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Abstract

The consolidation of colloidal particles in drying colloidal dispersions is in-

fluenced by various factors such as particle size and shape, and inter-particle

potential. The capillary pressure induced by the menisci, formed between the

top layer of particles in the packed bed, compresses the bed of particles while

the constraints enforced by the boundaries result in tensile stresses in the pack-

ing. Presence of flaws or defects in the bed determines its ultimate strength

under such circumstances. In this study, we determine the asymptotic stress

distribution around a flaw in a two dimensional colloidal packing saturated with

liquid and compare the results with those obtained from the full numerical so-

lution of the problem. Using the Griffith’s criterion for equilibrium cracks, we

relate the critical capillary pressure at equilibrium to the crack size and the

mechanical properties of the packed bed. The analysis also gives the maximum

allowable flaw size for obtaining a crack free packing.
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1 Introduction

Dried colloidal particle films find use in a number of applications such as tapes for

photography and magnetic storage1, porous coated printer papers, coating vitamin

tablets, synthetic opals, photonic crystals2 etc. The macroscopic properties of the film

such as its thickness, particle packing and the mechanical strength are influenced by

the drying rate, interparticle potential, particle size and shape and the modulus of the

particles. When a dispersion of colloidal particles is dried, the particles concentrate,

eventually reaching a close packed concentration. The liquid menisci on the top layer

of particles compresses the packing while the substrate resists transverse deformation

of the packing. Consequently, transverse tensile stresses develop in the packing and

when these stresses exceed a critical value, the packing cracks resulting in a variety of

crack patterns. Such cracks occur not only in thin films such as paints and coatings

but also in thick systems and over geophysical length scales such as in the case of

dried river beds.

Most of the experimental investigations of the cracking phenomenon in drying

colloidal dispersions have focused on the thin film geometry where stresses have been

measured using the classical cantilever bending technique.1,3,4 These measurements

show that thin films of monodisperse colloidal dispersions containing identical parti-

cles crack at a critical stress that is independent of the particle size but varies inversely

with the film thickness.5,6,3,7 In almost all cases, the film nucleates multiple cracks

with crack spacing that varies linearly with film thickness.3,8 Experiments also sug-

gest that irrespective of particle size or moduli, each dispersion has a maximum crack

free thickness below which the films do not crack. The critical cracking thickness is

found to increase with particle size and moduli in the case of hard polymer and metal

oxide particles. A number of investigations have also focused on cracking in confined

geometries such as capillary tubes where the dispersion dries from one end resulting

in a compaction front of packed particles. While direct measurement of stresses has

not been possible in this geometry, the studies have focused on crack tip velocity and
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its relation to the speed of the compaction front.9,10,11

On the theoretical front, Routh and Russel12 have derived a constitutive relation

relating the macroscopic stress to macroscopic strain in a drying film. They consid-

ered the viscoelastic deformation of a pair of identical particles due to contact and

interfacial forces and related the strain at the particle level to these forces. Next, they

volume averaged the forces over all orientations to arrive at the macroscopic stress

versus strain relationship for a drying film. In the absence of particle-solvent inter-

facial tension, the expression for the macroscopic stress tensor3 for identical elastic

spheres reduces to

σij = δij

{
−P − GMφrcp

140

(
ε2mm + 2εnmεmn

)}
− GMφrcp

35
(εmmεij + 2εimεmj) (1)

where, εij is the macroscopic strain, P is the capillary pressure, φrcp is the random

close packing concentration, G is the shear modulus of the particles and M is the num-

ber of contacting neighbors. The constitutive equation is an improvement over the

traditional poroelasticity models13,14,15 as the former accounts for the nonlinear de-

formation at the particle level and the influence of particle size, modulus and packing

characteristics on the macroscopic deformation field. The model has been success-

ful in predicting not only the stress profile in drying films of both film forming and

cracking systems,16 but also in predicting many aspects of the cracking mechanism

in the latter.3 More recently, Russel et. al.17 have improved on the above relation

by adopting the Hertzian contact mechanics at the particle pair level. The final con-

stitutive relation is also non-linear where the stress varies as three halves power of

the strain. Using this relation, they determine the capillary pressure necessary either

to open an infinite crack in a flawless film or to extend pre-existing flaws of finite

lengths. Their results suggest that flaws which are a fraction of the film thickness

are sufficient to initiate cracks that would propagate across the sample at pressures

modestly greater than obtained from the energy argument. In a related study Man

and Russel18 demonstrate experimentally the role of flaws in nucleating cracks and

show that the critical stress obtained from the energy argument only gives the lower
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bound.

