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Abstract

Solving a long-standing open question in convex geometry, we will show that typical convex

surfaces contain points of infinite curvature in all tangent directions. To prove this, we use an

easy curvature definition imitating the idea of Alexandrov spaces of bounded curvature, and show

continuity properties for this notion.

Along the way, we show a theorem for the approximation of convex surfaces by smooth surfaces.

The study of smoothness properties of typical convex surfaces was initiated by V. Klee and thoroughly

conducted by P. Gruber and T. Zamfirescu, and we will state some of their results below. For further

information, we refer to [10] or the broader surveys [6] and [4], for example. To say the least, we

know that typical convex surfaces are smooth, and that the curvature, albeit it does not typically exist

everywhere, can take values 0 and ∞ only.

A question that arises naturally: is this result sharp? We will show that indeed, that is true. It is

already known that the curvature typically attains the value 0, but it was still a long-standing open

question whether the value ∞ is typically attained. Our main result in this paper will be:

Theorem 0.1. On typical convex surfaces, there exists at least one umbilical point of infinite curvature.

A sideproduct of our calculations will be a theorem that states that approximation by smooth (C2)

convex surfaces will produce a certain error in terms of the curvature of the smooth surface.

Theorem 0.2. Consider a convex surface S which is the boundary of a polytope in Rd , then there

exist constant c(S) > 0 such that the following inequality holds for all smooth surfaces R:

c(S)

C (R)d
≤ dPH(S,R)

where C (R) is the maximal principal curvature of R.

Note that the converse, that every such compact convex surface (in fact, every convex surface)

is approximable in this order, is easy.

In the first section, we will recall shortly what we mean by ”typical”, namely we will shortly recall the

notion of Baire categories. Also, we will recall the classical definition of curvature, and state some

results in the surroundings of our question.
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The second section will consist of the definition of curvature bounds for convex surfaces, for which

we will state a continuity property, and relate it to the classic notion of curvature.

In section 3 we will further develop a curvature ”indicator” which is continuous and tells us if or if

not the curvature of a convex surface is bounded with respect to aforementioned notion of curvature

bounds, and state an elementary property for certain sets in Euclidean space.

The continuity property is one reason why we use our own curvature definition instead of the compar-

ision of triangles used in the theory of Alexandrov spaces: Alexandrov spaces of curvature bounded

above, for example, do not form a stable class with respect to Gromov-Hausdorff Topology. Section

4 and 5 will then conclude with the proof of the central theorem of this paper.

1 Preliminaries

Baire Categories form an important tool in several areas of mathematics, for example functional

analysis. Their use is based on Baire’s theorem:

Theorem 1.1. (Baire) Let X be a complete metric space. It enjoys the following property:

Any subset Y of X which is of ”first category” in X, i.e. a countable union of nowhere dense sets,

has dense complement in X.

Further, any topological space X which enjoys the property of theorem 1.1 is called a ”Baire space”.

The complement of a set of first Baire category in a Baire space is called ”residual”.

We say that ”typical” elements of a Baire space have property P if those elements not enjoying P

form a set of first category. We will from now on consider the Euclidean space Rd of some dimension

d > 1. It is known that the set B of convex bodies (compact convex subsets of our Euclidean space

with nonempty interior) together with the Pompeiu-Hausdorff Metric dPH forms a Baire space.

Further, it is known that the set of strictly convex bodies B◦ and the set of convex bodies with

smooth boundary lie residually in B. This is important, because obviously:

Lemma 1.2. Let X be any Baire space, and X ′ a residual subset of X. Then X ′ with the induced

topology from X is a Baire space. If X ′′ is any residual set in X ′, it is also a residual subset of X.

Now let us recall what is meant by curvature (see [2]): Take a convex body K with smooth

boundary bd(K), and take a point x in bd(K), ν the inward normal to bd(K) in x and τ some

tangential vector to bd(K) in x . Now let Q be the set of nonnegative linear combinations of the

form x + λν + µτ , and let z 6= x be a random point in bd(K) ∩Q. Define the radius rz of the circle

containing x and z and which has midpoint somewhere in {x + λν|λ ≥ 0}. We define the ”lower”

(resp. ”upper”) ”curvature radius” in direction τ :

ρτi (x) = lim inf
z→x

rz ρτs (x) = lim sup
z→x

rz
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and the ”lower” (resp. ”upper”) ”curvature” in direction τ

κτi (x) =
1

ρτs (x)
κτs (x) =

1

ρτi (x)

If the values coincide, we say the curvature ”exists in direction τ ”, and denote it by κτ (x). We

are interested in the curvature in all directions at once, thus we define the ”lower” (resp. ”upper”)

”curvature”

κi(x) = inf
τ
κτi (x) κs(x) = sup

τ
κτs (x)

and say the curvature exists in x iff κi(x) = κs (x). In classical differential geometry, this curvature

exists at ”umbilical” points only. But for our present purpose, this notion is suitable.

