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NON-EQUILIBRIUM ALLELE FREQUENCY SPECTRA VIA SPECTRAL
METHODS

SERGIO LUKIĆ 1, JODY HEY, AND KEVIN CHEN

ABSTRACT. A major challenge in the analysis of population genomics data consists of
isolating signatures of natural selection from backgroundnoise caused by random drift
and gene flow. Analyses of massive amounts of data from many related populations re-
quire high-performance algorithms to determine the likelihood of different demographic
scenarios that could have shaped the observed neutral single nucleotide polymorphism
(SNP) allele frequency spectrum. In many areas of applied mathematics, Fourier Trans-
forms and Spectral Methods are firmly established tools to analyze spectra of signals and
model their dynamics as solutions of certain Partial Differential Equations (PDEs). When
spectral methods are applicable, they have excellent errorproperties and are the fastest
possible in high dimension. In this paper we present an explicit numerical solution, using
spectral methods, to the forward Kolmogorov equations for aWright-Fisher process with
migration ofK populations, influx of mutations, and multiple population splitting events.

1. INTRODUCTION

Natural selection is the force that drives the fixation of advantageous phenotypic traits,
and represses the increase in frequency of deleterious ones. The growing amount of
genome-wide sequence and polymorphism data motivates the development of new tools
for the study of natural selection. Distinguishing betweengenuine selection and the effect
of demographic history, such as gene-flow and population bottlenecks, on genetic varia-
tion presents a major technical challenge. A traditional population genetics approach to
the problem, focuses on computing neutral allele frequencyspectra to infer signatures of
natural selection as deviations from neutrality. Diffusion theory provides a set of classi-
cal techniques to predict such frequency spectra, [8, 21, 4]; while the connection between
diffusion and the theory of Partial Differential Equations(PDEs) allows to borrow well
established high-perfomance algorithms from applied mathematics.

The theory of predicting the frequency spectrum under irreversible mutation was de-
veloped by Fisher, Wright and Kimura [6, 22, 13]. In particular Kimura [14] noted that
this theory was applicable to many nucleotide positions andintroduced theinfinite sites
model. The joint frequency spectra of neutral alleles can be obtained from the coalescent
model [20] or by Monte-Carlo simulations [11]. The analysisin terms of diffusion theory
is mathematically simpler and can incorporate natural selection easily, [8, 21, 4]. In this
paper, we model the demographic history ofK different populations that are descended by
K − 1 population splitting events from a common ancestral population. The populations
evolve with gene exchange under an infinite sites mutation model. We introduce a powerful
numerical scheme to solve the associated forward diffusionequations. After introducing
a regularized discretization of the problem, we show how spectral methods are applied to
compute theoretical Non-Equilibrium Frequency Spectra.
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FIGURE 1. A graphical representation of a model for the demographic
history of three populations.

The introduction of spectral methods is usually atributed to [16], although they are
based on older precursors, such as finite element methods, and Ritz methods in quantum
mechanics [17]. The basic idea consists of using finite truncations of expansions by com-
plete bases of functions, to approximate the solutions of a PDE. This truncation allows to
transform a diffusion PDE into a finite system of Ordinary Differential Equations (ODEs).
The motivation to use these methods relies on their excellent error properties, and their
high speed. In general, they are the preferred methods when the dimension of the domain
is high [15], and the solutions to the PDE are smooth. This is because the number of basis
functions that one needs to approximate the solutions of a PDE, is much lower than the
number of grid-points that one needs in a finite difference scheme, working at the same
level of accuracy [7].

As we show in this paper, the convergence of spectral methodsdepends on the smooth-
ness of the solutions to be approximated. In many situations, solutions to diffusion equa-
tions have good analytical properties, and spectral methods can be applied. However, the
application of these methods to the problem that interests us here, requires a proper dis-
cretization of the problem. Influx of mutations, populationsplitting events and boundary
conditions have to be properly regularized before one applies these methods and exploits
their high-perfomance properties.

1.1. Non-Equilibrium Frequency Spectra. TheK-dimensional Allele Frequency Spec-
trum (AFS) summarizes the joint allele frequencies inK populations. We distinguish
between the AFS, which consists of the unknown distributionof allele frequencies inK
natural populations, andobservationsof the AFS. Given DNA sequence data from multi-
ple individuals inK populations, the resultingobservationof the AFS is aK-dimensional
matrix with the allele counts (for a complete discussion on this see [20]). Each entry of
the matrix consists of the number of diallelic polymorphisms in which the derived allele
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was found. Or using other words, each entry of the AFS matrix is the observed number of
derived alleles,ja, found in the corresponding number of samples,na, from populationa
(1 ≤ a ≤ K).

The full AFS, is the real distribution of joint allele frequencies at the time when the
samples were collected. If the total number of diploid individuals in theath-population is
Na ≫ na, the natural allele frequenciesx1 = i1/2N1, x2 = i2/2N2, . . . xk = iK/2NK
(with ia the total number of derived polymorphisms in theath population) can be seen as
points in theK-dimensional cube[0, 1]K . Thus, given the frequencies of every diallelic
polymorphism (which we indexed byr) xr1, xr2, . . . , xrK , the AFS can be expressed as the
probability density function

(1.1) φ(x) =
1

S

S
∑

r=1

δ(x− xr1)δ(x − xr2) · · · δ(x− xrK).

Here,S is the total number of diallelic polymorphisms segregatingin theK populations,
andδ( ) is the Dirac delta function.

Our goal is to determine such AFS under the infinite sites model. Any demographic
scenario in the model is defined through a population tree topologyT , such as in Fig. 1,
and a set of paramaters that specify the effective population sizesNe,a, splitting timestA,
and migration ratesmab at different times. Hence,2Ne,amab is defined as the number of
haploid genomes that the populationa receives fromb per generation. For simplicity, we
refer to the set of parameters that specify a unique demographic scenario asΘ.

Thus, given a population tree topology and a choice of parameters, we will compute
theoretical densities of derived joint allele frequenciesas functions on[0, 1]K of the type

(1.2) φ(x|Θ, T ) =
Λ−1
∑

i1=0

Λ−1
∑

i2=0

· · ·
Λ−1
∑

iK=0

αi1,i2,...,iK (Θ, T )Ri1(x1)Ri2(x2) · · ·RiK (xK),

with Λ a truncation parameter,{Ri(x)}∞i=0 a complete basis of functions on the Hilbert
spaceL2[0, 1] to be defined below, andαi1···iK the coefficients associated to the projection
of φ(x|Θ, T ) onto the basis spanned by{Ri1(x)Ri2 (x) · · ·RiK (x)}. These continuous
densities relate to the expectation of anobservationof the AFS via standard binomial
sampling formulae
(1.3)

p(j1|n1; . . . ; jK |nK) =

∫

[0,1]K
φ(x|Θ, T )

K
∏

a=1

na!

(na − ja)!ja!
xjaa (1− xa)

na−jadxa.

Using Eq. (1.3) we can compare model and data, for instance, by means of maximum
likelihood estimates.

The major goals of this paper are twofold. First, we present the finite Markov chain
and diffusion approximation, associated to the infinite sites model used to compute neu-
tral allele spectra. A special emphasis is made on the boundary conditions and the influx
of mutations, because of their potential singular behavior. Second, we introduce spectral
methods and show how to transform the diffusion equations into coupled systems of Or-
dinary Differential Equations (ODEs) that can be integrated numerically. In particular, we
introduce a set of techniques to handle population splitting events, mutations and boundary
interactions, that protect the numerical setup against Gibbs phenomena. A detailed analy-
ses of the stability of the methods as function of the model parameters, and the control of
the numerical error, is included at the end of the paper.
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2. FINITE MARKOV CHAIN MODEL

The evolutionary dynamics of diallelic SNP frequencies in arandomly-mating diploid
population, can be modeled using a finite Markov chain, with discrete timet represent-
ing non-overlapping generations. For simplicity, we consider first one population withN
diploid individuals, and later will extend the results to more than one population.

The state of the Markov chain at timet, is described by the vectorfj(t), with 1 ≤ j ≤
2N . Each entry,fj(t), consists of the expected number of loci at which the derivedstate is
found onj chromosomes. Therefore,

∑2N−1
j=1 fj(t) is the expected number of polymorphic

loci segregating in the population at timet, andf2N (t) is the expected number of loci fixed
for the derived state. The model assumes that the total number of sites per individual is so
large, and the mutation rate per site so low, that whenever a mutation appears, always does
it on a previously homoallelic site, [14].

The vectorfj(t), is also called the density of states. Its time evolution under random
drift and mutation influx is described by the difference equations

(2.1) fj(t+ 1) =

2N
∑

i=1

P (j|i)fi(t) + µj(t), 1 ≤ j ≤ 2N.

In its simplest form, one assumes that the alleles in generation t+1 are derived by sampling
with replacement from the alleles in generationt. Therefore, the transition coefficients in
the chain Eq. (2.1) are

(2.2) P (j|i) =
(

2N

j

)

(i/2N)j{1− (i/2N)}2N−j.

This describes stochastic changes in the state after a discrete generation, Fig. 2. The second
term in Eq. (2.1) represents the influx of polymorphisms. Mutations are responsible for
the creation of new polymorphisms in the population. The influx of mutations depends on
the expected number of sites2Nν, in which new mutations appear in the population each
generation1. If we assume that each generation, every new mutation is found in just one
chromosome, then

(2.3) µj(t) = 2Nνδ1,j ,

for the mutation alone, [4]. The termδi,j in Eq. (2.3) is the Kronecker symbol, with
δ1,j = 1 if j = 1 andδ1,j = 0 otherwise.

2.1. Effective Mutation Densities. In applications of the infinite sites model, one usually
finds that the census population size and the effective population size that drives random
drift in Eq. (2.2), are not the same, [14]. For this reason, wedistinguish betweenNe,
the effective population size that defines the variance of the Wright-Fisher process in Eq.
(2.2), from the census population sizeN that can be used to define the allele frequencies
x = i/2N . Therefore, the smallest frequency,x = 1/2N , with which new mutations
enter populations will be sensitive to small stochastic fluctuations in the census population
size, even if the effective population size remains constant. This is important when we take
the diffusion limit of Eq. (2.1), and the stochastic processis described by the continuous

1The expected number of sites2Nν, relates to the expected number of mutations per base2Nu, by the total
lengthL of the genomic sequence under study in units of base pairs,ν = u× L. Sometimes in this paper, in an
abuse of notation we do not distinguish betweenν andu, and they are seen as the same quantity expressed with
different units.
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variablex = j/2N , rather than the integerj. If we consider a constant census population
size, the term Eq. (2.3) in the Markov chain is substituted by

(2.4) δ1,j 7→ δ(x − 1/2N),

in the diffusion limit. However, if the census population size per generation is a stochastic
variable distributed asF (N)dN , the diffusion limit of the mutation term will be

(2.5) δ1,j 7→ µ(x) =

∫ ∞

0

δ(x− 1/2N)F (N)dN.

