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Power Allocation Games in Wireless Networks of

Multi-antenna Terminals
Elena-Veronica Belmega, Samson Lasaulce, Mérouane Debbah, Marc Jungers, and Julien Dumont

Abstract

We consider wireless networks that can be modeled by multiple access channels in which all the terminals

are equipped with multiple antennas. The propagation modelused to account for the effects of transmit and

receive antenna correlations is the unitary-invariant-unitary model, which is one of the most general models

available in the literature. In this context, we introduce and analyze two resource allocation games. In both

games, the mobile stations selfishly choose their power allocation policies in order to maximize their individual

uplink transmission rates; in particular they can ignore some specified centralized policies. In the first game

considered, the base station implements successive interference cancellation (SIC) and each mobile station

chooses his best space-time power allocation scheme; here,a coordination mechanism is used to indicate to

the users the order in which the receiver applies SIC. In the second framework, the base station is assumed to

implement single-user decoding. For these two games a thorough analysis of the Nash equilibrium is provided:

the existence and uniqueness issues are addressed; the corresponding power allocation policies are determined

by exploiting random matrix theory; the sum-rate efficiencyof the equilibrium is studied analytically in the low

and high signal-to-noise ratio regimes and by simulations in more typical scenarios. Simulations show that, in

particular, the sum-rate efficiency is high for the type of systems investigated and the performance loss due to

the use of the proposed suboptimum coordination mechanism is very small.
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MIMO, MAC, non-cooperative games, Nash equilibrium, powerallocation, price of anarchy, random matrix

theory.
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I. INTRODUCTION

In this paper, we consider the uplink of a decentralized network of several mobile stations (MS) and one base

station (BS). This type of network is commonly referred to asthe decentralized multiple access channel (MAC).

The network is said to be decentralized in the sense that eachuser can freely choose his power allocation (PA)

policy in order to selfishly maximize a certain individual performance criterion, which is called utility or payoff.

This means that, even if the the BS broadcasts some specified policies, every user is free to ignore the policy

intended for him if the latter does not maximize his performance criterion.

To the best of the authors’ knowledge, the problem of decentralized PA in wireless networks has been

properly formalized for the first time in [1], [2]. Interestingly, this problem can be formulated quite naturally

as a non-cooperative game with different performance criteria (utilities) such as the carrier-to-interference ratio

[3], aggregate throughput [4] or energy efficiency [5], [6].In this paper, we assume that the users want to

maximize information-theoretic utilities and more precisely their Shannon transmission rates. Indeed, the point

of view adopted here is close to the one proposed by the authors of [7] for DSL (digital subscriber lines)

systems, which are modeled as a parallel interference channel; [8] for the single input single output (SISO)

and single input multiple output (SIMO) fast fading MACs with global CSIR and global CSIT (Channel State

Information at the Receiver/Transmitters); [9] for MIMO (Multiple Input Multiple Output) MACs with global

CSIR, channel distribution information at the transmitters (global CDIT) and single-user decoding (SUD) at

the receivers; [10], [11] for Gaussian MIMO interference channels with global CSIR and local CSIT and, by

definition of the conventional interference channel [12], SUD at the receivers. Note that reference [13] where

the authors considered Gaussian MIMO MACs with neither CSITnor CDIT differs from our approach and that

of [7], [8], [9], [10], [11] because in [13] the MIMO MAC is seen as a two-player zero-sum game where the

first player is the group of transmitters and the second player is the set of MIMO sub-channels. The closest

works to the work presented here are [9] and [14]. Although this paper is in part based on these works, it still

provides significant contributions w.r.t. to them, as explained below.

In [9], the authors consider MIMO multiple access channels and assume SUD at the BS; the authors formulate

the PA problem into a team game in which each user chooses his PA to maximize the network sum-rate. In

[14], the same type of decentralized networks is consideredbut SIC is assumed at the BS. As each user needs

to know his decoding rank in order to adapt his PA policy to maximize his individual transmission rate, a

coordination mechanism has to be introduced: the coordination signal precisely indicates to all the users the

decoding order used by the receiver. The present paper differs from these two contributions on at least four
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important technical points: (i) when SUD is assumed, the PA game is not formulated as a team game but as

a non-cooperative one; (ii) we exploit several proof techniques that are different from [9]; (iii) while [9] and

[14] assume a Kronecker propagation model withcommonreceive correlation we assume here a more general

model, the unitary-invariant-unitary (UIU) propagation model introduced by [21], for which the users can have

different receive antenna correlation profiles. This is useful in practice since, for instance, it allows one to

study propagation scenarios where some users can be in line of sight with the BS (the receive antenna are

strongly correlated) whereas other users can be surroundedby many obstacles, which can strongly decorrelate

the receive antennas for these users; (iv) while the authorsof [14] restricted their attention to either a purely

spatial PA problem or a purely temporal PA problem, we tacklehere the general space-time PA problem.

In this context, our main objective is to study the equilibrium of two power allocation games associated with

the two types of decoding schemes aforementioned (namely SIC and SUD). The motivation for this is that the

existence of an equilibrium allows network designers to predict, with a certain degree of stability, the effective

operating state(s) of the network. Clearly, in our context,uniqueness is a desirable feature of the equilibrium.

As it will be seen, it is possible to prove the existence in both games under investigation. Uniqueness is

proven in the case of SUD while it is conjectured for the case of SIC. In order to establish the corresponding

results, the paper is structured as follows. After presenting the general system model in Sec. II, we analyze

in detail the space-time PA game when SIC and a correspondingcoordination mechanism are assumed (Sec.

III). For this game, the existence and uniqueness of the NE are proven and the equilibrium is determined by

exploiting random matrix theory when the numbers of antennas are sufficiently large. Its sum-rate efficiency

is also analyzed. In Sec. IV, we analyze the case of SUD since this decoding scheme, although suboptimal in

terms of performance (even in the case of a network with single-antenna terminals), has some features that can

be found desirable in some contexts: the receiver complexity is low, there is no need for a coordination signal,

there is no propagation error since the data flows are decodedin parallel and not successively and also it is

intrinsically fair. To analyze the case of the SUD-based PA game, we will follow the same steps as in Sec. III

and we will see that, the equilibrium analysis can be deduced, to a large extent, from the SIC case. Numerical

results are provided in Sec. V to illustrate our theoreticalanalysis and to better assess the sum-rate efficiency

of the considered games. Sec. VI corresponds to the conclusion.

