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1 Introduction

In this report we discuss some properties of conditional expectation operators, and use these facts to prove an
interesting counterexample regarding sufficient statistics. In particular, we show that there exists sufficient
random variables X and Y , such that (X,Y ) are jointly not sufficient. This report is largely based on [2]
and [1], however, we fill in the gaps for those arguments that were not fully explained in these two papers.

2 Some Facts about Conditional Expectation Operators

For now, we fix a probability space (Ω,F ,P). Let X ∈ L1(Ω,F ,P) be an integrable random variable. Then,
if G is a sub-σ-field (which we simply call a subfield) of F , the conditional expectation of X with respect to
G is defined to be the random variable E [X |G] that satisfies:

1. For all B ∈ G, E [E [X |G] IB] = E [XIB]

2. E [X |G] is G-measurable

The existence of the conditional expectation is a standard result that can be found in [5]. We say
that an operator T on L1 is a conditional expectation operator if T = E [· |G] for some sub-sigma field
G ⊂ F . Let {Tn} be a sequence of conditional expectation operators and write the sequence of iterates as
Sn = Tn · · ·T2T1. In this report we will discuss certain properties of the iterates of a sequence of conditional
expectation operators.

Before diving into the material, a notational explanation is in order. Unfortunately in the world of
probability, capital letters are used to denote random variables, but in the world of functional analysis lower
case letters seem to be popular for elements of function spaces. Although this paper uses ideas from both
fields, our ultimate goal is statistical, so we will use capital letters. The letters T and Q are reserved for
operators on a Hilbert space, and X is always an element of the function space in question.

An inmportant interpretation of the conditional expectation is that it is an orthogonal projection operator
onto the space of G-measurable functions within the Hilbert space L2(Ω,F ,P). This perspective will be the
driving force behind most of the ideas in this report. For completeness we include the following result.

Theorem 2.1 Let T be the operator on the Hilbert space L2(Ω,F ,P) defined by T (X) = E [X |G]. Then T
has the following properties.

1. T is self-adjoint: T ∗ = T

2. T is idempotent: T 2 = T

3. I − T is the projection onto (L2(Ω,G,P))
⊥

4. T is a contraction: ||T || ≤ 1

Proof These results follow from the basic properties of conditional expectations. See [6].
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3 Some Preparatory Lemmas

We begin by stating and proving a lemma found in [2].

Definition A sequence {an}∞1 of real numbers is said to be convex if ai+1 ≤ 1
2 (ai + ai+2) for all i ≥ 1.

Lemma 3.1 Let {an}
∞
1 be a convex and bounded sequence of real numbers. Then

∞
∑

n=1

n∆2an = a1 − lim
n→∞

an

Proof We note that ∆2an = an+2 − 2an+1 + an is non-negative, by the assumption of convexity. Thus we
can rearrange the sum as we wish. In particular, we are free to use Fubini’s theorem.

∞
∑

n=1

n∆2an =

∞
∑

n=1

n
∑

k=1

∆2an (1)

=

∞
∑

k=1

∞
∑

n=k

∆2an (2)

=

∞
∑

k=1

∞
∑

n=k

∆an+1 −∆an (3)

=

∞
∑

k=1

∆ak + lim
n→∞

∆an+1 (4)

= a1 − lim
n→∞

an (5)

Lemma 3.2 Let {an}∞n=0 be a sequence of complex numbers such that c2 =
∑∞

n=1 n|an−an+1|2 < ∞. Define

bn =

2n
∑

k=1

ak
2n

Then

1. supn≥1 |an| ≤ 3
(

supn≥0 |bn|
)

+ |c|

2. If limn→∞ bn = a0, then limn→∞ an = a0

Proof Suppose without loss of generality that a0 = 0. If a0 6= 0, then we can simply subtract a0 from each
term and the proof would still work. Define

c2n =

∞
∑

k=2n

k|ak − ak+1|
2
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Then we have that

max
2n≤j≤k≤2n+1

|aj − ak| ≤
2n+1−1
∑

k=2n

|ak − ak+1| (6)

≤



2n
2n+1−1
∑

k=2n

|ak − ak+1|





1
2

(7)