We expect thatµ(x) will have some general properties, independent of the particular char-
acteristics ofF (N)dN . For instance, in many realistic scenariosµ(x) will be a function
that is nearly zero for frequenciesx > x∗, with x∗ = 1/2Nmin a very small characteristic
frequency associated to the inverse of the minimum census population size.

Other phenomena that might not be properly captured by the simple mutational model
in Eqs. (2.3) and (2.4), consist of organisms with partiallyoverlapping generations, and
organisms where mutations in gametes arise from somatic mutations. When an organism
has a mating pattern that violates the assumption of non-overlapping generations (e.g. hu-
mans), the generation time in the model Eq. (2.2) is interpreted as anaverage generation
time. Hence, during a generation unit, there is time enough for some individuals to be born
with new mutations at the beginning of the generation time, and to reproduce themselves
by the end of a generation unit. This implies that after one average generation, there can
exist new identical mutations in more than one chromosome. Similarly, when the gametes
of an organism originate from somatic tissue, they inherit de novo mutations that arised in
the soma after multiple cell divisions. If the individuals of such organism can have more
than one offspring per generation, one expects to find the same new mutation, in the same
site, in more than one chromosome per generation.

Because of these different biological phenomena, we believe that the notion ofeffective
mutation density, µ(x), is a more accurate way to describe mutations in natural popula-
tions. Theeffective mutation densitydescribes the average frequency distribution of new
mutations per generation, in one population, after taking into account the effects due to sto-
chastic changes in census population size, non-overlapping generations and/or mutations
of somatic origin. The major motivation here to use effective mutation densities rather
than Dirac deltas, is because of their good behavior under spectral methods. As we show
later when we discuss the continuous limit of the infinite sites model, different effective
mutation densities can yield predictions which are identical to predictions of models based
on Eq. (2.4).

2.2. More than one population. Here, we show how to incorporate arbitrarily more pop-
ulations, and migration flow between them. Generally, for the state in the chain we consider
a discrete random variable~X which takes values in theK-dimensional lattice of derived
allele frequencies:

(2.6) ~X =











i1/2N1

i2/2N2

...
iK/2NK











,

with K the number of populations, and0 ≤ ia ≤ 2Na. For simplicity, we use a single
index notation,0 ≤ I ≤ ∏

aNa, to label the states where the random variable~X takes
values. The random variable~X = I jumps to the state~X = J at a discrete generation
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unit, with prescribed probabilityP (J |I). The density of states in this multi-population
setup isfI(t), and the difference equations that describe its dynamics are equivalent to Eq.
(2.1). The transition matrix̂P = P (J |I), incorporates random drift and migration events

i

P(j|i)

j

P(k|i)

k

Time

FIGURE 2. One unit of time transition in a finite Markov chain.

between populations. New mutations enter each population with an effective mutation
vector~µ

(2.7) ~µ =

















0
...
µaj
...
0

















;

in the standard model, the mutation density isµaj = 2Naνδ1,j .
The Markov chain for a Wright-Fisher process for two independent populations is de-

fined by the transition matrix̂Pj1j2;i1i2 =

Bi(j1; 2Ne,1, i1/2Ne,1)Bi(j2; 2Ne,2, i2/2Ne,2),(2.8)

whereBi(j; k, p) stands for the binomial distribution with indexk and parameterp. Also,
we can introduce migration between populations, by sampling a constant number of alleles
nab in populationa that become part of the allele pool in populationb. Thus, in a model of
two populations with migration, one considers the transition matrix

P̂j1j2;i1i2 =

k1=n21,k2=n12
∑

k1,k2=0

Bi(j1 − k1; 2Ne,1 − n21, i1/2Ne,1)Bi(k1;n21, i2/2Ne,2)×

×Bi(j2 − k2; 2Ne,2 − n12, i2/2Ne,2)Bi(k2;n12, i1/2Ne,1).(2.9)

This process is generalizable to an arbitrary number of populations in a straightforward
way.
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3. DIFFUSION APPROXIMATION

Diffusion approximations to finite Markov chains have a distinguished history in pop-
ulation genetics, dating back to Wright and Fisher. This approach can be used to describe
the time evolution of derived allele frequencies in severalpopulations, with relatively large
population sizes. This approximation applies when the population sizesNa are large (if
Ne > 50, the binomial distribution with index2Ne can be accurately approximated by the
Gaussian distribution used in the diffusion limit) and migration rates are of order1/Ne.

In the large population size limit, the state space spanned by vectors such as Eq. (2.6),
converges to the continuous space[0, 1]K . The density of statesfI(t) on the state space,
will converge to a continuous densityφ(x, t) on [0, 1]K . The time evolution ofφ(x, t)
depends on how the inifinitesimal changeδ ~X,

~X(t+ δt) = ~X(t) + δ ~X,

is distributed. If the mean of theδ ~X distribution isM( ~X, t) and the covariance matrix is
C( ~X, t), the time continuous limitδt → 0+ of the process~X(t) is well defined. In the
small, but finite, limit ofδt the stochastic process obeys the equation

(3.1) ~X(t+ δt) = ~X(t) +M( ~X, t)δt+ σ( ~X, t)~ǫ
√
δt,

where~ǫ is a standard normal random variable (with zero mean and unitcovariance matrix)
in R

K , σ( ~X, t) is a root square of the covariance matrixC( ~X, t) = σσT ( ~X, t), andδt is
a finite, but very small, time step.

In the diffusion approximation to the discrete Markov chain, the process is described as
a time continuous stochastic process governed by Gaussian jumps of prescribed variance
and mean. These processes can be denoted using the notation of stochastic differential
equations:

(3.2) dXa
t =Ma(Xt, t)dt+

K
∑

b=1

σab(Xt, t)dW
b
t ,

wheredW b is the infinitesimal element of noise given by standard Brownian motion in
K-dimensions, andσ is the root square matrix of the covariance matrixC = σσT , [19].
The diffusion generator associated to Eq. (3.2) is

(3.3) L =

K
∑

a=1

Ma(x, t)
∂

∂xa
+

1

2

K
∑

b=1

Cab(x, t)
∂2

∂xa∂xb
.

Thus, if φ(x, t = 0) is the density of allele frequencies at time0, the time evolution of
φ(x, t) will be governed by the forward Kolmogorov equation
(3.4)

∂φ(x, t)

∂t
=

K
∑

a,b=1

1

2

∂2

∂xa∂xb
[

Cab(x, t)φ(x, t)
]

−
K
∑

a=1

∂

∂xa
[Ma(x, t)φ(x, t)] + ρ(x, t),

with ρ(x, t) an inhomogeneous terms, continuous limit ofµj in Eq. (2.1), that describes
the net influx of polymorphisms in the population per generation.

3.0.1. Modeling migration flow and random drift.The continuous limit of the Markov
chain defined in Eq. (2.9), in the case ofK diploid populations, and in the weak migration
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limit has as associated momenta

Ma(x, t) =
∑

b

mab(xb − xa),(3.5)

Cab(x, t) = δab
xa(1− xa)

2Ne,a
,(3.6)

with δab the Kronecker delta (δab = 1 if a = b andδab = 0 otherwise). The matrix
elementmab = nab/(2Na) defines the migration rate from thebth population to theath

population.
Thus, associated to such process one has the Kolmogorov forward equations

∂

∂t
φ(x, t) =

∑

a,b

1

2

∂2

∂xa∂xb

(

δab
xa(1− xa)

2Ne,a
φ(x, t)

)

− ∂

∂xa
(mab(xb − xa)φ(x, t)) + ρ(x, t).(3.7)

Eq. (3.7) describes the time evolution of the frequency spectrum density under random
drift and migration events between populations, given an initial density and absorbing
boundary conditions (see below). The inhomogenous termρ(x, t), models the total in-
coming/outgoing flow of SNPs per generation into theK-cube which is not due to the
diffusion flow, ja = −Maφ + ∂b(Cabφ), at the boundary. This total flow depends on
mutation events that generatede novoSNPs, coming inflow from higher dimensional com-
ponents of the allele density (see below), coming inflow frommigration events from lower
dimensional components of the allele density, and the outflow of migration events towards
higher dimensional components. If there is not a positive influx of SNPs, the density would
converge toφ(x, t) → 0 ast → ∞. In order to understand the probability flow between
different components of the density of alleles, we will haveto study how the boundary
conditions are defined precisely.

3.1. Boundary Conditions. Understanding the boundary conditions in this problem is
one of the most challenging tasks. In the famous solution of Kimura to the problem of
pure random drift in one population, [12], Kimura required the solutions to the diffusion
equation to be finite at the boundariesx = 0 andx = 1. This boundary condition is
absorbing. The pointsx = 0 andx = 1 describe states where SNPs reach the fixation of
their ancestral or derived states.

If we considerK populations, the natural generalization of Kimura’s boundary condi-
tions can be derived by studying the possible stochastic histories of single diallelic SNPs
segregating in theK populations. A SNP which is initially polymorphic in all theK pop-
ulations, can reach the fixation of its derived or ancestral state in one population while
still being polymorphic in the remainingK − 1 populations. More generally, a SNP can
be polymorphic inK − α populations, while its state can be fixated in the remainingα
populations. A convenient way of visualizing this, is by looking at the geometry of the
K-cube of allele frequencies, and the different subdimensional components of its bound-
ary (see examples Fig. 3 and Fig. 4 for the 2-cube and 3-cube).A K-cube’s boundary
can be decomposed as a set of cubes of lower dimensionality, from (K − 1)-cubes up to
0-cubes or points. The number of boundary components of codimensionα, i.e. the number
of (K − α)-cubes, contained in the boundary of theK-cube is

(3.8) #(K − α) cubes =
2αK!

(K − α)!α!
.
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φ(1,A) N2

φ(1,A;2,D) φ(2,D)

φ(0)

N1

φ(2,A) φ(2,A;1,D)

φ(1,D)

Ancestral and Derived
absorbing points

FIGURE 3. Decomposition of the singular probability density, for two
populations, on the two dimensional bulk and the different subdimen-
sional boundary components.

The most important set of boundary components are the(K − 1)-cubes, because any
other boundary component can be expressed as the intersection of a finite number of(K −
1)-cubes at the boundary. We identify each2K codimension-one boundary components,
by the population where the SNPs are not polymorphic, and by the state that is fixated in
such population (Derived or Ancestral). For example, the component(i, A) is defined as
the set of points in theK-cube that obeys the equationxi = 0, and the component(i,D) is
defined by the equationxi = 1. Therefore, any codimensionα boundary component can
be expressed as the intersection
(3.9)
(i1 S1)∩(i2 S2)∩· · · (iα Sα) = {x ∈ [0, 1]K |xi1 = δS1D; xi2 = δS2D; . . . ;xiα = δSαD},

with iα 6= iβ whenα 6= β, δS,D = 1 for the derived stateS = D, andδS,D = 0 for the
ancestral stateS = A.