II. SYSTEM MODEL

We assume a MAC with arbitrary number of users,K ≥ 2. Regarding the original definition of the MAC by

[15] and [16], the system under consideration has two commonfeatures: all transmitters send at once and at
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different rates over the entire bandwidth, and the transmitters are using good codes in the sense of the Shannon

rate. Our system differs from [15][16] in the sense that multiple antennas are considered at the terminal nodes,

channels vary over time and the BS does not dictate the PA policies to the MSs. Also, we assume the existence

of coordination signal which is perfectly known to all the terminals. If the coordination signal is generated by the

BS itself, this induces a certain cost in terms of downlink signaling but the distribution of the coordination signal

can then be optimized. On the other hand, if the coordinationsignal comes from an external source, e.g., an FM

transmitter, the MSs can acquire their coordination signalfor free in terms of downlink signaling. However this

generally involves a certain sub-optimality in terms of uplink rate. In both cases, the coordination signal will be

represented by a random variable denoted byS ∈ S. Since we study theK−user MAC,S = {0, 1, ...,K!} is

aK! + 1-element alphabet. When the realization is in{1, ...,K!} , the BS applies SIC with a certain decoding

order (game 1). WhenS = 0 the BS always applies SUD (game 2), where all users are decoded simultaneously

(no interference cancellation). In a real wireless system the frequency at which the realizations would be drawn

would be roughly proportional to the reciprocal of the channel coherence time (i.e.,1/Tcoh). Note that the

proposed coordination mechanism is suboptimal because it does not depend on the realizations of the channel

matrices. We will see that the corresponding performance loss is in fact very small.

We will further consider that each mobile station is equipped with nt antennas whereas the base station has

nr antennas (thus we assume the same number of transmitting antennas for all the users). In our analysis, the

flat fading channel matrices of the different links vary fromsymbol vector (or space-time codeword) to symbol

vector. We assume that the receiver knows all the channel matrices (CSIR) whereas each transmitter has only

access to the statistics of the different channels (CDIT). The equivalent baseband signal received by the base

station can be written as:

Y (s)(τ) =

K∑

k=1

Hk(τ)X
(s)
k (τ) + Z(s)(τ), (1)

whereX(s)
k (τ) is thent-dimensional column vector of symbols transmitted by userk at timeτ for the realization

s ∈ S of the coordination signal,Hk(τ) ∈ Cnr×nt is the channel matrix (stationary and ergodic process) of

userk andZ(s)(τ) is anr-dimensional complex white Gaussian noise distributed asN (0, σ2Inr
). For the sake

of clarity we will omit the time indexτ from our notations.

In order to take into account the antenna correlation effects at the transmitters and receiver, we will assume

the different channel matrices to be structured according to the unitary-independent-unitary model introduced

in [21]:

∀k ∈ {1, ...,K}, Hk = VkH̃kWk, (2)
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whereVk andWk are deterministic unitary matrices that allow one to take into consideration the correlation

effects at the receiver and transmitter. AlsoH̃k is annr × nt matrix whose entries are zero-mean independent

complex Gaussian random variables with an arbitrary profileof variances, such thatE|H̃k(i, j)|
2 = σk(i,j)

nt
. The

Kronecker propagation model for which the channel transfermatrices factorizes asHk = R
1/2
k Θ̃kT

1/2
k is a

special case of the UIU model where the profile of variances isseparable i.e.,E|H̃k(i, j)|
2 =

d(R)
k (i)d(T)

k (j)
nt

, with

for eachk: Θk is a random matrix with zero-mean i.i.d. entries,Tk is the transmit antenna correlation matrix,

Rk is the receive antenna correlation matrix,{d
(T)
k (j)}j∈{1,...,nt} and {d

(R)
k (i)}i∈{1,...,nr} are their associated

eigenvalues. In this paper we will consider thatVk = V for all users. The reason for assuming this will be made

clearer a little further. In spite of this simplification, wewill still be able to deal with some useful scenarios

where the users see different propagation conditions in terms of receive antenna correlation.

III. SUCCESSIVEINTERFERENCECANCELLATION

When SIC is assumed at the BS, the strategy of userk ∈ {1, 2, ...,K}, consists in choosing the best vector

of precoding matricesQk =
(
Q

(1)
k ,Q

(2)
k , ...,Q

(K!)
k

)
whereQ(s)

k = E

[
X

(s)
k X

(s),H
k

]
, for s ∈ S, in the sense of

his utility function. For clarity sake, we will introduce another notation which will be used in the remaining

of this section to replace the realizations of the coordination signal. We denote byPK the set of all possible

permutations ofK elements, such thatπ ∈ Pk denotes a certain decoding order for theK users andπ(k)

denotes the rank of userk ∈ K andπ−1 ∈ PK denotes the inverse permutation (i.e.π−1(π(k)) = k) such that

π−1(r) denotes the index of the user that is decoded with rankr ∈ K. We denote bypπ ∈ [0, 1] the probability

that the receiver implements the decoding orderπ ∈ PK , which means that
∑

π∈PK

pπ = 1. At last note that there

is a one-to-one mapping between the set of realizations of the coordination signalS and the set of permutations

PK , i.e. ξ : S → Pk such thatξ(·) is a bijective function. This is the reason why the indexs can be replaced

with the indexπ without introducing any ambiguity or loss of generality. The vector of precoding matrices can

be denoted byQ =
(
Q

(π)
k

)
π∈PK

and the utility function can be written as:

uSICk (Qk,Q−k) =
∑

π∈PK

pπR
(π)
k (Q

(π)
k ,Q

(π)
−k) (3)

where

R
(π)
k (Q

(π)
k ,Q

(π)
−k) = E log2

∣∣∣∣∣∣
I+ ρHkQ

(π)
k HH

k + ρ
∑

ℓ∈K(π)
k

HℓQ
(π)
ℓ HH

ℓ

∣∣∣∣∣∣
− E log2

∣∣∣∣∣∣
I+ ρ

∑

ℓ∈K(π)
k

HℓQ
(π)
ℓ HH

ℓ

∣∣∣∣∣∣
(4)
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with ρ = 1
σ2 andK

(π)
k = {ℓ ∈ K|π(ℓ) ≥ π(k)} represents, for a given decoding orderπ, the subset of users

that will be decoded after userk. Also, we use the standard notation−k , which stands for the other players

than k. An important point to mention here is the power constraint under which the utilities are maximized.

