × In × 0.
The “flatness” condition is that the maps

µvt : V
v(M × In × I) → V v(W )

should send V v(M × In × 0 to V v(∂0W ).
It is easy to see that “flat on one side” smoothings form a cofinal system. When we pass from a

smoothing of W to a smoothing of W × I we always have a tangential smoothing which is flat on
one side (in fact on both sides). Similarly, when we stabilize “flat on one side” smoothings we first
forget the flatness on one side then take the product with an interval.

iii. smoothness of the boundary
Finally, we need the fact that, after stabilization, tangential smoothings of M which are fixed

on the vertical boundary ∂vM give the same thing as those which don’t fix the boundary. We will
formulate this more precisely and prove it in the next section.

Suppose that ∂B = ∂0B ∪ ∂1B where ∂0B and ∂1B meet along their boundary ∂∂0B = ∂∂1B.
The the boundary of the total space M is equal to ∂M = ∂0M ∪ ∂1M where ∂0M = ∂vM ∪M∂0B

be the union of the vertical boundary ∂vM of M and the restriction M∂0B of M to ∂0B and
∂1M =M∂1B .
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Let
˜
S
t/d
B,∂0B

(M,∂vM) be the space of tangential smoothings of M which are fixed on ∂0M . This

is a subspace of
˜
S
t/d
B,∂0B

(M).

Proposition A.4.5. After stabilization we get a homotopy equivalence:

lim
→

˜
S
t/d
B,∂0B

(D(M),D(∂vM)) ≃ lim
→

˜
S
t/d
B,∂0B

(D(M))

where both limits are with respect to all linear disk bundles D(M) over M and D(∂vM) is the
restriction of D(M) to ∂vM .

A.5. Smoothing theorems. Given a smooth bundle p :M0 → B and a smooth submanifold A of
∂B, we would like to determine the set of all isotopy classes of exotic fiberwise smoothings of M0

which are equal to the given smoothing over A. By definition this is π0 of the space
˜
S
t/d
B,A(M0) of

all tangential smoothings of M0:

(f, V vf, µvt) : (M0, T
vM0, λ0) → (M1, T

vM1, λ1)

which are trivial over A. This lies in the null component of
˜
S
t/d
B,A(M0) if and only if f : M0 →

M1 is isotopic to a fiberwise diffeomorphism and µvt is isotopic to a family of smooth fiberwise
linearizations of M0.

When we stabilize M0 will contain a core K0 which is M0 minus an internal fiberwise collar and
a spine J0 which is a high codimensional submanifold of K0. Thus K0 will be a smooth manifold
bundle diffeomorphic to M0 and both K0 and J0 will be fiberwise deformation retracts of M0.

It will follow from standard immersion theory that (f, V vf) is isotopic to a smooth embedding on
the core K0 in such a way that µvt becomes isotopic to a smooth linearization over the core. What
will remain is the question of smoothability of the internal collar. The extension of the smooth
linearization is automatic by the linearization extension lemma A.3.3. So we have a classical
smoothing problem whose obstruction space is well known to be a homology theory.

A.5.1. Smoothing of disk bundles. We will go over the simplest example: disk bundles.

i. the problem We are given two smooth bundles M0,M1 over B with fiber Dn, a smooth n-
dimensional disk, which are fiberwise diffeomorphic over a submanifold A of B and a fiberwise
tangential homeomorphism

(f, V vf, µvt) : (M0, T
vM0, λ0) → (M1, T

vM1, λ1)

which agree with the given diffeomorphism over A. We want to find an isotopy of f rel A to a
diffeomorphism over B in a way compatible with the tangential data given by V vf, µvt .

ii. spines and cores
The first step is to choose a spine. The spine of a disk is any interior point and the spine of a

disk bundle is any section which lies in the interior. Let s0, s1 be smooth sections of M0,M1 with
images J0, J1 in the fiberwise interiors so that s1 = f ◦ s0 over A. We will choose a small standard
disk bundle neighborhood K0 of the image J0 of s0.

Next, we deform f : M0 → M1 so that it takes J0 to J1. Since the fibers are contractible, the
sections s1 and f ◦ s0 of M1 are homotopic rel A. We can use the topological ambiant isotopy
theorem to extend this to an isotopy of f rel A to a homeomorphism taking J0 to J1. (However,
this example of the ambiant isotopy theorem is an easy exercise.)

Lemma A.5.1. Any topological isotopy of f rel A can be extended to V vf and µvt to give an isotopy
of the tangential homeomorphism (f, V vf, µvt).
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Proof. Consider the tangential homeomorphism as a 1-parameter family of linearized manifolds
(Mt, V Mt, µt) together with a family of homeomorphisms ft : M0 → Mt which is the identity on
B × 0 ∪A× I. To prove the lemma we take the same family of linearized manifold bundles with a
new family of homeomorphisms. �

iii. extending the smooth structure to the core
Let (Mt, V

vMt, µ
v

t , Jt) be the 1-parameter family of linearized manifolds over B with a given
choice of spine which is smooth over B × 0 ∪A× I ∪B × 1.

Let Vt = V vMt|Jt, Et = EvMt|Jt considered as bundles over B and let µt : Vt → Et the mi-
crobundle isomorphism given by the restriction of µt : V vMt → EvMt to Jt. Then Vt will be a
vector bundle over B and Et will be a Euclidean bundle over B which is fiberwise homeomorphic
to a neighborhood of Jt. Since continuous isomorphisms of smooth vector bundles are isotopic to
smooth vector bundle isomorphisms, we can choose a family of vector bundle isomorphisms V0 ∼= Vt
which is the identity for t = 0 and smooth for t = 1 and we can do this relative to A. This gives
a smooth structure on Vt for all t which agrees with the smooth structure over A and over the
endpoints.

Using the microbundle isomorphism µt : Vt → Et we get a family of smoothings for a neigh-
borhood of Jt in Mt which is compatible with V vMt over Jt. By definition, µt will be a smooth
linearization of Et. By the linearization extension lemma A.3.3, we can extend this to a new fiber-
wise linearization of Mt which is smooth in a neighborhood of Jt (and everywhere where it was
already smooth). Furthermore this new linearization will be isotopic to the old one.

iv. smoothing the collar
The situation is the following. We have a 1-parameter family of linearized manifold bundles

(Mt, V
vMt, µ

v

t ) together with a smoothing over the core Kt which is a disk bundle in the interior of
Mt. We also have a smoothing over B×0∪A×I ∪B×1 which is compatible with the linearization.

The key point is that smoothing is excisive (Proposition A.1.3). Therefore, we may remove the
interior of the core Kt. If we stabilize Mt one more, replacing it with Mt× [−1, 1], we will have the
smooth coreKt×[−1, 0] which meets the boundary. Then, after excising the interior of this new core
and rounding off the corners, we getMt×[−1, 1]−intKt×[−1, 0) which is a topological h-cobordism
bundle over B whose fibers are h-cobordisms of Dn and therefore homeomorphic to Dn × I which
have a smooth structure on the base Dn × 0 and sides ∂Dn × I and over B × 0 ∪A× I ∪B × 1.