The smoothness properties of convex bodies have been thoroughly studied by Klee, Gruber and Zam-

firescu. An initial theorem was proved by Klee ([5]), and later reproved by Gruber ([3]):

Theorem 1.3. (Klee) Typical convex surfaces (boundaries of convex bodies) are smooth.

Investigating the second-order differential structure of B, it turned out that while on typical con-

vex surfaces exists a.e. (A. D. Alexandrov and Zamfirescu), it does not exist everywhere (Gruber and

Zamfirescu). The following results have been found:

Theorem 1.4. (Zamfirescu, [9]) On typical K, at all points x on the boundary, and in all tangent

directions τ , the lower curvature κτi (x) is zero, or the upper curvature κτs (x) is ∞.

Using a theorem due to Alexandrov, Zamfirescu concluded the remarkable

Corollary 1.5. ([9]) Typical convex surfaces are smooth and, on each of them,

κτ (x) = 0 a.e.

in all tangent directions τ at x .

On the other hand, Gruber found out that

Theorem 1.6. (Gruber, [3]) Typical convex bodies are not C2.

This also follows from corollary 1.5. More precisely, in [10], Zamfirescu states that:

Theorem 1.7. (Zamfirescu) On typical K ∈ B, in typical points x on the boundary in all tangent

directions τ , both the lower curvature κτi (x) is zero and the upper curvature κτs (x) is ∞.

Now it is immediately clear from the above that if the curvature exists somewhere on a typical

convex body, it can only be 0 or∞. While corollary 1.5 asserts that curvature 0 indeed is typical, one
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is bound to ask: What about curvature ∞? Some efforts have been made by Zamfirescu, who was

able to show some indications that indeed,∞ is a typical value for the curvature of the convex body.

First, corollary 1.5 implies the following theorem.

Theorem 1.8. (Zamfirescu, [7]) Typical convex bodies in the Euclidean plane contain uncountably

many boundary points in which the curvature exists and is infinite.

However, for dimensions higher than 2, this theorem is not easily generalized, because the proof

Zamfirescu found did not work in higher dimensions, at least not conclusively. See [7] for a discussion

of these results. For example, because the lower Dupin indicatrix is convex, we can infer the following

theorem from theorem 1.8.

Theorem 1.9. Typical convex bodies in Rd contain uncountably many boundary points in which

the curvature exists and is infinite in all tangent directions except possibly in directions lying in a

d − 2-dimensional subspace of the tangent space.

Thus, Zamfirescu asked, for example in [7]:

Problem 1. Do typical convex bodies in Euclidean space of dimension greater than 2 possess points

of existing and infinite curvature?

2 Curvature and Cones

In absence of smoothness, a cone can be used in an elementary fashion as an estimate the tangential

cone of a surface. Without explaining how to do this, we will continue and use this idea for the issue

of curvature. Alas, cones themselves are not suited for this matter. With a little adjustion, however,

we will easily find more suitable sets for our needs.

Let Sε(x), ε > 0 be the set of all points in our Euclidean space Rd with Euclidean distance ε from

x ∈ Rd . Let τ be unit vector, let µ be the intrinsic metric of Sε(x − ετ) (in the special case of the

unit sphere S1 = S1(0) we will always use the angular metric). Additionally, let δ be some number in

(0, 12).

We define

Sτ (x, ε, δ) = {y ∈ Sε(x − ετ)|µ(x, y) ≤ εδπ}

and

Cτ(x, ε, δ) =
⋃

K∈B, Sτ (x,ε,δ)⊂bd(K)

K.

We call the above set a ”hat”. We say a subset M of Euclidean Space has hat Cτ(x, ε, δ) iff there is

a point x ∈ M and a unit vector τ so that M ⊂ Cτ(x, ε, δ). This provides an incredibly easy way to

estimate large curvature:

Lemma 2.1. Let K ∈ B be a convex body which has hat Cτ(x, ε, δ). Then κi(x) ≥
1
ε
, in other

words: the curvature of the hat is majorized by the curvature of the convex body.
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Note that the values which determine the hats are vital for this discussion. Thus we call x the

”tip”, τ the ”direction”, ε the ”radius” and δ the ”angle” of the hat.

The following theorem will show that the property of having a certain hat shows some continuity

properties.