Indeed for userk ∈ {1, ...,K}, the strategy set is defined as follows:

ASIC
k =

{
Qk =

(
Q

(π)
k

)
π∈PK

| ∀π ∈ PK ,Q
(π)
k � 0,

∑

π∈PK

pπTr(Q
(π)
k ) ≤ ntP k

}
. (5)

In order to tackle the existence and uniqueness issues for Nash equilibria in the general space-time PA game,

we exploit and extend the results from Rosen [17], which we will briefly state here below in order to make

this paper sufficiently self-contained.

Theorem 1:[17] Let G = (K, {Ak}k∈K, {uk}k∈K) be a game whereK = {1, ...,K} is the set of players,

A1, ...,AK the corresponding sets of strategies andu1, ..., uk the utilities of the different players. If the following

three conditions are satisfied: (i) eachuk is continuous in the all the strategiesaj ∈ Aj,∀j ∈ K; (ii) each uk

is concave inak ∈ Ak; (iii) A1, ...,AK are compact and convex sets; thenG has at least one NE.

Theorem 2:[17] Consider theK-player concave game of Theorem 1. If the following (diagonally strict

concavity) condition is met: for allk ∈ K and for all (a′k, a
′′
k) ∈ A2

k such that there exists at least one index

j ∈ K for whicha′j 6= a′′j ,
K∑

k=1

(a′′k − a′k)
T
[
∇ak

uk(a
′
k, a

′
−k)−∇ak

uk(a
′′
k, a

′′
−k)
]
> 0; then the uniqueness of the

NE is insured.

In the space-time power allocation game under investigation, the obtained results are stated in the following

theorem.

Theorem 3: [Existence of an NE] The joint space-time power allocation game described by: the set of

playersk ∈ {1, 2}; the sets of actionsASIC
k and the utility functionsuSICk (Qk,Q−k) given in (3), has a Nash

equilibrium.

Proof: It is quite easy to prove that the strategy setsASIC
k are convex and compact sets and that the utility

functionsuSICk (Qk,Q−k) are concave w.r.t.Qk and continuous w.r.t. to(Qk,Q−k) and by Theorem 1 at least

one Nash equilibrium exists. For more details, the reader isreferred to Appendix A.

Theorem 4: [Sufficient condition for uniqueness] If the following condition is met

∑

π∈PK

K∑

k=1

Tr
{
(Q

(π)′′

k −Q
(π)′

k )
(
∇Q(π)

k

uSICk (Q′
k,Q

′
−k)−∇Q(π)

k

uSICk (Q′′
k,Q

′′
−k)
)}

> 0 (6)

for all Q′
k =

(
Q

(π)′

k

)
π∈PK

,Q′′
k =

(
Q

(π)′′

k

)
π∈PK

∈ ASIC
k such that(Q′

1, . . . ,Q
′
K) 6= (Q′′

1 , . . . ,Q
′′
K), then the

Nash equilibrium in the power allocation game of Theorem 3 isunique.
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This theorem corresponds to the matrix generalization of the diagonally strict concavity (DSC) condition of

[17] and is proven in Appendix B. To know whether this condition is verified or not in the MIMO MAC one

needs to re-write it in a more exploitable manner. It can be checked thatC expresses asC =
∑

π∈PK

pπTπ where

for eachπ ∈ PK , Tπ is given by:

Tπ =

K∑

k=1

Tr
{
(Q

(π)′′

k −Q
(π)′

k )
[
∇Q(π)

k

R
(π)
k (Q

(π)′

k ,Q
(π)′

−k )−∇Q(π)
k

R
(π)
k (Q

(π)′′

k ,Q
(π)′′

−k )
]}

= E

K∑

r=1

Tr
{
ρHπ−1(r)(Q

(π)′′

π−1(r) −Q
(π)′

π−1(r))H
H
π−1(r)



(
I+ ρHπ−1(r)Q

(π)′

π−1(r)H
H
π−1(r) + ρ

K∑

s=r+1

Hπ−1(s)Q
(π)′

π−1(s)H
H
π−1(s)

)−1

−

(
I+ ρHπ−1(r)Q

(π)′′

π−1(r)H
H
π−1(r) + ρ

K∑

s=r+1

Hπ−1(s)Q
(π)′′

π−1(s)H
H
π−1(s)

)−1






= E

K∑

r=1

Tr(A(π)′′
r −A(π)′

r )



(
I+

K∑

s=r

A(π)′
r

)−1

−

(
I+

K∑

s=r

A(π)′′
r

)−1



(7)

whereA(π)′

r = ρHπ−1(r)Q
(π)′

π−1(r)H
H
π−1(r), A

(π)′′

r = ρHπ−1(r)Q
(π)′′

π−1(r)H
H
π−1(r) and the users have been ordered

using their decoding rank rather than their index.

Theorem 5: [A sufficient condition for DSC] If for any positive definite matricesAi, Bi, Ai 6= Bi, i ∈

{1, ...,K} we have that

K∑

i=1

Tr



(Ai −Bi)






i∑

j=1

Bj




−1

−




i∑

j=1

Aj




−1



 > 0, (8)

then the DSC condition is met:C > 0.

It turns out that the trace inequality (9) always holds for any K et for any positive matrices.

Lemma 1: [Trace inequality] For any positive definite matricesAi, Bi, Ai 6= Bi, i ∈ {1, ...,K} we have

that
K∑

i=1

Tr



(Ai −Bi)






i∑

j=1

Bj




−1

−




i∑

j=1

Aj




−1



 > 0. (9)

The proof can be found in [27], forK = 2, and in [28] for arbitraryK ≥ 2.

Determination of the Nash equilibrium.In order to find the optimal covariance matrices, we proceed in the

same way as described in [9]. First we will focus on the optimal eigenvectors and then we will determine the

optimal eigenvalues by approximating the utility functions under the large system assumption.
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Theorem 6: [Optimal eigenvectors] For allk ∈ K, Qk ∈ ASIC
k there is no loss of optimality by imposing

the structureQk = (Qk
(π))π∈PK

, Q(π)
k = WkPk

(π)Wk
H , in the sense that:

max
Qk∈ASIC

k

uSICk (Qk,Q−k) = max
Qk∈SSIC

k

uSICk (Qk,Q−k),

where SSIC
k =

{
Qk = (Qk

(π))π∈Pk
∈ ASIC

k |Q
(π)
k = WkP

(π)
k WH

k

}
, s ∈ S, model from (2) andP(s)

k =

Diag(P
(π)
k (1), . . . , P

(π)
k (nt)).