In this study, we determine the stress field near a crack tip along with the shape

of the crack that is present in a particle packing saturated with solvent. A packed

bed made of an array of colloidal particles can be considered to be a collection of

polycrystalline aggregates with pre-existing flaws. These flaws may be attributed

to micro-cracks, grain boundaries between the clusters of ordered packing of mono-

dispersed particles, dissimilar pores inside the colloidal bed etc. Nucleation of crack

under these circumstances changes the stress field close to the crack with stress con-

centration at the crack tip. The stress and strain fields are linearized about the

pre-crack state to determine the disturbance displacement field immediately after the

opening of a mode-I crack. These results also yield the stress intensity factor for the

two dimensional elastic field which is then related to the surface energy using the

well known Griffith’s criterion for equilibrium cracks. The calculated quantities are

then compared with the numerical solution for the full problem. The calculations

show that the dimensionless critical capillary pressure required to open a crack varies

inversely with the crack length to the two thirds’ power and depends on a dimen-

sionless parameter that measures the ratio of the elastic to surface energy. A simple

scaling analysis reveals the essence of the results to follow. Since σ ∼ Eεo2, where ‘E’

is effective modulus of the packing and εo is the characteristic strain in the packing,

the elastic energy recovered on the opening of a crack of length ‘a’ in a packing of

unit thickness is, σεoa2. Equating this to surface energy (γa) and noting that the

capillary pressure is linearly related to the stress, gives the critical capillary pressure

for opening the crack, PcR
2γ
∼ A

(
R
a

)2/3
(
ER
γ

)1/3

, where ‘γ’ is the surface tension of the

solvent, R is the radius of the particles, and A is a constant. The objective of this

paper is to rigorously determine the value of A and investigate the consequence of

this result.
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Figure 1: A crack of length 2a embedded in a packed bed. The bed is stressed in ‘1’

direction. Shaded region shows the region over which the analysis is performed. T ′1 is the

traction along crack surface.

2 Nucleation of crack

Consider a two dimensional packed bed of colloidal particles that is initially stressed

by capillary pressure. The bed is stressed in the x1 direction so that it is free

to expand along x2 and x3 (Figure 1). In this case, the strain is given by, εij =

−εo (δi2δ2j + δi3δ3j), where o denotes the pre-crack values. Volume conservation over

a unit volume of the bed relates the strain to the particle volume fraction,

φo = φ (1− εo)2 · (2)

where, φo is the volume fraction in the pre-crack state. A crack of dimensionless

length 2a nucleates along x2 and changes the stress and strain field in the sample,

εij = −εo (δi2δ2j + δi3δ3j) + ε′ij , P = P o + P ′ and, σij = σoij + σ′ij, (3)

with the perturbed variables represented by the primed quantities. Substituting these

in the constitutive equation (1) and retaining terms linear in the perturbed quantities
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gives,

σ̄′11 = −P̄ ′ + (3ε′11 + 2ε′22 + 2ε′33)

σ̄′22 = −P̄ ′ + (2ε′11 + 9ε′22 + 3ε′33)

σ̄′33 = −P̄ ′ + (2ε′11 + 3ε′22 + 9ε′33)

σ̄′12 = 4ε′12

σ̄′23 = 6ε′23

σ̄′31 = 4ε′31 (4)

where a bar over a variable implies a dimensionless quantity with stress and pressure

rendered dimensionless with E ≡ GMφrcpεo

35
· The dimensionless stress for the pre-crack

state is,

σ̄oij = δij
[
−P̄ o − 2(εo)

]
− 4(εo) (δi2δ2j + δi3δ3j) · (5)