Theorem 2.2. Suppose K ∈ B has a hat Cτ (x, ε, δ), and let ∆ be some real number smaller than δ.

Then there is an open neighborhood of K in B so that every K′ has hat Cτ ′(x
′, ε+∆, δ −∆), where

∡(τ ′, τ) < ∆ and ||x − x ′|| < ∆. In the latter inequality, || ◦ || denotes the Euclidean norm.

Proof. This theorem was stated in a slightly more special form in [1]. Unfortunately, the form stated

there misses our needs by just an inch. Let φ := ∆ 1−cos∆π3 . We will show that B(K,φ), which denotes

the open ball around K of radius φ, has some of the desired properties.

Let K′ ∈ B(K,φ) be arbitrary, and set x+ = x + ∆τ . Define

α0 := sup{α|K
′ + ατ ⊂ Cτ(x

+,∆+ ε, δ)}

and

x ′ ∈ K′ + α0τ ∩ bd(Cτ(x
+,∆ + ε, δ)).

Let us suppose that

x ′ ∈ bd(Cτ(x
+,∆ + ε, δ)) \ relint(Sτ(x

+,∆ + ε,∆)).

Now obviously α0: x
′ − α0τ ∈ K

′, and this implies

d (x+, Cτ (x, ε, δ) + B(0, φ)) = ∆− φ

which in turn implies

α0 ≥
∆− φ

cos∆π
.

On the other hand, let x ′′ be the point in K′ nearest to x , and let α′ be the smallest real number so

that x ′′ + α′τ lies in bd(Cτ(x
+, ρ+ ε, δ)). Now by definition

α0 ≤ α
′,

but also

α′ ≤ ∆+ φ.

Putting these together we get

∆− ∆ 1−cos∆π3

cos∆π
≤ ∆ + ∆

1− cos∆π

3
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which in turn is equivalent to

(cos∆π)2 − 3 cos∆π + 2 ≤ 0.

But since ∆ < δ < 1
2 , this inequality cannot be right.

Thus x ′ ∈ bd(Cτ(x
+,∆ + ε, δ)) \ relint(Sτ (x

+,∆ + ε,∆)) is wrong, which in turn yields x ′ ∈

relint(Sτ (x
+,∆+ε,∆)). This implies that K′ has hat Cτ ′(x

′−α0τ,∆+ε, δ−∆), where ∡(τ ′, τ) < ∆.

Now since ||x − (x ′ −α0τ)|| < φ+∆(ε+∆)π, proper adjustment of ∆ gives the final inequality.

Note that the formula for φ gives the inequality for theorem 0.2. We will now turn to some fairly

easy lemmas, which we will state without proof.

3 Some lemmas

First, suppose K is some strictly convex body, and τ is some unit vector. Let xτ be the unique point in

which K has inward normal τ , and let ε > 0, δ ∈ (0, 12 ) be some real numbers. Of course, Cτ(xτ , ε, δ)

needn’t be a hat of K, but for some α ≥ 0, K ⊂ Cτ (xτ , ε, δ) − ατ . Let α0 be the smallest such

number. We define a function, the ”curvature indicator”:

K(ε, δ,K, τ) : R>0 × (0,
1

2
)×B◦ × S1(0)→ R≥0

K(ε, δ,K, τ) := α0.

We write Kε,δ(K, τ) instead of K(ε, δ,K, τ) if we want to indicate that ε and δ are constant parameters,

likewise we will write Kε,δ,K(τ), if K is to be constant, too.

Lemma 3.1. The curvature indicator fulfills the following properties:

I K(ε, δ,K, τ) ≥ 0

II K(ε, δ,K, τ) = 0⇔ K has the hat C−τ(xτ , ε, δ)

III Let ε > 0, δ ∈ (0, 12 ) be some real numbers. Kε,δ(K, τ) is continuous as a function from

B◦ × S1(0) to R≥0

We now assert a simple geometrical lemma.

Let εi , δi , i ∈ I be real numbers, agreeing with the definition of hats. Also, for the rest of the section

define x to be some point in Euclidean space, and τ some unit vector.

We set Cτ(x, (εi), (δi))I :=
⋂
i∈I Cτ(x, εi , δi). Now we formulate a simple lemma.

Lemma 3.2. Consider a finite set I of natural numbers (a set of indices). Let (εi),(ε
′
i) be two

sequences of real numbers, monotonically decreasing and greater than 0, which fulfill εi > ε
′
i for all

i ∈ I. Further let (δi),(δ
′
i) be monotonically decreasing sequences in (0, 12) which fulfill δ′i ≥ δi for all

i ∈ I. Then the following hold:
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• i)

Cτ(x, (ε
′
i), (δ

′
i))I ⊂ Cτ (x, (εi), (δi))I.