The detailed proof of this result is given in Appendix C. Thisresult, although easy to obtain, it is instrumental

in our context for two reasons. First, the search of the optimum precoding matrices boils down to the search of

the eigenvalues of these matrices. Second, as the optimum eigenvectors are known, available results in random

matrix theory can be exploited to find an accurate approximation of these eigenvalues. Indeed, the eigenvalues

are not easy to find in the finite setting. They might be found using numerical techniques based on extensive

search. Here, our approach consists in approximating the utilities in order to obtain expressions which are not

only easier to interpret but also easier to be optimized w.r.t. the eigenvalues of the precoding matrices. The key

idea is to approximate the different transmission rates by their large-system equivalent in the regime of large

number of antennas. The corresponding approximates can be found to be accurate even for relatively small

number of antennas (see e.g., [18][19] for more details).

Since we have assumedVk = V, we can exploit the results in [20][21] for single-user MIMOchannels,

assuming the asymptotic regime in terms of the number of antennas:nr → ∞, nt → ∞, nr

nt
→ β. The

corresponding approximated utility for userk is:

ũSICk ({P
(π)
k }k∈K,π∈PK

) =
∑

π∈PK

pπR̃
(π)
k (P

(π)
k ,P

(π)
−k ) (10)
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where

R̃
(π)
k (P

(π)
k ,P

(π)
−k ) =

1

nr

∑

ℓ∈K(π)
k ∪{k}

nt∑

j=1

log2

(
1 + (N

(π)
k + 1)ρP

(π)
ℓ (j)γ

(π)
ℓ (j)

)
+

1

nr

nr∑

i=1

log2


1 +

1

(N
(π)
k + 1)nt

∑

ℓ∈K
(π)
k ∪{k}

nt∑

j=1

σℓ(i, j)δ
(π)
ℓ (j)


−

1

nr

∑

ℓ∈K(π)
k ∪{k}

nt∑

j=1

γ
(π)
ℓ (j)δ

(π)
ℓ (j) log2 e−

1

nr

∑

ℓ∈K
(π)
k

nt∑

j=1

log2

(
1 +N

(π)
k ρP

(π)
ℓ (j)φ

(π)
ℓ (j)

)
−

1

nr

nr∑

i=1

log2


1 +

1

N
(π)
k nt

∑

ℓ∈K(π)
k

nt∑

j=1

σℓ(i, j)ψ
(π)
ℓ (j)


+

1
nr

∑

ℓ∈K
(π)
k

nr∑

j=1

φ
(π)
ℓ (j)ψ

(π)
ℓ (j) log2 e

(11)

whereN (π)
k = |K

(π)
k | and the parametersγ(π)k (j) andδ(π)k (j) ∀j ∈ {1, . . . , nt}, k ∈ K, π ∈ PK are the solutions

of: 



∀j ∈ {1, . . . , nt}, ℓ ∈ K
(π)
k ∪ {k} :

γ
(π)
ℓ (j) =

1

(N
(π)
k + 1)nt

nr∑

i=1

σℓ(i, j)

1 + 1
(N (π)

k +1)nt

∑

r∈K(π)
k ∪{k}

nt∑

m=1

σr(i,m)δ(π)r (m)

δ
(π)
ℓ (j) =

(N
(π)
k + 1)ρP

(π)
ℓ (j)

1 + (N
(π)
k + 1)ρP

(π)
ℓ (j)γ

(π)
ℓ (j)

,

(12)

andφ(π)ℓ (j), ψ(π)
ℓ (j), ∀j ∈ {1, . . . , nt} andπ ∈ PK are the unique solutions of the following system:





∀j ∈ {1, . . . , nt}, ℓ ∈ K
(π)
k :

φ
(π)
ℓ (j) =

1

N
(π)
k nt

nr∑

i=1

σℓ(i, j)

1 + 1
N

(π)
k nt

∑

r∈K
(π)
k

nt∑

m=1

σr(i,m)ψ(π)
r (m)

ψ
(π)
ℓ (j) =

N
(π)
k ρP

π)
ℓ (j)

1 +N
(π)
k ρP

(π)
ℓ (j)φ

(π)
ℓ (j)

.

(13)

The corresponding water-filling solution is:

P
(π),NE
k (j) =

[
1

ln 2nrλk
−

1

N
(π)
k ργ

(π)
k (j)

]+
, (14)
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whereλk ≥ 0 is the Lagrangian multiplier tuned in order to meet the powerconstraint:

∑

π∈PK

nt∑

j=1

pπ

[
1

ln 2nrλk
−

1

N
(π)
k ργ

(π)
k (j)

]+
= ntP k.

Note that to solve the system of equations given above, we canuse the same iterative power allocation algorithm

as the one described in [9].

At this point, an important point has to be mentioned. The existence and uniqueness issues have be analyzed

in the finite setting (exact game) whereas the determinationof the NE is performed in the asymptotic regime

(approximated game). It turns out that large system approximates of ergodic transmission rates have the same

properties as their exact counterparts, as shown recently by [23], which therefore ensures the existence and

uniqueness of the NE in the approximated game.

Nash Equilibrium efficiency.In order to measure the efficiency of the decentralized network w.r.t. its cen-

tralized counterpart we introduce the following quantity:

SRE =
RNE

sum

Csum
≤ 1, (15)

where SRE stands for sum-rate efficiency; the quantityRNE
sum represents the sum-rate of the decentralized network

at the Nash equilibrium, which is achieved for certain choices of coding and decoding strategies; the quantity

Csum corresponds to the sum-capacity of the centralized network, which is reached only if the optimum coding

and decoding schemes are known. Note that this is the case forthe MAC but not for other channels like the

interference channel. Obviously, the efficiency measure weintroduce here is strongly connected to the price

of anarchy [24] (POA). The difference betweenSRE andPOA is subtle. In our context, information theory

provides us with fundamental physical limits on the social welfare (network sum-capacity) while in general no

such upper bound is available. In our case, the sum-capacityis given by:

Csum = max
(Ω1,...,ΩK)∈A(C)

E log

∣∣∣∣∣I+ ρ

K∑

k=1

HkΩkH
H
k

∣∣∣∣∣ , (16)

with

A(C) =
{
(Ω1, ...,ΩK)|∀k ∈ K,Ωk � 0,Ωk = ΩH

k ,Tr(Ωk) ≤ ntP k

}
. (17)

In general, it is not easy to find a closed-form expression of the SRE. This is why we will respectively analyze

the SRE in the regimes of high and low signal-to-noise ratio (SNR), and for intermediate regimes simulations

will complete our analysis. It turns out that the SRE tends to1 in the two mentioned extreme regimes, which

is the purpose of what follows.
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In the high SNR regime, whereρ→ ∞, we observe from (12) thatδ(π)ℓ (j) → 1
γ(π)
ℓ (j)

. Under this condition, it

is easy to check that by setting the derivatives ofLk w.r.t. P (s)
k (j) to zero, we obtain that the power allocation

policy at the NE is the uniform power allocationP(π),NE
k = P kI, regardless the realization of the coordination

signalS. Furthermore, in the high SNR regime, the sum-capacity is achieved by the uniform power allocation.

