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NON-EQUILIBRIUM ALLELE FREQUENCY SPECTRA VIA SPECTRAL
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ABSTRACT. A major challenge in the analysis of population genomids @ansists of
isolating signatures of natural selection from backgrononie caused by random drift
and gene flow. Analyses of massive amounts of data from mdatedepopulations re-
quire high-performance algorithms to determine the Iii@did of different demographic
scenarios that could have shaped the observed neutraé singleotide polymorphism
(SNP) allele frequency spectrum. In many areas of appliethenaatics, Fourier Trans-
forms and Spectral Methods are firmly established tools &dyae spectra of signals and
model their dynamics as solutions of certain Partial Défgial Equations (PDEs). When
spectral methods are applicable, they have excellent praperties and are the fastest
possible in high dimension. In this paper we present an @kplimerical solution, using
spectral methods, to the forward Kolmogorov equations féfraght-Fisher process with
migration of K populations, influx of mutations, and multiple populatigutiting events.

1. INTRODUCTION

Natural selection is the force that drives the fixation ofattageous phenotypic traits,
and represses the increase in frequency of deleterious oflee growing amount of
genome-wide sequence and polymorphism data motivatesetredaphment of new tools
for the study of natural selection. Distinguishing betwgenuine selection and the effect
of demographic history, such as gene-flow and populatiotidmaicks, on genetic varia-
tion presents a major technical challenge. A traditiongydation genetics approach to
the problem, focuses on computing neutral allele frequepegtra to infer signatures of
natural selection as deviations from neutrality. Diffusibeory provides a set of classi-
cal techniques to predict such frequency spediia, [€,12yHile the connection between
diffusion and the theory of Partial Differential Equatiofi®DESs) allows to borrow well
established high-perfomance algorithms from applied sratitics.

The theory of predicting the frequency spectrum under @rgible mutation was de-
veloped by Fisher, Wright and Kimural [6,122,113]. In partauKimura [14] noted that
this theory was applicable to many nucleotide positionsiatrdduced thdnfinite sites
model The joint frequency spectra of neutral alleles can be obthfrom the coalescent
model [20] or by Monte-Carlo simulations [11]. The analyisiserms of diffusion theory
is mathematically simpler and can incorporate naturalcsiele easily, [8 211, 4]. In this
paper, we model the demographic historyoflifferent populations that are descended by
K — 1 population splitting events from a common ancestral pdmra The populations
evolve with gene exchange under an infinite sites mutatiosheh&Ve introduce a powerful
numerical scheme to solve the associated forward diffusgprations. After introducing
a regularized discretization of the problem, we show hovespkemethods are applied to
compute theoretical Non-Equilibrium Frequency Spectra.
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FIGURE 1. A graphical representation of a model for the demographic
history of three populations.

The introduction of spectral methods is usually atributedi6], although they are
based on older precursors, such as finite element methadl®iemmethods in quantum
mechanics[17]. The basic idea consists of using finite itions of expansions by com-
plete bases of functions, to approximate the solutions ddB.F his truncation allows to
transform a diffusion PDE into a finite system of OrdinaryfBiéntial Equations (ODES).
The motivation to use these methods relies on their exdedlenr properties, and their
high speed. In general, they are the preferred methods vieeditnension of the domain
is high [15], and the solutions to the PDE are smooth. Thigabse the number of basis
functions that one needs to approximate the solutions of B, BDmuch lower than the
number of grid-points that one needs in a finite differendeeste, working at the same
level of accuracy([7].

As we show in this paper, the convergence of spectral metiiggsnds on the smooth-
ness of the solutions to be approximated. In many situatsolstions to diffusion equa-
tions have good analytical properties, and spectral mathad be applied. However, the
application of these methods to the problem that interestsene, requires a proper dis-
cretization of the problem. Influx of mutations, populatgpiitting events and boundary
conditions have to be properly regularized before one appliese methods and exploits
their high-perfomance properties.

1.1. Non-Equilibrium Frequency Spectra. The K-dimensional Allele Frequency Spec-
trum (AFS) summarizes the joint allele frequenciesiinpopulations. We distinguish
between the AFS, which consists of the unknown distributiballele frequencies i
natural populations, anobservation®f the AFS. Given DNA sequence data from multi-
ple individuals inK populations, the resultingbservatiorof the AFS is ak -dimensional
matrix with the allele counts (for a complete discussion hie see[[20]). Each entry of
the matrix consists of the number of diallelic polymorphssim which the derived allele
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was found. Or using other words, each entry of the AFS magrikeé observed number of
derived allelesj,, found in the corresponding number of samples,from population:
(1 <a<K).

The full AFS, is the real distribution of joint allele frequees at the time when the
samples were collected. If the total number of diploid indihals in thea!"-population is
N, > n,, the natural allele frequencies = i1 /2Ny, 2 = i2/2Na, ... x = ix /2Ng
(with i, the total number of derived polymorphisms in #é population) can be seen as
points in theK -dimensional cubé), 1]%. Thus, given the frequencies of every diallelic
polymorphism (which we indexed by 7, 27, ..., 2%, the AFS can be expressed as the
probability density function

S
@) $(r) = g D 8w — a3l — ) -3z — ).

Here, S is the total number of diallelic polymorphisms segregatmthe K populations,
ando( ) is the Dirac delta function.

Our goal is to determine such AFS under the infinite sites ho#ley demographic
scenario in the model is defined through a population treelogy 7', such as in Fig[]1,
and a set of paramaters that specify the effective populatizesN., ,, splitting timest 4,
and migration rates:,,;, at different times. Henc@N, ,m,; is defined as the number of
haploid genomes that the populatiemeceives fronb per generation. For simplicity, we
refer to the set of parameters that specify a unique dembgrapenario a®.

Thus, given a population tree topology and a choice of pat@amsewe will compute
theoretical densities of derived joint allele frequencis$unctions 010, 1]% of the type

A—1 A-1
(12) ¢ |® T Z Z Z Uiy i, @ T) i1 (Il)Riz (IQ)R'LK (xK)a
i1=01i2=0 ix=0

with A a truncation parametefR;(x)}2, a complete basis of functions on the Hilbert
spacel?[0, 1] to be defined below, and;, ...;,. the coefficients associated to the projection
of ¢(z|©,T) onto the basis spanned ByR;, (¢)R;,(z) - -- R;, (x)}. These continuous
densities relate to the expectation of abservationof the AFS via standard binomial
sampling formulae

(1.3)

P(j1|n1;---;jK|nK):/
1

K
»(x|©,T) H x7“(1 — xy) I di,.
[0.1]% a=1

Using Eqg. [1.B) we can compare model and data, for instanceydans of maximum
likelihood estimates.

The major goals of this paper are twofold. First, we preseatfinite Markov chain
and diffusion approximation, associated to the infinitesinodel used to compute neu-
tral allele spectra. A special emphasis is made on the boyrdaditions and the influx
of mutations, because of their potential singular behavd@cond, we introduce spectral
methods and show how to transform the diffusion equatiottsdnupled systems of Or-
dinary Differential Equations (ODESs) that can be integidatamerically. In particular, we
introduce a set of techniques to handle population sgiittwvents, mutations and boundary
interactions, that protect the numerical setup againsb&jihenomena. A detailed analy-
ses of the stability of the methods as function of the modepaters, and the control of
the numerical error, is included at the end of the paper.
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2. FINITE MARKOV CHAIN MODEL

The evolutionary dynamics of diallelic SNP frequencies imadomly-mating diploid
population, can be modeled using a finite Markov chain, wiitreéite timet represent-
ing non-overlapping generations. For simplicity, we cdesifirst one population withiv
diploid individuals, and later will extend the results tomshan one population.