≤





2n+1−1
∑

k=2n

k|ak − ak+1|





1
2

(8)

≤

(

∞
∑

k=2n

k|ak − ak+1|

)
1
2

(9)

= |cn| (10)

Let m be the integer that satisfies 2m ≤ n ≤ 2n+1. Then we have that

|an| = |bm − 2bm+1 +

2m+1

∑

k=2m+1

2−m(ak − an)| (11)

≤ |bm|+ 2|bm+1|+ |cm| (12)

Taking supremums of both sides of the above, we get that

sup
n≥1

|an| ≤ 3

(

sup
n≥0

|bn|

)

+ |c|

To get the second result, suppose that limn→∞ bn = a0 = 0. Then we have that

lim
n→∞

an = lim
m→∞



bm − 2bm+1 +

2m+1

∑

k=2m+1

2−m(ak − an)



 (13)

= lim
m→∞

bm − lim
m→∞

2bm+1 + lim
m→∞

2m+1

∑

k=2m+1

2−m(ak − an) (14)

= 0 (15)

Lemma 3.3 Let T be a linear self-adjoint operator with norm ||T || ≤ 1 on a Hilbert space H. Then ∀X ∈ H,

∞
∑

n=1

||T n(X)− T n+2(X)||2 ≤ ||X ||2

Furthermore, the L2-limit of T 2n exists and is an orthogonal projection operator.

Proof Fix some X ∈ H and define an = ||T n(X)||2. Since ||T || ≤ 1, we have that the sequence {an}∞1 is
bounded. This sequence is also convex, since (by using self-adjointness of T )

∆2an = an+2 − 2an+1 + an (16)

= ||T n+2(X)||2 − 2||T n+1(X)||2 + ||T n(X)||2 (17)

= ||T n+2(X)||2 − 2〈T n+1(X), T n+1(X)〉+ ||T n(X)||2 (18)

= ||T n+2(X)||2 − 2〈T n(X), T n+2(X)〉+ ||T n(X)||2 (19)

= 〈T n(X)− T n+2(X), T n(X)− T n+2(X)〉 (20)

= ||T n(X)− T n+2(X)||2 (21)

≥ 0 (22)
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Thus by applying Lemma 1, we get that
∞
∑

n=1

n||T n(X)− T n+2(X)||2 = ||T (X)||2 − lim
n→∞

||T n(X)||2

However, since ||T || ≤ 1, we have that ||T (X)|| ≤ ||X ||. By using this, and positivity of the limit, we get
that

∞
∑

n=1

||T n(X)− T n+2(X)||2 ≤ ||X ||2

To show convergence of {T 2n}, we show that it is a Cauchy sequence.

lim
n,m→∞

||T 2n(X)− T 2m(X)||2 = lim
n,m→∞

〈T 2n(X)− T 2m(X), T 2n(X)− T 2m(X)〉 (23)

= lim
n,m→∞

||T 2n(X)||2 − 2〈T 2n(X), T 2m(X)〉+ ||T 2m(X)||2 (24)

But we also have that by using the self-adjointness of T we get

an+m = ||T n+m(X)||2 (25)

= 〈T n+m(X), T n+m(X)〉 (26)

= 〈Tm(X), T 2n+m(X)〉 (27)

= 〈T 2m(X), T 2n(X)〉 (28)

So we have that

lim
n,m→∞

||T 2n(X)− T 2m(X)||2 = lim
n,m→∞

(a2n − 2an+m + a2m) (29)

= lim
n,m→∞

(a2n − an+m) + (a2m − an+m) (30)

= 0 (31)

By the definition of completeness in a Hilbert space, we have that the sequence {T 2n} converges in the
L2-norm to some Q ∈ L2. Since T is self-adjoint, so must Q. To obtain idempotence, note that since {T 4n}
is a subsequence of {T 2n}, it must also converge to Q. So for all X ∈ H, we have that

||Q2(X)−Q(X)|| ≤ ||Q2(X)− T 4n(X)||+ ||T 4n(X)− T 2n(X)||+ ||T 2n(X)−Q(X)|| (32)

Since each of the quantities on the right side converge to 0, Q is idempotent and is hence an orthogonal
projection.

