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Quasi-long-range order in trapped systems
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We investigate the effects of a trapping space-dependent potential on the low-temperature quasi-
long-range order phase of two-dimensional particle systems with a relevant U(1) symmetry, such
as quantum atomic gases. We characterize the universal features of the trap-size dependence using
scaling arguments. The resulting scenario is supported by numerical Monte Carlo simulations of a
classical two-dimensional XY model with a space-dependent hopping parameter whose inhomogene-
ity is analogous to that arising from the trapping potential in experiments of atomic gases.
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Statistical systems are generally nonhomogeneous in
nature, while homogeneous systems are often an ideal
limit of experimental conditions. Thus, in the study of
critical phenomena, an important issue is how critical be-
haviors develop in nonhomogenous systems. Particularly
interesting physical systems are interacting particles con-
strained within a limited region of space by an external
potential. This is a common feature of the experimental
realizations of the Bose-Einstein condensation (BEC) in
diluted atomic vapors [1] and of optical lattices of cold
atoms [2], which have provided a great opportunity to in-
vestigate the interplay between quantum and statistical
behaviors in particle systems.

In the BEC scenario, a macroscopic number of bosonic
atoms accumulate in a single quantum state and are de-
scribed by a condensate wave function, which naturally
provides the complex order parameter ψ(x) of the phase
transition and its relevant U(1) symmetry. These global
features characterize the XY universality class which de-
scribes the universal critical behavior of a large class of
systems, see, e.g., Ref. [3]. The critical behavior aris-
ing from the formation of the condensate in a trapped
Bose gas has been investigated experimentally [4], ob-
serving an increasing correlation length compatible with
the behavior expected at a continuous transition of ho-
mogeneous systems belonging the three-dimensional (3D)
XY universality class. Two-dimensional (2D) homoge-
neous gases of bosonic particles do not show a real BEC
with decreasing the temperature T . Neverthless, they
are expected to experience a finite-T Kosterlitz-Thouless
(KT) transition [5] separating the high-T phase with
short-ranged correlations from a low-T phase character-
ized by a quasi-long-range order (QLRO), where the one-
body correlation function decays algebraically at large
distance. Experimental evidences of such a transition
in trapped Bose atomic gases have been provided in
Refs. [6–8].

However, the inhomogeneity due to the trapping po-

tential drastically changes the general features of the crit-
ical behavior at the transition separating the high-T and
low-T phases, and, in the case of 2D systems, of the
QLRO phase. For example, correlation functions of the
critical modes do not develop a diverging length scale in
a trap. The critical behavior of the unconfined homo-
geneous system could be observed around the middle of
the trap only when the length scale ξ of the correlations
is much smaller than the length scale ξt induced by the
trap size, and one looks at small-distance correlations rel-
atively to ξt. If ξ is large but not much smaller than the
trap size, the critical behavior gets somehow distorted by
the trap, although it gives rise to universal effects in the
large trap-size limit, controlled by the universality class
of the phase transition of the unconfined system [9, 10].
The understanding of the trap effects is necessary for an
accurate determination of the critical parameters, see,
e.g., Refs. [8, 11].
In this paper we consider 2D systems showing a low-T

QLRO phase in their phase diagram, after a KT transi-
tion. We investigate how the presence of the trap changes
the main features of the QLRO of the homogeneous sys-
tem and, therefore, how one may get evidence of the
QLRO phase from the behavior of the system in the pres-
ence of the trap. For this purpose, we resort to a scaling
analysis which allows us to take into account the trap
length scale when it becomes sufficiently large, exploit-
ing the universality of the scaling behavior.
The above considerations also apply to other physi-

cally interesting models, such as the Bose-Hubbard (BH)
model [12] at its finite-T superfluid transition, whose
Hamiltonian in the presence of confining potential reads

HBH = −
J

2

∑
〈ij〉

(b†i bj + h.c.) +
U

2

∑
i

ni(ni − 1)

+
∑
i

(µ+ v2r2)ni, (1)

where the sum runs over the bonds 〈ij〉 of a d-dimensional
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lattice, bi are bosonic operators, ni ≡ b†ibi is the parti-
cle density, r the distance from the center of the trap.
The trap size is defined as l ≡ J1/2/v, see, e.g., [14].
The BH model is of experimental relevance because it
describes cold bosonic atoms trapped in a limited space
region of optical lattices [13]. Other transitions in the
XY universality class are the 4He superfluid transition,
insulator-superconductor transitions, like that of the at-
tractive Hubbard model, etc....
In a standard scenario for a continuous transition, see,

e.g., [3], the critical behavior of a d-dimensional system
is characterized by two relevant parameters ut and uh,
which may be associated with T , i.e., ut ∼ T/Tc − 1
and the external field h coupled to the order parameter,
with renormalization-group (RG) dimension yt = 1/ν
and yh = (d + 2 − η)/2. The presence of a trap of size
l generally induces a further length scale ξt, which must
be taken into account to describe the critical correlations.
Within the trap-size scaling (TSS) framework [9, 10], the
scaling law of the singular part of the free energy density
around the center of the trap can be written as