To each boundary component of codimensionα we associate a(K − α)-dimensional
density of derived allele frequencies that are polymorphicjust on the correspondingK −
α populations, while are fixated in the otherα populations. In this way,φ(0) denotes
the bulk probability density,{φ(i,S)}i=Ki=1;S=A,D are the2K codimension one densities,

{φ(i,Si;j,Sj)}i6=j;Si,Sj=A,D the codimension 2 densities, etc. This decomposition is illus-
trated in the case of 2 and 3 populations in Fig. 4 and Fig. 3.
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N2

N1

N3

Ancestral and Derived
absorbing points

φ(2,A;3,A)

φ(2,A;1,D)φ(2,A)
φ(2,A;1,A)

φ(1,D)φ(0)φ(1,A)

φ(2,D;1,D)φ(2,D)φ(2,D;1,A)

φ(1,D;3,A)φ(1,A;3,A)

φ(2,D;3,A)

φ(2,A;3,D)

φ(2,D;3,D)

φ(1,D;3,D)

φ(1,A;3,D)

φ(1,A;2,D;3,A)

φ(1,D;2,D;3,A)

φ(1,D;2,A;3,A)

φ(1,A;2,D;3,D)

φ(1,A;2,A;3,D)

φ(1,D;2,A;3,D)

φ(3,A)

φ(3,D)

FIGURE 4. Decomposition of the singular probability density, for three
populations, on the three dimensional bulk and the different subdimen-
sional boundary components.

In this notation, we write the density of derived alleles segregating onK populations as
the generalized probability function

φ(x, t) = φ(0)(x, t) +

K
∑

i=1

(

φ(i,A)(x, t)δ(xi) + φ(i,D)(x, t)δ(xi − 1)
)

+

K
∑

i=1,j 6=i

(

φ(i,A;j,A)(x, t)δ(xi)δ(xj) + φ(i,A;j,D)(x, t)δ(xi)δ(xj − 1)

+φ(i,D;j,D)(x, t)δ(xi − 1)δ(xj − 1)
)

+

K
∑

i=1,j 6=i,k 6=i,k 6=j

. . .(3.10)

with δ(·) the Dirac delta-function. The points(1, A) ∩ (2, A) ∩ · · · (K, A) and(1, D) ∩
(2, D) ∩ · · · (K, D) are the universal fixation boundaries, and they do not contribute to
the total density of alleles in Eq. (3.10). It is useful to write the probability densityφ(x, t)
using such decomposition, because despite of being a singular generalized function, each
boundary componentφ(i,S1;j,S2,...)(x, t) will be, most of the times, a regular analytic func-
tion.

The dynamics of the boundary componentsφ(i1,S1;i2,S2,...)(x, t) are governed by diffu-
sion equations, with an inhomogenous term, of the type

∂

∂t
φ(i1,S1;i2,S2,...)(x, t) =

∑

a,b

1

2

∂2

∂xa∂xb

(

δab
xa(1− xa)

2Ne,a
φ(i1,S1;i2,S2,...)(x, t)

)

− ∂

∂xa

(

mab(xb − xa)φ
(i1,S1;i2,S2,...)(x, t)

)

+ ρ(i1,S1;i2,S2,...)(x, t),(3.11)

with ρ(i1,S1;i2,S2,...)(x, t) the net incoming/outgoing flow into the boundary component
(i1, S1) ∩ (i2, S2) ∩ . . .. Theρ term can be interpreted as an interaction term between
different boundary components.
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More precisely,ρ(i1,S1;i2,S2;...)(x, t) consists of four terms

(3.12) ρ(i1,S1;i2,S2;...;iα,Sα)(x, t) = ρmut(x, t)+ρdrift(x, t)+ρinm
(x, t)+ρoutm(x, t).

ρmut(x, t) is the influx of spontaneous mutations (only present in codimensionK − 1),
ρdrift(x, t) consists of the boundary inflow from codimensionα−1 components that have
(i1, S1) ∩ (i2, S2) ∩ . . . as a boundary component,ρinm

(x, t) represents the incoming flow
due to migration events from lower dimensional boundary components, andρoutm(x, t) is
the outflow due to migration events from(i1, S1) ∩ (i2, S2) ∩ . . . (iα, Sα) towards higher
dimensional components that have(i1, S1) ∩ (i2, S2) ∩ . . . (iα, Sα) as a boundary com-
ponent.

We can write in a more precise way each term inρ(i1,S1;i2,S2,...)(x, t), as follows:

• ρmut:

(3.13) ρ
(i1,S1;i2,S2;...;iα,Sα)
mut (x, t) =

∑

a

2Ne,auδα,K−1µ(xa)
α
∏

j=1

(1− δij ,a),

with δα,K−1 = 1 if α = K − 1, δα,K−1 = 0 if α 6= K − 1, andµ(xa) is the
mutation density (in the classical theory,µ(xa) = δ(xa − 1/2Ne,a)).

• ρdrift:

ρ
(i1,S1;i2,S2;...;iα,Sα)
drift (x, t) =

iα
∑

jα=i1

∑

a

(

δSjα ,A

( 1

4Ne,a
−
∑

b

mabxb

)

(3.14)

+δSjα ,D

( 1

4Ne,a
−
∑

b

mab(1− xb)
))

φ(j1,S1;j2,S2;...;jα−1,Sα−1)(xjα = δSjα ,D, x, t),

where the sum overjα is over all components of codimensionα − 1 that have
(i1, S1) ∩ (i2, S2) ∩ . . . (iα, Sα) as a boundary component. The sum overa andb
is over all populations that are noti1, i2, . . . iα.

• ρinm
: Here, and throughout,cα is a shorthand for the boundary component(i1, S1;

i2, S2; . . . ; iα, Sα). ρ
(cα)
inm

(x, t) represents the total incoming flow due to migra-
tion events of SNPs that are contained in densities of SNPs located at boundary
components ofcα. If Bd(cα) is the set of boundary components ofcα with fixed
codimensiond (α < d ≤ K),

Bd = {(i1, S1; i2, S2; . . . ; iα, Sα; jα+1, Sα+1; . . . jd, Sd)}jα+1,...,jd ,

thenρ(cα)inm
(x, t) can be written as the sum of contributions from all boundary com-

ponents inBd, for all codimensionsd = α+ 1, α+ 2, . . . , P , and for all possible
migration events from elementsq in Bd(cα) to cα:

(3.15)

ρ
(bcα)
inm

(x, t) =

K
∑

d=α+1

∑

q∈Bd

φ(q)(x, t)×





∑

e∈Γ(q→cα)

p(e)

d
∏

k=α+1

δ(xik − feik)



 .

Here,Γ(q → cα) is the set of all possible migrations events from SNPs inφ(q)

to φ(cα), p(e) denotes the probability of occurence of the migration evente, and
0 < fei ∈ cα denotes the expected frequency, in theith-population, of a SNP
that enterscα after the evente. We provide below a more precise description of
Eq. (3.15), such as a description of the event spaceΓ(q → cα), the corresponding
probabilities of occurence and expected frequencies.
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• ρoutm : Denotes the outflow of SNPs due to migration events to higherdimensional

boundary components. In other words,ρ
(cα)
outm measures the rate of loss of SNPs in

φ(cα), because of migration flow towards boundary components of codimension
d < α, that havecα as a boundary component. LetI∂q,cα be a discrete function
that returns 1 whencα is a boundary component ofq, and zero when it is not.
Thus,

ρ
(cα)
outm(x, t) = −φ(cα)(x, t) ×

α−1
∑

d=0

∑

q∈Bd

I∂q,cα





∑

e∈Γ(cα→q)

p(e)



 .(3.16)

To compute Eq. (3.15) and Eq. (3.16), it is unavoidable to useapproximations. In
principle, one could use the transition probabilities of the finite Markov chain to estimate
the probabilities of different migration events and their expected allele frequencies. How-
ever, there is a simpler approximation, which is consistentwith the weak migration limit
in which the diffusion equation is derived.

This approximation follows from the observation that at theboundaryxa = δS,D, the
strength of random drift along the populationa vanishes (xa(1− xa) = 0), and hence, the
infinitesimal change inxa obeys a deterministic equation:

(3.17)
dxa
dt

=
∑

b

δS,Amabxb − δS,Dmab(1 − xb).

Eq. (3.17) implies that a migration event from several populationsb, to a target population
a, can push the frequencyxa of a SNP, out of the boundary where it was initially fixated
(xa = δS,D).

Therefore, given aK-cube, a boundary componentcα (of codimensionα), and a bound-
ary componentq (of codimensionβ > α) of cα, we say that there will exist migration flow
from q to cα, if and only if

dxat
dt

=
K
∑

b=1

δSat
,Amatbxb − δSat

,Dmatb(1− xb) 6= 0,(3.18)

dxn
dt

=
K
∑

b=1

δSn,Amnbxb − δSn,Dmnb(1− xb) = 0,(3.19)

where{xn}αn=1 denote the allele frequencies of SNPs which are fixated at theboundary
componentscα andq, {at}Kat=α+1 are the populations atcα whose allele frequencies are
polymorphic, and the frequenciesxb are defined at the boundary componentq (which
means thatxb is polymorphic as long asb > β, and isδSb,D otherwise). It is important to
realize thatxb can be0 or 1 at q, and a migration event tocα can still bring alleles of the
opposite state that is fixated in the target population.

In this approximation,Γ(q → cα) consists of a single element, andp(e) can be zero
or one. If Eq. (3.18) and Eq. (3.19) are satisfied, the migration event inΓ(q → cα) has
probabilityp(e) = 1, and the expected frequencies are

(3.20) fat =

K
∑

b=1

δSat
,Amatbxb − δSat

,Dmatb(1− xb).

If Eq. (3.18) and Eq. (3.19) are not satisfied,p(e) = 0, and we say that there is not
migration flow fromq to cα.
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3.2. Effective Mutation Densities. Given a constant spontaneous mutation rate in the
species under study, ofu “base substitutions per site and per generation,” and expected
number of sitesν = L× u where new mutations appear in the population each generation,
the total number ofde novomutant sites that appear in the populationa, every generation,
is 2Ne,aν. We can model this constant influx of mutations by adding a Dirac delta term

(3.21) 2Ne,aνδ(xa − 1/2Ne,a),

to theK diffusion equations that govern the ancestral components of codimensionK − 1
φ(i1 A)∩(i2 A)∩···(iK−1 A)(x, t). However, as we discussed above, more generally we work
with a effective mutation density

(3.22) 2Ne,aνµ(xa).

As a particular example of an effective mutation density, weconsider a stochastic census
population size, which is a random variable distributed as

(3.23) F (N)dN =
c

2N2
exp(−κ/2N)dN.