Thus, we obtain that the gap between the NE achievable sum-rate and the sum-capacity is optimal,SRE = 1

for any distribution ofS.

In thelow SNR regime, whereρ→ 0, from (12) we obtain thatδ(π)ℓ (j) → 0 and thatγ(π)ℓ (j) = 1
(N (π)

k +1)nt

nr∑

i=1

σℓ(i, j).

By approximatingln(1 + x) ≈ x whenx << 1, the power allocations policies at the NE are the solutions of

the following linear programs:

max
{P (π)

k (j)}1≤j≤nt

nt∑

j=1




∑

pπ∈PK

πP
(π)
k (j)

nr∑

i=1

σ1(i, j)





s.t.
nt∑

j=1

∑

π∈PK

P
(π)
k (j) ≤ P knt

, (18)

given by:

∑

π∈PK

pπP
(π),NE
k (j) =

∣∣∣∣∣∣∣∣

ntP k if j = arg max
1≤m≤nt

nr∑

i=1

σk(i,m)

0 otherwise

. (19)

The optimal power allocation that achieves the sum-capacity is equal to the equilibrium power allocation,

P∗
k =

∑
π∈PK

pπP
(π),NE
k (j) Thus, the achievable sum-rate at the NE is equal to the centralized upper bound

and thusSRE = 1 for any distribution ofS. In conclusion, when either the low or high SNR regime is

assumed, the sum-capacity of the fast fading MAC is achievedat the NE although a sub-optimum coordination

mechanism is assumed and also regardless of the distribution of the coordination channel.

IV. SINGLE USERDECODING

In this section the coordination signal is deterministic (namelyPr[S = s] = δ(s), δ being the Kronecker

symbol) and therefore the amount of downlink signalling theBS needs in order to indicate to the MSs that it is

using SUD can be made arbitrary small (by letting the frequency at which the realizations of the coordination

signal are drawn tend to zero). In this framework, each user has to optimize only one precoding matrix. Indeed,

the strategy of userk ∈ K, consists in choosing the best precoding matrixQ
(0)
k = E

[
X

(0)
k X

(0)H
k

]
, in the sense

of his utility function obtained with SUD:

uSUD
k (Q

(0)
k ,Q

(0)
−k) = E log

∣∣∣∣∣∣
I+ ρHkQ

(0)
k HH

k + ρ
∑

ℓ 6=k

HℓQ
(0)
ℓ HH

ℓ

∣∣∣∣∣∣
− E log

∣∣∣∣∣∣
I+ ρ

∑

ℓ 6=k

HℓQ
(0)
ℓ HH

ℓ

∣∣∣∣∣∣
(20)
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. The strategy set of userk becomes

ASUD
k =

{
Q

(0)
k � 0,Q

(0)
k = Q

(0),H
k ,Tr(Q

(0)
k ) ≤ ntP k

}
. (21)

It turns out that the equilibrium analysis in the game with SUD can be, to a large extent, deduced from the

game with SIC. For this reason, we will not detail the corresponding proofs. The existence and uniqueness

issues are given in the following theorem.

Theorem 7: [Existence and uniqueness of an NE] The space power allocation game described by: the set

of playersk ∈ K; the sets of actionsASUD
k and the payoff functionsuSUD

k (Q
(0)
k ,Q

(0)
−k) given in (20), has a

unique Nash equilibrium.

To prove theexistenceof a Nash equilibrium we also exploit Theorem 1 and the four necessary conditions

on the utility functions and strategy sets can be verified using the same tools as described in Appendix A.

Uniqueness of the Nash equilibrium.Here we can specialize Theorem 4, which is the matrix extension of

Theorem 2. When the strategies sets are not sets of pairs of matrices but only sets of matrices, the diagonally strict

concavity condition in (6) can be written as follows. For allQ
(0)′

k ,Q
(0)′′

k ∈ ASUD
k such that(Q(0)′

1 , . . . ,Q
(0)′

K ) 6=

(Q
(0)′′

1 , . . . ,Q
(0)′′

K ):

C =

K∑

k=1

Tr
{
(Q

(0)′′

k −Q
(0)′

k )
[
∇Q(0)

k

u1(Q
(0)′

k ,Q
(0)′

k )−∇Q(0)
k

u1(Q
(0)′′

k ,Q
(0)′′

k )
]}

. (22)

Now we can evaluateC and obtain that:

C =

K∑

k=1

Tr




[
ρHk(Q

(0)′

k −Q
(0)′′

k )HH
k

]


(
I+ ρ

K∑

ℓ=1

HℓQ
(0)′′

ℓ HH
ℓ

)−1

−

(
I+ ρ

K∑

ℓ=1

HℓQ
(0)′

ℓ HH
ℓ

)−1






= Tr{(A
′

−A
′′

)[(A
′′

)−1 − (A
′

)−1]},
(23)

which is strictly positive for allA
′

6= A
′′

, A
′

≻ 0, A
′′

≻ 0 after [27] applied whenK = 1. This result can be

applied here since we have

A
′

= I+ ρ

K∑

ℓ=1

HℓQ
(0)′

ℓ HH
ℓ

A
′′

= I+ ρ

K∑

ℓ=1

HℓQ
(0)′′

ℓ HH
ℓ .