The state of the Markov chain at timgeis described by the vectgi (¢), with1 < j <
2N. Each entryf;(t), consists of the expected number of loci at which the dersvet is

found onj chromosomes. Thereforgiffl f;(t) is the expected number of polymorphic
loci segregating in the population at timieand f2 v (¢) is the expected number of loci fixed
for the derived state. The model assumes that the total nuafilsées per individual is so
large, and the mutation rate per site so low, that whenevartation appears, always does
it on a previously homoallelic site, [14].

The vectorf;(t), is also called the density of states. Its time evolutionarrrdndom

drift and mutation influx is described by the difference dipres

2N
(2.1) Fit+1) =D P(jli) fi(t) + pi(t), 1<j<2N.
=1

In its simplest form, one assumes that the alleles in geiarat 1 are derived by sampling
with replacement from the alleles in generatiomherefore, the transition coefficients in
the chain Eq.[(Z2]1) are

(2.2) P(jli) = (2jv ) (i/2N) {1 — (i/2N)}>N .

This describes stochastic changes in the state after @tigeneration, Fifl] 2. The second
term in Eq. [Z11) represents the influx of polymorphisms. afiohs are responsible for
the creation of new polymorphisms in the population. Theuin@if mutations depends on
the expected number of siteéVv, in which new mutations appear in the population each
generatioﬂt If we assume that each generation, every new mutation isdfou just one
chromosome, then

(23) ‘LLJ(t) = 2NV51_J',

for the mutation alone[]4]. The terd ; in Eq. (Z3) is the Kronecker symbol, with
8, = 1if j = 1 andd, ; = 0 otherwise.

2.1. Effective Mutation Densities. In applications of the infinite sites model, one usually
finds that the census population size and the effective ptipualsize that drives random
drift in Eq. (2.2), are not the same, |14]. For this reason,digtinguish betweenV,,

the effective population size that defines the variance @Whight-Fisher process in Eq.
(2.2), from the census population siaethat can be used to define the allele frequencies
x = i/2N. Therefore, the smallest frequenay,= 1/2N, with which new mutations
enter populations will be sensitive to small stochastictélations in the census population
size, even if the effective population size remains corsimis is important when we take
the diffusion limit of Eq. [2.1), and the stochastic procissdescribed by the continuous

The expected number of siteéVv, relates to the expected number of mutations per bage, by the total
length L of the genomic sequence under study in units of base paksu x L. Sometimes in this paper, in an
abuse of notation we do not distinguish betweeandw, and they are seen as the same quantity expressed with
different units.
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variablex = j/2N, rather than the integer If we consider a constant census population
size, the term Eq[{2.3) in the Markov chain is substituted by

(24) 61,]' — 5(1‘ — 1/2N),

in the diffusion limit. However, if the census populatiomesper generation is a stochastic
variable distributed ag'(N)dN, the diffusion limit of the mutation term will be

(2.5) 01,5 — p(z) = /OOO 0(x —1/2N)F(N)dN.

We expect that(x) will have some general properties, independent of thequaati char-
acteristics ofF'(IV)dN. For instance, in many realistic scenarjag:) will be a function
that is nearly zero for frequencies> x.., with 2, = 1/2N,,;,, a very small characteristic
frequency associated to the inverse of the minimum censuslaiion size.

Other phenomena that might not be properly captured by thplsimutational model
in Eqgs. [2.8) and(2]14), consist of organisms with partiaNgrlapping generations, and
organisms where mutations in gametes arise from somatiations. When an organism
has a mating pattern that violates the assumption of nornapgng generations (e.g. hu-
mans), the generation time in the model Hq.](2.2) is intéepras araverage generation
time Hence, during a generation unit, there is time enough foresindividuals to be born
with new mutations at the beginning of the generation tinmel, @ reproduce themselves
by the end of a generation unit. This implies that after orexage generation, there can
exist new identical mutations in more than one chromosormeil&8ly, when the gametes
of an organism originate from somatic tissue, they inhexihdvo mutations that arised in
the soma after multiple cell divisions. If the individualssuch organism can have more
than one offspring per generation, one expects to find the seaw mutation, in the same
site, in more than one chromosome per generation.

Because of these different biological phenomena, we leetieat the notion oéffective
mutation densityu(x), is a more accurate way to describe mutations in natural lpepu
tions. Theeffective mutation densigescribes the average frequency distribution of new
mutations per generation, in one population, after takiig account the effects due to sto-
chastic changes in census population size, non-overlgm@nerations and/or mutations
of somatic origin. The major motivation here to use effextmutation densities rather
than Dirac deltas, is because of their good behavior undmatisgd methods. As we show
later when we discuss the continuous limit of the infinitesimodel, different effective
mutation densities can yield predictions which are idettic predictions of models based

on Eq. [(2.4).

2.2. More than one population. Here, we show how to incorporate arbitrarily more pop-
ulations, and migration flow between them. Generally, ferstate in the chain we consider
a discrete random variabl€ which takes values in th& -dimensional lattice of derived
allele frequencies:
i1/2N;

. i2/2N>
(2.6) X = )
ir/2Ng
with K the number of populations, ard< i, < 2N,. For simplicity, we use a single
index notation0 < I < [], N,, to label the states where the random variableakes
values. The random variabl§ = I jumps to the stat&X = J at a discrete generation
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unit, with prescribed probability’(J|I). The density of states in this multi-population
setup isf;(t), and the difference equations that describe its dynamésauivalent to Eq.
(23). The transition matri®® = P(.J|I), incorporates random drift and migration events

. ® k
s Pk e
. .
Y [ ]

ie .
[} [ ]
Y [ ]
. .
: P(li) :
: .
° o
. .

Time

FIGURE 2. One unit of time transition in a finite Markov chain.

between populations. New mutations enter each populatithan effective mutation
vectorji

(2.7) g= nj |;

in the standard model, the mutation densitmj‘"; 2Novo1 ;.
The Markov chain for a Wright-Fisher process for two indegemt populations is de-
fined by the transition matri®;, ;,.i,i, =

(2.8) Bi(j1;2Ne,1,11/2Ne,1)Bi(j2; 2Ne 2, i2/2Ne 2),

whereBi(j; k, p) stands for the binomial distribution with indéxand parametes. Also,
we can introduce migration between populations, by samgaliconstant number of alleles
ngp IN populationa that become part of the allele pool in populatioThus, in a model of
two populations with migration, one considers the traagithatrix

k1=n21,ka=n12
Pj jasivia = Z Bi(j1 — k1;2Ne1 — n21,41/2N, 1) Bi(k1;m21,i2/2N, 2) X
kl,kzzo
(29) XB’L(]Q — /{2; 2N672 — Ni2, 12/2]\7@72)32(/{2, ni2, 7:1/2N671).
This process is generalizable to an arbitrary number of fadipns in a straightforward
way.
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3. DIFFUSION APPROXIMATION

Diffusion approximations to finite Markov chains have aidigtished history in pop-
ulation genetics, dating back to Wright and Fisher. Thisragph can be used to describe
the time evolution of derived allele frequencies in sevpagdulations, with relatively large
population sizes. This approximation applies when the fadjmn sizesN, are large (if
N, > 50, the binomial distribution with indeX N, can be accurately approximated by the
Gaussian distribution used in the diffusion limit) and naigon rates are of ordér/N.,.