This can be rephrased as follows. We have a continuous mapping of pairs

(B × I,B × 0 ∪A× I ∪B × 1) → (Cobt(Dn), Cobd(Dn))

where Cobt(M) is the space of topological h-cobordisms W ⊆ R∞ of M which are fixed on the base
M×0 and the boundary, ∂M×I and Cobd(M) is the space of pairs (W,α) whereW ∈ Cobt(M) and
α is a smoothing of W which agrees with a fixed standard smoothing on M × 0 ∪ ∂M × I. These
spaces are topologized as geometric realizations of simplicial subsets of St(n+ 1) and Sd(n + 1).

We use the following facts:

(1) Cobt(Dn) is contractible by the Alexander trick.
(2) Cobd(Dn) is an n-fold loop space since it has an action of the little n-cubes operad.
(3) The smooth structure to be fixed over B × 0.

Therefore, we can trivialize the smooth structure over B × 0 by multiplying by its inverse. The
smooth structure over A×I can also be made trivial in homotopy unique way. The map to Cobh(Dn)
contains no homotopy information. So, we are reduced to a map

B/A→ Cobd(Dn)

where B/A means smashing A to a point.
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Theorem A.5.2. If M0 is a smooth disk bundle over B and A is a submanifold of B then the
space of stable fiberwise tangential smoothings of B rel A is homotopy equivalent to the space of all
pointed maps

B/A→ H(∗)

where
H(∗) := colim Cobd(Dn)

is the stable smooth h-cobordism space of a point. �

v. higher torsion calculation
We use the well-known fact that H(∗) is rationally homotopy equivalent to BO. This was

first shown by Farrell and Hsiang and later Hatcher gave an explicit map G/O → H(∗) and
conjectured that it was nontrivial. This was first proved by Bökstedt and later by Igusa using
higher Reidemeister torsion. See [22] for an elementary explanation of this.

We note that S̃sB,A(B, 0) is the space which classifies stable exotic smooth structures on linear

disk bundles over B which are trivial over A. (B → B is the unique D0 bundle over B with trivial
vertical tangent bundle 0.) The theorem shows that

S̃sB,A(B) ≃Map(B/A,H(∗)).

Corollary A.5.3. π0S̃
s
B,A(B) is an abelian group and we have an isomorphism

τ IK : π0S̃
s
B,A(B)⊗ R ∼=

⊕

k>0

H4k(B,A;R)

given by sending any smooth disk bundle E → B which is linear over A and any tangential home-
omorphism of E to a linear disk bundle to

τ IK(E) =
∑

τ IK2k (E) ∈
⊕

k>0

H4k(B,A;R)

We note that τ IK(E) ignores the tangential data. If we took a different axiomatic higher torsion
theory (such as the nonequivariant higher analytic torsion) we would need to subtract the higher
torsion of the linear bundle for which E is an exotic smooth structure.

A.5.2. immersion theory. We are now looking at a stabilized exotic tangential smoothing (W,V vW )
of the bundle M0 → B which is given by a tangential homeomorphism (f, V vf, µ) between the two
smooth bundles M0,M1 over B. After stabilizing M0 has a high codimensional spine J0 which is
a smooth submanifold bundle of M0 with trivial vertical normal bundle in M0. We also have a
core K0 which is a small tubular neighborhood of J0. We also need to assume that J0 contains a
submanifold bundle P0 so that f is already a smooth embedding in a neighborhood of P0 and W
is smooth in a neighborhood of P0 × I ∪WA where A is a submanifold of B.

By standard immersion theory ([16],[14]), there is a fiberwise immersion g : K0 → M1 over B
which is regularly fiberwise homotopic to (f, V vf) restricted to K0. Since the spine has a high
codimension, we have by transversality that g is an embedding on J0. By replacing the core K0

with a smaller core we may also assume that g is an embedding on K0. We may also assume that
g is equal to f in a neighborhood of P0 and over A.

Immersion theory tells us that that f, g are fiberwise homotopic (fixing a neighborhood of P0) by
a one parameter family of continuous maps ht : K0 →M1 over B rel A and the fiberwise derivative
T vg : T vK0 → T vM1 is homotopic through nonsingular linear maps V vht to the vector bundle map
V vf . Given any ǫ > 0 we can choose the immersion g and the homotopy ht to be within ǫ of f and
that ht = f = g over A and near P0 for all t.

Proposition A.5.4. After stabilization, we can choose (ht, V
vht) so that ht : K0 → M1 is a

fiberwise topological embedding for all t ∈ I.
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Proof. First, we can reduce the structure group of the linear bundle V vW over W to O(n). Then
we get a linear ǫ-disk bundle DvW over W which, as a bundle over B× I, is linearized with vertical
Euclidean bundle isomorphic to V vW ⊕ V vW . This is a stabilization. So, it suffices to prove the
theorem for DvW .

The idea of the proof is the following. The interior of the disk bundle DvW is homeomorphic
to the total space of the vertical tangent Euclidean bundle EvW . So, the corresponding tangential
homeomorphism, when restricted to the core of DvM0, is given by the topological vertical derivative
Evf of f . The topological derivative Evg of g is a smooth embedding. Therefore, it suffices to show
that Evf and Evg are homotopic through fiberwise topological embeddings.

The total space of EvK0 is the set of all pairs (x, y) in the same fiber ofM0 over B so that x ∈ K0

and y ∈ Bv

ǫ(x) where Bv

ǫ(x) is the open ǫ-ball neighborhood of x in the fiber of M0 → B. Inside
of this space we have the following two subspaces where δ << ǫ is the number so that K0 = L2δ

where Lω the open ω-neighborhood of the spine J0:

Uδ = {(x, y) ∈ EvK0 |x ∈ Lδ, d(x, y) < δ}

Uδ/2 = {(x, y) ∈ EvK0 | y ∈ Lδ/2, d(x, y) < δ/2}

Then Uδ/2 ⊆ Uδ. We will show that the restrictions of Evf,Evg to Uδ/2 are isotopic and that the
isotopy agrees with the given homotopy.

The embedding Evf maps (x, y) ∈ Uδ to (f(x), f(y)) ∈ EvM1 by definition. For every fixed
x ∈ Lδ, this mapping sends x×Bδ(x) to f(x)× Evfx(Bδ) by the mapping Evfx (Evf restricted to
the fiber of EvM0 → M0 over x) on the second factor. But the homotopy V vht is an isotopy from
Evf to Evg. Therefore, the embedding Evf is isotopic to the embedding which sends x× Bδ(x) to
f(x)× Evgx(Bδ) by the mapping Evgx on the second factor.

By definition of Evg, this new embedding is

f × g : (x, y) → (f(x), g(y)).

So, Evf |Uδ is isotopic to (f × g)|Uδ . By the same argument, Evg|Uδ/2 is isotopic to (f × g)|Uδ/2.
Since Uδ/2 ⊆ Uδ, we get an isotopy from Evf |Uδ/2 to Evg|Uδ/2. And this isotopy will be fixed near
P0 and over A. As was already shown, these are the stabilized versions of f and g on a small
tubular neighborhood of the spine of M0. So, we are done. �

A.5.3. smoothing of the core.