Since we consider the plane stress case (σ̄3j = 0) and the bed is stressed only in the

x1 direction, P̄ o = −6εo, σ̄o11 = 4εo and σ̄o22 = 0

Since the total amount of particle phase remains constant in the packing, the

particle volume fractions before and after cracking are related,

φrcp
φ

= (1 + ε′11)(1− εo + ε′22)(1− εo + ε′33) (6)

where, φrcp is the random close packing and the strain is taken to be zero when

φ = φrcp. The time evolution of stress and strain around the crack can be further

subdivided into two limiting cases i.e. the short time and the long time limits. In the

short time limit, the impact of crack formation on the stress and strain variation is

such that it would occur in the absence of solvent flow, suggesting that the material

will be incompressible. Thus, in the short time limit and for εo � 1, (6) reduces to,

ε′11 + ε′22 + ε′33 = 0. (7)

Since we shall consider only the plane stress case here (σ̄′33 = 0), P̄ ′ = ε′22 + 7ε′33. At

longer time scales, liquid flows so as to eliminate pressure variations, giving us the
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required condition for the long time limit, P̄ ′ = 0. The perturbed stress and strain

are compactly related in the two cases, σ̄′ij = Cijε
e′
ij where εe′ij is the engineering strain

and C is the stiffness matrix. The latter is given by,

C =


8 6 0

6 12 0

0 0 2

 (8)

in the short-time limit and,

C =


23
9

4
3

0

4
3

8 0

0 0 2

 (9)

in the long-time limit. While the stress field in the pre-crack stress (1) is nonlinear

but isotropic, (8) and (9) suggest it becomes anisotropic in the perturbed state. For

convenience we write the constitutive equations as, ∆i = SijΣj where the components

of ∆ and Σ are given by, εe′11, ε
e′
22, ε

e′
33, ε

e′
23, ε

e′
31, ε

e′
12 and σ̄′11, σ̄′22, ..., σ̄′12 respectively, and

the elements of S are determined from C. Note that the present case relates to

the case of a orthotropic anisotropy with plane stress condition. Therefore, S has

only seven non-zero elements. The displacement field in case of plane strain is easily

obtained using the procedure outlined in the next section except that the components

of the stiffness matrix for the plane stress problem (Sij) are replaced with,

Dij = Sij −
Si2Sj3
S33

, (i, j = 1, 2, ..., 6)

for the plane strain case.

3 Asymptotic analysis near a crack tip

The knowledge of the stress fields in the neighborhood of the crack tip is essential in

determining the strength of the packed bed. Since the perturbed stress is linear in

perturbed strain, we draw upon the mathematical techniques developed in the solid
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mechanics literature to determine the stress field near the tip of a crack.19,20,21,22,23

The coordinate system (x̃1, x̃2) for this analysis is shown in Figure 1 where the origin

is placed at the crack tip so that x̃1 = x̄1, x̃2 = x̄2 + ā and the variables have been

rendered dimensionless using the characteristic length of the solution domain. The

momentum balance equation in x̃1 and x̃2 directions in the absence of body forces are

given by,

∂σ̄′11

∂x̃1

+
∂σ̄′12

∂x̃2

= 0, and

∂σ̄′21

∂x̃1

+
∂σ̄′22

∂x̃2

= 0. (10)

Following Sih et al.19 and Hoenig24, we related stresses to stress correlation func-

tions, χ and ψ,

σ̄′ij = − ∂2χ

∂x̃i∂x̃j
+ δij

∂2χ

∂x̃2
m

σ̄′3i = eij
∂ψ

∂x̃j
(11)

with eij and δij being the second order alternating and Dirac delta tensor respectively,

and i, j allowed values of 1 or 2. Note that (11) automatically satisfies (10). The above

expressions along with the constitutive relation are substituted in the compatibility

equations,

∂2εe′11

∂x̃2
2

+
∂2εe′22

∂x̃2
1

− ∂2εe′12

∂x̃1∂x̃2

= 0, and

∂2εe′11

∂x̃2∂x̃3

=
∂2εe′12

∂x̃3∂x̃1

− ∂2εe′23

∂x̃2
1

+
∂2εe′31

∂x̃1∂x̃2

(12)

to give, respectively,

S11χ,2222 + (2S12 + S66)χ,1122 + S22χ,1111 = 0, and (13)