This distribution avoids extremely small populations by anexponential tail, while large
population sizes are distributed as∼ N−2, as shown in Fig. 5. In this model, we keep
constant the effective population sizeNe that defines the variance of random drift in Eq.
(3.6). Thus, the mutation density will be

(3.24) µ(x) =

∫ ∞

0

δ(x− 1/2M)
c

2M2
exp(−κ/2M)dM.

We can integrate exactly Eq. (3.24), by making the change of variablesy = 1/2M ,
dM = −dy/2y2:

µ(x) = c exp(−κx).(3.25)

FIGURE 5. A model for a stochastic census population size, with ex-
ponential decay in the small population size limit, a quadratic decay
∼ N−2 in the large population size limit, and a population peak atN =
1000.
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3.3. Population splitting events. So far we have studied how the allele frequency density
changes as function of time while the number of populationsK remains constant. When
two populations split, the diffusion jumps to dimensionK+1, and the corresponding den-
sity will obey the time evolution defined by Eq. (3.7) forK +1 populations, with different
population sizes and migration parameters. The initial density φK+1(x, xK+1, t) in the
K + 1 diffusion problem is determined from the densityφK(x, t), before the populations
split. Therefore, if populationK + 1 was formed byNf,a migrant founders from theath

population, then

(3.26) φK+1(x, xK+1, t) = φK(x, t)

√

Nf,a
πxa(1 − xa)

e−Nf,a(xa−xK+1)
2/(xa(1−xa)).

In the limitNf,a → ∞, Eq. (3.26), simplifies to

(3.27) φK+1(x, xK+1, t) = φK(x, t)δ(xa − xK+1),

with δ(x) the Dirac delta. Additionally, if the new population is formed by migrants from
two populations merging, with a proportionf from populationi and1−f from population
b, then

(3.28) φK+1(x, xK+1, t) = φK(x, t)δ(fxa + (1 − f)xb − xK+1).

In the diffusion framework, one can also deal with populations that go extinct or become
completely isolated. More precisely, if we remove theath population, the initial density in
theK − 1 dimensional problem will be

(3.29) φK−1(x̃, t) =

∫

[0,1]

φK(x, t)dxa.

4. SOLUTION TO THE DIFFUSION EQUATIONS USING SPECTRAL METHODS

The idea behind spectral methods consists in borrowing analytical methods from the
theory of Hilbert spaces to transform a partial differential equation, such as Eq. (3.7), into
an ordinary differential equation that can be integrated numerically using, for instance, a
Runge-Kutta method.

In general, the problems that we are interested in are mixed initial-boundary value prob-
lems of the form

∂φ(x, t)

∂t
= LFP (x, t)φ(x, t) + ρ(x, t), x ∈ D = [0, 1]K ,(4.1)

B(x)φ(x, t) = 0, x ∈ ∂D, t > 0,(4.2)

φ(x, 0) = g(x), x ∈ D,(4.3)

whereD = [0, 1]K is the frequency spectrum domain with boundary∂D, LFP (x, t) is a
linear differential operator also known as the Fokker-Planck operator,ρ(x, t) is a function,
andB(x) is the linear boundary operator that defines the boundary condition. In this paper,
we are interested in the particular set of PDEs defined in Eq. (3.7), although we sometimes
keep the notation of Eq. (4.1) as a shorthand.

We assume thatφ(x, t) is, for all t, an element of a Hilbert spaceH of square integrable
functions, and associatedL2-product〈 , 〉L2 . Furthermore, we assume that all functions in
H satisfy the boundary conditions imposed by Eq. (4.2). In spectral methods we consider a
complete orthogonal basis of functions forH, that we denote by{ψi(x)}∞i=0, which obeys

(4.4) 〈ψi, ψj〉L2 = hiδij ,
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with hi a function ofi that depends on the particular choice of basis functions. One then
approximatesφ(x, t) as the truncated expansion

(4.5) PΛφ(x, t) =

Λ−1
∑

i=0

αi(t)ψi(x).

Similarly, one approximates the PDE in Eq. (4.1) by projecting it onto the finite dimen-
sional basis{ψi(x)}Λ−1

i=0 , as

(4.6)
∂

∂t
PΛφ(x, t) = PΛLFP (x, t)PΛφ(x, t) + PΛρ(x, t).

By HΛ we denote the finite dimensional space spanned by{ψi(x)}Λ−1
i=0 , and byPΛ the

corresponding projectorH → HΛ. If

PΛLFP (x, t)PΛφ(x, t) =

Λ−1
∑

i,j=0

ωij(t)ψi(x)αj(t)

PΛρ(x, t) =

Λ−1
∑

i=0

βiψi(x),

we can re-write the ODE in Eq. (4.6) using justmodalvariables as

(4.7)
∂αi(t)

∂t
=

Λ−1
∑

j=0

ωij(t)αj(t) + βi.

One can solve Eq. (4.7) by discretizing the time variablet, and using a standard numer-
ical method to integrate ODEs. Therefore, the spectral solution to the diffusion PDE is
expressed in the form of a truncated expansion, like Eq. (4.5), and has coefficients deter-
mined by the integral of Eq. (4.7).

There are many different ways to construct sequences of approximating spacesHΛ that
converge toH in the limitΛ → ∞, when the domain is theK-cube. Here, we follow other
authors’ preferred choice [7], and choose the basis of Chebyshev polynomials of the first
kind. In the following section we introduce Chebyshev expansions and show why they are
a preferred choice.

4.1. Approximation of functions by Chebyshev expansions.Let {Ti(x)}∞i=0 be the ba-
sis of Chebyshev polynomials of the first kind. They are the set of eigenfunctions that solve
the singular Sturm-Liouville problem

(4.8)
d

dx

(

√

1− x2
dTi(x)

dx

)

+
i2√

1− x2
Ti(x) = 0,

with i = 0, 1, . . . ,∞, and−1 ≤ x ≤ 1. {Ti(x)}∞n=0 are orthogonal under theL2-product
with weight functionw(x) = 1/

√
1− x2:

(4.9)
∫

[−1,1]

Ti(x)Tj(x)
dx√
1− x2

=
πci
2
δij ,

wherec0 = 2 andci>0 = 1. This basis of polynomials is a natural basis for the approxima-
tion of functions on a finite interval because the associatedGauss-Chebyshev quadrature
formulae have an exact closed form, the evaluation of the polynomials is very efficient, and
the convergence properties of the Chebyshev expansions areexcellent [7].
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The Chebyshev polynomials of the first kind can be evaluated by using trigonometric
functions, because of the identityTi(x) = cos(i arccos(x)). The derivatives of the basis
functions can computed by utilizing the recursion

(4.10) Ti(x) = − 1

2(i− 1)
T ′
i (x) +

1

2(i+ 1)
T ′
i (x),

to express the derivate as

(4.11) T ′
i (x) =

i−1
∑

j=0 |j+i odd

1

cj
Tj(x).

Similar formulae can be found for higher derivatives. The coefficients in the expansion

(4.12) PΛf(x) =

Λ−1
∑

i=0

aiTi(x),

can be calculated by using the orthogonality relations of the basis functions

(4.13) ai =
2

πci

∫ 1

−1

f(x)Ti(x)
dx√
1− x2

.

However, a direct evaluation of the continuous inner product, Eq. (4.13), can be a source
of considerable problems as it is in the case of the Fourier series. The classical solution
lies in the introduction of a Gauss quadrature of the form
(4.14)

2

πci

∫ 1

−1

f(x)Ti(x)
dx√
1− x2

≃ 2

ciQ

Q
∑

k=1

f(xk)Ti(xk), xk = cos

(

2k − 1

2Q
π

)

.

If f(x) is smooth enough, the finite sum overQ grid points in Eq. (4.14) will converge
quicker thanO(Q−1) to the exact formula, [15]. As Eq. (4.14) is equivalent to a discrete
Fourier cosine transform, general results on the convergence of cosine transforms apply
also to this problem. One can see this relationship by considering the change of variables
x = cos y:

(4.15)
2

πci

∫ 1

−1

f(x)Ti(x)
dx√
1− x2

=
2

πci

∫ π

0

f(cos y) cos(iy)dy,

and choosingQ equally spaced abscissas in the interval0 ≤ y ≤ π,
(4.16)

2

πci

∫ π

0

f(cos y) cos(iy)dy ≃ 2

πci

π

Q

Q
∑

k=1

f

[

cos

(

2k − 1

2Q
π

)]

cos

(

i
2k − 1

2Q
π

)

.

In order to study the convergence properties of the Chebyshev expansions Eq. (4.12),
we exploit the rich analytical structure of the Chebyshev polynomials. By using the identity
Eq. (4.8), one can re-write Eq. (4.13) as

(4.17) ai = − 2

πcii2

∫ 1

−1

f(x)
d

dx

[

√

1− x2
dTi(x)

dx

]

dx.

If f(x) is C1([−1, 1]) (i.e., if its first derivative is continuous), we can integrate by parts
twice Eq. (4.17) to obtain

(4.18) ai = − 2

πcii2

∫ 1

−1

√

1− x2
d

dx

[

√

1− x2
df(x)

dx

]

Ti(x)√
1− x2

dx.
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We can repeat this process as many times asf(x) is differentiable; thus, iff(x) ∈ C2q−1([−1, 1])
then

(4.19) ai = − 2

πcii2q

∫ 1

−1

[(

√

1− x2
d

dx

√

1− x2
d

dx

)q

f(x)

]

Ti(x)
dx√
1− x2

.

If we use the truncation error
(4.20)

‖f(x)− PΛf(x)‖L2 =





∫ 1

−1

∣

∣

∣

∣

∣

f(x)−
Λ−1
∑

i=0

aiTi(x)

∣

∣

∣

∣

∣

2

dx√
1− x2





1/2

=

(

∞
∑

i=Λ

|ai|2
)1/2

.

as a measure of convergence of the Chebyshev expansion, we may estimate its asymptotic
expansion by calculating the rate of decrease ofai. But, as we showed in Eq. (4.19),
|ai| = c(q)

i2q , for some constantc(q), if f(x) ∈ C2q−1([−1, 1]). Therefore, for largeΛ the
error decreases as a power law

(4.21) ‖f(x)− PΛf(x)‖L2 =

(

∞
∑

i=Λ

|ai|2
)1/2

≤ c

Λ2q−1
,

and if the function is infinitely differentiable (q = ∞), the corresponding Chebyshev series
expansion will converge faster than any power of1/Λ.

In the applications of this paper we will work with re-scaledChebyshev polynomials.
As the Allele Frequency Spectrum is defined on the interval[0, 1], or direct products of
it, we re-scale the Chebyshev polynomials to obtain an orthonormal basis on[0, 1]. More
precisely, the basis that we use is{Ri(x) = αiTi((1 − x)/2)}∞i=0 with x ∈ [0, 1], α0 =

1/
√
π, αi>0 =

√
2/

√
π, L2-product:

(4.22) 〈f, g〉 =
∫

[0,1]

f(x)g(x)
dx

√

x(1 − x)
,

and orthonormality relations,

(4.23)
∫

[0,1]

Ri(x)Rj(x)
dx

√

x(1 − x)
= δij .