Theorem 3.4 Let T be a linear self-adjoint operator on L2 = L2(Ω,F ,P) with norm ||T || ≤ 1. Suppose
that x ∈ L2 and that the following limit exists almost surely

lim
n→∞

2n
∑

k=1

2−nT 2k(X) (33)

Then limn→∞ T 2n(X) = Q(X).

Proof To prove this, we will use Lemma 3.2. Define an(X) = T 2n(X). Then to invoke Lemma 3.2 we must
show that c2 =

∑∞
n=1 n|an − an+1|2 < ∞ a.s. However, we have that

∫

Ω

∞
∑

n=1

n|T 2n(X)− T 2(n+1)(X)|2dP =

∞
∑

n=1

n

∫

Ω

|T 2n(X)− T 2(n+1)(X)|2dP (34)

=

∞
∑

n=1

n||T 2n(X)− T 2(n+1)(X)||2 (35)

=
1

2

∞
∑

n=1

2n||T 2n(X)− T 2(n+1)(X)||2 (36)

≤
1

2
||X ||2 (37)

< ∞ (38)
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Above we used the posititivity of the integrand to swap the sum and the integral, and we applied Lemma
3.3 to the operator T 2. Thus

∑∞
n=1 n|T

2n(X) − T 2(n+1)(X)|2 is finite almost surely. Thus by Lemma 3.2
we get the desired conclusion.

Theorem 3.5 Let T be a linear self-adjoint operator on L2 = L2(Ω,F ,P) that satisfies the following two
conditions

1. ||T (X)||1 ≤ ||X ||1

2. ||T (X)||∞ ≤ ||X ||∞

Then for all x ∈ L2 we have that limn→∞ T 2n(X) = Q(X).

Proof To prove this, we invoke the Riesz-Thorin theorem which can be found in [4] on the interpolation
L1∩L∞ ⊂ L2. In particular we get that T is a bounded operator on L2 and that ||T ||2 ≤ max (||T ||1, ||T ||∞) =
1. Furthermore, we get the appropriate condition (33) by chapter 3 of [3]. Thus we conclude by Theroem
3.4 that limn→∞ T 2n(X) = Q(X).

4 A Result about Conditional Expectation Operators

Now that we have the basic lemmas out of the way, we can prove a result about conditional expectation
operators. We will use this in our discussion about sufficiency in the next section. We note that the authors
in [2] and [1] define a conditional expectation operator E [· |G] to have range Ḡ (the completion of the σ-field
G).

Theorem 4.1 Let T1 and T2 be conditional expectation operators on (Ω,F ,P). In other words, let T1 =
E [· |G1] and T2 = E [· |G2], where G1 and G2 are subfields of F . Let T2k−1 = T1 and T2k = T2 extend the
sequence for all positive integers. Then, we have that for all X ∈ L2,

lim
n→∞

Sn(X) = E
[

X |Ḡ1 ∩ Ḡ2

]

both in L2 and almost surely.

Before proving this theorem, we state and prove a quick lemma.

Lemma 4.2 Let X be square-integrable. Then

lim
n→∞

(Sn(X)− Sn+1(X)) = 0

both in L2 and almost surely. Furthermore, supn≥1 |Sn(X)−Sn+1(X)| ∈ L2 and has norm less than or equal
to ||X ||.

Proof Suppose that X ∈ L2(Ω,F ,P). Then, we have that

||Sn(X)− Sn+1(X)||2 = 〈Sn(X)− Sn+1(X), Sn(X)− Sn+1(X)〉 (39)

= 〈Sn(X), Sn(X)〉 − 2〈Sn+1(X), Sn(X)〉+ 〈Sn+1(X), Sn+1(X)〉 (40)

= ||Sn(X)||2 − 2〈Sn+1(X), Sn(X)〉+ ||Sn+1(X)||2 (41)

= ||Sn(X)||2 − 2〈Tn+1 · · ·T1(X), Tn · · ·T1(X)〉+ ||Sn+1(X)||2 (42)

= ||Sn(X)||2 − 2〈Tn+1Tn+1 · · ·T1(X), Tn · · ·T1(X)〉+ ||Sn+1(X)||2 (43)