In the large population size limit, the state space spangabtors such as Ed. (2.6),
converges to the continuous spdgel1]%. The density of stateg; (¢) on the state space,
will converge to a continuous density(z, ¢) on [0, 1]%. The time evolution ofy(x, t)
depends on how the inifinitesimal char@ﬁ,

X(t+6t) = X(t) + 06X,

is distributed. If the mean of th&X distribution is) (X, ¢) and the covariance matrix is

C(X,t), the time continuous limist — 0* of the processY (¢) is well defined. In the
small, but finite, limit of§t the stochastic process obeys the equation

(3.1) X(t+6t) = X(t) + M(X,t)6t + o(X, t)&V/t,

wherec’is a standard normal random variable (with zero mean andtaniriance matrix)
in R, o(X, ) is a root square of the covariance matfi¢X , t) = oo’ (X, t), anddt is
a finite, but very small, time step.

In the diffusion approximation to the discrete Markov chdlire process is described as
a time continuous stochastic process governed by Gaussigrsjof prescribed variance
and mean. These processes can be denoted using the nofasimclmastic differential
equations:

K
(3.2) dX[ = M*(Xy, t)dt + > o™ (X, t)dWY,
b=1

wheredW? is the infinitesimal element of noise given by standard Briawrmotion in
K-dimensions, and is the root square matrix of the covariance mattix= oo’ [19].
The diffusion generator associated to Hq.](3.2) is

u 0 1 & 0?
. a - ab
(3.3) L= 321 M*(z,t) By + 5 bgzl C (gc,t)8

fado

Thus, if ¢(x,t = 0) is the density of allele frequencies at tirfhethe time evolution of
o(x,t) will be governed by the forward Kolmogorov equation
(3.4)
dp@,t)  ~1_ )
= - @ t t)| — M (x,t t t
at Zl 2axaaxb [O (ZC, )¢(I? )} l; axa [ (ZC, )¢(I? )] +p(I? )7

a,b=

with p(z,t) an inhomogeneous terms, continuous limitgfin Eq. (2.1), that describes
the net influx of polymorphisms in the population per gerierat

3.0.1. Modeling migration flow and random driffThe continuous limit of the Markov
chain defined in Eq[{2.9), in the caselfdiploid populations, and in the weak migration
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limit has as associated momenta

(3.5) M*(x,t) = Zmab(zb — Zg4),
b

a __ sa (Ea(l _‘Ta)

(36) C b(l’,t) = 6 bw,

with §% the Kronecker deltas(®* = 1 if a = b and§*® = 0 otherwise). The matrix
elementmn,, = n./(2N,) defines the migration rate from tth&"* population to the:!"
population.

Thus, associated to such process one has the Kolmogoroardeguations

0 B 1 92 abTa(l —x4)
ot (@.%) = ; iﬁxaazb (5 2Ne¢q (b(:v,t))

0
0x,
Eq. (3.7) describes the time evolution of the frequency spet density under random
drift and migration events between populations, given atialndensity and absorbing
boundary conditions (see below). The inhomogenous tgrmt), models the total in-
coming/outgoing flow of SNPs per generation into thiecube which is not due to the
diffusion flow, j¢ = —M%¢ + 9°(C%¢), at the boundary. This total flow depends on
mutation events that generate novoSNPs, coming inflow from higher dimensional com-
ponents of the allele density (see below), coming inflow fraigration events from lower
dimensional components of the allele density, and the autffanigration events towards
higher dimensional components. If there is not a positiflaxof SNPs, the density would
converge top(x,t) — 0 ast — oo. In order to understand the probability flow between
different components of the density of alleles, we will hawestudy how the boundary
conditions are defined precisely.

(3.7) -

(mab(xb - Ia)¢(xv t)) + p(SC, t)'

3.1. Boundary Conditions. Understanding the boundary conditions in this problem is
one of the most challenging tasks. In the famous solutioniofufa to the problem of
pure random drift in one population, [12], Kimura requirée tsolutions to the diffusion
equation to be finite at the boundaries= 0 andz = 1. This boundary condition is
absorbing. The points = 0 andx = 1 describe states where SNPs reach the fixation of
their ancestral or derived states.

If we considerK populations, the natural generalization of Kimura’s baanyccondi-
tions can be derived by studying the possible stochasttorigs of single diallelic SNPs
segregating in thé& populations. A SNP which is initially polymorphic in all th€ pop-
ulations, can reach the fixation of its derived or ancestatkesin one population while
still being polymorphic in the remaining’ — 1 populations. More generally, a SNP can
be polymorphic inK — « populations, while its state can be fixated in the remaining
populations. A convenient way of visualizing this, is by komy at the geometry of the
K-cube of allele frequencies, and the different subdimeraioomponents of its bound-
ary (see examples Fid.] 3 and Fig. 4 for the 2-cube and 3-cubéy.-cube’s boundary
can be decomposed as a set of cubes of lower dimensionadity,(fX — 1)-cubes up to
0-cubes or points. The number of boundary components of cartbion, i.e. the number
of (K — a)-cubes, contained in the boundary of thiecube is

2°K]

(3.8) # (K — a) cubes = K=yl
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FIGURE 3. Decomposition of the singular probability density, faot
populations, on the two dimensional bulk and the differertdmen-
sional boundary components.

The most important set of boundary components ard iie- 1)-cubes, because any
other boundary component can be expressed as the intersett finite number of K —
1)-cubes at the boundary. We identify eei codimension-one boundary components,
by the population where the SNPs are not polymorphic, andhétate that is fixated in
such population (Derived or Ancestral). For example, theponent(:, A) is defined as
the set of points in th& -cube that obeys the equation= 0, and the componeit, D) is
defined by the equation; = 1. Therefore, any codimensieanboundary component can
be expressed as the intersection
(3.9)

(i1 S1)N(iz S2)N- - - (ia Sa) = {z € [0,1]"|zi, = 85, D; @i, = b5, D3 -+ Tip, =I5, D}

with i, # ig Whena # 8, dg,p = 1 for the derived staté = D, andds p = 0 for the
ancestral stats' = A.

To each boundary component of codimensiowe associate &K — «)-dimensional
density of derived allele frequencies that are polymorfst on the correspondiny’ —
o populations, while are fixated in the otherpopulations. In this wayp(®) denotes
the bulk probability density{gb(ivS)}ﬁf{fS:A,D are the2 K codimension one densities,

{gb(ivsi;j-rsﬂ}#J—;Shsj:AyD the codimension 2 densities, etc. This decompositionus-ill
trated in the case of 2 and 3 populations in Eig. 4 and[Big. 3.
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FIGURE 4. Decomposition of the singular probability density, forge
populations, on the three dimensional bulk and the diffesebdimen-
sional boundary components.