S44ψ,11 + S55ψ,22 = 0. (14)

The degree of anisotropy in the material can be judged by rewriting (13) differently,

∇4χ+ δ1χ,1111 + δ2χ,2222 = 0 (15)
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where 1 + δ1 = 2S22

S66+2S12
and 1 + δ2 = 2S11

S66+2S12
are indicators of anisotropy in the

material. The difference in the values of δ1 and δ2 originate from the fact that the

bed is held along ‘1’ direction and perturbed along ‘2’ and ‘3’ directions leading to a

directional perturbation of the stress field. When |δi| � 1, χ satisfies the biharmonic

equation, i.e. the material is isotropic. In the current problem, δi are −0.12 and 0.33

in the short-time limit and −0.24 and 1.4 in the long-time limit suggesting that the

anisotropy is significant and cannot be ignored.

(13) and (14) are a pair of decoupled equations in χ and ψ,

L4χ = 0 (16)

L2ψ = 0 (17)

where the differential operators are given by, L2 ≡ S44
∂2

∂x̃2
1

+S55
∂2

∂x̃2
2

and L4 ≡ S11
∂4

∂x̃4
2

+

2(S12+S66) ∂4

∂x̃2
1∂x̃

2
2
+S22

∂4

∂x̃4
1
. Lekhnitskii20 has shown that L2 and L4 can be decomposed

into two and four linear operators of first order respectively, of the form Dk = ∂/∂x̃2−

µk∂/∂x̃1 such that D1D2D3D4χ = 0 and D5D6ψ = 0. Substitution of Dk in L4 and L2

shows that µk are roots of the polynomial operators, l4 ≡ S11µ
4
k+(2S12+S66)µ2

k+S22 =

0 and l2 ≡ S55µ
2
k + S44 = 0. Then, the stress correlation functions can be written as,

χ =
2∑
i=1

{χi(x̃1 + µix̃2) + χi(x̃1 + µ̄ix̃2)} and

ψ = ψ(x̃1 + µix̃2) + ψ(x̃1 + µ̄ix̃2) (18)

where the bar on µi represents the conjugate complex number. Further, Lekhnitskii20

has shown that for the elastic energy of the packing to be positive, the roots cannot

be real. Consequently, the general expression for the stress function will involve the

real part of both the complex conjugates,

χR(x̃1, x̃2) = 2 Re

{
2∑
i=1

χi(zi)

}
ψR(x̃1, x̃2) = 2 Re {ψ(z3)} (19)

where zi = x̃1 + µ̄ix̃2 and Re represents the real part. Since the stresses are related

to the derivatives of the above functions, it is convenient to assume the following
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functional form,

∂χk(zk)

∂zk
= Gk(zk) for k ∈ [1, 2]

and ψ3(z3) = G3(z3) (20)

so that the definition of stresses are given by,

σ̄′11 =
∂2χR
∂x̃2

2

= 2 Re

[
µ2

1

dG1

dz1

+ µ2
2

dG2

dz2

]
,

σ̄′22 =
∂2χR
∂x̃2

1

= 2 Re

[
dG1

dz1

+
dG2

dz2

]
,

σ̄′12 = − ∂2χR
∂x̃1∂x̃2

= −2 Re

[
µ1

dG1

dz1

+ µ2
dG2

dz2

]
,

σ̄′31 =
∂ψR
∂x̃2

= 2 Re

[
µ3

dG3

dz3

]
,

and, σ̄′23 = −∂ψR
∂x̃1

= −2 Re

[
dG3

dz3

]
. (21)

We can also determine the strain components in terms of the stress function, for

example,

εe′11 =
∂ū′1
∂x̃1

= 2 Re

[
dG1

dz1

(S11µ
2
1 + S12 − S16µ1) +

dG2

dz2

(S11µ
2
2 + S12 − S16µ2)

]
.