= ||Sn(X)||2 − 2〈Tn+1 · · ·T1(X), Tn+1Tn · · ·T1(X)〉+ ||Sn+1(X)||2 (44)

= ||Sn(X)||2 − ||Sn+1(X)||2 (45)

Where we used the fact that Tn+1 is self-adjoint and idempotent since it is a projection operator. Then we
will show that

∞
∑

n=1

|Sn(X(ω))− Sn+1(X(ω))|2 < ∞

5



almost surely. Thus for almost every ω ∈ Ω, we have that limn→∞ (Sn(X(ω))− Sn+1(X(ω))) = 0. To see
this we use the monotone convergence theorem in the following computation

E

[

∞
∑

n=1

|Sn(X)− Sn+1(X)|2

]

= E

[

lim
N→∞

N
∑

n=1

|Sn(X)− Sn+1(X)|2

]

(46)

= lim
N→∞

E

[

N
∑

n=1

|Sn(X)− Sn+1(X)|2

]

(47)

=

∞
∑

n=1

E
[

|Sn(X)− Sn+1(X)|2
]

(48)

=

∞
∑

n=1

||Sn(X)− Sn+1(X)||2 (49)

= ||S1(X)||2 (50)

= ||T (X)||2 (51)

≤ ||X ||2 < ∞ (52)

(53)

In particular we also get that E
[

|Sn(X)− Sn+1(X)|2
]

→ 0. For the last result, we note that

sup
n≥1

|Sn(X)− Sn+1(X)| ≤

(

∞
∑

n=1

|Sn(X(ω))− Sn+1(X(ω))|2

)
1
2

from which it follows that supn≥1 |Sn(X)− Sn+1(X)| ∈ L2 and has norm less than or equal to ||X ||.

Proof of Theorem 4.1 Let us define T = T1T2T1. Then T satisfies the conditions of Theorem 3.5.
We also have that T 2n = S4n+1. So we have that limn→∞ S4n+1(X) = Q(X) almost surely and that
supn≥1 |S4n+1(X)| ∈ L2. Combining this with the previous lemma, we get that limn→∞ Sn(X) = Q(X)
both in L2 and almost surely.

To see that Q = E
[

· |Ḡ1 ∩ Ḡ2

]

we note that by Lemma 3.3, Q is an orthogonal projection. Furthermore, by

definition of T1 and T2, its range is L2(Ω, Ḡ1∩Ḡ2,P). However, E
[

· |Ḡ1 ∩ Ḡ2

]

is also an orthogonal projection

onto the same subspace. Thus Q is the same operator as E
[

· |Ḡ1 ∩ Ḡ2

]

on L2(Ω,F ,P).

5 Application to Sufficiency

Once again, we fix our measurable space (Ω,F), and we suppose that we have a collection of probability
measures {Pγ} for γ ∈ Γ. We let N denote the smallest σ-field containing the sets N that satisfy Pγ(N) = 0
for all γ ∈ Γ. Let us also denote Eγ to be expectation with respect to the probability measure {Pγ}.

Definition A σ-field G ⊂ F is called a sufficient subfield if for each bounded F -measurable function f , there
is a G-measurable function g that satisfies

Eγ [fIG] = Eγ [gIG]

for all γ ∈ Γ and for all G ∈ G. In other words, G ⊂ F is a sufficient subfield if there exists a g such that
g = Eγ [f |G] for all γ ∈ Γ.

We consider the following question. If G1,G2, ... are sufficient subfields of F , which of the following are
also sufficient: G1 ∩ G2, σ(G1 ∪ G2), ∩∞

n=1Gn, σ(∪∞
n=1Gn). We will show that σ(G1 ∩ G2) is not sufficient in

general.

Example There is an example where σ(G1 ∪ G2) is not sufficient, even though G1 and G2 are.