4.1.1. High-dimensional domains and spectral approximations of functional spaces.The
joint site frequency spectrum ofK populations can be defined as a density on[0, 1]K . A
natural basis of functions on the Hilbert spaceL2

w([0, 1]
K), comes from the tensor prod-

uct of one dimensional functions. More particularly, we consider the tensor product of
Chebyshev polynomials

(4.24) ψi1,i2,...iK (x) = Ri1(x1)Ri2(x2) · · ·RiK (xK),

becauseL2
w([0, 1]

K) = L2
w([0, 1]) ⊗ · · · ⊗ L2

w([0, 1]). Therefore, any square integrable
functionF (x) under theL2-product

(4.25) 〈F (x), G(x)〉w =

∫

[0,1]K
F (x)G(x)

K
∏

a=1

dxa
√

xa(1− xa)
,

can be approximated as multi-dimensional Chebyshev expansion

(4.26) F (x) =

Λ1−1
∑

i1=0

Λ2−1
∑

i2=0

· · ·
ΛK−1
∑

iK=0

αi1,i2,...iKRi1 (x1)Ri2 (x2) · · ·RiK (xK).
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The truncation parametersΛ1, Λ2 . . . can be fixed depending on the analytical properties
of the set of functions that one wants to approximate, and their corresponding truncation
errors. There always exist a trade off between the accuracy of the approximation (the
higher theΛ the more accurate the approximation) and the speed of the implementation
of the algorithm (the lower theΛ, the faster the algorithm); therefore, choosing different
values ofΛi will yield more optimal implementations of the algorithm. Here, for simplicity
in the notation, we use a unique truncation parameterΛ = Λ1 = · · · = ΛK .

4.2. Diffusion Operators in Modal Variables. In order to approximate the PDEs defined
in Eq. (3.7) by a system of ODEs in the modal Chebyshev variables such as Eq. (4.7), we
need to project the Fokker-Planck operator in the Chebyshevbasis spanned by Eq. (4.24).
Later on we will show how to deal with the influx of mutations specified by the Dirac
deltas.

A direct projection of the Fokker-Planck operator onto the Chebyshev basis spanned
by Eq. (4.24), would require to store the coefficients in a huge matrix withΛ2K matrix
elements. Fortunately, the Fokker-Planck operator in our problem is very simple, and its
non-trivial information can be stored in just four sparseΛ×Λ matrices. First, we need the
random drift matrix

(4.27) Dij =
1

2

∫ 1

0

Ri(x)
d2

dx2
(x(1 − x)Rj(x))

dx
√

x(1 − x)
,

and then, the three matrices needed to reconstruct the migration term

Gij =

∫ 1

0

Ri(x)xRj(x)
dx

√

x(1 − x)
,(4.28)

Hij =

∫ 1

0

Ri(x)
dRj(x)

dx

dx
√

x(1 − x)
,(4.29)

Jij =

∫ 1

0

Ri(x)x
dRj(x)

dx

dx
√

x(1 − x)
.(4.30)

The matrix elements in Eqs. (4.27), (4.28), (4.29) and (4.30), can be quickly determined
by means of the Gauss-Chebyshev quadrature defined in Eq. (4.14). Due to the properties
of the Chebyshev polynomials, there exist important selection rules that make many matrix
elements vanish. More particularly,Dij andJij are upper triangular matrices (i.e.,Dij =
Jij = 0 if i > j), Hij = 0 if i ≥ j, andGij = 0 if i > j + 1 or i < j − 1. Thus,
the total number of non-trivial matrix elements that we needto compute, for a givenΛ, is
just 3

2Λ
2 + 7

2Λ− 2. This is much smaller than the default number of matrix elements (i.e.,
Λ2K).

Finally, theΛK × ΛK matrix elements of the correspondingω matrix in Eq. (4.7), can
be easily recovered from the tensor product structure of theΛK-dimensional vector space
that defines the Chebyshev expansion (as in Eq. (4.26)). Thus, ωi1...iP ,j1...jK =

∑

a

1

2Ne,a
Dia,ja −

∑

a,b

mab (Hia,jaGib,jb − δia,jaδib,jb − Jia,jaδib,jb) ,(4.31)

with δij = 1, if i = j, andδij = 0 if i 6= j.

4.3. Influx of Mutations. The inhomogeneous terms in Eq. (3.7) that model the influx
of mutations are given by effective mutation densities. As we show in the appendices, a
model of mutations given by an exponential distribution will be give the same results, up
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to an exponentially small deviation, as a standard model with a Dirac delta. The motiva-
tion of using smooth effective mutation densities, is because they are better approximated
by truncated Chebyshev expansions. As we briefly explained in the review on Chebyshev
polynomials and its truncated expansions, the convergenceof a truncated expansion de-
pends strongly on the analytical properties of the functionto be approximated. As Dirac
deltas are not smooth functions, their truncated Chebyshevexpansions present bad con-
vergence properties. This is related to the problem of Gibbsphenomena, and we will give
a more detailed account of its origin below (seeSources of error and limits of numerical
methods).

FIGURE 6. On the left, we show the plot of 5 different truncated Cheby-
shev expansions for a Gaussian peaked atx = 0.5 andσ = 0.03. On the
right, we show the truncation error of different Chebyshev expansions
(with Λ = 3, 6, 10 and15) of a family of Gaussian functions peaked at
x = 0.5 and parametrized by the standard deviation0.01 ≤ σ ≤ 0.5.

In this paper, we just consider a positive influx of mutationsin boundary components
of dimension one. In order to approximate the behavior undera mutation term given by a
Dirac delta, an effective mutation densityµ(x) has to satisfy the following

• The truncation error is bounded below the established parameter,ǫ, for the control
of error. I.e. ,‖µ(x)− PΛµ(x)‖L2 < ǫ.

• The expected frequency of the mass mutation-function, isEµ(x) =
1

2Ne
.

• The mutation-function is nearly zero for relatively large frequencies (x > 0.05),
and it is as peaked as possible nearx = 1/2Ne.

While the first and third qualitative requirements are straightforward, the second numerical
condition is not. One can interpret such requirement, as equivalent to fix the neutral fixation
rate to beu, because the probability that an allele at frequencyx = p, reaches fixation at
x = 1, is p. Thus, the average number of new mutants that reach fixation per generation is
2Neu × Eµ(x) = u. This constraint also can be derived by studying the properties of the
equilibrium density associated to this stochastic process. At equilibrium, the densityφe(x)
of derived alleles obeys

(4.32)
1

4Ne

d2ψ

dx2
= −2Neuµ(x),
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with ψ(x) = x(1 − x)φe(x). Therefore, the expected frequency of the mass mutation-
function can be computed as

(4.33)
∫ 1

0

xµ(x)dx = − 1

8N2
eu

∫ 1

0

x
d2ψ

dx2
dx.

Using the identityxd
2ψ
dx2 = d

dx

[

xdψdx

]

− dψ
dx , one can rewrite Eq. (4.33) as

(4.34)
∫ 1

0

xµ(x)dx = − 1

8N2
eu

dψ

dx
(x = 0).

On the other hand, the probability flux associated to the equilibrium density of alleles at
the boundaryx = 0 is j(0) = 1

4Ne
ψ′(0). We use this to write the expected frequency of

the mutation density as:

(4.35)
∫ 1

0

xµ(x)dx = − 1

2Neu
j(0).

In neutral evolution, the probability flux at the boundaryx = 1 equals the fixation rate,
which satisfiesj(1) = −u. Every generation a total of2Neu de novoSNPs enter the
population, and2Neu − u SNPs fixate at the boundaryx < 1/2N . These known facts on
the fixation rates of neutrally evolving alleles, require that the total probability flux at the
boundaryx < 1/2N must bej(0) = −u. Therefore, Eq. (4.35) has to satisfy

(4.36)
∫ 1

0

xµ(x)dx = − 1

2Neu
j(0) = − 1

2Neu
(−u) = 1

2Ne
,

which is what we wanted to show.
Numerical experiments show that for a large class of functionsµ(x), and in the fre-

quency rangex > x∗, the associated solutions to the different diffusion problems are
identical (up to a very small deviation) to the standard model with a Dirac delta. x∗ is
a very small frequency, that depends on the choice ofµ(x), and generally can be made
arbitrarily small. It is in the region of the frequency spacewith 0 ≤ x ≤ x∗, where the
behavior of the different diffusion problems can deviate most.

The truncation error in the Chebyshev expansion depends on the smoothness of the
function, and the choice of truncation paramater (see Fig. 6for an example). For the
effective mutation densityµ(x), we use the exponential function

µ(x) =
1

2Ne
× κ2

1− exp(−κ)− κ exp(−κ) exp(−κx),(4.37)

where the values forκ(Λ, ǫ) ≫ 1, are determined by saturating the bound on error:‖µ(x)−
PΛµ(x)‖L2 < ǫ.

4.3.1. Comparison of different mutation models at equilibrium.We derive in the Appen-
dix A the associated equilibrium distributions of derived alleles. For a model with a muta-
tion density given by a Dirac delta, one finds the equilibriumdensity

(4.38) φe(x) =
4Ne(2Ne − 1)ux− 8N2

e u(x− 1/2Ne)θ(x − 1/2Ne)

x(1 − x)
,

with θ(y) the Heaviside step function (θ(y) = 0 for y < 0, θ(y) = 1/2 for y = 0, and
θ(y) = 1 for y > 0). Which in the regionx > 1/2Ne simplifies to

(4.39) φe(x) =
4Neu

x
.
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In the case ofµ2(x) = c exp(−κx), the corresponding equilibrium density, is
(4.40)

φe(x) =
4Neu(1− x) +

8N2
euc
κ

(

exp(−κ)(1 + 1/κ)− exp(−κ)x− 1
κ exp(−κx)

)

x(1 − x)
.
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FIGURE 7. Three comparisons of the equilibrium densities associated
to the exponential mutation density (blue) for several values ofκ vs. the
equilibrium density associated to the Dirac delta mutational model (red).
For illustrative purposes, the population size used wasN = 10, 000 and
the spontaneous mutation rate isu = 10−6. On the left the equilibrium
density associated to the exponential distribution withκ = 10 is shown,
in the middleκ = 20, and on the rightκ = 40. For a truncation param-
eterΛ = 20, one can choose mutation densities withκ up to43, while
keeping the truncation error below sensible limits.

Therefore, a pairwise comparison of both equilibrium densities, shows that the deviation
from both models whenx > x∗ = κ−1, is exponentially small when equilibrium is reached
(see Fig. 7). We can show that the same is true in non-equilibrium.