Determination of the Nash equilibrium.As for the optimal eigenvectors of the covariance matrices,we follow

the same lines as in Appendix C. In this case also there is no loss of optimality by choosing the covariance

matricesQ(0)
k = WkP

(0)
k WH

k , whereWk is the same unitary matrix as in (2) andPk is the diagonal matrix

containing the eigenvalues ofQ(0)
k .
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Here also we further exploit the asymptotic results for the MIMO channel given in [20] [21]. The approximated

utility for user k is:

ũSUD
k (P

(0)
k ,P

(0)
−k) =

1

nr

K∑

k=1

nt∑

j=1

log2(1 +KρP
(0)
k (j)γk(j))+

1

nr

nr∑

i=1

log2


1 +

1

Knt

K∑

k=1

nt∑

j=1

σk(i, j)δk(j)


−

1

nr

K∑

k=1

nt∑

j=1

γk(j)δk(j) log2 e−

1

nr

∑

ℓ 6=k

nt∑

j=1

log2(1 + (K − 1)ρP
(0)
ℓ (j)φℓ(j))−

1

nr

nr∑

i=1

log2


1 +

1

(K − 1)nt

∑

ℓ 6=k

nt∑

j=1

σℓ(i, j)ψℓ(j)


+

1
nr

∑

ℓ 6=k

nr∑

j=1

φℓ(j)ψℓ(j) log2 e

(24)

where the parametersγk(j) andδk(j) ∀j ∈ {1, . . . , nt}, k ∈ {1, 2} are solution of:





∀j ∈ {1, . . . , nt}, k ∈ K :

γk(j) =
1

Knt

nr∑

i=1

σk(i, j)

1 + 1
Knt

K∑

ℓ=1

nt∑

m=1

σℓ(i,m)δℓ(m)

δk(j) =
KρP

(0)
k (j)

1 +KρP
(0)
k (j)γk(j)

.

(25)

andφℓ(j), ψℓ(j), ∀j ∈ {1, . . . , nt} are the unique solutions of the following system:





∀j ∈ {1, . . . , nt}, ℓ ∈ K \ {k} :

φℓ(j) =
1

(K − 1)nt

nr∑

i=1

σℓ(i, j)

1 + 1
(K−1)nt

∑

r 6=k

nt∑

m=1

σr(i,m)ψr(m)

ψℓ(j) =
(K − 1)ρP

(0)
ℓ (j)

1 + (K − 1)ρP
(0)
ℓ (j)φℓ(j)

.

(26)

The corresponding water-filling solution is:

P
(0),NE
k (j) =

[
1

ln 2nrλk
−

1

Kργk(j)

]+
, (27)
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whereλk ≥ 0 is the Lagrangian multiplier tuned in order to meet the powerconstraint:
nt∑

j=1

[
1

ln 2nrλk
−

1

Kργk(j)

]+
=

ntP k.

In what the efficiency of the NE point is concerned, we alreadyknow that the SUD decoding technique

is sub-optimal in the centralized case (SUD does allow the network to operate at an arbitrary point of the

centralized MAC capacity region) and it is impossible to reach the sum-capacityCsum even if the high and low

SNR regime are assumed.

V. SIMULATION RESULTS

In what follows, we assume the regime of large numbers of antennas. From [9], [20], [21], we know that

the approximates of the ergodic achievable rates in the asymptotic regime are accurate even for relatively small

number of antennas. For the channel matrices, we assume the Kronecker modelHk = R
1/2
k ΘkT

1/2
k mentioned

in Sec. II, where the receive and transmit correlation matricesRk, Tk follow an exponential profile characterized

by the correlation coefficients (see e.g., [25], [26])r = [r1, r2] and t = [t1, t2] such thatRk(i, j) = r
|i−j|
k ,

Tk(i, j) = t
|i−j|
k . By assuming that the receive antenna is a uniform linear array (ULA) and knowing that, when

the dimensions of Toeplitz matrices increase they can be approximated by circular matrices we obtain that all

the receive correlation matricesRk can be diagonalized in the same vector basis (i.e., the Fourier basis). Thus

the considered model is included in the UIU model that we studied whereVk = V.

Fair SIC decoding versus SUD decoding.First we compare the results of the general space-time PA game

considered in Sec. III, where SIC decoding is used at the receiver, and the game described in Sec. IV, where

SUD decoding is used. Fig. 1 depicts the achievable sum-rateat the equilibrium as a function of the transmit

powerP1 = P2 = P , for the scenarionr = nt = 10, r = [0.5, 0.2], t = [0.5, 0.2], ρ = 3dB. In order to have a

fair comparison we assume thatp = 1
2 (on average each user is decoded second half of the time when SIC is

assumed). We observe that, even in this scenario, which was thought to be a bad one in terms of sub-optimality,

the sum-rate obtained with the first game is very close to the sum-capacity upper bound. Also, the sum-rate

reached when the BS uses SUD is clearly much lower than the sum-rate obtained by using SIC.

SIC decoding, comparison between the joint space-time PA and the special cases of spatial PA and temporal

PA. Now we want to compare the results of the general space-time PA with the two particular cases that were

studied in [14]: the spatial PA, where the users are forced toallocate their power uniformly over time (regardless

of their decoding rank) but are free to allocate their power over the transmit antennas; the temporal PA, where

the users are forced to allocate their power uniformly over their antennas but they can adjust their power as
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a function of the decoding rank at the receiver. Fig. 2 represents the sum-rate efficiency as a function of the

coordination signal distribution parameterp ∈ [0, 1] whennr = nt = 10, r = [0.3, 0], t = [0.5, 0.2], ρ = 4dB,

P1 = 5, P2 = 50. We observe that the three types of power allocation policies perform very close to the upper

bound. What is most interesting is the fact that the performance of the network at the equilibrium is better by

using a purely spatial PA instead of the most general space-time PA. This has been confirmed by many other

simulations and illustrates a Braess paradox: although thesets of strategies for the space-time case include

those of the purely spatial case, the performance obtained at the NE are not better in the space-time case.

SIC decoding, spatial PA, achievable rate region.In Fig. 3, we observe that the rate region achieved at the

NE of the space PA as a function of the distribution of the coordination signalp for the scenarionr = nt = 10,

r = [0.4, 0.2], t = [0.6, 0.3], ρ = 3dB, P1 = 5, P2 = 50. It is quite remarkable that in large MIMO MACs, the

capacity region comprises a full cooperation segment just like the SISO MACs. The coordination signal precisely

allows one to move along the corresponding line. This shows the relevance of large systems in decentralized

networks since they allow to determine the capacity region of certain systems whereas it is unknown in the

finite setting. Furthermore, they induce an averaging effect, which makes the users’ behavior predictable.