Fsing = l−θdF(utl
θyt, uhl

θyh, xl−θ) (2)

where θ is the trap exponent. At the critical point (ut =
0), the length scale induced by the trap behaves as ξt ∼
lθ, and the correlation function of the order parameter as

G(x, y) ≡ 〈ψ̄(x)ψ(y)〉c = l−θηG(xl−θ, yl−θ). (3)

Finite size effects, due to a finite volume Ld, can be taken
into account by adding a further dependence on Ll−θ in
the above scaling Ansatz [15].
The value of θ depends on the way the external con-

fining field is coupled to the model variables. In the
case relevant for the above-mentioned particle systems,
the external trapping potential is coupled to the parti-
cle density. The corresponding perturbation can be in-
ferred from the many-body Hamiltonian [16] in the pres-
ence of the external potential V (x) = vpxp, i.e., PV =∫
ddxV (x)|ψ(x)|2 , where ψ(x) is the complex order-

parameter field. The computation of the RG dimen-
sions of the trap parameter leads to [9] θ = pν/(1 + pν).
In order to apply it to the KT transition of 2D U(1)-
symmetric systems, we formally set ν = ∞, correspond-
ing to the KT exponential behavior of the correlation
length ξ ∼ exp(τ−1/2) where τ ≡ T/Tc − 1 → 0+, thus
obtaining θ = 1 for any power p of the potential. For
comparison, we mention that θ = 0.57327(4) at the 3D
BEC transition in a harmonic trap [9]. Moreover, in a
Gaussian theory perturbed by PV , since ν = 1/2 we have
θ = p/(2+p), for any spatial dimension. It is worth men-
tioning that analogous TSS behaviors [10], with the same
trap exponents, apply to the quantum T = 0 superfluid-
Mott transition of the BH model (1) at fixed integer den-
sity, which belongs to the (d+1)-dimensional XY univer-
sality class [12].

A standard representative model of the 2D XY univer-
sality class is the classical square-lattice XY model,

H = −J
∑
〈ij〉

Re ψ̄iψj , ψi ≡ eiϕi ∈ U(1), (4)

which presents the same universal features of 2D sys-
tems whose phase diagram shows a KT transition be-
tween high-T and low-T QLRO phases. We may further
exploit universality to investigate the effects of an in-
homogeneity analogous to that of 2D trapped particle
systems, where the external confining potential is gener-
ally coupled to the particle density, which can be asso-
ciated with an energy-density operator in a correspond-
ing effective model. A 2D XY model with an external
space-dependent field coupled to the energy density is
obtained by considering a space-dependent hopping pa-
rameter Uij , [17]

HU = −J
∑
〈ij〉

Re ψ̄iUijψj , (5)

Uij = 1 + V (rij), V (r) = vprp, (6)

where p is an even positive integer, rij is the distance
from the origin of the midpoint of nearest-neighbor sites.
We set J = 1. The inhomogeneity arising from the space
dependence of Uij is analogous to that arising from a
trapping potential in particle systems, such as the BH
model (1). Thus, l ≡ 1/v may be considered as the
analog of the trap size. At large distance, since V (r) →
∞, the spin variables get effectively frozen. When p →
∞ the effect of the external potential V is equivalent to
confining a homogeneous system in a box of size L = l =
1/v, and the TSS becomes the standard finite-size scaling
(FSS). At the critical KT temperature Tc = 0.893(1) [18]
of the homogeneous model (4), the TSS of the model (5)
is expected to follow the scaling Ansatz (2) and (3), with
η = 1/4 and θ = 1 as computed above by RG arguments.
We now turn to the QLRO phase, which is the main

issue of this paper. The homogeneous model is criti-
cal in the whole low-T region T < Tc, where the cor-
relation function 〈ψ̄xψy〉 decays as 1/|x − y|η(T ) with a
T -dependent exponent η(T ): η(T ) = T/(2π) + O(T 2),
increasing up to η(Tc) = 1/4 (some numerical estimates
are reported in Refs. [19, 20]). This critical behavior is
controlled by a line of Gaussian fixed points, essentially
given by the spin-wave theory Hsw =

∫
d2x (∇ϕ)2, which

is the leading nontrivial term for T → 0. We may apply
the same spin-wave approximation to infer the value of θ
controlling the TSS in the QLRO phase. In the spin-wave
limit we obtain

Hsw =

∫
d2x

1

2
(1 + vprp)(∇ϕ)2. (7)