4.3.2. Non-equilibrium dynamics with effective mutation densities. Here, we show how
the non-equilibrium dynamics of a diffusion system under anexponential distribution mu-
tation influx, is the same (up to an exponentially small deviation) to a system where mu-
tations enter the population through the standard Dirac delta δ(1 − /2Ne), as long as the
allele frequencies are bigger than certain minimum frequencyx∗. Belowx∗ the dynamics
will be sensitive to differences in the mutation densities.

Let ϕ(x) be an arbitrary initial density of alleles. Letφ1(x, t) be the solution to the
diffusion equations under pure random drift and a mutation influx given byδ(x− 1/2Ne).
φ2(x, t) is the solution of the diffusion equations under pure randomdrift and mutation
influx given by the exponential effective mutation density Eq. (4.37). In the Appendix B,
we prove the following identity in the larget limit

(4.41)
∫ 1

0

|φ1(x, t)−φ2(x, t)|x(1−x)dx =
4Neu

κ
(1−exp(−t/2Ne))+O(exp(−κ)),

with φ1(x, 0) = φ2(x, 0) = ϕ, andκ ≤ 2Ne. If we normalize Eq. (4.41) by

lim
t→∞

∫ 1

0

|φ1(x, t)|x(1 − x)dx,

the normalized deviation ofφ2(x, t) fromφ1(x, t) is, for t large,

(4.42)

∫ 1

0 |φ1(x, t)− φ2(x, t)|x(1 − x)dx

limt→∞

∫ 1

0
|φ1(x, t)|x(1 − x)dx

=
2

κ
(1− exp(−t/2Ne)) +O(e−κ, N−1

e ).
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We can also show, by applying the Minkowski identity to Eq. (B.10) in Appendix B, that

(4.43)

∫ 1

0 |φ1(x, t)− φ2(x, t)|x(1 − x)dx

limt→∞

∫ 1

0
|φ1(x, t)|x(1 − x)dx

≤ 2

κ
(1 + exp(−t/2Ne)) +O(e−κ, N−1

e ),

for all t > 0. What means, that the deviation is bounded byO(κ−1) for all t, and therefore
the non-equilibrium dynamics ofφ1(x, t) andφ2(x, t) are identical in the largeκ limit.

As |φ1(x, 0) − φ2(x, 0)| = 0 at time zero, and the deviation ofφ2(x, t) from φ1(x, t)
attains equilibrium in the larget limit, we can study the frequency dependence of such
deviation by looking at the equilibrium

(4.44) lim
t→∞

φ1(x, t) − φ2(x, t) =
4Neue

−κx

x(1 − x)
+O(e−κ).

Here, theO(e−κ) term exactly cancel the singularity atx = 1, and the deviation decays
exponentially as function of the frequency. This shows thatfor frequenciesx > x∗ =
κ−1 ≥ 1/2Ne, the dynamics of a model with mutation influx given by a Dirac delta, is the
same, up to an exponentially small deviation, to the non-equilibrium dynamics of a model
with exponential mutation density.

4.4. Branching-off of populations. Modeling a population splitting event also involves
the use of Dirac deltas, as in Eq. (3.27), or peaked functionssuch as Eq. (3.26), whose
truncated Chebyshev expansions may present bad convergence properties. These Gibbs-
like phenomena can be dealt in a similar way as we did with the mutation term of Eq.
(3.7).

We implemented two different solutions to this problem, andboth solutions yielded
similar results. First, we constructed a smoothed approximation to the Dirac delta by using
Gaussian functions:

(4.45) δ̃(xa − xK+1) =
1

w(xa)
exp

(

− (xa − xK+1)
2

2σ(xa)2

)

,

with

(4.46) w(xa) =

∫ 1

0

exp

(

− (xa − xK+1)
2

2σ(xa)2

)

dxK+1,

andσ(xa) is a standard deviation which is chosen as small as possible while preserving
the bound on error,‖δ̃(xa−x)−PΛδ̃(xa−x)‖L2[0≤x≤1] < ǫ, for any value ofxa ∈ [0, 1].
In order to map thẽδ-function in Eq. (4.45) to a truncated Chebyshev expansion,

(4.47) PΛδ̃(xa − xK+1) =

Λ−1
∑

i=0

Λ−1
∑

j=0

∆ijRi(xa)Rj(xK+1),

one has to perform a Gauss-Chebyshev quadrature in 2 dimensions,0 ≤ xa ≤ 1, 0 ≤
xK+1 ≤ 1:

(4.48) ∆ij =

∫ 1

0

∫ 1

0

δ̃(xa − x)Ri(xa)Rj(x)
dxa

√

xa(1− xa)

dx
√

x(1 − x)
.

The second approach, exploits the analytical behavior of diffusion under pure random
drift (i.e., with no migration). By Kimura’s solution to thediffusion PDE in terms of the
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FIGURE 8. Diffusion under pure random drift acts by smoothing out
the initial density att = 0. Here we show numerical solutions to the
diffusion equations withΛ = 28, at5 different times, with initial condi-
tion φ(x, t = 0) = δ(x − 0.3). As time passes, the numerical solution
approaches faster to the exact solution, and the Gibbs phenomena disap-
pear.

Gegenbauer polynomials{Gi(z)}, see [12], we know that the time evolution of 1-d density
is

(4.49) PΛφ(x, t) =
Λ−1
∑

i=0

2(i+ 1) + 1

(i+ 1)(i+ 2)
(1− r2)Gi(r)Gi(z) exp(−(i + 1)(i+ 2)t/4N),

with r = 1 − 2p, z = 1 − 2x andφ(x, 0) = δ(x − p). Thus, as the degree ofGi(z) is
i, and we can express any Gegenbauer polynomial as a linear combination of Chebyshev
polynomials, we know that the exact solution to the diffusion equation acts on the high
modes by the suppressing factorexp(−(i + 1)(i + 2)t/4N). This means that diffusion
smooths out the Dirac delta at initial time. Fig. 8, represents the evolution of the density at
different times.

Thus, we can use diffusion under pure random drift to smooth the density introduced
after the population splitting event. LetφK(x, t) the density before the splitting, and leta
be the population from which populationK + 1 is founded, then we consider initially the
density

(4.50) φK+1(x, xK+1, t
′ = 0) = φK(x, t)δ(xa − xK+1).

The associated Chebyshev expansionPΛφK+1(x, xK+1, t)will present Gibbs-phenomena.
However, by diffusing for a short timeτ under pure random drift

(4.51)
∂

∂t
φK+1(x, xK+1, t) =

K+1
∑

b=1

1

2

∂2

∂x2b

(

xb(1− xb)

2Sb
φK+1(x, xK+1, t)

)

,

(with Sa = SK+1 = W , Sb = V for K + 1 6= b 6= a, andV ≫ W ), φK+1(x, xK+1, τ)
becomes tractable under Chebyshev expansions. In other words, by choosingτ such that
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the error bound is satisfied

‖φK+1(x, xK+1, τ)− PΛφK+1(x, xK+1, τ)‖L2 < ǫ,

we obtain a smooth density, after population splitting, which can follow the regular diffu-
sion with migration prescribed in the problem, and approximate accurately the branching-
off event. In some limits, this approximation can fail, though we leave the corresponding
analysis for the next section.

Here, we do not consider the numerical solution to the problem of splitting with admix-
ture, although we are confident that it should be possible to solve it along similar argu-
ments.

4.5. Sources of error and limits of numerical methods.There are two major sources
of error in these numerical methods. First, the solution of the diffusion equation is itself
a time-continuous approximation to the time evolution of a probability density evolving
under a discrete Markov chain. Hence, whenever the diffusion approximation fails, its nu-
merical implementation will also fail. Secondly, a numerical solution by means of spectral
expansions, involves an approximation of the infinite dimensional space of functions on
a domain by a finite dimensional space generated by bases of orthonormal functions un-
der certainL2-product. As we show below, under a broad set of conditions the numerical
solution will converge accurately to the exact solution; otherwise, the numerical solution
can fail to approximate the exact solution. A third source oferror appears because one has
to discretizate time in order to integrate the high-dimensional ODE that approximates the
PDE. Fortunately, this source of error is neglectible because the diffusion generators yield
a stable time evolution.

We summarize below the main conditions that have to be satisfied in order to obtain
high-quality numerical solutions to the PDEs studied in this work.

4.5.1. Limits of diffusion equations.In the diffusion approximation to a Markov chain, the
transition probability is approximated by a Gaussian distribution, [5]. Here, we review the
derivation of the diffusion equation as the continuous limit of a Markov chain, in order to
emphasize the assumptions made and determine the limits of such approximation.

Given a Markov process defined by a discrete state spaceS, transition matricesp(I|J),
initial valueK ∈ S and discrete timeτ = 0, 1, . . ., the probability that the state will be at
I at timeτ is f(I|K, τ), wheref(I|K, τ) obeys the recurrence relation

(4.52) f(I|K, τ) =
∑

J∈S

p(I|J)f(J |K, τ − 1).

In the diffusion approximation one considers a sequence of discrete state spaces{Sλ}λ∈Z+
,

such that in the limitλ → ∞ the state spaceS∞ converges to a smooth manifold (in
practical applications, a compact domainD ⊂ R

K).
In this paper, we takeSλ to be[0, λ]K , andS∞ ∼ [0, 1]K . Therefore, the state variables

can be re-scaled asKa/λ = xa, with a = 1, . . . ,K andKa ∈ [0, λ]K . Similarly, we
introduce the time variablet = τ/λ. In the largeλ limit, the transition probability for the
change of the state from timeτ/λ to time (τ + 1)/λ, is governed by a distribution with
momenta

E(δxa|x) =Ma(x)/λ+O(1/λ2),(4.53)

E(δxaδxb|x)− E(δxa|x)E(δxb|x) = Cab(x)/λ+O(1/λ2),(4.54)

E(δx3a|x) = O(1/λ2).(4.55)
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In this continuous limit, the equation that describes the time evolution of the Markov chain
in Eq. (4.52), can be writen as a forward Kolmogorov equationif we neglect terms of
orderO(1/λ2). However, ifMa(x) is proportional toλ, theO(1/λ2) terms in Eq. (4.53)
will not be neglectible and the diffusion approximation will not be valid. As in this paper
we takeλ = 2Ne, andMa(x) proportional to the migration ratesmab, if the migration
rates obey2Ne,amab ≤ O(1) the diffusion approximation will be valid. Indeed, computer
experiments show that the numerical solutions become unstable and yield wrong results if
this bound is violated. This limit precisely defines when twopopulations can be considered
the same, [9]. Therefore, in cases when2Ne,amab ≫ O(1), we can consider populations
a andb as two parts of the same population. Another assumption in the diffusion approxi-
mation is that a binomial distribution with2Ne,a degrees of freedom can be approximated
by a Gaussian distribution. This will be a valid approximation as long asNe,a is large
enough. Numerical experiments show that the approximationis accurate ifNe,a > 100;
otherwise, effects due to the finiteness of the Markov chain cannot be neglected and the
approximation will fail.