• ii) Let U be some open neighborhood of x .

bd(Cτ(x, (ε
′
i), (δ

′
i))I) \ U and bd(Cτ(x, (εi), (δi))I) have positive Euclidean distance.

Analogously, bd(Cτ(x, (εi), (δi))I)\U and bd(Cτ(x, (ε
′
i), (δ

′
i))I) have positive Euclidean distance

from each other.

4 Indicators and infinite curvature

We will define in this section the ”indicators” used to verify infinite curvature, and state a lemma that

will imply the main theorem. The proofs are largely postponed to the next section.

Let (an), for the rest of this paper, be an arbitrary strictly monotonic decreasing sequence. For

some set of indices I and some natural number n define I(n) to be the nth element of the canonically

ordered set I. If no such element exists, that is, if I has less than n elements, we set I(n) =∞.

Now, for some convex body K and the sequence (an), we define a special kind of index set, the

”maximal indicator”. As the name suggests, this indicator will give us a reasonable estimate how

large something (here: the curvature) gets. The first element of this index set, IK,(an)(1), will be the

smallest natural number i such that there exist a unit vector τ and a boundary point x of K such that

Cτ(x,
1
i
, ai) forms a hat for K.

Now, suppose we have found out the first m elements of IK,(an). We then define IK,(an)(m+1) as the

smallest natural number j > IK,(an)(m) such that there exist a unit vector τ ′ and a boundary point x ′

of K such that for all i in IK,(an) already found and for j C ′τ (x
′, 1
i
, ai) resp. C ′τ(x

′, 1
j
, aj) is a hat of K.

Note that these hats have their tip and direction in common.

Now, we call the ”order of curvature” to be the cardinality of the set IK,(an). Since (an) is fixed for

our needs, we write this order as a function of K:

K(K) = card(IK,(an)).

Obviously, curvature and order of curvature seldomly coincide. However, the order provides an effec-

tive way to estimate curvature. To show why this is so, consider a strictly convex body K which has

infinite order of curvature:

Since the curvature indicator is continuous (lemma 3.1), the sets K
−1

1
IK,(an)

(m)
,aIK,(an)(m)

,K
(0) are closed

nonempty subsets of the compact unit sphere S1 for every m ∈ IK,(an). By construction, the inter-

section of any finite number of these sets is nonempty.

Heine-Borels classic theorem now implies that any infinite intersection of these sets is nonempty,

in particular, the intersection over all indices in the maximal indicator of K. We have proved the
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following:

Lemma 4.1. Let K be a strictly convex body with smooth boundary. If K(K) =∞, then there exists

a boundary point of K in which the curvature exists in every tangent direction and is infinite.

We conclude this section with an observation. Let us define the following total order:

I ≺ I
′ ⇔ ∃i0 ∈ N∀i < i0, i ∈ N : I(i) = I

′(i) ∧ I(i0) < I
′(i0).

Let further K be strictly convex.

In this order IK,(an) is the smallest index set I for which there is a unit vector τ and a boundary point

x of K such that for all m in I Cτ (x,
1
i
, ai) is a hat for K.

5 Final Steps

Now, the following theorem seems reasonable:

Lemma 5.1. Typical convex bodies K fulfill K(K) =∞

As we have seen above in lemma 4.1, this immediately implies theorem 0.1. However, this lemma

is stronger. Thus, we need to prove lemma 5.1, which in turn needs a lemma.

Lemma 5.2. Let [n] := {1, 2, 3, 4, ..., n} be given, and let (εi), (ε
′
i), (δi), (δ

′
i ), i ∈ [n] be monotonically

decreasing positive sequences, the sequences (εi), (ε
′
i) are to be strictly monotonic. Further, let these

sequences satisfy δ′i < δi <
1
2 and ε′i > εi for all i ∈ [n]. Then the following hold:

• 1. Let K ∈ B be given so that there exist x ∈ bd(K) and a unit vector τ so that for all i ∈ [n]

Cτ(x, εi , δi)

is a hat of K.

Then there exists an open neighborhood of K so that for all K′ in this neighborhood there exist

x ′ ∈ bd(K′) and a unit vector τ ′ so that all

Cτ ′(x
′, ε′i , δ

′
i ), i ∈ [n]

are hats of K.