Theorem A.5.5. There is no stable obstruction to finding a smoothing of the core of W . I.e.,
after stabilizing, the one parameter family of linearized topological manifolds bundles (Mt, V

vMt, µ
v

t )
has a smoothing compatible with the linearization in some tubular neighborhood of the spine Jt.
Furthermore, this smoothing will be equal to the given smoothing of W on P0 × I ∪WA if W is
already smooth on this set.

Remark A.5.6. By replacing B with B × I and A with A × I ∪ B × {0, 1}, we conclude that the
smoothing of the core is unique up to homotopy.

Proof. By the proposition above, we may assume that this 1-parameter family of linearized mani-
folds is given by a tangential homotopy equivalence (f, V vf, µvt) whereM0,M1 are smooth manifold
bundles over B which are diffeomorphic over A and f : M0 → M1 is a smooth embedding on the
core K0 and V vf is the vertical derivative of f along K0. Returning to the 1-parameter family
of manifold bundles (Mt, V

vMt), this implies that we have a continuous family of submanifolds
Jt ⊆ Mt which are smooth submanifolds for t = 0, 1 and these submanifolds have tubular neigh-
borhoods which have product structures: Kt

∼= J+
t ×Dn. where J+

t is Jt with an external closed
collar attached.

After stabilization, we may assume that the vector bundle V vMt is trivial: V
vMt

∼= Mt × Rk+n

where k is the dimension of the fiber of Jt → B. The vertical tangent Euclidean bundle will also
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be trivial: EvMt
∼=Mt×Rk+n and the linearization is given by a family of microbundle morphisms

µt : V
vMt → EvMt which is smooth for t = 0, 1 and on the restriction of V vMt to V

vKt. This is
equivalent to a family of mappings

µ̂t :Mt → Homeo(Rk+n)

By the first lemma below, we can assume, after stabilization, that this map has image in the
subgroup of all homeomorphisms of Rk+n having the form g(x, y) = (x, gx(y)), i.e., they are Rk

families of homeomorphisms of Rn.
Along J ′

t the spine with an open external collar, we now have a linearization

µt : V
vMt|J

′
t
∼= J ′

t × Rk+n → EvMt|J
′
t
∼= J ′

t × Rk+n

which commutes with the projection to J ′
t × Rk. Now restrict this to the fiber over J ′

t × 0. This
gives a family of linearizations

η : J ′
t × Rn → J ′

t × Rn

This is a map from a smooth linear bundle to a Euclidean bundle which, by the topological expo-
nential map is homeomorphic to a neighborhood of Jt in Mt. We can use this map to change the
smooth structure in this neighborhood so that η is a smooth map. By the second lemma below, we
can deform the original linearization to a linearization which is smooth in a neighborhood of the
spine. This will contain a somewhat smaller core but it is enough to prove the theorem. �

It remains to prove the two lemmas used in the theorem.

Lemma A.5.7. The image of the stabilization map σ : Homeo(Rk+n) → Homeo(Rk+n+k) given
by σ(f)(x, y, z) = (f(x, y), z) can be deformed into the subgroup of all homeomorphisms of Rk+n+k

having the form g(x, y, z) = (x, gx(y, z))). Furthermore this deformation will always send smooth
maps to smooth maps.

Proof. The deformation is given by rotation. Let ρθ be the linear and thus smooth automorphism
of Rk+n+k given by the matrix

ρθ =



cos θIk 0 − sin θIk

0 In 0
sin θIk 0 cos θIk




Then, ρθ ◦ σ(f) ◦ ρ−θ, 0 ≤ θ ≤ π/2 is the desired deformation. �

Lemma A.5.8. Let G be the subgroup of Homeo(Rk+n) consisting of homeomorphisms g having
the form g(x, y) = (x, gx(y)) and so that g0 is a smooth diffeomorphism. Let G0 be the subgroup
consisting of diffeomorphisms of Rk+n which lie in G. Then G0 is a deformation retract of G.

Proof. This is given by the Alexander trick:

gt(x, y) = (x, gtx(y))

for 0 ≤ t ≤ 1. If g is smooth then so is gt. �

A.5.4. ignoring the boundary. We are now ready to prove Proposition A.4.5 which says that, after
stabilization, smoothings which are fixed on the vertical boundary and those which are not form
homotopy equivalent spaces. The reason is that, after rounding corners, the core is diffeomorphic
to the union of the core with the stabilized vertical boundary. So, after smoothing the core we
cannot distinguish between the two spaces.

First, we use the “flat on one side” observation (subsubsection A.4.3) to stabilize and have a
flat side ∂0W ⊆ W which is tangentially homeomorphic to D(M) × 0 ⊆ D(M) × I where D(M)
is a linear disk bundle over M . On the flat side we can make f smooth on the core K0 × 0 using
the theorem above. (Equivalently, we can smooth the core of D(M) and then stabilize to get a
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smoothing of K0 × I and then forget the smoothing on all but K0 × 0. However, uniqueness up to
homotopy of this second method is not as easy to see.)

By construction of the core K0, the complement of K0 in D(M) is a product of ∂vD(M) with an
interval. Therefore, the pair (D(M)× I,K0) is, after rounding corners, diffeomorphic to (D(M)×
I,D(M)×0) and (W,K0) is a tangential smoothing of that pair. If we apply the same construction
to a tangential smoothing of D(M)×I which is fixed on D(∂vM)×I, we make the homeomorphism
f smooth on D(∂vM) × I ∪ K0 × 0 where K0 is a neighborhood of the spine J0 ∼= M which
is the zero section of the disk bundle D(M). But D(∂vM) × I is a disk bundle over ∂vM × I
which is an external collar for M and K0 is a disk bundle over M of the same dimension. So,
together they form a disk bundle over M with an external collar (after rounding corners). Thus
there is a diffeomorphism of D(M) × I with corners rounded which takes D(∂vM) × I ∪ K0 × I
to D(M) × 0, making the two stabilized tangential homeomorphisms equivalent. This proves the
following extension of Proposition A.4.5.

Theorem A.5.9. After stabilization we get homotopy equivalences:

lim
→

˜
S
t/d
B,∂0B

(D(M),D(∂vM)) ≃ lim
→

˜
S
t/d
B,∂0B

(D(M)) ≃ lim
→

S
t/d
B,∂0B

(D(M) × I,D(M) × 0)

where all three limits are with respect to all linear disk bundles D(M) over M and D(∂vM) is the
restriction of D(M) to ∂vM .

We removed the tilde from the last version of stabilization since, by the linearization extension
lemma A.3.3, the linearization of a smoothing of (D(M)×I,D(M)×0) is unique up to contractible
choice.

A.5.5. little cubes operad. Using the third form of stabilization given in the theorem above, we can

see the infinite loop space structure on the stabilized smoothing space S̃sB,∂0B(M). Recall that the

space Ck(n) of k little n cubes in In is given by k disjoint embeddings yi : I
n → In which are given

by affine linear maps yi(x) = aix+ bi where ai are positive real numbers and bi ∈ In.