Ne,a > 100

2Ne,amab ≤ O(1)

4.5.2. Limits of spectral expansions.Spectral methods, as any numerical scheme to solve
PDEs, require several assumptions about the behavior of thesolution of the PDE. The
most important one is that one can approximate the solution as a series of smooth basis
functions,

(4.56) PΛφ(x, t) =

Λ−1
∑

i1=0

· · ·
Λ−1
∑

iP=0

αi1,i2,...iP (t)Ti1(x1)Ti2(x2) · · ·TiP (xP ).

In other words, the projection of the solutionPΛφ(x, t) is assumed to approximateφ(x, t)
well, in some appropriate norm, forΛ large enough. As one has to choose finite values for
Λ, Eq.(4.56) will sometimes fail to approximate correctly the solution of the PDE.

In the applications of this paper, the basis of functions that we use consist of the Cheby-
shev polynomials of the first kind2. Below we provide bound estimates for the truncation
error‖PΛφ(x, t) − φ(x, t)‖L2[−1,1]K , to understand the quality of the approximate solu-
tions for different values ofΛ, (see also [7, 1] for different choices of basis functions).

More precisely, as theL2 inner product and norm in the Chebyshev problem are:

(4.57) 〈f, g〉L2[−1,1]K =

∫

[−1,1]K
f(x)g(x)

K
∏

i=1

dxi
√

1− x2i
,

and

(4.58) ‖f‖2L2[−1,1]K =

∫

[−1,1]K
|f(x)|2

K
∏

i=1

dxi
√

1− x2i
,

2 One can work either with the basis of functions{Ti(x)} on x ∈ [−1, 1], or with the re-scaled basis
{Ri(x)} defined onx ∈ [0, 1], by performing a simple scale transformation.
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the terms in the expansion Eq. (4.56) can be computed by performing inner products
(4.59)

αi1,i2,...iK (t) =

(

2

π

)K ∫

[−1,1]K
φ(x, t)Ti1 (x1)Ti2(x2) · · ·TiK (xK)

K
∏

j=1

dxj

cij

√

1− x2j

,

with c0 = 2 andcj = 1 (j > 0). A consequence of the orthogonality of the basis functions,
is that the squared truncation error admits a simple formulation in terms of the coefficients
in the expansion:

(4.60) ‖PΛφ(x, t) − φ(x, t)‖2L2[−1,1]K =

(

2

π

)K
∑

i1≥Λ

· · ·
∑

iK≥Λ

|αi1,i2,...iK (t)|2.

Thus, the truncation error depends only on the decay of the higher modes|αi1,i2,...iK | in
the expansion. On the other hand, the decay of these higher modes depend on the analytical
properties ofφ(x, t) itself. For instance, ifφ(x, t) ∈ C2q1−1,2q2−1,...,2qK−1

(

[−1, 1]K
)

,
i.e. if

(4.61)

∥

∥

∥

∥

∥

(

∂

∂x1

)2q1−1(
∂

∂x2

)2q2−1

· · ·
(

∂

∂xK

)2qK−1

φ(x, t)

∥

∥

∥

∥

∥

L2[−1,1]K

<∞,

we can integrate by parts Eq. (4.59), as we did in Eq. (4.18), to write the decay of each
mode as

(4.62)

|αi1,i2,...iK (t)| =
(

2

π

)K
∣

∣

∣

∣

∣

∫

[−1,1]K





K
∏

j=1

(

√

1− x2j
∂

∂xj

)2qj

φ(x, t)



 ×

Ti1(x1)

ci1 i
2q1
1

√

1− x21
dx1 · · ·

TiK (xK)

ciK i
2qK
K

√

1− x2K
dxK

∣

∣

∣

∣

∣

.

Eq. (4.62) implies that the truncation error is directly related to the smoothness ofφ(x, t);
it follows that we can bound the truncation error as a function ofΛ:
(4.63)

‖PΛφ(x, t)−φ(x, t)‖L2 [−1,1]K ≤ C(q)Λ−
∑

j
qj

∥

∥

∥

∥

∥

∥

K
∏

j=1

[

√

1− x2j
∂

∂xj

]qj

φ(x, t)

∥

∥

∥

∥

∥

∥

L2[−1,1]K

.

Another convenient measure of smoothness is the Sobolev norm:

(4.64) ‖Φ(x)‖2W q1,...,qK [−1,1]K =

q1
∑

s1=0

· · ·
qK
∑

sP=0

∥

∥

∥

∥

∥

∥

K
∏

j=1

(

∂

∂xj

)sj

Φ(x)

∥

∥

∥

∥

∥

∥

L2[−1,1]K

;

in terms of the Sobolev norm, the truncation error is boundedas

(4.65) ‖PΛφ(x, t) − φ(x, t)‖L2[−1,1]K ≤ CΛ−
∑

j
qj ‖φ(x, t)‖W q1,...,qK [−1,1]K .

A corollary of Eq. (4.65) is that ifφ(x, t) is smooth,PΛφ(x, t) converges toφ(x, t) more
rapidly than any finite power ofΛ−1. This is indeed the basic property that has given name
to spectral methods.

In the case of the diffusion problem that we consider in this paper, the boundary condi-
tions are absorbing and there is not flux of mutations whenK > 1. It is easy to see how
|αi1,i2,...iK (t)| → 0 ast→ ∞ in the absence of influx of polymorphisms in the population.
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This means that diffusion acts as a smoothing operator by decreasing the Sobolev norm of
the initial density. Eq. (4.65) imposes important limits tothe set of parameters of the model
where spectral methods work; for instance, in the absence ofinflux of polymorphisms and
for long diffusion times the truncation error will remain low.

After two populations split and theK-dimensional diffusion becomes aK + 1 dimen-
sional process, theK + 1 dimensional density becomes a distribution concentrated in the
linear subspace of[−1, 1]K+1 defined byxa = xa+1 (with a anda + 1 labeling the two
daughter populations that just splited). Such density has an infinite Sobolev norm and
cannot be represented as a finite sum of polynomials. Fortunately, the diffusion generator
acts on the density by smoothing it out, and by bringing the density to a density with finite
Sobolev norm. The main variables involved in this process are: the time difference between
the current splitting event and the next one,TA+1 −TA , and the effective population sizes
Ne,a andNe,a+1 of the daughters populations. Therefore, depending on the choice of the
truncation parameterΛ, a minimun diffusion timetm(Ne,a, Ne,a+1,Λ) will be necessary
to bring the truncation error within desired limits‖PΛφ(x, tm) − φ(x, tm)‖L2 ≤ ǫ. Here,
ǫ, is the control parameter on numerical error. Therefore, the bigger is the largest effective
population size of the two daughters populations, the bigger will be such minimum dif-
fusion time. If the time difference between the current splitting event and the next one is
bigger than

(4.66) tm(Ne,a, Ne,a+1,Λ) = C(Λ)max(Ne,a, Ne,a+1),

(whereC(Λ) is a function that can be computed numerically), the resulting numerical error
will stay below the desired limits. As our model aims to reproduce the real SNP Allele

|TA+1 − TA| > C(Λ) max(Ne,a+1, Ne,a)

‖PΛγ̂(x) − γ̂(x)‖L2 < ǫ

Frequency Spectrum density, there should exist low error approximations of such density,
that we denote aŝγ(x), in terms of polynomial expansions. Otherwise, the methodshere
presented will fail to solve the problem. This can only happen if γ̂(x) is so rugged, i.e.
the corresponding Sobolev norm is so high, that the largest finite choice forΛ that we can
implement in our computer-code is not large enough to approximate accuratelŷγ(x):

(4.67) ‖PΛmax
γ̂(x)− γ̂(x)‖L2[−1,1]K ∼ CΛ

−
∑

j
qj

max ‖γ̂(x)‖W q1 ,...,qK [−1,1]K ≫ ǫ.

In case that Eq. (4.67) is obeyed, it is likely that2 or more populations are so closely
related that we can treat them as if they were one identical population. If we reduce the
dimensionality of the problem in this way, (by only incorporating differentiated popula-
tions), the correlations will disappear and the Sobolev norm of γ̂′(x), will be such, that we
will be able to find a sensible parameterΛ to approximatêγ′(x) as a truncated Chebyshev
expansion.

5. CONCLUSION

In this paper we have introduced a forward diffusion model ofthe joint allele frequency
spectra, and a numerical method to solve the associated PDEs. Our approach is inspired
by recent work where similar models were proposed [21, 4, 8].Analogously, our methods
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are quite general and can accomodate selection coefficientsand time dependent effective
population sizes.

The major novelties of the model here presented with respectprevious work are:

• The introduction of spectral methods/finite elements in thecontext of forward dif-
fusion equations and infinite sites models. Traditionally,these techniques yield
better results than finite differences schemes when the dimension of the domain
is high (i.e., when the final number of populations is high), and the solutions are
smooth. A comparison of our implementation using spectral methods, and previ-
ous implementations using finite differences [8], will be the matter of future work.

• A set of boundary conditions that deals with the possibilitythat some polymor-
phisms reach fixation in some populations while remain polymorphic in other
populations. When the differences in effective populationsizes between different
populations are large, this phenomenon can become very important. Here, we have
introduced a solution to address such possible scenario. Previous work imposed
zero flux at the boundaries [8], and hence avoided the fixationof polymorphisms
in some populations while remaining polymorphic in the rest.

• The introduction of effective mutation densities, which generalize previous mod-
els for the influx of mutations, [4]. We have emphasized how different ways to
inject mutations at very low frequencies converge to the same solution for larger
frequencies.

The non-equilibrium theory of Allele Frequency Spectra is of primary importance to
analyze population genomics data. Although it does not makeuse of information about
haplotype structure or linkage non-equilibrium, the analysis of AFS allows the study of
demographic history and the inference of natural selection. In this work, we have extended
the diffusion theory of the multi-population AFS, to accomodate spectral methods, a gen-
eral framework for the influx of mutations, and non-trivial boundary interactions.
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APPENDIX A. COMPARISON OF MUTATIONAL MODELS AT EQUILIBRIUM

In this appendix we compute the equilibrium densities associated to Wright-Fisher pro-
cesses with mutation. Two types of mutation processes are considered, both modeled by
a mutation density. The first mutation density is a Dirac delta, while the second one is an
exponential distribution.

As the diffusion equation that describe the time evolution of the density of alleles for
diallelic SNPs, is

(A.1)
∂φ(x, t)

∂t
=

1

4Ne

∂2

∂x2
[x(1 − x)φ(x, t)] + 2Neuµ(x),

the equilibrium densityφe(x) satisfies∂φe(x)
∂t = 0. By using instead the functionψ(x) =

x(1− x)φe(x), the associated second order ordinary differential equation becomes

(A.2)
1

4Ne

∂2ψ(x)

∂x2
+ 2Neuµ(x) = 0.