In this notation, we write the density of derived allelesreggting onkK populations as
the generalized probability function

O(w,t) = ¢<°xt+z( D) (3, 8)6 () + 6D, 13 (i — 1)) +

K
> (6049 (@, 0)0(w)0(;) + 5D (2, 0)8(:)d(; — 1)
i=1,j#1
K
(3.10) DD (g, )8 (s — 1)0(x; — 1)) Y
i=1,j7#4,k#i,k#j
with §(-) the Dirac delta-function. The points, A) N (2, A)N--- (K, A) and(1, D) N
(2, D)n --- (K, D) are the universal fixation boundaries, and they do not dmutito
the total density of alleles in EJ.(3110). It is useful totenthe probability density(x, t)
using such decomposition, because despite of being a singeiheralized function, each
boundary componeut*-51:7:52:--) (z, t) will be, most of the times, a regular analytic func-
tion.
The dynamics of the boundary componepits:51%2:52:) (1, t) are governed by diffu-

sion equations, with an inhomogenous term, of the type

O i 51 1 02 Ta(l = 2a) (i1 g1
(i1,S1312,52,...) - § - aba a (i1,S1312,52,...)
(“)t(b (z,1) — 2 0x,0T) <5 2N, ¢ (a:,t))

0
0x,
with p(#1:51:%2,52:-) (- ¢) the net incoming/outgoing flow into the boundary component
(i1,51) N (i2,52) N.... Thep term can be interpreted as an interaction term between
different boundary components.

(3.11) _ (mab(xb _ xa)(b(ihsuiz-,szm»)(x’ t)) 4 p(il-,sli,i2-,527»~)(x’ t),
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More preciselyp(1-5152:52;-) (1 t) consists of four terms

(312) p(i17S1;i27S2;...;imSa) (.I', t) = Pmut (.I', t) + pdrift (:Ea t) + pinm (.T, t) + poutm (:Ea t)

pmut(z,t) is the influx of spontaneous mutations (only present in cedisions — 1),
parift(z, t) consists of the boundary inflow from codimensior 1 components that have
(i1,51) N (2, S2) N...as aboundary componept,, (x,t)representstheincoming flow
due to migration events from lower dimensional boundaryponents, an@,.:,, (z,t) is
the outflow due to migration events frofi, S1) N (i2, S2) N... (ia, Sa) towards higher
dimensional components that halig, S1) N (i2, S2) N... (ia, S4) as a boundary com-
ponent.

We can write in a more precise way each termi-51:%2:52:) (z: t), as follows:

o pmut:

(313) p571'111;291;i2.,52, e Sl ) Z2Ne aU6a K— IM Zaq H - lg,
7j=1
a # K — 1, andu(z,) is the

With 6o 1 = 1if o = K — 1, 6o 1 = 0 f
) = 6(xa — 1/2Ne.0)).

mutation density (in the classical theopyz,

® Ddrift-
i Vi Ve 1
(3.14) P((irli’ﬁsh bt Se) (g Z Z( ( N Zmabxb)
+6vaD(4N _Zmab 1—$b)))¢(h ,S1352,595 30— 1S 1)( =085, Dy, t),

where the sum ovej, is over all components of codimension— 1 that have
(i1,51) N (i2,82) N... (ia, Sa) @s a boundary component. The sum avandb
is over all populations that are nat, io, . . . iq.

e pin, . Here, and throughout,, is a shorthand for the boundary compongntSs;
9,595 ... Qo Sa)- pgff)(a:,t) represents the total incoming flow due to migra-
tion events of SNPs that are contained in densities of SNExtdd at boundary
components of,,. If By(c,) is the set of boundary componentsfwith fixed
codimensioni (o« < d < K),

Bg = {(i1, S13i2,52; . . jias Sas Jat1, Sat1s -+ - Jdr Sd) Y jas,eas

thenp(C“) (z,t) can be written as the sum of contributions from all boundam-c
ponents inB3,, for all codimensiond = a + 1, + 2, ..., P, and for all possible
migration events from elemengsn B4(cy) t0 co:

(3.15)
d

pifj’ Z ZW) (x,1) Z p(e) H 6y, — fir)

d=a+1qeBy e€l(g—ca) k=a+1

Here,T'(¢ — ¢,) is the set of all possible migrations events from SNPg (i

to ¢(¢=), p(e) denotes the probability of occurence of the migration eveaind

0 < ff € c, denotes the expected frequency, in tHepopulation, of a SNP
that enters:, after the event. We provide below a more precise description of
Eq. (3I5), such as a description of the event spgge— ¢, ), the corresponding
probabilities of occurence and expected frequencies.
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® pout,, . Denotes the outflow of SNPs due to migration events to hidimeensional
boundary components. In other worg c;tzn measures the rate of loss of SNPs in
¢ because of migration flow towards boundary components diwension
d < o, that havec, as a boundary component. LEf, ., be a discrete function
that returns 1 when,, is a boundary component @f and zero when it is not.
Thus,

(3.16) pla) (x,t) = () (x,1) Zzlaq,ca ST ple)

d=0 qeBq ecl(ca—q)

To compute Eq. [(3.15) and EqL_(3116), it is unavoidable to afggroximations. In
principle, one could use the transition probabilities @& fimite Markov chain to estimate
the probabilities of different migration events and theipected allele frequencies. How-
ever, there is a simpler approximation, which is consistgtit the weak migration limit
in which the diffusion equation is derived.

This approximation follows from the observation that at feeindaryz, = ds p, the
strength of random drift along the populatiewvanishes,(1 — z,) = 0), and hence, the
infinitesimal change in;, obeys a deterministic equation:

dz,

(3.17) -

= Z ds,AMapTy — 05, pMap(1 — ).
b

Eq. (3.1T) implies that a migration event from several papahsb, to a target population
a, can push the frequenay, of a SNP, out of the boundary where it was initially fixated
(xa = 557[)).

Therefore, given & -cube, a boundary componeft(of codimensiony), and a bound-
ary componeng (of codimensiors > «) of ¢, we say that there will exist migration flow
from ¢ to c,, if and only if

da:at
(3.18) 255% AMap@s — 05, pMays(1 — x3) # 0,
dx K
(3.19) — = ;%mAmnbwb = ds,,pMnp(1 —xp) =0,

where{z, }%_, denote the allele frequencies of SNPs which are fixated avdbhedary
components,, andg, {at}ft:a+1 are the populations at, whose allele frequencies are
polymorphic, and the frequenciag are defined at the boundary componen(which
means that, is polymorphic as long as > 3, and iségs, p otherwise). It is important to
realize thatr;, can be0 or 1 atq, and a migration event tq, can still bring alleles of the
opposite state that is fixated in the target population.

In this approximation]’(¢ — ¢,,) consists of a single element, ap(k) can be zero
or one. If Eq. [[(3.IB) and Eq[C(3119) are satisfied, the migra¢ivent in'(§ — ¢,) has
probabilityp(e) = 1, and the expected frequencies are

K

(320) fat = stat-,Amatbxb — 55%7Dmatb(1 — Ib).
b=1

If Eq. (3I8) and Eq. [(3:19) are not satisfiade) = 0, and we say that there is not
migration flow fromg to ¢,
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3.2. Effective Mutation Densities. Given a constant spontaneous mutation rate in the
species under study, af “base substitutions per site and per generation,” and eéggdec
number of sitey = L x u where new mutations appear in the population each generatio
the total number ofle novomutant sites that appear in the populatigevery generation,

is 2N, ov. We can model this constant influx of mutations by adding a®itelta term

(3.21) 2N, qv6(xq —1/2Ne ),

to the K diffusion equations that govern the ancestral compondrdsdimensionk’ — 1
Pl NGz )Gk -1 4) (1 ¢). However, as we discussed above, more generally we work
with a effective mutation density

(3.22) 2N, qvi(xq).