α : Ck(n)× S
t/d
B,∂0B

(D(M)× In+1,D(M)× In)k → S
t/d
B,∂0B

(D(M)× In+1,D(M)× In)

α(y;W1, · · · ,Wk) = D(M)× In+1 ∪y
∐

Wi

where the base of each Wi is attached to the top of D(M)× In+1 using the map

1D(M) × yi : ∂0Wi = D(M)× In × 0 → D(M)× In × 1

and the resulting corners are rounded.
There is an easier way to describe the addition operation in the case when the supports of the

exotic smooth structures are disjoint. An element of
˜
S
t/d
B,∂0B

(M,C) is said to have support in the

closure of the complement of C in M .

Proposition A.5.10. The addition operation on the stable smoothing space S̃sB,∂0B(M) given by
the little cubes operad action described above is given unstably on smooth structures on M with
disjoint supports Si ⊆M −∂vM by W =

∑
Wi which is equal to M in the complement of

∐
Si and

equal to Wi on Si.

We will only apply this proposition to the group structure on π0S̃
s
B,∂0B

(M).
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Proof. We will prove that the following diagram commutes up to homotopy for any y ∈ Ck(n)
where Ci is the closure of the complement of Si in M .

∏ ˜
S
t/d
B,∂0B

(M,Ci)

��

Σ // ˜
S
t/d
B,∂0B

(M,
⋂
Ci)

��∏
S̃sB,∂0B(M)

α(y;−) // S̃sB,∂0B(M)

Note that, except for Σ, these maps are only defined up to homotopy.
Suppose that (Mi) is an element of the upper left corner. Thus Mi is a tangential smoothing

of M over (B, ∂0B) with support in Si. If we stabilize by taking a product with a disk, we get
Mi×DN × I which is a smooth structure on M ×DN × I with support in Si×DN × I. Using the
smoothing of the core on one flat side argument explained in great depth in this section, we make
the tangential homeomorphism smooth on the core which equivalent to Si×D

N×0. By conjugating
by a smooth isotopy (after rounding corners) we can make the tangential homeomorphism smooth
on Si × (DN × 0 ∪ ∂DN × I). Call this new bundle Wi with base ∂0Wi

∼= M × DN × 0. At this
point we can use the uniqueness of linearization lemma to ignore the linearization. This brings us
to the lower left corner of the diagram.

The little cubes operation now produces the smooth bundle

M ×DN × I ∪y
∐

Wi

SinceWi has bottom and sides equal toM×(DN ×0∪∂DN ×I), we can lower Wi into M×DN ×I
to make

M ×DN × I −
∐

M × yi(D
N )× I ∪

∐
Wi

This is a family of smooth bundles giving a homotopy of the mapping from the upper left to the
lower right of our diagram. Since this new smooth structure on M ×DN × I has support in the
union of Si × yi(D

N ) × I and the Si are disjoint, we can expand the embeddings yi : D
N → DN

until they are the identity and obtain an isotopy of the structure. The result is a smooth structure
on M ×DN × I given by Wi on Si ×DN × I which is a description of the stabilization of

∑
Mi.

So, we have shown that the diagram commutes up to homotopy. �

A.5.6. Morlet’s Theorem. Since D(M) can be chosen to have a trivial tangent bundle and can be
stabilized by taking a limit with respect to all trivial disk bundles, we can now use the following
theorem of Burghelea and Lashof which follows from Morlet’s comparison theorem. (See [7], [8,
Thm H].)

Theorem A.5.11. Let X be a compact smooth manifold with trivial tangent bundle. Then the space
of stable smooth structures on X × I equal to the standard smooth structure on X × 0 ∪ ∂X × I is
a homology theory in X.

Let H%(X) denote this homology theory of X. This the homology theory associated to the
spectrum of H(∗):

H%(X) = Ω∞(X+ ∧H(∗)).

(See the section on homotopy theory below.) Then the theorem above together with the smoothing
of the core theorem gives the following.

Corollary A.5.12.

S̃sDk,Sk−1(X ×Dk) ≃ ΩkH%(X)

We can extend this calculation to the general case using the following lemma.
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Lemma A.5.13 (fibration lemma). We have a fibration sequence:

S̃sB,∂0(M) → S̃sB(M) → S̃s∂0B(M)

Proof. If we choose a collar neighborhood C of ∂0B in B and a topological product structureMC
∼=

M∂0B × I we can easily extend deformations of smooth structures of M over ∂0B to deformations
(with support in MC) of the smooth structure of M . �

From the basic case given in Corollary A.5.12 and the fibration lemma we can conclude the
general case:

Theorem A.5.14 (main smoothing theorem). Let W → B be a compact smooth manifold bundle.
Then

S̃sB,∂0(W ) ≃ ΓB,∂0H
%
B (W )

where H%
B (W ) is the fiberwise H% homology bundle of W over B, i.e. the bundle whose fiber over

b ∈ B is H%(Wb) where Wb = p−1(b).

Remark A.5.15. Since the fibers of H%
B (W ) → B are infinite loop spaces and H(∗) has finite type

[10], this implies that π0S̃
s
B,∂0

(W ) is a finitely generated abelian group.

Proof. Choose a smooth triangulation of B so that ∂0B and ∂1B are subcomplexes. Let A be a
subcomplex of B containing the k − 1 skeleton and let σ be a k simplex of B. Then we have a
mapping between two fibration sequences:

S̃sσ,∂σ(Wσ)

α

��

// S̃sA∪σ(WA∪σ)

β

��

// S̃sA(WA)

γ

��

Γσ,∂σH
%
σ (Wσ) // ΓA∪σH

%
B(W ) // ΓAH

%
B(W )

We use the excisiveness of smoothing to identify S̃sA∪σ,A(WA∪σ) = S̃sσ,∂σ(Wσ). Since σ is con-
tractible, Wσ is a product bundle Wσ

∼= σ ×Wb. So, α is a homotopy equivalence by Corollary
A.5.12. If γ is a homotopy equivalence then β will be a homotopy equivalence. Therefore, by

induction S̃sB(W ) ≃ ΓBH
%
B(W ). Another map of fibration sequences proves the relative version

stated in the theorem. �

A.5.7. Stratified smoothing theorem. We will use the following trivial observation to extend the
main smoothing theorem to the “stratified” case.

Lemma A.5.16 (additivity of smoothing). Suppose that Ei are disjoint smooth bundles over B.
Then

˜
S
t/d
B,∂0

(
∐
Ei,

∐
∂vEi) =

∏ ˜
S
t/d
B,∂0

(Ei, ∂
vEi)

The basic case of the stratified smoothing theorem is the following. Suppose thatM is a smooth
bundle over B and E is a codimension 0 subbundle of M which is a disjoint union of bundles:
E =

∐
Ei. Then clearly,

˜
S
t/d
B,∂0

(E, ∂vE) ∼=
˜
S
t/d
B,∂0

(M,C) ⊆
˜
S
t/d
B,∂0

(M,∂vM)

where C is the closure of the complement of E in M .
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Lemma A.5.17. After stabilization we get homotopy equivalences γE, γM compatible with inclusion
in the sense that the following diagram commutes.