The trap exponent θ is related to the RG dimension yv
of parameter v, θ = 1/yv, which can be obtained from
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FIG. 1: Log-log plot of m0 ≡ 〈ψ0〉 for the model (5), at
T = 0.4, 0.5, 0.8, for L/l ≃ 2 [21]. Statistical errors are hardly

visible. The lines show fits to al−ζ/2.
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FIG. 2: G(0, x)/m2
0 vs x/l for the model (5), at T = 0.5, 0.8,

for several values of l, and L/l ≃ 2 [21]. The sets of data at
fixed T are clearly converging to a nontrivial large-l limit

the relation pyv−p+y(∂µϕ)2 = d taking also into account
that y(∂µϕ)2 = d in the spin-wave theory. We eventually
obtain θ = 1 independently of the power p.
Therefore, we have θ = 1 at very low-T , where the spin-

wave approximation holds, and at the KT transition at
T = Tc. A natural scenario is that the TSS has universal
features in the whole QLRO, with θ = 1 for any T ≤ Tc.
We shall provide numerical evidence of this scenario.
For this purpose, we present numerical results for the

model (5) with V (r) = (r/l)2, for T < Tc ≃ 0.893, ob-
tained by Monte Carlo (MC) simulations. We center the
trap in the middle of a square lattice (2L+1)× (2L+1).
The parameter L and l are chosen so that the spin vari-
ables close to the boundaries are effectively frozen, mak-
ing unnecessary the use of larger lattices. We use fixed
boundary conditions ψb = 1. [21]
We consider the local magnetization at the origin and

the two-point correlation function, defined as

m0 ≡ 〈ψ0〉, G(~x, ~y) ≡ 〈ψ̄~xψ~y〉 − 〈ψ̄~x〉〈ψ~y〉. (8)

The boundary conditions φb = 1 breaks the U(1) sym-
metry, thus allowing a nonzero local magnetization. Ac-
cording to the above scaling considerations, we expect
that their asymptotic trap-size dependence is

m0 ∼ l−η(T )θ/2, (9)

G(~x, ~y) ≈ l−η(T )θG(~x/lθ, ~y/lθ), (10)

where θ = 1 and η(T ) is the T -dependent exponent of the
homogeneous system. Since θ = 1, a nontrivial simulta-
neous FSS and TSS limit can be achieved by keeping L/l
fixed, where scaling behaviors analogous to Eqs. (9) and
(10) apply. [22]
Fig. 1 shows data of m0 for some values of T <

Tc. A power-law trap-size dependence is clearly sup-
ported by the data. Fits to al−ζ/2, see Fig. 1, give
ζ = 0.072(1), 0.093(1), 0.179(1) respectively for T =
0.4, 0.5, 0.8. Since according to Eq. (9) ζ = ηθ and θ = 1,
these results should be compared with the available esti-
mates of η(T ) obtained in homogeneous systems, which
are in good agreement [23].
Fig. 2 shows results for G(0, ~x). In agreement with

Eqs. (9) and (10), they show that G(0, ~x)/m2
0 = g(x/l) in

the large-l limit. At small distance x≪ l, g(y) ∼ y−η(T ),
to recover the behavior of the homogeneous system.
The spatial dependence of the local magnetization does

not show a simple scaling behavior. The numerical re-
sults appear consistent with

〈ψx〉 ≈ l−η(TX)/2f(X) (11)

where X ≡ x/l and TX ≡ T/(1 + X2), which can be
derived using arguments based on a local-temperature
approximation, noting that TX may be considered as an
effective local (space-dependent) temperature.
We also consider a 2D XY model where the hopping

parameter decreases moving far from the origin, i.e., re-
placing

Uij = [1 + V (rij)]
−1, V (r) = v2r2, (12)

in Eq. (5). In this case the regions far from the origin are
effectively in the high-T phase. The lattice system is set
as before, but we use open boundary conditions which
are compatible with a diverging hopping parameter at
large distance. Thus, 〈ψx〉 = 0 everywhere, including
the origin. MC simulations show that the TSS is again
characterized by the trap exponent θ = 1. This is shown
by Fig. 3, where we report lη(T )G(0, x) for several values
of l, L/l ≈ 2 [24], with η(T ) obtained from the data
of Fig. 1. The sets of data for T = 0.5 and T = 0.8 are
clearly converging to a nontrivial large-l limit, at least up
to X ≡ x/l corresponding to TX ≃ T/(1 + X2) = Tc ≈
0.893 (Xc ≈ 0.89, 0.34 for T = 0.5, 0.8 respectively). [25]
In conclusion, we have characterized the trap-size de-

pendence within the low-T QLRO phase and at the KT
finite-T transition of 2D trapped systems. Using scaling
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FIG. 3: lη(T )G(0, x) vs x/l, for the Uij given in Eq. (12), at
T = 0.5, 0.8, for several values of l, and L/l ≈ 2.

arguments, we have argued that it is described by the
TSS Ansatz (9) and (10) with the trap exponent θ = 1
in the whole QLRO phase, up to the KT transition. This
scenario has been supported by numerical results for clas-
sical 2D XY models with space-dependent hopping pa-
rameters, which give rise to inhomogeneities analogous
to that of trapped atomic gases in actual experiments.
These results should be useful to get evidence of QLRO
in trapped systems, and also determine the critical pa-
rameters at the KT transition, such as Tc in model (5).
For example, the KT critical point corresponds to a TSS
with η = 1/4, while values η < 1/4 corresponds to the
low-T QLRO phase.
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T. Esslinger, Science 315, 1556 (2007).

[5] J.M. Kosterlitz and D.J. Thouless, J. Phys. C: Solid State
6, 1181 (1973).
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