As a particular example of an effective mutation densityceesider a stochastic census
population size, which is a random variable distributed as
(3.23) F(N)dN = 2—;2 exp(—r/2N)dN.
This distribution avoids extremely small populations byexponential tail, while large
population sizes are distributed as N —2, as shown in Fig[J5. In this model, we keep
constant the effective population si2& that defines the variance of random drift in Eq.
(3.8). Thus, the mutation density will be

(3.24) p(z) = /O T -1 /2M)ﬁ exp(—k/2M)dM.

We can integrate exactly Eq[(3]24), by making the changeadBblesy = 1/2M,
dM = —dy/2y*:

(3.25) w(x) = cexp(—kx).

0.0000025

0.0000020 [

0.0000015

0.0000010

0.0000005 [

0.0000000 0

1000 2000 3000 4000 5000 6000
Census population size (V)

FIGURE 5. A model for a stochastic census population size, with ex-
ponential decay in the small population size limit, a quadrdecay

~ N~2in the large population size limit, and a population peakat
1000.
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3.3. Population splitting events. So far we have studied how the allele frequency density
changes as function of time while the number of populatiEnemains constant. When
two populations split, the diffusion jumps to dimensi@nt+ 1, and the corresponding den-
sity will obey the time evolution defined by Ed. (B.7) far+ 1 populations, with different
population sizes and migration parameters. The initialsde i1 (2, 2x41,t) in the

K + 1 diffusion problem is determined from the density (x, t), before the populations
split. Therefore, if populatiod + 1 was formed byN, , migrant founders from the!”
population, then

Nya
(326) ¢K+1(1‘71‘K+1’t) = (ZSK(;C’t) #e_]vf,a(wa_$K+1)2/(5Ea(1—1a)).
T2 (1 — x4)

In the limit Ny, — oo, Eq. [3.26), simplifies to
(3.27) bri1(z, T 41,t) = O (2, 1)0(T0 — Tr41),

with 6(x) the Dirac delta. Additionally, if the new population is foechby migrants from
two populations merging, with a proportigifrom populationi and1 — f from population
b, then

(3.28) Pk +1(7, Tr41,1) = o (2, 1)0(fra + (1 = floy — Tx41)-

In the diffusion framework, one can also deal with populadithat go extinct or become
completely isolated. More precisely, if we remove tHi& population, the initial density in
the K — 1 dimensional problem will be

(329) ¢K71(577t) = ¢K('r7t)dxa-
[0,1]

4. SOLUTION TO THE DIFFUSION EQUATIONS USING SPECTRAL METHODS

The idea behind spectral methods consists in borrowingyical methods from the
theory of Hilbert spaces to transform a partial differelrgguation, such as Ed. (3.7), into
an ordinary differential equation that can be integratecherically using, for instance, a
Runge-Kutta method.

In general, the problems that we are interested in are mikgdliboundary value prob-
lems of the form

(4.1) 6(;5((;, ) = Lpp(x,t)p(x,t) + p(x,t), x€ D=0, 1]%,
(4.2) B(z)¢(x,t) =0, xe€dD,t>0,
(4.3) ¢(z,0) =g(x), =€ D,

whereD = [0, 1]¥ is the frequency spectrum domain with boundary, Lrp(z,t) is a
linear differential operator also known as the Fokker-Blemperatorp(z, t) is a function,
andB(x) is the linear boundary operator that defines the boundawiton. In this paper,
we are interested in the particular set of PDEs defined inlE®),(although we sometimes
keep the notation of Eq[_(4.1) as a shorthand.

We assume that(z, t) is, for all¢, an element of a Hilbert spaé¢ of square integrable
functions, and associatddt-product(, ) .. Furthermore, we assume that all functions in
‘H satisfy the boundary conditions imposed by Eq.1(4.2). Itspémethods we consider a
complete orthogonal basis of functions it that we denote by, (x)}:2,, which obeys

(4.4) (i, Yj) 2 = hidij,
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with h; a function ofi that depends on the particular choice of basis function® tBen
approximate®(x, t) as the truncated expansion

A-1

(4.5) Pad(z,t) =D ai(t)y(a).

=0
Similarly, one approximates the PDE in E§._(4.1) by projegiit onto the finite dimen-
sional basig;(z)}27}, as

(4.6) %PAQS(:E, t) = PaLpp(x,t)Pad(z,t) + Pap(a,t).

By #, we denote the finite dimensional space spannediyz)}4-!, and byP, the
corresponding project@ — H,. If

A—1

PaLpp(z,0)Pad(x,t) = Y wiy(t)i()ay(t)

i,j=0
A-1
Pap(a,t) = > Bbi(x),
i=0

we can re-write the ODE in E._(4.6) using jusbdalvariables as

) A—1
4.7) 80;;;” =) wij(t)oy(t) + Bi.
j=0

One can solve Eq[(4.7) by discretizing the time variabland using a standard numer-
ical method to integrate ODEs. Therefore, the spectraltismiio the diffusion PDE is
expressed in the form of a truncated expansion, like Eq),(darid has coefficients deter-
mined by the integral of EqL(4.7).

There are many different ways to construct sequences obajppating space®{, that
converge td4 in the limit A — oo, when the domain is th& -cube. Here, we follow other
authors’ preferred choicgl[7], and choose the basis of Gitedwypolynomials of the first
kind. In the following section we introduce Chebyshev exgians and show why they are
a preferred choice.

4.1. Approximation of functions by Chebyshev expansionsLet {T;(z)}:2, be the ba-
sis of Chebyshev polynomials of the first kind. They are th®&eigenfunctions that solve
the singular Sturm-Liouville problem

;2

d dT;(z) i B
(4.8) . <\/1 — a2 e > + mTZ(:C) =0,

withi =0,1,...,00,and—1 < z < 1. {T;(x)}>>, are orthogonal under the*-product
with weight functionw(z) = 1/v1 — z2:

dx me;
(4.9) [ e =
[~1,1] VA 2 v
wherecy = 2 ande;~¢ = 1. This basis of polynomials is a natural basis for the appnaxi
tion of functions on a finite interval because the associ@adss-Chebyshev quadrature
formulae have an exact closed form, the evaluation of therohials is very efficient, and
the convergence properties of the Chebyshev expansioesegéent[7].
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The Chebyshev polynomials of the first kind can be evaluayedsing trigonometric
functions, because of the identily(z) = cos(i arccos(x)). The derivatives of the basis
functions can computed by utilizing the recursion

1 / 1 !/
to express the derivate as
i—1
, 1
(4.11) Ti@)= Y  —T)

§=0|j+i odd €

Similar formulae can be found for higher derivatives. Theftioients in the expansion

(4.12) Puf(z Z a;Ti(x

can be calculated by using the orthogonahty relations efithsis functions

(4.13) = e / f(zx T a:2

However, a direct evaluation of the continuous inner prodag. [4.18), can be a source
of considerable problems as it is in the case of the FourigeseThe classical solution
lies in the introduction of a Gauss quadrature of the form

(4.14)

1 Q _
o [ SOmE = Y T, = o (%)

If f(z) is smooth enough, the finite sum ow@rgrid points in Eq. [(4.14) will converge
quicker thanO(Q ') to the exact formula[[15]. As Eq_(4l114) is equivalent to scdéte
Fourier cosine transform, general results on the convermyehcosine transforms apply
also to this problem. One can see this relationship by cenisig the change of variables
T = COSY:

1 T
@) [ f@ne \/f_—xz = / F(cos y) cos(iy)dy.

and choosing) equally spaced abscissas in the intetval y < m,

(4.16)
/ f(cosy) cos(iy)dy WCZQZf[ ( Qlwﬂcos (i2k26—217r>.