VI. CONCLUSIONS

Interestingly, the existence and uniqueness of the Nash equilibrium can be proven in multiple access channels

with multi-antenna terminals for a general propagation channel model (namely the unitary-invariant-unitary

model) and the most general case of space-time power allocation schemes. In particular, the uniqueness proof

requires a matrix generalization of the second theorem of Rosen [17] and proving a trace inequality [28]. For

all the types of power allocation policies (purely temporalPA, purely spatial PA, space-time PA), the sum-rate

efficiency of the decentralized network is close to one when SIC is assumed and the network is coordinated by

the proposed suboptimum coordination mechanism. Quite surprisingly, the space-time power allocation performs

a little worse than its purely spatial counterpart, which puts in evidence a Braess paradox in the types of wireless

networks under consideration. One of the interesting extensions of this work would be to analyze the impact of

a non-perfect SIC on the PA problem. Indeed, the effect of propagation errors could then be assessed (which

does not exist with SUD).
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APPENDIX A

A. Concavity of the utility functionsuSICk

Let us focus on userk ∈ K. We want to prove thatuSICk (Qk,Q−k) is concave w.r.t.Qk ∈ ASIC
1 . We observe

that the termR(π)
k (Q

(π)
k ,Q

(π)
−k) in (3) depends only onQ(π)

k andQ(π)
−k and not on the covariance matricesQ

(τ)
k ,

Q
(τ)
−k for any other possible decoding ruleτ ∈ PK \ {π}. Thus, in order to prove thatuSICk (Qk,Qk) is strictly

concave w.r.t. toQk = (Q
(π)
k )π∈PK

, it suffices to prove thatR(π)
k (Q

(π)
k ,Q

(π)
−k) is concave w.r.t.Q(π)

k for all

π ∈ PK .

To this end, we study the concavity of the functionf(λ) = R
(π)
k (λQ

(π)′

k + (1 − λ)Q
(π)′′

k ) over the interval

[0, 1] for any pair of matrices(Q(π)′

k ,Q
(π)′′

k ). The second derivative off is equal to:

∂2f
∂λ2 (λ) = −ETr


ρ2HH

k


I+ ρHkQ

(π)′′

k HH
k + ρλHk∆Q

(π)
k HH

k + ρ
∑

ℓ∈K
(π)
k

HℓQ
(π)
ℓ HH

ℓ




−1

Hk∆Q
(π)
k

×HH
k


I+ ρHkQ

(π)′′

k HH
k + ρλHk∆Q

(π)
k HH

k + ρ
∑

ℓ∈K(π)
k

HℓQ
(π)
ℓ HH

ℓ




−1

Hk∆Q
(π)
k




= −ETr[A∆Q
(π)
k A∆Q

(π)
k ]

,

with A = ρ2HH
k


I+ ρHkQ

(π)′′

k HH
k + ρλHk∆Q

(π)
k HH

k + ρ
∑

ℓ∈K(π)
k

HℓQ
(π)
ℓ HH

ℓ




−1

Hk, which can be proven

to be a Hermitian positive definite matrix,∆Q
(π)
k = Q

(π)′

k −Q
(π)′′

k also a Hermitian matrix, andρ = 1
σ2 .

∂2f
∂λ2 (λ) = −ETr[A1/2∆Q

(π)
k A1/2A1/2∆Q

(π)
k A1/2]

= −ETr[BBH ] < 0
,

with B = A1/2∆Q
(π)
k A1/2.

B. Continuity of the utility functionsuSICk

Considering the Leibniz formula, the determinant of a matrix can be expressed as a weighted sum of products

of its entries. Knowing that the product and the sum of continuous functions are continuous, we conclude that

the determinant function is continuous. Also, it is well known that the logarithmic function is a continuous

function. Thus, for anyπ ∈ PK , the functionR(π)
k (Q

(π)
k ,Q

(π)
−k) is nothing else but the composition of two

continuous functions which is also continuous w.r.t.(Q
(π)
k ,Q

(π)
−k). This suffices to prove thatuSICk (Qk,Q−k)

is continuous w.r.t.(Qk,Q−k).
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C. Convexity of the strategy setsASIC
k

In order to prove that the setASIC
k is convex, we need to verify that, for any two matrices(Q

′

k,Q
′′

k) ∈

ASIC
k ×ASIC

k , we have:

αQ
′

1 + (1− α)Q
′′

1 ∈ ASIC
k ,

for all α ≥ 0.

For anyQ
′

k,Q
′′

k ∈ A
(SIC)
k , the matricesQ(π)

k are Hermitian which implies thatαQ(π)′

k + (1 − α)Q
(π)′′

k are

also Hermitian matrices, for allπ ∈ PK .

Furthermore, for anyQ
′

k,Q
′′

k ∈ ASIC
k , we have thatQ(π)′

k , Q(π)′′

k are non-negative matrices which implies

thatαQ(π)′

k + (1− α)Q
(π)′′

k are also non-negative matrices, for allπ ∈ PK .

Finally, knowing that the trace is a linear application we have that:
∑

π∈Pk

pπTr
(
αQ

(π)′

k + (1− α)Q
(π)′′

k

)
=

= α
∑

π∈Pk

pπTr(Q
(π)′

k ) + (1− α)
∑

π∈Pk

pπTr(Q
(π)′

k )

≤ αntP k + (1− α)ntP k

= ntP k.

ThusαQ
′

k + (1− α)Q
′′

k ∈ ASIC
k and the set is convex.

D. Compactness of the strategy setsASIC
k

To prove that the strategy sets are compact sets we use the fact that, in finite dimension spaces, a closed and

bounded set is compact.

First let us prove thatASIC
k is a closed set. We define the functiong : ASIC

k −→ [0, ntP k], with

f(Qk) =
∑

π∈PK

pπTr(Q
(π)
k ).

We see thatg(·) is a continuous function and that its image is a compact and thus closed set. Knowing that

the continuous inverse image of a closed set is closed, we conclude thatASIC
k is closed.

Now we want to prove that the setASIC
k is a bounded set. We associate to the tuple of matrices(Q

(π)
k )π∈PK

the following norm||Qk|| =

√∑

π∈PK

||Q
(π)
k ||22 where||.||2 is is the spectral norm of a matrix.

||Q
(π)
k ||2 =

√
max{λ

Q
(π)H
k Q

(π)
k

(i)}ni=1.
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Since for allQk ∈ ASIC
k , Q(π)

k is a non-negative, Hermitian matrix we have that:

max{λ
Q

(π)
k

(i)}ni=1 ≤ Tr(Q
(π)
k ) ≤ ∞,

and thus:

||Q
(π)
k ||2 =

√
max{λ

Q
(π)2
k

(i)}ni=1 =
√

max{λ
Q

(π)
k

(i)2}ni=1 ≤ ∞.