Integrating the above expression with respect to zj gives the displacement field in the

‘1’ direction,

ū′1 = 2 Re

{
2∑
j=1

p1jGj(zj)

}
where p1j = S11µ

2
j + S12 − S16µj.

Following a similar procedure for the remaining strain components, all displacements

are determined,

ū′i = 2 Re

{
3∑
j=1

pijGj(zj)

}
(22)

where

p1i = S11µ
2
i + S12 − S16µi

p2i = S12µi + S22/µi − S26

p33 = S45 − S44/µ3

p31 = p32 = p13 = p23 = 0 (23)
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1

2

x1 = r cosθ

x2 = r sin θ∼∼

∼∼

θ

Figure 2: Shifted coordinate system for the asymptotic analysis

Next, we ascertain the functional form of Gi. Rice21 has shown that the J-integral,

J =

∫
dΩ

(
Wdx̃1 − σ̄′ijnj

dūi
dx̃2

dS

)
, has the same value for all integration paths sur-

rounding crack tips in two dimensional fields of linear or nonlinear elastic materials.

Here, W is the strain energy density, nj is the normal to the chosen path, and S is

the distance along the path dΩ. Assuming dGi

dzi
∝ zi

p in the neighbourhood of the

crack opening, W ∝ zi
2p and σ̄′ijnj

dūi
dx̃2
∼ zi

2p. Hence, J ∼ zi
2p+1. Since the value

of J should be independent of the path, p = −1
2
. Thus, we assume G = Bi

√
2āzi/π

for a flaw of size ā where Bi is the stress function amplitude. For a stress free crack
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surface, the stress and displacement components near the crack tip become,

σ̄′11 =

√
2ā

πr̃
Re

2∑
i=1

Biµ
2
i√

cos θ + µi sin θ
,

σ̄′22 =

√
2ā

πr̃
Re

2∑
i=1

Bi√
cos θ + µi sin θ

,

σ̄′12 = −
√

2ā

πr̃
Re

2∑
i=1

Bi√
cos θ + µi sin θ

,

σ̄′31 =

√
2ā

πr̃
Re

B3µ3√
cos θ + µ3 sin θ

,

σ̄′23 = −
√

2ā

πr̃
Re

B3√
cos θ + µ3 sin θ

, and

ū′i = 2

√
2ār̃

π
Re

3∑
j=1

pijBj

√
cos θ + µj sin θ. (24)

Note that the perturbed normal stress at the crack surface for the current problem

has a finite non-zero value (−σ̄o11) which will require minor modifications to some of

the above expressions and is dealt with towards the end of this section. The stress

intensity factor (K) for mode I crack is defined as,

K̄1 = Re K̄1 = lim
x̃2→0−

x̃1=0

σ̄′22

√
2πr̃ = 2

√
āRe

2∑
i=1

Biµ
2
i√

−µi
(25)

Similarly, K̄2 and K̄3 can be obtained from σ̄′12 and σ̄′13. Thus the stress intensity

factor for the three modes can be written compactly,

K̄ = −2i
√
āNIµB (26)

where

[N ] =


µ2

1 µ2
2 0

−µ1 −µ2 0

0 0 µ3

 and [Iµ] =


1√
µ1

0 0

0 1√
µ2

0

0 0 1√
µ3

 · (27)

The perturbed displacements of the crack surface can be found in terms of the distance

from tip along the crack surface, θ → π
2
, r̃ = ζ̃

ū′ = ∓

√
2ζ̃

π
Q−1K̄ (28)
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where Q−1 = Im
{
pN−1I−2µ

}
.

The above analysis gives the functional form of the stress and strain fields close to

the crack tip in terms of the unknown K̄. In order to determine the stress intensity

factor, we assume a finite sized crack with an elliptical shape such that the minor

axis of dimensionless length 2c̄ is small compared to the major axis (2ā), α = c̄
ā
� 1.

Eshelby25 has shown that for an elliptical crack, the strain is uniform around the

crack. Following Hoenig24, the displacement of the crack surface is given by,

Ū ′i = A1ix̄1 = βi

√
ā2 − x̄2

2 where, βi =
A1i

α
,

and the strains by,

εe′11 =
β1

α
, εe′12 =

β2

2α
, and εe′13 =

β3

2α
.