In order to study the convergence properties of the Chebyskgansions Eq[(4.12),
we exploitthe rich analytical structure of the Chebyshdypomials. By using the identity
Eq. (4.38), one can re-write E(ﬂZ]13) as

(4.17) b= / i [ dfl”dx.

If f(z)is C*([—1,1]) (i.e., if its first derivative is continuous), we can integray parts
twice Eq. [4.1V) to obtain

/ Vil [\/—dfd_”} Ll@) 4,

mec;

(4.18) a; =

w2
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We can repeat this process as many time§ agis differentiable; thus, iff (z) € C2971([-1,1])
then

(4.19) ai:—ﬁ/ [(\/1—;52 \/1—x2%>qf(:v)]Ti(:v)\/1df—x2.

If we use the truncation error
(4.20)

1 A—1 2 da 1/2 oo 1/2
1)~ Pas@lee = | [ |70 - X atio)]| 2 =(Z|ai|2) .
- =0 i=A

as a measure of convergence of the Chebyshev expansion,yestiraate its asymptotic
expansion by calculating the rate of decrease;of But, as we showed in Eq[(4]19),
la;| = <2, for some constant(q), if f(z) € C24~1([~1,1]). Therefore, for large\ the
error decreases as a power law

1/2
4.21) 1f(@) = Paf(e |Lz—<2|az|2> < o

and if the function is infinitely differentiable (= o), the corresponding Chebyshev series
expansion will converge faster than any powet pA.

In the applications of this paper we will work with re-scalétiebyshev polynomials.
As the Allele Frequency Spectrum is defined on the intejval], or direct products of
it, we re-scale the Chebyshev polynomials to obtain an adhmal basis o1f0, 1]. More
precisely, the basis that we use{iB;(z) = o, T;((1 — x)/2)}5°, with z € [0,1], ap =
1/\/7, aiso = V/2/+/7, L>-product:

dx
(4.22) (f, 9) = f(@)g9(@) ———=,
[0.1] z(1—x)
and orthonormality relations,
(4.23) Ri(@)R () —5,,.
[0,1] z(1—z)

4.1.1. High-dimensional domains and spectral approximationsiotfional spacesThe
joint site frequency spectrum df populations can be defined as a density@n]*. A
natural basis of functions on the Hilbert spacg([0, 1]%), comes from the tensor prod-
uct of one dimensional functions. More particularly, we sidier the tensor product of
Chebyshev polynomials

(4.24) Vi in,.in (T) = Riy (21) Riy (22) -+ Ry (T ),

becausd.2 ([0,1]%) = L2 ([0,1]) ® --- ® L2([0,1]). Therefore, any square integrable
function F(z) under theL?-product

(4.25) (F(z), G(x)>w_/[0 " F(z)G(x H \/xi

can be approximated as multi-dimensional Chebyshev elans
A—1A2—1 Ag—1

(4.26) Fl@)=Y Y > QiviixRi(@1)Riy (22) - Riye (2K).

i1=0 12=0 i =0
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The truncation parameters;, A, ... can be fixed depending on the analytical properties
of the set of functions that one wants to approximate, anid tioeresponding truncation
errors. There always exist a trade off between the accurhtiyeoapproximation (the
higher theA the more accurate the approximation) and the speed of thiementation

of the algorithm (the lower thd, the faster the algorithm); therefore, choosing different
values ofA; will yield more optimal implementations of the algorithmet¢, for simplicity

in the notation, we use a unique truncation parameterA; = --- = Ag.

4.2. Diffusion Operators in Modal Variables. In orderto approximate the PDEs defined
in Eq. (3.7) by a system of ODEs in the modal Chebyshev vagélich as Eql_(4.7), we
need to project the Fokker-Planck operator in the Chebybhsis spanned by Eq._(4]24).
Later on we will show how to deal with the influx of mutationsesfied by the Dirac
deltas.

A direct projection of the Fokker-Planck operator onto theelyshev basis spanned
by Eq. [4.2¥#), would require to store the coefficients in aehomatrix with A2 matrix
elements. Fortunately, the Fokker-Planck operator in ooblem is very simple, and its
non-trivial information can be stored in just four spafse A matrices. First, we need the
random drift matrix

e d? dx
4.27 D;j == () — (z(1 — ; —_—
@.27) 1= ) R g 0 R )
and then, the three matrices needed to reconstruct thetiigtarm
dx
(4.28) Gy = / Ri()R;
Va(l—a)
(4.29) H;, / Ri( dR dr
z(1—2)
dR; ( ) dx
4.30 Jij = R; .
(4.30) g /0 e

The matrix elements in Eq$. (41271). (4.28). (4.29) and (¢ & be quickly determined
by means of the Gauss-Chebyshev quadrature defined i Bd).(fdue to the properties
of the Chebyshev polynomials, there exist important selactiles that make many matrix
elements vanish. More particularlg;; and.J;; are upper triangular matrices (i.€;; =
Jij =0if i > j), H; =0if ¢ > j,andG;; = 0ifi > j+1ori < j— 1. Thus,
the total number of non-trivial matrix elements that we nesedompute, for a given, is
just %AQ + %A — 2. This is much smaller than the default number of matrix eletsé.e.,
AQK)'

Finally, theAX x AX matrix elements of the correspondingnatrix in Eq. [4Y), can
be easily recovered from the tensor product structure oAthedimensional vector space
that defines the Chebyshev expansion (as in[EQ.1(4.26))., TAUSi, j, .. jx =

1
(4.31)> oN~ Diaida = Zmab iasia Givyio = OiarjaOiv,jo — JiariaOinis)

4.3. Influx of Mutations. The inhomogeneous terms in Ed._(3.7) that model the influx
of mutations are given by effective mutation densities. Asshiow in the appendices, a
model of mutations given by an exponential distributionl wé give the same results, up
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to an exponentially small deviation, as a standard modél wiDirac delta. The motiva-
tion of using smooth effective mutation densities, is beseahey are better approximated
by truncated Chebyshev expansions. As we briefly explaim¢ide review on Chebyshev
polynomials and its truncated expansions, the convergehadruncated expansion de-
pends strongly on the analytical properties of the functmhe approximated. As Dirac
deltas are not smooth functions, their truncated Chebyskpansions present bad con-
vergence properties. This is related to the problem of Gitfenomena, and we will give
a more detailed account of its origin below (s&aurces of error and limits of numerical
methods.

12 A=10

- 0
1\7(! 0.2 04 0.6 08 1.0 0.0 0.1 02 0.3 04 0.5
Derived allele frequency () Standard deviation of the Gaussian function ()

FIGURE6. Onthe left, we show the plot of 5 different truncated Cheby
shev expansions for a Gaussian peaked-at0.5 ando = 0.03. On the
right, we show the truncation error of different Chebyshrgamsions
(with A = 3, 6, 10 and15) of a family of Gaussian functions peaked at
x = 0.5 and parametrized by the standard deviatidi < o < 0.5.

In this paper, we just consider a positive influx of mutationboundary components
of dimension one. In order to approximate the behavior uadautation term given by a
Dirac delta, an effective mutation densjtyz) has to satisfy the following

e The truncation error is bounded below the established petenn, for the control
of error. l.e. ||u(z) — Pap(x)| 2 < e.

e The expected frequency of the mass mutation-functidB,is:) = ﬁ

e The mutation-function is nearly zero for relatively largequenciesZ > 0.05),
and it is as peaked as possible neat 1/2N..