6



Proof Define Ω = {x = (x1, x2) ∈ R
2 : |x1| = |x2| > 0}. Let Px be the probability measure that assigns

mass 1
4 to each of the points (x1, x2), (−x1, x2), (x1,−x2), (−x1,−x2). We will work with the family of

probability measures {Px}x∈Ω.
In this case, we have that N = {∅,Ω} since there are no non-trival Px-null sets. This means that in

particular N is a subfield of any subfield of F .
Let us define the reflection operators R1(X) = (x1,−x2) and R2(X) = (−x1, x2), and then define the sets

Aix = {x,Ri(X)} for i = 1, 2. Define Gi to be the smallest σ-field containing {Aix : x ∈ Ω} for each i = 1, 2.
Note that the set G is in G1 if and only if there is a countable C ⊂ Ω such that either G = ∪x∈C{A1x}
or G = (∪x∈C{A1x})

c. Similarly G is in G2 if and only if there is a countable C ⊂ Ω such that either
G = ∪x∈C{A2x} or G = (∪x∈C{A2x})

c
.

Let us define G = σ(G1 ∪ G2), and also define F to be the smallest σ-field containing G and the set
D = {x : x ∈ Ω, x1 = x1}. We can also see that

F = {(G1 ∩D) ∪ (G2 ∩D) : G1, G2 ∈ G}

Thus we have fully specified the probability space we are working with along with a family of probability
distributions as well as the subfields in consideration.

We first claim that G = σ(G1 ∪ G2) is not sufficient. Suppose it were suffcient. Then there would exist
a G-measurable function g satisfying Px(D ∩ G) = Ex [gIG] for all G ∈ G and all x ∈ Ω. If we consider the
special case of this statement when G = {x}, then we get that Px(D ∩ {x}) = Ex

[

gI{x}
]

. This statement
tells us that g is the characteristic function of the set D. However, this is impossible since D is an element
of the subfield G. The reason why D cannot be in G is that all elements of G are either countable or have
countable complements as argued earlier. However, both D and Dc are uncountable by construction. So we
get a contradiction, and conclude that the subfield G = σ(G1 ∪ G2) is not sufficient.

Our second claim is that both G1 and G2 are sufficient subfields of F . We will actually just show that G1

is sufficient, and then conclude by symmetry that G2 must also be sufficient. Let G1 and G2 be arbitrary
sets in G. Define the functions

f1 = IG1∩D (54)

f2 = IG2∩D2 (55)

f = f1 + f2 (56)

g1 = f1 + f1(R1(· )) (57)

g2 = f2 + f2(R1(· )) (58)

g =
1

2
(g1 + g2) (59)

We claim that both g1 and g2 are G1-measurable. We know that G1 is either countable or cocountable. In
the case that G1 is countable, then the set {x : g1(X) 6= 0} is countable, and in the case that it is cocountable
then the set {x : g1(X) 6= 1} is countable. If we consider an arbitrary Borel set B ∈ BR, then we have four
possibilities: either none of 0 and 1 are in B, both of them are in B, 0 is in B but 1 is not, or 1 is in B but
0 is not. In the first case, the preimage of B under g1 is the empty set, and in the second case the preimage
is Ω which are both trivially contained in G1. In the third case when 0 ∈ B and 1 /∈ B, then by the previous
discussion on the countability and cocountability of the sets {x : g1(X) 6= 0} and {x : g1(X) 6= 1}, we see
that the preimage of B under g1 must be contained in G1. By the exact same argument, we see that the
fourth case also follows. By the same argument given, we can see that g2 is also G1-measurable, therefore g
is also G1-measurable.

Let H be a set in G1, and let Px be any probability measure in our family of measures. Then, by
construction of G1, we have that

Ex [f(R1(· ))IH ] = Ex [f(· )IH ]

7



Thus, we have that

Ex [gIH ] = Ex

[

1

2
(g1 + g2) IH

]

(60)

= Ex

[

1

2
(f + f(R1)) IH

]

(61)

= Ex [fIH ] (62)

Thus we can conclude that G1 is a sufficient subfield. By symmetry of the definitions, G2 is also a sufficient
subfield.

Despite the negative result for unions of sufficient subfields, we use the results about iterates of conditional
expectation operators to show that the result for intersections is positive under the very mild condition that
at least one of G1 or G2 contain the {Pγ}-null sets. Note that in the above counterexample, this condition
was satisfied since we showed that N ⊂ G1 and N ⊂ G2.

Theorem 5.1 Suppose that N is contained in one of the subfields G1 or G2 (or both). Then the subfield
G = G1 ∩ G2 is sufficient.