S̃sB,∂0(E)

⊆

��

γE

≃
// ΓB,∂0H

%
B (E)

⊆

��

S̃sB,∂0(M)
γM

≃
// ΓB,∂0H

%
B (M)

Suppose that W is a smooth bundle over B and we have a smooth triangulation of B so that
∂0B is a subcomplex. Over each simplex σ of B, suppose we have a smooth codimension-0 compact
manifold subbundle Eσ ⊆ Wσ. Since σ is contractible, Eσ ∼= F × σ for some compact manifold F .
Suppose that Eτ ⊆ Eσ for all τ ⊆ σ. Suppose also that Eσ is empty for all σ ⊆ ∂0B. For example,
we could let Eτ = ∅ if σ ⊆ ∂0B and Eσ = Wσ otherwise. We let E ⊆ W be the union over all
simplices σ of the restriction of Eσ to the interior of σ. We say that E is a stratified bundle over B
since the restriction of E to each open simplex is a (trivial) bundle. More precisely, E is a stratified
subbundle of W .

Let S̃sB(E) be the subspace of S̃sB,∂0(W ) of all tangential stable smoothings of W which have
support in the interior of Eσ over the interior of each σ for every simplex σ. Thus, we consider
smoothings of E which are fixed on the vertical boundary ∂vE of E.

Let H%
B(E) denote the stratified subbundle of H%

B (W ) which is equal to H%
σ (Eσ) over the interior

of σ for every simplex σ.

Theorem A.5.18 (stratified smoothing theorem).

S̃sB(E) ≃ ΓBH
%
B (E).

Proof. The argument is the same as in the main smoothing theorem, but it is short and worth
repeating. Let A be a subcomplex of B containing the k − 1 skeleton and let σ be a k-simplex.
Then we have a mapping of fiber sequences:

S̃sσ,∂σ(Eσ)

α

��

// S̃sA∪σ(EA∪σ)

β

��

// S̃sA(EA)

γ

��

Γσ,∂σH
%
σ (Eσ)

// ΓA∪σH
%
B (E) // ΓAH

%
B (E)

α is a homotopy equivalence by the theorem and γ is a homotopy equivalence by induction on the
size of A. So β is a homotopy equivalence and the theorem follows. �

We are interested in the following special case. Suppose that L is a compact smooth q-manifold
(q = dimB) with ∂L = ∂0L ∪ ∂1L where ∂0L, ∂1L meet along a corner set ∂∂L. Suppose that
λ : L → B is a smooth immersion so that λ−1(∂1B) = ∂1L and λ(∂0L) meets ∂B transversely
along λ(∂∂L). (See Figure 4.) Assume that the immersion λ is self-transverse, so that there exists
a smooth triangulation of B for which the number of inverse image points in L is constant on each
open simplex.

Let π : E → L be a compact manifold bundle with the same dimension as W and let λ̃ : E → W
be a smooth codimension 0 embedding over λ : L → B. It follows then that λ̃−1(W∂1B) = E∂1L.
Also, the image in W of the complement of E∂0L in E is a stratified subbundle of W over B. Call
this image Eδ. A fiberwise smooth structure for E over L which is equal to the given smooth
structure over ∂0L is equivalent to a fiberwise smooth structure on W with support in Eδ:

S̃sL,∂0(E) ∼= S̃sB(E
δ) ⊆ S̃sB,∂0(W )
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∂1B
λ(L)

Figure 4. In this example, L is a square and λ : L→ B maps ∂1L = two opposite
sides into ∂1B. The diamond shaped region is covered twice by λ(L).

This implies that

ΓL,∂0H
%
L (E) ≃ ΓBH

%
B (E

δ) ⊆ ΓB,∂0BH
%
B (W )

The statement that we need is the following.

Corollary A.5.19. The following diagram commutes.

S̃sL,∂0L(E)

γE ≃

��

µ

≃
// S̃sB(E

δ)

γ
Eδ ≃

��

⊆ // S̃sB,∂0B(W )

γW ≃

��

ΓL,∂0LH
%
L (E)

µ

≃
// ΓBH

%
B (E

δ)
⊆ // ΓB,∂0BH

%
B (W )

Appendix B. Homotopy theory

In Appendix B we calculate, rationally, π0 of the spaces of sections obtained in Appendix A.
The main results are the following.

• (Corollary B.2.2) Suppose that the base B and fiber X of M → B are oriented manifolds.
Then

π0ΓB,∂0BH
%
B(M)⊗ R ∼=

⊕

k>0

Hq−4k(M,∂1M ;R) ∼=
⊕

k>0

HN+4k(M,∂0M ;R)

where q = dimB,N = dimX and ∂0M,∂1M are the two parts of the boundary of M given
by ∂1M =M∂1B and ∂0M =M∂0B ∪ ∂vM .

• (Corollary B.4.2 and Corollary A.5.19) If λ : (L, ∂1L) → (B, ∂1B) and D(λ̃) : E → W are
as above, we get the following commuting diagram where ∂1E = E∂1B and all vertical maps

are induced by D(λ̃).

π0S̃
s
L,∂0L

(E)⊗ R
∼=
γE

//

��

π0ΓL,∂0LH
%
L (E)⊗ R

��

∼=

θE

//
⊕

k>0Hq−4k(E, ∂1E;R)

��
π0S̃

s
B,∂0B

(W )⊗ R
∼=
γW

// π0ΓB,∂0BH
%
B (W )⊗ R

∼=

θW

//
⊕

k>0Hq−4k(W,∂1W ;R)

The computation of π0ΓB,∂0BH
%
B (M) ⊗ R is an exercise in elementary homotopy theory which

we will now explain. First we need to recall the definition of generalized homology.

B.1. Review of generalized homology. We assume that all our spaces are Hausdorff and
homotopy equivalent to CW-complexes. Suppose that G is a prespectrum, i.e., a collection of
pointed spaces G0, G1, · · · and pointed maps ΣGn → Gn+1 (which is equivalent to a pointed map
Gn → ΩGn+1). Then, for any pointed space X, we get another prespectrum X ∧G with n-th space
X ∧Gn since Σ(X ∧Gn) ∼= X ∧ ΣGn. Two prespectra are considered to be the same if the spaces
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Gn and structure maps ΣGn → Gn+1 agree for sufficiently large n. Therefore, Gn need only be
defined for large n.

If ξ is an m-dimensional vector bundle and ǫk is the trivial k-plane bundle over the same
base space then the Thom space D(ξ ⊕ ǫk)/S(ξ ⊕ ǫk) of ξ ⊕ ǫk is the k-fold suspension of the
Thom space D(ξ)/S(ξ) of ξ. Define a prespectrum T (ξ) starting in degree m so that T (ξ)m+k =
D(ξ ⊕ ǫk)/S(ξ ⊕ ǫk). This is the suspension spectrum of the formally desuspended usual Thom
space:

T (ξ) = Σ−mD(ξ)/S(ξ)

It is well-defined on the stable vector bundle associated to ξ. If ξ is oriented then the Thom
Isomorphism Theorem tells us that the reduced homology of T (ξ) is isomorphic to the homology
of the base space of ξ.