In conclusion the associated norm||Qk|| ≤ ∞.

APPENDIX B

We suppose that there exist two different equilibrium strategy profiles:(Q̃k, Q̃−k) ∈ ASIC
k × ASIC

−k and

(Q̂k, Q̂−k) ∈ ASIC
k × ASIC

−k , such that(Q̃k, Q̃−k) 6= (Q̂k, Q̂−k). Then the condition given in the theorem,

C > 0 is met for the particular choice of(Q′
k,Q

′
−k) = (Q̃k, Q̃−k) and (Q′′

k,Q
′′
−k) = (Q̂k, Q̂−k).

By the definition of the Nash Equilibrium, the strategiesQ̃k, k ∈ K, are the solutions of the following

maximization problems:

max
Qk∈ASIC

k

uk(Qk, Q̃−k).

Thus,Q̃k satisfy the following Kuhn-Tucker optimality conditions:

1) Q̃k ∈ ASIC
k , which means that:





Q̃
(π)
k = (Q̃

(π)
k )H � 0 ,∀π ∈ PK∑

π∈PK

pπTr(Q̃
(π)
k ) ≤ ntP k,

2) There exist̃λk ≥ 0, and the following Hermitian non-negative matrices of rank1, Φ̃(π)
k , for all π ∈ PK ,

such that:





λ̃k

[
∑

π∈PK

pπTr(Q̃
(π)
k )− ntP k

]
= 0

Tr(Φ̃
(π)
k Q̃

(π)
k ) = 0 ,∀π ∈ PK ,

3) 



∀π ∈ PK :

∇
Q

(π)
k

uk(Q̃k, Q̃−k) = pπλ̃kI− Φ̃
(π)
k

,
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Having assumed that(Q̂k, Q̂−k) is also a Nash Equilibrium,̂Qk, with k ∈ K are the solution of:

max
Qk∈ASIC

k

uk(Qk, Q̂−k),

and thusQ̂k satisfy the following Kuhn-Tucker optimality conditions:

4) Q̂k ∈ ASIC
k , which means that:





Q̂
(π)
k = (Q̂

(π)
k )H � 0 ,∀π ∈ PK∑

π∈PK

pπTr(Q̂
(π)
k ) ≤ ntP k,

5) There exist̂λk ≥ 0, k ∈ K and the following non-negative, Hermitian matrices of rank1, Φ̂(π)
k , for all

π ∈ PK such that:





λ̂k

[
∑

π∈PK

pπTr(Q̂
(π)
k )− ntP k

]
= 0

Tr(Φ̂
(π)
k Q̂

(π)
k ) = 0 ,∀π ∈ PK ,

6) 



∀π ∈ PK :

∇
Q

(π)
k

uk(Q̂k, Q̂−k) = pπλ̂kI− Φ̂
(π)
k

.

Using the third and the sixth optimality conditions, the condition given in (6) becomes:

C =
∑

π∈PK

K∑

k=1

{
pπλ̃kTr(Q̂

(π)
k ) + pπλ̂kTr(Q̃

(π)
k )− pπλ̃kTr(Q̃

(π)
k )− pπλ̂kTr(Q̂

(π)
k )−

Tr(Q̂
(π)
k Φ̃

(π)
k )−Tr(Q̃

(π)
k Φ̂

(π)
k ) + Tr(Q̃

(π)
k Φ̃

(π)
k ) + Tr(Q̂

(π)
k Φ̂

(π)
k )
}

≤
K∑

k=1

{
λ̃k

[
∑

π∈PK

pπTr(Q̂
(π)
k )− ntP k

]
+ λ̂k

[
∑

π∈PK

pπTr(Q̃
(π)
k )− ntP k

]}

≤ 0.

From the other four K-T conditions, we obtain that all the terms on the right are negative and thusC ≤ 0. But

this contradicts the diagonally strict concavity condition and so the Nash Equilibrium is unique.

APPENDIX C

We want to prove that there is no optimality loss when restricting the search for the optimal covariance

matrices toQk ∈ ASIC
k such thatQ(π)

k = WkP
(π)
k WH

k , for all π ∈ PK . Let us consider userk ∈ K. We have
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that:

arg max
Qk∈ASIC

k

uk(Qk,Q−k)

= arg max
Qk∈ASIC

k




∑

π∈PK

pπE log2

∣∣∣∣∣∣
I+ ρHkQ

(π)
k HH

k + ρ
∑

ℓ∈K(π)
k

HℓQ
(π)
ℓ HH

ℓ

∣∣∣∣∣∣





= arg max
Qk∈ASIC

k




∑

π∈PK

pπE log2

∣∣∣∣∣∣
I+ ρVH̃kW

H
k Q

(π)
k WkH̃

H
k VH + ρ

∑

ℓ∈K(π)
k

VH̃ℓW
H
ℓ Q

(π)
ℓ WℓH̃

H
ℓ VH

∣∣∣∣∣∣





= arg max
Qk∈ASIC

k




∑

π∈PK

pπE log2

∣∣∣∣∣∣
I+ ρH̃kW

H
k Q

(π)
k WkH̃

H
k + ρ

∑

ℓ∈K
(π)
k

H̃ℓW
H
ℓ Q

(π)
ℓ WℓH̃

H
ℓ

∣∣∣∣∣∣





= arg max
Qk∈ASIC

k




∑

π∈K(π)
k

E log2

∣∣∣∣∣∣
I+ ρH̃kX

(π)
k H̃H

k + ρ
∑

ℓ∈K(π)
k

H̃ℓW
H
ℓ Q

(π)
ℓ WℓH̃

H
ℓ

∣∣∣∣∣∣





,

(28)

where we denoted withX(π)
k , WH

k Q
(π)
k Wk. Knowing that the utility function is concave w.r.t. the new

defined matricesX(π)
k , and the channel matrixHk has independent entries, we can directly apply the results

given in [22] to prove that annulling the non-diagonal entries of X(π)
k can only increase the values of the

functionsE log2

∣∣∣∣∣∣
I+ ρH̃kX

(π)
k H̃H

k + ρ
∑

ℓ∈K
(π)
k

H̃ℓW
H
ℓ Q

(π)
ℓ WℓH̃

H
ℓ

∣∣∣∣∣∣
. In conclusion the optimal matricesX(π)

k are

diagonal, that we will denote withP(π)
k . The spectral decomposition of the optimal covariance matrices are:

Q
(π)
k = WkP

(π)
k WH

k .
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