Proof Once again, we work in the general setting of the probability space (Ω,F , {Pγ}) and we work with
arbitrary sufficient subfields of F , G1 and G2. We can suppose without loss of generality that N ⊂ G2. If not
we just swap G1 and G2. Let us define the sequence of σ-fields as follows. For k ≥ 1 define

G2k−1 = G1 (63)

G2k = G2 (64)

Fix a function f that is F -measurable and bounded. By the definition of sufficiency, there exists a function
g1 satisfying

g1 = Eγ [f |G∞]

for all γ ∈ Γ. Similarly, by use of sufficiency again, we can inductively define gn to be the function that
satisfies

gn = Eγ [gn−1|G∞]

for all γ ∈ Γ. Let us define the function g(X) and h(X) pointwise as follows

g(X) =

{

limn→∞ g2n−1(X) if the limit exists
0 otherwise

h(X) =

{

limn→∞ g2n(X) if the limit exists
0 otherwise

Thus by applying Theorem 4.1, we see that

lim
n→∞

gn = E
[

f |Ḡ1 ∩ Ḡ2

]

where we denote Ḡi to be the completion of the σ-field G1 with respect to the set of probability measures
{Pγ}. Thus we have that g = E

[

f |Ḡ1 ∩ Ḡ2

]

and that {g(X) 6= h(X)} ∈ N . The reason why this is true
is that the convergence in Theorem 4.1 is almost surely. In particular we have that g − h is G2-measurable
since G2 contains N . Thus by measurability of g − h and h with respect to G2, we can conclude that g is
also G2-measurable. By construction, g is also G1-measurable. Thus g is G1 ∩ G2-measurable.

We then note that Ḡ1 ∩ Ḡ2 ⊃ G1 ∩ G2 and by the tower and idempotence properties of conditional
expectations,

Eγ [f |G1 ∩ G2] = Eγ

[

Eγ

[

f |Ḡ1 ∩ Ḡ2

]

|G1 ∩ G2

]

(65)

= Eγ [g|G1 ∩ G2] (66)

= g (67)

Thus we see that the subfield G1 ∩ G2 satisfies the definition of sufficiency.
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We now consider the remaining two questions concerning the sufficiency of ∩∞
n=1Gn and σ(∪∞

n=1Gn). By
the counter example given, we conclude that the second subfield may not be sufficient in general, by taking
Gn = G2 for n ≥ 2 and then invoking the above example. However, we will answer the question about the
sufficiency of ∩∞

n=1Gn affirmatively.

Theorem 5.2 Let {Gn}∞n=1 be a countable collection of sufficient subfields. Then if Gn ⊃ Gn+1 for all n ≥ 1,
then ∩∞

n=1Gn is sufficient.

Proof By definition of sufficiency, if we are given any bounded F -measurable function f , there exists a
Gn-measurable function gn such that gn = Eγ [f |Gn] for all γ ∈ Γ. Define the function g pointwise by

g(X) =

{

limn→∞ gn(X) if the limit exists
0 otherwise

Suppose that we are in the first situation, where we have a decreasing sequence of σ-fields. Then we have
that g is ∩∞

n=1Gn-measurable. By the continuity of conditional expectations, we have that

Eγ [f | ∩
∞
n=1 Gn] = lim

n→∞
gn

Thus g = Eγ [f | ∩∞
n=1 Gn] for all γ ∈ Γ. So we conclude that ∩∞

n=1Gn is a sufficient subfield.

We combine the above with the theorem of the sufficiency of the intersection of two subfields to get a
proof for the sufficiency of a countable intersection below.

Theorem 5.3 Let {Gn}∞n=1 be a countable collection of sufficient subfields such that N ⊂ Gn for all n ≥ 1.
Then ∩∞

n=1Gn is also sufficient.

Proof Define Hn = ∩n
k=1Gk. Then, by applying induction to Theorem 5.1, we see that for each n ≥ 1,

Hn is sufficient. Since Hn ⊃ Hn+1, we conclude by Theorem 5.2 that ∩∞
n=1Hn is also sufficient. But

∩∞
n=1Gn = ∩∞

n=1Hn, so ∩∞
n=1Gn is a sufficient subfield.
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