Associated to any prespectrum G we have the space

Ω∞G := colimΩnGn

We will assume that the maps Gn → ΩGn+1 are embeddings. Then Ω∞G is an infinite loop space
since Ω∞G = Ω(Ω∞F ) where Fn = Gn+1 is the delooping of G which we denote F = Ω−1G.

The homology/reduced homology groups of a space X with coefficients in the spectrum associ-
ated to G are defined to be the homotopy groups:

Hn(X;G) := πn(Ω
∞(X+ ∧G)) = colim πn+k(X+ ∧Gk)

Hn(X;G) := πn(Ω
∞(X ∧G)) = colim πn+k(X ∧Gk)

where X+ = X
∐

∗ is X with an added disjoint basepoint. DWW, section 8, explains how any

homotopy functor G gives an “excisive” functor G%(X) ≃ X+∧G(∗) and when G(X) is a spectrum
valued functor, meaning Gn(X) ∼= ΩGn+1(X), they used the notation,

G%(X) := colimΩnG%
n (X) ≃ Ω∞(X+ ∧G(∗))

We will also use the notation

G
%
(X) := Ω∞(X ∧G(∗))

so that G%(X) = G
%
(X+). Then G

%
is a functor that takes cofibration sequences to fibration

sequences and homotopy push-out squares to homotopy pull-back squares. In particular:

(B.1) G
%
(X ∨ Y ) ≃ G

%
(X) ×G

%
(Y )

ΩG
%
(X) ≃ G

%
(ΣX)

G%(D(ξ)/S(ξ)) ≃ Ωdim ξG%(T (ξ)).

B.2. Fiberwise homology. Suppose that X → E
p
−→ B is a fiber bundle where B is a compact

oriented smooth q-manifold. Then let G%
B (E) be the bundle over B with fiber G%(X). Since the

fibers are pointed, this bundle has a trivial section.
If A ⊆ B is a cofibration let ΓB,AG

%
B (E) be the space of sections of G%

B (E) which are trivial on
A. This is an infinite loop space since

ΓB,AG
%
B(E) ∼= ΩkΓB,A(Ω

−kG)%B (E)

where Ω−kG = {Gk+n}. In particular, π0ΓB,AG
%
B(E) is an abelian group.
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B.2.1. Theorem and corollary. Suppose that ∂B is a union of two q − 1 dimensional submanifolds
∂0B, ∂1B which meet along their common boundary ∂∂0B = ∂∂1B. For any A ⊆ B we use the
notation EA = p−1(A). Then

Theorem B.2.1 (basic homotopy calculation). There is a natural homotopy equivalence

ΓB,∂0BG
%
B (E) ≃ ΩqG

%
(T (ξ)/T (ξ1))

where T (ξ) is the Thom space of the pull-back ξ of the stable normal bundle of B to E and T (ξ1) ⊆
T (ξ) is the subspace given by restricting ξ to E∂1B.

The proof of this fact is very similar to the proof of Poincaré duality and is explained below.
Here is the example that we have in mind.

Corollary B.2.2. Let H(X) be the space of stable h-cobordisms of X. Then

π0ΓB,∂0BH
%
B(E)⊗ R ∼=

⊕

k>0

Hq−4k(E,E∂1B ;R)

where q = dimB.

Proof. By the theorem we have

π0ΓB,∂0BH
%
B(E) ∼= Hq(T (ξ)/T (ξ1);H(∗)).

But we have a rational equivalence of infinite loop spaces

H(∗) ≃Q G/O ≃Q

∏

k>0

K(Z, 4k).

So, rationally we have:

Hq(T (ξ)/T (ξ1);H(∗)) ∼=Q

⊕

k>0

Hq−4k(T (ξ)/T (ξ1)) ∼=Q

⊕

k>0

Hq−4k(E,E∂1B)

using the Thom isomorphism theorem at the last step. Extend scalars to R to get the result. �

B.2.2. definition of θ,Θ. To make a specific choice for the isomorphism in Corollary B.2.2 we need
a specific rational homotopy equivalence

H(∗) ≃Q

∏

k>0

K(Z, 4k)

This is equivalent to choosing a fixed rational cohomology class in
∏
k>0H

4k(H(∗);Q). We take
this to be the higher IK-torsion invariant which is a real cohomology class

τ IK ∈
∏

k>0

H4k(H(∗);R)

which comes from an element of
∏
k>0H

4k(H(∗); ζ(2k + 1)Q) by [22].
With this choice we get a natural isomorphism

θE : π0ΓB,∂0BH
%
B (E)⊗ R

∼=
−→

⊕

k>0

Hq−4k(E,E∂1B;R)

Combining this with the homotopy equivalence S̃sB,∂0(E) ≃ ΓB,∂0BH
%
B (E) given by Theorem

(A.5.14) we obtain a natural isomorphism

ΘE : π0S̃
s
B,∂0(E)⊗ R ∼=

⊕

k>0

Hq−4k(E,E∂1B ;R).
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Proposition B.2.3. In the case when E → B is a linear disk bundle, the composition

π0S̃
s
B,∂0(E)

Θ
−→

⊕

k>0

Hq−4k(E,E∂1B ;R) ∼=
⊕

k>0

Hq−4k(B, ∂1B;R) ∼=
⊕

k>0

H4k(B, ∂0B;R)

is equal to the higher IK-torsion invariant:

ΘE(E
′) = τ IK(E′, E) = τ IK(E′) ∈

⊕

k>0

H4k(B, ∂0B;R)

Proof. This follows from the definition of ΘE and the fact that τ IK(E) = 0 for linear disk bundles
making τ IK(E′, E) = τ IK(E′)− τ IK(E) = τ IK(E′). �

B.3. Proof of the theorem. We prove Theorem B.2.1 first in the special case whenB is a compact
q-manifold embedded in Dq and ∂0B is empty (so ∂1B = ∂B). In that case the normal bundle of
B is trivial, so T (ξ) = E+ and T (ξ)/T (ξ1) = E/E∂B . Let

ϕB : ΓBG
%
B (E) → ΩqG

%
(E/E∂B)

be the map given as follows. Take the inclusion of E into the trivial bundle B × E via the map
(p, idE) : E → B × E. This induces a map

ψB : ΓBG
%
B(E) → ΓBG

%
B (B × E) =Map(B,G%(E)).

For any γ ∈ ΓBG
%
B (E) the mapping ψB(γ) : B → G%(E) sends ∂B into G%(E∂B). So, it induces

a mapping

ϕB(γ) : D
q/Sq−1 → Dq/(Dq − intB) = B/∂B

ψB(γ)
−−−−→ G

%
(E/E∂B)

representing an element of ΩnG
%
(E/E∂B). In the relative case, ψ(B,∂0B)(γ) sends ∂1B intoG%(E∂1B)

and ∂0B into ∗ = G%(∅) ⊂ G%(E∂1B). So ψ(B,∂0B)(γ) induces a mapping

ϕ(B,∂0B)(γ) : D
q/Sq−1 → B/∂B → G

%
(E/E∂1B)

giving an element of ΩqG
%
(E/E∂1B).