Thus, the perturbed stress at the crack face for this simple crack model is related to

βi, σ̄′1k = Cklβl. Here, the origin of the coordinate system, x̄1,x̄2 lies at the center of

the ellipse with x̄2 directed along the major axis (Figure 1). Writing the crack face

displacement in terms of the coordinate system with the origin placed at the crack

tip (Figure 2),

Ū ′i = βi

√
2āζ̃ (29)

where ζ̃ is the distance from the crack tip along x̃2. Comparing (28) with (29) we get

Q−1K̄ = [β]
√
πā. (30)

which relates the unknowns, K̄ and [β]. In order to complete the problem, we deter-

mine the elastic energy released from the simple crack model,

ξ̄ = 2
1

2

∫ ā

−ā
σ̄o1kŪkdx̃2 = −Cikβiβk

πā2

2
(31)

and equate dξ̄
dā

= 2J̄ giving,

K̄i =
√
πāσ̄o1j (32)

where J̄ is value of the standard J-integral,21 determined in the limit as the integration

path is shrunk so as to lie along the crack face,

J̄ = lim
δ→0

1

δ

∫ δ

0

σ̄′1i(δ − r̃,−
π

2
)ū′i(r̃,

π

2
)dr̃ = −1

2
K̄i

(
Q−1
il K̄l

)
. (33)
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Comparing (30) and (32) gives the expression for βi in terms of the far field stresses,

βi = Q−1
ik σ̄

o
1k·

We are now in a position to write the elastic energy recovered (dimensional) due to

the formation of a finite length mode-I crack of length a,

ξ = −π
2
a2Q−1

11

(σo11)2

E
(34)

The present problem requires the crack surface to be have a normal stress ( −σ̄o11

) and the far field perturbed stress to be zero. Consequently, the complex stress

function Gk(zk) in (21) is replaced with Gk(zk) + Γkzk (k = 1, 2), where Γk are

real constants19. Substituting the new expression for Gk and applying the traction

boundary condition at the crack surface, we get,Γ1

Γ2

 = Re

 1

µ1µ2(µ1 − µ2)

µ2 µ2
2

µ1 µ2
1

−σ̄o11

0

 (35)

The above expression along with the definition for the stresses (21) suggests that

both σ̄′11 and σ̄′22 are influenced by the traction condition. However, neither σ̄′12

nor ū′1 along the crack face are effected implying that the energy calculations and the

corresponding values of the stress intensity factors remain unchanged.

The total energy for the system is E = ξ+Γ, where Γ = 4γa corresponds to surface

energy and γ is the surface tension. Following Griffith’s argument,23 the crack will

be in equilibrium when,

dE
da

= 0⇒ σo11 =

√
4γE

Q−1
11 aπ

(36)

which relates the far field stress to the crack length and surface tension. Since E is a

linear function of the pre-crack strain which in turn is related to the far field stress,

we have

σo11(a)2/3 =

[
2γ

Q−1
11 π

]2/3(
GMφrcp

35

)1/3

(37)

14



A more useful relation is in terms of the capillary pressure,(
−P

oR

2γ

)( a
R

)2/3

=

{
3

4

[
8

35Q−2
11 π

2

]1/3
}(

GMφrcpR

2γ

)1/3

. (38)

Thus the dimensionless critical capillary pressure is related to the dimensionless crack

length,

(−P̃ o)(ã2/3) = AW 1/3 (39)

where, W = GMφrcpR/2γ represents the balance of the elastic and surface energy

and A is equal to 0.45 and 0.35 for the short and long time limit, respectively.