While the first and third qualitative requirements are gintfiorward, the second numerical
conditionis not. One can interpret such requirement, avalgunt to fix the neutral fixation
rate to beu, because the probability that an allele at frequeney p, reaches fixation at
x = 1, isp. Thus, the average number of new mutants that reach fixa¢ioggneration is
2N.u x E,(x) = u. This constraint also can be derived by studying the pragsedf the
equilibrium density associated to this stochastic prac&ssquilibrium, the density. (z)

of derived alleles obeys

1 d>

(432) 4—]\76@ = —2N€U/L(l'),
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with ¢ (z) = (1 — x)¢.(x). Therefore, the expected frequency of the mass mutation-
function can be computed as

1 1 1 de
4.33 dr = dz.
(4.33) /O xp(z)dz /0 T

v ), @

Using the identitw% =4 [x%] — 9%, one can rewrite Eq[{4:B3) as

! 1 dy
(4.34) /0 zp(x)dr = _8N3ua(x =0).
On the other hand, the probability flux associated to thelibguim density of alleles at
the boundary: = 0is j(0) = ﬁw’(O). We use this to write the expected frequency of
the mutation density as: '

1
4.35 de = — 1(0).
(4.35) | anta)is = g5
In neutral evolution, the probability flux at the boundary= 1 equals the fixation rate,
which satisfiesj(1) = —u. Every generation a total &N.u de novoSNPs enter the

population, an@N.u — « SNPs fixate at the boundary< 1/2N. These known facts on
the fixation rates of neutrally evolving alleles, requirattthe total probability flux at the
boundaryr < 1/2N must bej(0) = —u. Therefore, Eq{4.35) has to satisfy

! 1 1 1
4.36 de = — i(0) = — —u) = -
( ) /0 pl)da 2N€u](0) 2Neu( v) 2N,’

which is what we wanted to show.

Numerical experiments show that for a large class of fumstjo(x), and in the fre-
guency ranger > x., the associated solutions to the different diffusion peoid are
identical (up to a very small deviation) to the standard nhedth a Dirac delta. =, is
a very small frequency, that depends on the choicg(ef, and generally can be made
arbitrarily small. It is in the region of the frequency spadi¢h 0 < = < z,, where the
behavior of the different diffusion problems can deviatesino

The truncation error in the Chebyshev expansion dependbesrhoothness of the
function, and the choice of truncation paramater (see Eldor&n example). For the
effective mutation density(z), we use the exponential function

1 K2

2N, “1- exp(—k) — kexp(—k)

437)  u(x) =

where the values fot(A, €) > 1, are determined by saturating the bound on eiffofz) —
Pap(a)]z2 < e.

exp(—/-@x),

4.3.1. Comparison of different mutation models at equilibriuvide derive in the Appen-
dix A the associated equilibrium distributions of derivdigles. For a model with a muta-
tion density given by a Dirac delta, one finds the equilibridemsity

(4.38) e () = 4N.(2N, — 1)ux — 8];763;1(_:1796—) 1/2N.)0(x — 1/2Ne)’

with 6(y) the Heaviside step functiod(y) = 0 fory < 0, 6(y) = 1/2 fory = 0, and
6(y) = 1 fory > 0). Which in the regionc > 1/2N, simplifies to

4N u
(4.39) fe(r) = ——.

x
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In the case ofiz(x) = cexp(—kx), the corresponding equilibrium density, is
(4.40)

e (z) = ANeu(l —x) + %fuc (exp(—k)(1 4 1/k) — exp(—k)z — L exp(—£x)) '

x(l—x)

FIGURE 7. Three comparisons of the equilibrium densities assediat
to the exponential mutation density (blue) for several @alafx vs. the
equilibrium density associated to the Dirac delta mutatiomodel (red).
For illustrative purposes, the population size used Was 10, 000 and
the spontaneous mutation rateuis= 10~%. On the left the equilibrium
density associated to the exponential distribution with 10 is shown,
in the middlex = 20, and on the right = 40. For a truncation param-
eterA = 20, one can choose mutation densities witlp to 43, while
keeping the truncation error below sensible limits.

Therefore, a pairwise comparison of both equilibrium diéesi shows that the deviation
from both models when > =, = k1, is exponentially small when equilibrium is reached
(see Fig[l7). We can show that the same is true in non-equitibr

4.3.2. Non-equilibrium dynamics with effective mutation dessitHere, we show how
the non-equilibrium dynamics of a diffusion system undeegponential distribution mu-
tation influx, is the same (up to an exponentially small digorg to a system where mu-
tations enter the population through the standard Diraiad¢l — /2N.), as long as the
allele frequencies are bigger than certain minimum frequen. Below .. the dynamics

will be sensitive to differences in the mutation densities.

Let () be an arbitrary initial density of alleles. Léft (x,t) be the solution to the
diffusion equations under pure random drift and a mutatidiox given byd(x — 1/2N.,).
¢2(z, t) is the solution of the diffusion equations under pure randiift and mutation
influx given by the exponential effective mutation density. §4.3T). In the Appendix B,
we prove the following identity in the largdimit

1
@41) [ 161(@.0)=a(o. 01 =)t = T2 (1 —exp(—t/280)) + Ofexp (=),

with ¢1(x,0) = ¢2(2,0) = ¢, andx < 2N,. If we normalize Eq.[(4.41) by

1
1im/ |1 (z,t)|2(1 — z)dx,
0

t—o0

the normalized deviation afs(x, t) from ¢, (z,t) is, fort large,

f() |¢1($C,t) B ¢2($,t)|1'(1 B ‘T)d‘r _ 2(1 _ exp(—t/2Ne)) + O(eiK,Neil).

1imt—>oo fol |¢1 (:Ea t)"T(l - (E)d(E K

(4.42)
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We can also show, by applying the Minkowski identity to Eq.I® in Appendix B, that

f()l [91(2,8) = da(w, )|z = z)dw < 2 1 +exp(—t/2N.)) +O(e " N !
limy o0 fol |¢1 (x,t)|l'(1 _ (E)dQC — ( p( / e)) ( , ),

forallt > 0. What means, that the deviation is boundedify: —!) for all ¢, and therefore
the non-equilibrium dynamics af; (z, t) and¢s(x, t) are identical in the large limit.

As |¢1(x,0) — ¢2(x,0)| = 0 at time zero, and the deviation ¢§(x, t) from ¢, (z, t)
attains equilibrium in the large limit, we can study the frequency dependence of such
deviation by looking at the equilibrium

(4.43)

=

4N ue™ "%

oy O

(4.44) Hm 1 (z,8) — éa(z, t) =
Here, theO(e~") term exactly cancel the singularity at= 1, and the deviation decays
exponentially as function of the frequency. This shows fhaffrequenciest > z, =
k~1 > 1/2N,, the dynamics of a model with mutation influx given by a Diradtd, is the
same, up to an exponentially small deviation, to the norilibgium dynamics of a model
with exponential mutation density.

4.4. Branching-off of populations. Modeling a population splitting event also involves
the use of Dirac deltas, as in Eq._(3.27), or peaked funcsoich as Eq.[(3.26), whose
truncated Chebyshev expansions may present bad convergesyerties. These Gibbs-
like phenomena can be dealt in a similar way as we did with théation term of Eq.
B.3).