Lemma B.3.1. Suppose that B is a compact q-manifold embedded in Dq. Then the mapping

ϕB : ΓBG
%
B (E) → ΩqG

%
(E/E∂B)

described above is a homotopy equivalence.

Suppose for a moment that this is true.

Proof of Theorem B.2.1. Consider the next case when B is a compact q-manifold embedded in the
interior of Dq and ∂B = ∂0B∪∂1B. Let C ∼= ∂0B×I be an external collar neighborhood for ∂0B in
Dq so that J = B∪C ≃ B and B∩C = ∂0B. Then the bundle E over B extends a bundle EJ → J
which is unique up to isomorphism and the mappings ϕJ , ϕC , ϕ(B,∂0B) are compatible making the
following diagram commute.

ΓB,∂0BG
%
B(E)

ϕ(B,∂B)

��

// ΓJG
%
J (EJ)

ϕJ

��

// ΓCG
%
C (EC)

ϕC

��

ΩqG
%
(E/E∂1B)

// ΩqG
%
(EJ/E∂J )

// ΩqG
%
(EC/E∂C)

The top row is a fibration sequence since ΓB,∂0BG
%
B(E) = ΓJ,CG

%
J (EJ) and the bottom row is a

fibration sequence since

E/E∂1B → EJ/E∂J → EC/E∂C
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is a cofibration sequence. Since ϕJ , ϕC are homotopy equivalences by the lemma above, the induced
map ϕ(B,∂0B) is also a homotopy equivalence and T (ξ)/T (ξ1) = E/E∂1B , so the theorem holds in
this case.

In the general case we choose an embedding Bq →֒ Dq+n and let ν be the n-dimensional normal
bundle of B. Let ξ be the pull back of ν to E and let D(ν), S(ν),D(ξ), S(ξ) be the corresponding
disk and sphere bundles. Then D(ξ), S(ξ) are the pull-backs of D(ν), S(ν) to E and therefore,
D(ξ) → D(ν) is a fibration with fiber X and S(ξ) = D(ξ)S(ν). Since D(ν) is an q + n manifold

in Dq+n, (B, ∂0B) ≃ (D(ν),D(ν)∂0B) and the closure of the complement of ∂0D(ν) = D(ν)∂0B in
∂D(ν) is ∂1D(ν) = S(ν) ∪D(ν)∂1B, we have:

ΓB,∂0BG
%
B(E)

≃

��

≃ // ΩnG
%
(T (ξ)/T (ξ1))

ΓD(ν),D(ν)∂0B
G%
D(ν)(D(ξ))

ϕ // Ωq+nG
%
(D(ξ)/D(ξ)∂1D(ν))

≃

OO

where ϕ = ϕ(D(ν),D(ν)∂0B) is a homotopy equivalence by the first part of the proof. �

Proof of Lemma B.3.1. Suppose first that B = Dq. Then

ΓBG
%
B(E) ∼=Map(Dq, G%(X)) ≃ G%(X) ≃ ΩqG

%
(Σq(X+)) ∼= ΩqG

%
(E/E∂B)

and this homotopy equivalence is given by ϕB .
In general we can choose a finite covering of B by closed q-disks Ai which is a “good covering”

in the sense that the intersection of any finite number of Ai is either empty or homeomorphic to an
q-disk. Let C = A1 ∪ · · · ∪Ak−1 and B = C ∪Ak. By induction on k we know that ϕC , ϕC∩Ak

and
ϕAk

are homotopy equivalences. Now look at the commuting cubical diagram given by mapping
each object of the left hand square to the corresponding object of the right hand square in the
following diagrams.

ΓBG
%
B(E) //

��

ΓAk
G%
Ak

(EAk
)

��

ΩqG
%
(E|B) //

��

ΩqG
%
(E|Ak)

��

ΓCG
%
C (EC)

// ΓAk∩CG
%
Ak∩C

(EAk∩C) ΩqG
%
(E|C) // ΩqG

%
(E|Ak ∩C)

Here E|C = EC/E∂C ∼= E/EB−intC and similarly for C replaced with B,Ak, Ak ∩ C. Since the

functors X 7→ ΓXG
%
X(EX) and ΩnG

%
send cofiber squares to fiber squares, both squares are fiber

squares. This implies that ϕB : ΓBG
%
B (E) → ΩqG

%
(E|B) is a homotopy equivalence as claimed. �

B.4. Stratified bundles. We recall the setup used in the stratified smoothing subsection A.5.7.
We have a codimension 0 immersion λ : (L, ∂1L) → (B, ∂1B) covered by an embedding of smooth

bundles λ̃ : E → W of the same dimension. By the Corollary A.5.19 of the stratified smooth-
ing Theorem A.5.18 we have the following commuting diagram where the maps µ are homotopy
equivalences.

S̃sL,∂0L(E)

γE

��

µ

≃
// S̃sB(E

δ)

γ
Eδ

��

⊆ // S̃sB,∂0B(W )

γW

��

ΓL,∂0LH
%
L (E)

µ

≃
// ΓBH

%
B (E

δ)
⊆ // ΓB,∂0BH

%
B (W )

We need to prove that our calculation of the bottom three terms is compatible with the two
arrows.
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Theorem B.4.1 (stratified homotopy calculation). The following diagram commutes for any ho-

mology theory G%

ΓL,∂0LG
%
L (E)

ϕL

��

µ

≃
// ΓBG

%
B (E

δ)
⊆ // ΓB,∂0BG

%
B (W )

ϕB

��

ΩqG
%
(T (ξE)/T (ξ∂1E))

λ̃∗ // ΩqG
%
(T (ξ)/T (ξ∂1W ))

Here ξ = p∗νB is the pull-back of the normal bundle νB of B to W and ξE = λ̃∗ξ. The bottom
arrow is induced by the inclusion T (ξE) →֒ T (ξ) given by λ̃ : E →W . The mapping µ is the natural
homotopy equivalence described below.

Since λ : L→ B is a codimension 0 immersion, the normal bundle of B pulls back to the normal
bundle of L: νL = λ∗νB. Since p ◦ λ̃ = λ ◦ π : E → B, it follows that ξE = λ̃∗ξ ∼= π∗νL. So, both
vertical arrows in the diagram are the homotopy equivalences of the previous theorem.

The mapping µ can be described as follows. For any b ∈ B let x1, · · · , xk be the elements of
L− ∂0L which map to b. Then Eδb =

∐
λ̃(Exi). So

G%(Eδb ) ≃
∏

G%(λ̃Exi)

where the projection map (Eδb )+ → (λ̃Exi)+ is the identity on λ̃Exi and sends the other components

to the disjoint base point. (Then apply G
%
(X+) = G%(X).)

There is a sixth space which can be inserted in the middle of the bottom arrow of the above

diagram: ΩqG
%
(T (ξEδ)/T (ξ∂1Eδ)) where ξEδ is the restriction of the bundle ξ to Eδ and ξ∂1Eδ is

the restriction of ξ to ∂1E
δ = Eδ ∩W∂1B.