4 Numerical solution

The stress and the displacement field obtained in the previous section is applicable

to regions close to the crack tip. For the full solution, the momentum balance equa-

tion (10) for the perturbed stresses were solved numerically for the control volume

highlighted in Figure 1 using finite element method (DIFFPACK R©). The boundary

conditions are as follows,

σ̄′11 = −σ̄o11 for x̄1 = 0, 0 > x̄2 > −ā,

ū′1 = 0 for x̄1 = 0,−ã > x̄2 > −1,

ū′2 = 0 for 0 < x̄1 < 1, x̄2 = 0,

σ̄′22 = 0 for 0 < x̄1 < 1, x̄2 = −1, and

σ̄′11 = 0 for x̄1 = 1, 0 > x̄2 > −1

where ā << 1 so that the stress and the strain fields close to the crack are not

influence by the size of the control volume.

Rectangular elements were used with adaptive refinement of the grid near the

crack tip. The total number of nodes in the control volume were about 50,000.
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Figure 3: (b) The basic grid before deformation. (b) The scaled surface deformation of the

control volume for the short time limit. All displacements have been scaled with one-tenth

the maximum displacement (u′1(0, 0)).

5 Results and Discussion

5.1 Numerical Simulation

The perturbed stress, strain and displacements obtained from the numerical simula-

tions are presented in Figure 3, 4, 5. Unless specified, all results pertain to the short

time limit. Figure 3(a) and (b) presents the initial and deformed grid, respectively.

The surface displacements in Figure 3(b) have been scaled so as to highlight their

magnitude. As expected, the displacement at the center of the crack is maximum

with the tip of the crack moving upwards. Since the perturbed stresses are zero at

the control volume boundaries, the effect of the surface displacement at the crack

faces can be observed at the boundaries. The equilibrium shape of the crack surface

is elliptical and ratio of the length of the minor to major axis is very small (∼ 10−3),

both of which are in agreement with the asymptotic solution. Figure 4 presents the

simulated values of σ̄′11 and σ̄′22 for the control volume. The contour plot (Figure

4(a) and (c)) and the gray scale plots of the region close to the crack tip (Figure

4(b) and (d)) demonstrate the sharp decrease in stress with increasing distance from

16
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Figure 4: Variation of perturbed stresses for nondimensional half crack length, ā = 0.3

and εo = 7.8× 10−4 : (a) Contour plot of σ̄′11, (b) Gray scale plot of σ̄′11 close to crack tip,

(c) contour plot of σ̄′22, and (c) Gray scale plot of σ̄′11 close to crack tip.

the crack tip. The contours are perpendicular to the symmetry surfaces (x̄2 = 0

and −0.3 < x̄1 < 1, x̄2 = 0) as expected from the boundary conditions while they

decay to zero at x̄1 = 1 and x̄2 = −1. Figure 5(a) and (b) present the perturbed

pressure for the short time limit. Interestingly, the pressure is negative close to the

tip suggesting that the solvent will flow towards the tip once the crack nucleates.

This is borne out in the simulations for the long time limit (Figure 5(c) and (d))

where the particle concentration has reduced at the tip. Note that while the particle

concentration should always be equal or more than the close pack concentration at
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Figure 5: Variation of perturbed pressure in the short time limit for ā = 0.3 : (a) Contour

plot of P̄ ′, (b) Gray scale plot of P̄ ′ close to crack tip. Variation of the particle concentration

in the long time limit: (c) Contour plot of φ, and (d) Gray scale plot of φ close to crack tip.

all times, values of φ < φrcp near the crack tip in the long time limit are not physical

since no such constraint has been imposed in the simulation. Instead, extra solvent

could accumulate at the crack tip between the crack faces.

5.2 Comparison with Asymptotic Solution

Figure 6 compares the spatial variation of perturbed displacement, ū′1, along the crack

face obtained from the simulation with that predicted by the asymptotic solution.