As Eq. (A.2) is just defined forx > 0, we can use Laplace transforms to solve the equation.
Let

(A.3) µ̃(s) =

∫ ∞

0

µ(x) exp(−sx)dx,

be the Laplace transform associated to the mutation densityµ(x), and

(A.4)
∫ ∞

0

∂2ψ(x)

∂x2
exp(−sx)dx = s2ψ̃(s)− sψ(0)− ψ′(0),

the Laplace transform associated toψ′′(x), with ψ(0) andψ′(0) integration constants.
Therefore, in thes domain,ψ̃(s) is

(A.5) ψ̃(s) =
sψ(0) + ψ′(0)− 8N2

e uµ̃(s)

s2
,

and by performing the inverse Laplace transform we obtain the solution to the equilibrium
density

(A.6) φe(x) =
1

x(1− x)

1

2πi
lim
T→∞

∫ ǫ+iT

ǫ−iT

sψ(0) + ψ′(0)− 8N2
e uµ̃(s)

s2
exp(sx)ds.

We fix the integration constants,ψ(0) andψ′(0), by requiringφe(x) to be finite atx = 1,
and the probability flow atx = 1 to be equal tou,

(A.7) j(1) = − 1

4Ne
ψ′(0) = u.

As an example, we can evaluate exactly Eq. (A.6), forµ1(x) = δ(x−1/2Ne) andµ2(x) =
c exp(−κx). For the Dirac delta, the Laplace transform is

(A.8) µ̃1(s) = exp(−s/2Ne).

If we compute the corresponding inverse Laplace transform in Eq. (A.6), and fix the inte-
gration constants as explained above, we find the equilibrium density

(A.9) φe(x) =
4Ne(2Ne − 1)ux− 8N2

e u(x− 1/2Ne)θ(x − 1/2Ne)

x(1 − x)
,
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with θ(y) the Heaviside step function (θ(y) = 0 for y < 0, θ(y) = 1/2 for y = 0, and
θ(y) = 1 for y > 0). If x > 1/2N , Eq. (A.9) simplifies to

(A.10) φe(x) =
4Neu

x
.

In the case ofµ2(x) = c exp(−κx), the Laplace transform is

(A.11) µ̃2(s) =
c

s+ κ
,

and the corresponding equilibrium density, after integrating Eq. (A.6), is
(A.12)

φe(x) =
4Neu(1− x) + 8N2uc

κ

(

exp(−κ)(1 + 1/κ)− exp(−κ)x− 1
κ exp(−κx)

)

x(1 − x)
,

which in the largeκ limit, and forx≫ 1/κ, converges exponentially fast to

(A.13) φe(x) =
4Neu

x
.

In the limit x→ 0, φe(x) is finite just iff c = 1
2Ne

× κ2

1−exp(−κ)−κ exp(−κ) , which is the
normalization choice made in Eq. (4.37), and the only one satisfying

(A.14)
∫ 1

0

xµ2(x) =
1

2Ne
.

This shows how a mutation model defined by a certain class of smooth mutation densities,
reaches the same equilibrium density, up to a small deviation, as the standard model with
a Dirac delta.
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APPENDIX B. COMPARISON OF MUTATIONAL MODELS AT NON-EQUILIBRIUM

In this appendix we compare the non-equilibrium dynamics ofmodels with a mutation
influx described by exponential distributions, with modelsthat consider a standard Dirac
delta.

More particularly, we prove that ifφ1(x, t) is the solution to an infinite sites model
PDE, with absorbing boundaries,

(B.1)
∂φ1(x, t)

∂t
=

1

4Ne

∂2

∂x2
[x(1− x)φ1(x, t)] + 2Neuδ(x− 1/2Ne),

andφ2(x, t) is the solution to the same model, but with an exponential mutation density

(B.2)
∂φ2(x, t)

∂t
=

1

4Ne

∂2

∂x2
[x(1 − x)φ2(x, t)] + u

κ2 exp(−κx)
1− exp(−κ)− κ exp(−κ) ,

then, thedeviationof φ2(x, t) with respect toφ1(x, t), as function of time and for any
initial conditionφ2(x, t = 0) = φ1(x, t = 0) = ϕ(x), is, in the larget limit,

(B.3)
∫ 1

0

|φ1(x, t)− φ2(x, t)|x(1 − x)dx =
4Neu

κ
(1− exp(−t/2Ne)) +O(e−κ).

Here,| · | is the absolute value, andO(e−κ) are terms that decay exponentially as function
of κ, which can be neglected in the largeκ limit.

As the total number of SNPs that are polymorphic in one population depend on the
population size and the mutation rate, it is convenient to normalize the deviation Eq. (B.3)
by limt→∞

∫ 1

0
|φ1(x, t)|x(1 − x)dx = (2Ne − 1)u. In this normalization we have

(B.4)

∫ 1

0
|φ1(x, t)− φ2(x, t)|x(1 − x)dx

limt→∞

∫ 1

0 |φ1(x, t)|x(1 − x)dx
=

2

κ
(1 − exp(−t/2Ne)) +O(e−κ, N−1

e ).

To prove Eq. (B.3), we first describe the solutions to Eq. (B.1) and Eq. (B.2). Both
equations consist of a homogeneous term and an inhomogeneous contribution given by the
mutation density. As they are linear equations, the solution to the PDE is the sum of a
homogeneous and an inhomogeneous term

(B.5) φ1(x, t) = φh1 (x, t) + φe1(x),

satisfying

∂φh1 (x, t)

∂t
=

1

4Ne

∂2

∂x2
[

x(1 − x)φh1 (x, t)
]

+

1

4Ne

∂2

∂x2
[x(1− x)φe1(x)] + 2Neuδ(x− 1/2Ne).(B.6)

Hence, the only time-independent termφe1(x) that solves Eq. (B.6) is the equilibrium
density Eq. (A.9), andφh1 (x, t) obeys a standard diffusion equation with no mutation
density, and with initial conditionφh1 (x, t = 0) = ϕ(x) − φe1(x). If Lφh1 (x, t) denotes the
Fokker-Planck operator acting onφh1 (x, t),

Lφh1 (x, t) =
1

4Ne

∂2

∂x2
[

x(1− x)φh1 (x, t)
]

,

we can write the solution to Eq. (B.6) in the following compact form

(B.7) φ1(x, t) = exp (tL) (ϕ(x) − φe1(x)) + φe1(x).
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Here,exp (tL) is the time-dependent action of the diffusion operator on the initial den-
sity ϕ(x) − φe1(x) while preserving the absorbing boundary conditions. Such operator
can be diagonalized in the basis of Gegenbauer polynomials on L2([0, 1]), see [12]. The
corresponding eigenvalues ofexp (tL) areexp(−(i+ 1)(i+ 2)t/4Ne) with i ∈ [0, ∞).

We can solve Eq. (B.2) in a similar way, by using the decomposition

(B.8) φ2(x, t) = φh2 (x, t) + φe2(x).

In this case,φe2(x) is the equilibrium density associated to the exponential mutation density,
as defined in Eq. (A.12). The termφh2 (x, t) evolves under pure random drift, with no
mutation influx, and initial conditionφh2 (x, t = 0) = ϕ(x) − φe2(x):

(B.9) φ2(x, t) = exp (tL) (ϕ(x) − φe2(x)) + φe2(x).

By substracting Eq. (B.9) from Eq. (B.7), we can describe thetime evolution of the
deviation as

(B.10) φ1(x, t) − φ2(x, t) = − exp (tL) (φe1(x)− φe2(x)) + φe1(x) − φe2(x),

which is independent of the initial conditionϕ(x).
One can show thatφe1(x) − φe2(x) is non negative on[0, 1], if κ ≤ 2Ne. This can be

seen more clearly by computingφe1(x) − φe2(x) in the largeκ limit

φe1(x) − φe2(x) =
4Neu

1 − x
(2Ne − κ), x ∈ [0, 1/2Ne),(B.11)

φe1(x)− φe2(x) =
4Neue

−κx

x(1 − x)
+O(e−κ/(1− x)), x ∈ (1/2Ne, 1].(B.12)

The terms of ordere−κ in Eq. (B.12) exactly cancel the divergence atx = 1. Therefore,
the action of the diffusion operator onφe1(x) − φe2(x), will preserve the non-negativity of
the density

(B.13) exp (tL) (φe1(x)− φe2(x)) ≥ 0, ∀x ∈ [0, 1], ∀t > 0.

Because of this inequality, the absolute value| exp (tL) (φe1(x) − φe2(x))|, is the same as
exp (tL) (φe1(x)− φe2(x)), and we can evaluate exactly the integral
(B.14)
∫ 1

0

| exp (tL) (φe1(x)− φe2(x))|x(1− x)dx =

∫ 1

0

exp (tL) (φe1(x)− φe2(x))x(1 − x)dx,

by expandingexp (tL) (φe1(x)−φe2(x)) in the eigenbasis ofexp (tL). This basis is orthog-
onal under theL2-product defined by the weightx(1 − x), and the constant function on
[0, 1] corresponds to the eigenfunction with smallest eigenvalue. In this way we can inter-
pret the right hand side of Eq. (B.14) as a projection on such eigenfunction, and evaluate
exactly the integral.

The eigenbasis ofexp (tL) is defined by the Gegenbauer polynomials. As an example,
the first three Gegenbauer polynomials on[0, 1], orthonormal under theL2-product with
weightx(1 − x), are

T0(x) =
√
6,(B.15)

T1(x) =
√
30(1− 2x),(B.16)

T2(x) =
√
84(1− 5x+ 5x2).(B.17)
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The corresponding eigenvalues inexp (tL), are eigenvaluesexp(−t/2Ne), exp(−3t/2Ne),
andexp(−3t/Ne). Thus, Eq. (B.14) is the same as
(B.18)
∫ 1

0

exp (tL) (φe1(x)−φe2(x))x(1−x)dx =

∫ 1

0

exp (tL) (φe1(x)−φe2(x))
T0(x)√

6
x(1−x)dx,

and

(B.19) exp(−t/2Ne)
∫ 1

0

(φe1(x)−φe2(x))x(1−x)dx =
4Neu

κ
exp(−t/2Ne)+O(e−κ).

As 0 ≤ exp (tL) (φe1(x)− φe2(x)) ≤ φe1(x) − φe2(x) for all x ∈ [0, 1] and fort ≫ Ne, we
finally compute Eq. (B.3), as

∫ 1

0

|φ1(x, t)− φ2(x, t)|x(1 − x)dx =

∫ 1

0

(φe1(x) − φe2(x))x(1 − x)dx

−
∫ 1

0

exp (tL) (φe1(x)− φe2(x))x(1 − x)dx,(B.20)

which is

(B.21)
∫ 1

0

|φ1(x, t) − φ2(x, t)|x(1 − x)dx =
4Neu

κ
(1− exp(−t/2Ne)) +O(e−κ),

as we wanted to show.
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