The case that interests us is G = H where, using the Thom Isomorphism Theorem we have the
following.

Corollary B.4.2. The following diagram commutes where both horizontal arrows are induced by
the embedding λ̃ : E →W .

π0ΓL,∂0LH
%
L (E)⊗ R

θE
��

λ̃∗ // π0ΓB,∂0BH
%
B(W )⊗ R

θW
��⊕

k>0Hq−4k(E, ∂1E;R)
λ̃∗ //

⊕
k>0Hq−4k(W,∂1W ;R)

Lemma B.4.3. There is a homotopy equivalence µ : ΓL,∂0LG
%
L (E) → ΓBG

%
B(E

δ) which sends γ to

the section µ(γ) which sends b ∈ B to (γ(xi))i ∈
∏
G%(λ̃Exi).

As before the proof relies on the lemma which does the case when Bq is embedded in Dq.

Lemma B.4.4. Suppose that Bq is embedded in the q-disk Dk. Then

ΓBG
%
B(E

δ) ≃ ΓL,∂0LG
%
L (E) ≃ ΩqG

%
(Eδ/Eδ∂B) ≃ ΩqG

%
(E/E∂1L)

Furthermore the mapping ϕB : ΓBG
%
B (E

δ) → ΩqG
%
(Eδ/Eδ∂B) giving this homotopy equivalence is

natural with respect to restriction and inclusion as explained below.
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Naturality with respect to inclusion means that the following diagram commutes assuming that
Eδ∂0B is empty. The vertical maps in the diagram are induced by the inclusion Eδ →֒W .

ΓBG
%
B(E

δ)

��

ϕB // ΩqG
%
(Eδ/Eδ∂B)

��

ΓB,∂0BG
%
B(W )

ϕB,∂0// ΩqG
%
(W/W∂1B)

Naturality with respect to restriction means that the following diagram commutes assuming that
A ⊆ B is a q-submanifold transverse to the image of λ : L→ B.

ΓBG
%
B(E

δ)

��

ϕB // ΩqG
%
(Eδ/Eδ∂B)

��

ΓAG
%
A(E

δ
A)

ϕA // ΩqG
%
(EδA/E

δ
∂A)

The vertical arrow on the left is given by restriction of sections to A and the vertical arrow on the
right is induced by the quotient map Eδ/Eδ∂B → EδA/E

δ
∂A.

Proof. The proof is basically the same as the proof of Lemma B.3.1. First we consider the elemental
case in which B = Dq and L is a disjoint union of disks Li with embeddings λi : Li → B so that
λ−1
i (∂B) = ∂1Li. Let Ei be the image of ELi

. Then each Ei falls into one of three elemental cases:

(0) ∂1Li is empty. Then

ΓBG
%
B (Ei)

∼= ΓLi,∂Li
G%
Li
(E) ∼=Map(Li/∂Li, G

%(E)) ≃ ΩqG%(Ei) = ΩqG
%
(Ei+)

(1) ∂1Li and ∂0Li are q − 1 disks. In this case,

ΓBG
%
B (Ei) ≃ ∗ ≃ ΩqG

%
(Ei/Ei∂1Li

)

(2) ∂1Li = ∂B = Sq−1 and ∂0Li is empty. Then

ΓBG
%
B(Ei)

∼=Map(B,G%(Ei)) ≃ G%(Ei) ≃ ΩqG
%
(Ei/Ei ∂B)

Therefore,

ΓBG
%
B(Ei) ≃ ΩqG

%
(Ei/Ei,∂B)

for each i and we conclude that

ΓBG
%
B(E

δ) ≃
∏

ΓBG
%
B(Ei) ≃

∏
ΩqG

%
(Ei/Ei,∂B) ≃ ΩqG

%
(Eδ/Eδ∂B).

In general we can choose a finite covering of B by closed q-disks Ai which is a “good covering”
in the sense that the intersection of any finite number of Ai is either empty or homeomorphic to
an q-disk and the restriction of E to each of these disks is elemental as described above. It is easy
to do this very explicitly. First subdivide once to make sure the triangulation is sufficiently fine.
Choose any fixed positive ǫ < 1/q + 1. For every simplex σ take the set N(σ) of all points b ∈ B so
that ti ≤ ǫ for every barycentric coordinate ti of b corresponding to a vertex vi not in σ. Then N(σ)
is a polyhedron, being given by linear inequalities of barycentric coordinates and it is the closure
of its interior which contains σ as a deformation retract and is thus contractible. Therefore N(σ)
is a q-disk. Also, it is obvious that N(σ) ∩ N(τ) = N(σ ∩ τ). Also, similar arguments show that
each component of L over N(σ) is a q disk and falls into one of the three cases discussed above. So
Ai = N(σi) form a good covering.

The rest of the proof is almost word-for-word the same as the second half of the proof of Lemma
B.3.1 except that we need E to be replaced with Eδ and we need two more commuting squares
with B replaced by L and C and Ak replaced by their inverse images in L. Then we have four fiber

59



squares in which corresponding terms are homotopy equivalent by induction on k proving the first
part of the lemma.

It remains to show that the mapping

ϕB : ΓBG
%
B(E

δ) → ΩqG
%
(Eδ/Eδ∂B)

which gives the homotopy equivalence is natural with respect to inclusion and restriction. But
this A section γ of G%

B (E
δ) sends a point b ∈ B to γ(b) ∈ G%(Eb) ⊆ G%

B(E
δ). The corresponding

map ϕB(γ) : D
q/Sq−1 → G

%
(E/E∂B) sends b ∈ B ⊆ Dq to γ(b) ∈ G%(Eb) → G

%
(E/E∂B). This

is clearly compatible with inclusion: we simply map these images into larger sets. This is also
compatible with restriction: the points b ∈ A are sent to the same points as before and b /∈ A are
sent to the basepoint by both γ and ϕA(γ). �

Proof of stratified homotopy calculation. In the general case we choose an embedding Bq →֒ Dq+n

and let ν be the n-dimensional normal bundle of B. Let ξ be the pull back of ν to E and let
D(ν), S(ν),D(ξ), S(ξ) be the corresponding disk and sphere bundles. Then D(ξ), S(ξ) are the
pull-backs of D(ν), S(ν) to E and therefore, D(ξ) → D(ν) is a fibration with fiber X and S(ξ) =
D(ξ)S(ν). Since D(ν) is an q+ n manifold in Dq+n, (B, ∂0B) ≃ (D(ν),D(ν)∂0B) and the closure of
the complement of ∂0D(ν) = D(ν)∂0B in ∂D(ν) is ∂1D(ν) = S(ν) ∪D(ν)∂1B , we have:

ΓB,∂0BG
%
B(E)

≃

��

≃ // ΩnG
%
(T (ξ)/T (ξ1))

ΓD(ν),D(ν)∂0B
G%
D(ν)(D(ξ))

ϕ // Ωq+nG
%
(D(ξ)/D(ξ)∂1D(ν))

≃

OO

where ϕ = ϕ(D(ν),D(ν)∂0B) is a homotopy equivalence by the first part of the proof. �
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