At the crack tip, ū′1 = 0 while for 10−4 < x̄1 < 10−2, the displacement varies as

the square root of the distance from the tip. The disagreement close to and far

away from the crack tip is attributed to the limitation on grid refinement in case of
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Figure 6: Displacement ū′1 for ā = 0.3 along the crack face.

numerical solution close to the tip (which is unable to capture the large variations in

the stress) and to the non-applicability of the asymptotic solution far away from the

crack tip. Figure 7 presents the spatial variation of σ̄′11 along x̄1 away from the crack

tip for ā = 0.3. As expected the stress diverges as x̄
− 1

2
1 close to the crack tip and

the prediction matches well with the numerical solution for 10−4 < x̄1 < 10−2. Far

away from the crack tip, the perturbed stresses vanish. The angular distribution of

stresses obtained from the asymptotic solution agrees with that from the numerical

solution in Figure 8 at |r̄ − ā| = 0.012· The distribution is somewhat similar to that

obtained for the isotropic cases.26 Figure 9 compares the angular distribution of the

stresses at various radial distances from the crack tip, both in the short and the long

time limits. The magnitude of the stresses at a given location in the long time limit

are lower than those in the short time limit. This decrease may be attributed to the

flow of the solvent that relieves any pressure variation that develops in the short time
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Figure 7: Perturbed stress σ̄′11 along x̄1 (x̄2 = −ā) for ā = 0.3.

limit. Compared to the short time limit, the angular variation of the stress in the

long time limit show larger deviations from the isotropic case as also suggested by

the values of δi in (15).

The Griffith’s criteria (39) shows that the pressure required to open a crack in-

creases with decreasing size of the crack. Since the maximum dimensionless cap-

illary pressure is about27 5.3, the largest allowable flaw which will not crack the

sample is, ãmax = 0.025
√
W which suggests that packings containing particles of

larger size and/or higher shear moduli can resist cracking more effectively. Recently,

Tirumkudulu and Russel3 have derived the expression for the critical capillary stress

to drive an infinite crack through a drying colloidal thin film bound to a substrate,

(−P̃ o
∞)(h̃2/3) = 0.23W 1/3. Comparing the critical capillary pressure for the two cases

suggests that when ã � h̃, a significantly larger capillary pressure is required to

expand a finite flaw in the film compared to that required to drive an infinite crack,

P̃ o

P̃ o
∞
∼

(
h̃

ã

) 2
3

.

20



-90 -60 -30 0 30 60 90
θ°

0

0.005

0.01

0.015

0.02

N
on

di
m

en
si

on
al

 p
er

tu
rb

ed
 s

tr
es

s,
 

σ
´ ij

simulated σ
11́

simulated σ
22́

simulated σ
12́

asymptotic σ
11́

asymptotic σ
22́

asymptotic σ
12́

Figure 8: Angular variation of perturbed stresses for short time at |r̄ − ā| = 0.012 for
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Figure 9: Angular variation of perturbed stresses at different radii (R̄ = r̄− ā), (a)–(c) in

the short time limit, and (d)–(f) in the long time limit for ā = 0.3.
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The above result also indicates that the maximum crack free thickness for the

thin colloidal film is obtained when the maximum allowable flaw size for a crack free

film is of a similar magnitude, h̃max ∼ ãmax. These results are in line with the recent

theoretical results obtained by Russel et al.17 using the more accurate constitutive

relation and experiments measuring the critical capillary pressure for various particle

packings.18

The energy release rate, G = 2J , is related to the stress intensity factor through

the standard relation, G = K2

Eeff
where the effective elastic modulus for the packing,

Eeff =
E

Q−1
11

, (40)

accounts for the particle size and packing, and also for the anisotropy resulting from

the nucleation of crack.

Finally the analysis presented here is general, in that the results relating to the

asymptotic forms of the stress and displacement component, and the related expres-

sion for the energy release rate can easily be obtained for any other constitutive

equation once the stiffness matrix for the linearized equation is known.

6 Conclusions

We present the asymptotic analysis of the deformation field near a crack tip for a mode

I crack in a two dimensional colloidal packing saturated with solvent. The stress and

strain fields are linearized about the pre-crack state to yield the stress intensity factor

for the two dimensional elastic field which is then related to the surface energy using

the well known Griffith’s criterion for equilibrium cracks. The calculated quantities

are then compared with the numerical solution for the full problem. The results

show that the dimensionless critical capillary pressure required to open a crack varies

inversely with the crack length to the two thirds’ power and is controlled by the ratio

of the elastic energy stored in the packing and the increase in surface energy due to
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crack nucleation. The analysis also gives the maximum flaw size to achieve a crack

free packing.
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