• 2. Let K ∈ B◦ be a strictly convex body, so that for each unit vector τ and each x ∈ bd(K)

there is an i ∈ [n], so that

Cτ(x, εi , δi)
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is no hat of K. Then there exists an open neighborhood of K such that every K′ fulfills the

above property, that is: for each unit vector τ and each x ∈ bd(K) there is an i ∈ [n], so that

Cτ(x, εi , δi)

is no hat of K.

Proof. Part 1. Let K be as in the description of the lemma. Justified by lemma 3.2, we can find a

φ > 0 so that K + B(0, φ) has Euclidean distance at least φ from

bd(Cτ (x, (ε
′
i), (δ

′
i))[n]) \ bd(Cτ(x, ε

′
n, δ
′
n)).

Now, find a η > 0 with η ≤ min(δn − δ
′
n, ε
′
n − εn) such that for all unit vectors τ ′ with ∡(τ, τ ′) < η

and all points x ′ with ||x − x ′|| < η

(K + B̄(0, φ)) ∩ bd(Cτ ′(x ′, (ε
′
i), (δ

′
i))[n]) \ bd(Cτ ′(x ′, ε′n, δ

′
n)) = ∅.

By theorem 2.2, there is a φ′ > 0 so that all K′ with Pompeiu-Hausdorff distance less than φ to K

have hat Cτ ′(x
′, εn + η, δn − η) where ||x − x ′|| < η and ∡(τ, τ ′) < η. With this choice of τ ′ and x ′,

we assert that not only Cτ ′(x
′, εn + η, δn − η) is a hat, but also

Cτ ′(x
′, ε′n, δ

′
n).

Also, for any K′ ∈ B(K,min(φ, φ′))

K′ ∩ bd(Cτ ′(x ′, (ε
′
i), (δ

′
i))[n]) \ bd(Cτ ′(x ′, ε′n, δ

′
n)) = ∅

holds. But this implies

K′ ⊂ Cτ ′(x
′, (ε′i), (δ

′
i))[n]

and thus for every i ∈ [n], Cτ ′(x
′, ε′i , δ

′
i ) is a hat of K′ ∈ B(K,min(φ, φ′)).

Part 2. Let K be as in the assumptions of the second part of the lemma. This means, by lemma 3.2,

that

min
τ∈S1

∑

i∈[n]

Kεi ,δi (K, τ) > 0.

Continuity of K (lemma 3.2) and compactness of S1 imply that there is a φ > 0 such that for all

strictly convex K′ in the φ-ball around K

min
τ∈S1

∑

i∈[n]

Kεi ,δi (K
′, τ) > 0

which in turn, using lemma 3.2, implies the desired property.
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Proof. Proof of lemma 5.1 We restrict ourselves to strictly convex bodies, as justified by the transitiv-

ity of categories lemma 1.2. Let K be such a strictly convex body with K(K) = m, where m is some

natural number. We will show that an arbitrary open neighborhood of K contains an open subset

where K takes values larger than m. Let τ be a unit vector (and x the corresponding tip) coherent

with the definition of the maximal indicator, that is, they are chosen so that for all i ∈ IK,(an),

Cτ(x,
1

i
, ai)

is a hat on K. Now let B(K,Φ) denote an arbitrary open ball around K.

Using lemma 5.2, Part 2. we find that there is a φ > 0 so that for all K′ in B(K,φ), the following

holds with respect to the order of indices defined above:

IK,(an) � IK′,(an).

Now take θ to be some real number between 0 and min(Φ,φ)
2 , and define xθ := x + τθ and Kθ :=

convK ∪ {xθ}. Obviously, there is a f ∈ (0, 1) so that for all i ∈ IK,(an),

Cτ(x,
f

i
,
ai

f
)

is a hat on Kθ, and let j > IK,(an)(m) be the smallest natural number so that

Cτ(x,
f

j
,
aj

f
)

is a hat on Kθ. Now choose, justified by lemma 5.2, Part 1., a φ′ > 0 so that for all K′ in B(Kθ, φ
′)

there exists a x ′ ∈ bd(K) and a unit vector τ ′ so that all

Cτ ′(x
′, ε′i , δ

′
i ), i ∈ I := IK,(an) ∪ {j}

form hats on K′. Set φ∗ = min(φ, θ). For all K′ ∈ B(Kθ, φ
∗)

IK′,(an) � I

holds because φ∗ ≤ φ. But additionally, for these K′

IK,(an) ⊂ IK′,(an)

because φ∗ ≤ φ. But this implies

IK′,(an)(m + 1) ≤ I(m + 1) = j <∞
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an thus

K(K′) ≥ m + 1.

.

Thus we have proved that for all natural numbers m, the set of those convex bodies with K(K) ≤ m

lies nowhere dense. This in turn proves lemma 5.1.
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