We implemented two different solutions to this problem, dath solutions yielded
similar results. First, we constructed a smoothed appration to the Dirac delta by using
Gaussian functions:

N _ 2
with
— ' (1711_$K+1)2
(4.46) w(za) = /0 exp <_W) .

ando(z,) is a standard deviation which is chosen as small as posstile preserving

the bound on erroflo(x, — ) — Prd (e — )| L2(0<x<1) < € fOr any value ofr, € [0, 1].

In order to map thé-function in Eq. [Z.4b) to a truncated Chebyshev expansion,
A—1A—1

(4.47) Pad(@a — wx41) = D Y AijRi(wa) R (zxc41),

i=0 j=0

one has to perform a Gauss-Chebyshev quadrature in 2 diomsngi< z, < 1,0 <
Ty < 1t

1ol dz, dx
(4.48) Ay = /0 /0 O@a — @) Ri(wa) Ry () Vol —z4) ol —2)

The second approach, exploits the analytical behaviorfafsion under pure random
drift (i.e., with no migration). By Kimura'’s solution to thdiffusion PDE in terms of the




NON-EQUILIBRIUM ALLELE FREQUENCY SPECTRA VIA SPECTRAL MEHODS 23
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. . . .
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Derived allele frequency (x)

FIGURE 8. Diffusion under pure random drift acts by smoothing out
the initial density at = 0. Here we show numerical solutions to the
diffusion equations with\ = 28, at5 different times, with initial condi-
tion ¢(x,t = 0) = 6(x — 0.3). As time passes, the numerical solution
approaches faster to the exact solution, and the Gibbs phemadisap-
pear.

Gegenbauer polynomialgy; (z) }, seel[12], we know that the time evolution of 1-d density
is

SN 20i+1)+1
(4.49) Prp(x,t) = ; A D61D
withr = 1—2p, 2z =1 — 2z andé(x,0) = §(z — p). Thus, as the degree 6f(z) is
1, and we can express any Gegenbauer polynomial as a linedniration of Chebyshev
polynomials, we know that the exact solution to the diffuseruation acts on the high
modes by the suppressing factop(—(i + 1)(i + 2)t/4N). This means that diffusion
smooths out the Dirac delta at initial time. Fig. 8, represéme evolution of the density at
different times.

Thus, we can use diffusion under pure random drift to smdwothdiensity introduced
after the population splitting event. Lék (x, t) the density before the splitting, and tet
be the population from which populatidti + 1 is founded, then we consider initially the
density

(4.50) dr1(z, 2011, = 0) = Oxc (2, )0(T0 — Tx41).-
The associated Chebyshev expan$ab k1 (z, zx 11, t) will present Gibbs-phenomena.
However, by diffusing for a short time under pure random drift

B} 102 (a1 —a)
4.51 — t) = S (el AN
(4.51) 57 Pr+1(2, x4, 1) ; 2 0 ( 55,
(with S, = Sk41 =W, Sy =Vior K+ 1#b+# a,andV > W), oxi1(x, Txy1,7T)
becomes tractable under Chebyshev expansions. In othdswmy choosing such that

(1 =1*)Gi(r)Gi(2) exp(—(i + 1)(i + 2)t/4N),

Gr41(T, TRy, t)) ;
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the error bound is satisfied

éx+1(x, 2541, 7) = Padr1(x, 241, 7)|[ 22 <,

we obtain a smooth density, after population splitting,ahican follow the regular diffu-
sion with migration prescribed in the problem, and apprat@raccurately the branching-
off event. In some limits, this approximation can fail, tighuwe leave the corresponding
analysis for the next section.

Here, we do not consider the numerical solution to the praldésplitting with admix-
ture, although we are confident that it should be possiblehzest along similar argu-
ments.

4.5. Sources of error and limits of numerical methods. There are two major sources
of error in these numerical methods. First, the solutiorhefdiffusion equation is itself
a time-continuous approximation to the time evolution ofrabability density evolving
under a discrete Markov chain. Hence, whenever the diffuspproximation fails, its nu-
merical implementation will also fail. Secondly, a numatisolution by means of spectral
expansions, involves an approximation of the infinite disienal space of functions on
a domain by a finite dimensional space generated by baseshainormal functions un-
der certainZ?-product. As we show below, under a broad set of conditioasitimerical
solution will converge accurately to the exact solutiorijestvise, the numerical solution
can fail to approximate the exact solution. A third sourcerobr appears because one has
to discretizate time in order to integrate the high-dimenal ODE that approximates the
PDE. Fortunately, this source of error is neglectible beeahe diffusion generators yield
a stable time evolution.

We summarize below the main conditions that have to be satigfi order to obtain
high-quality numerical solutions to the PDEs studied i3 thork.

4.5.1. Limits of diffusion equationsin the diffusion approximation to a Markov chain, the
transition probability is approximated by a Gaussian itigtion, [5]. Here, we review the
derivation of the diffusion equation as the continuoustliafia Markov chain, in order to
emphasize the assumptions made and determine the limitlfgpproximation.

Given a Markov process defined by a discrete state sSatansition matriceg(I|.J),
initial value K € S and discrete time = 0, 1, . . ., the probability that the state will be at
I attimeris f(I|K, 7), wheref(I|K, ) obeys the recurrence relation

(4.52) FUIK, 7) =Y pI|N)f(JIK, = 1).

Jes
In the diffusion approximation one considers a sequencesofete state spacés) } ez ,
such that in the limit\ — oo the state spacé,, converges to a smooth manifold (in
practical applications, a compact dom#&inc RX).

In this paper, we taks, to be[0, A%, andS., ~ [0, 1]%. Therefore, the state variables
can be re-scaled a&,/\ = z,, witha = 1,..., K andK, € [0, A]X. Similarly, we
introduce the time variable= 7/\. In the large) limit, the transition probability for the
change of the state from time/ X to time (7 + 1)/, is governed by a distribution with
momenta

(4.53) E(8aq|2) = Ma(x) /A + O(1/)2),
(4.54) E(6z,0xp|x) — E(d24|2)E(d2p|2) = Cap () /X + O(1/A?),
(4.55) E(0z2|z) = O(1/2?).
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In this continuous limit, the equation that describes theetevolution of the Markov chain
in Eq. [4.52), can be writen as a forward Kolmogorov equaitfome neglect terms of
orderO(1/\?). However, if M, (z) is proportional to\, the O(1/A?) terms in Eq. [4.53)
will not be neglectible and the diffusion approximationhwibt be valid. As in this paper
we takeX = 2N,, and M, (x) proportional to the migration rates,;, if the migration
rates obeR N, ,mq, < O(1) the diffusion approximation will be valid. Indeed, compute
experiments show that the numerical solutions become biestad yield wrong results if
this bound is violated. This limit precisely defines when prapulations can be considered
the same[[9]. Therefore, in cases wi¥W. ,mq, > O(1), we can consider populations
a andb as two parts of the same population. Another assumptioreidiffusion approxi-
mation is that a binomial distribution withVV, , degrees of freedom can be approximated
by a Gaussian distribution. This will be a valid approximatas long asV. , is large
enough. Numerical experiments show that the approximadiaccurate itN. , > 100;
otherwise, effects due to the finiteness of the Markov chaimot be neglected and the
approximation will fail.

Ny > 100

2Ne,amab S 0(1)

4.5.2. Limits of spectral expansion$Spectral methods, as any numerical scheme to solve
PDEs, require several assumptions about the behavior cddhetion of the PDE. The
most important one is that one can approximate the soluom series of smooth basis
functions,

A—1
(4.56) Pad(a,t) = > - Z Wi ig,.ip () T3, (1) Tiy (22) - - Tip (xp).

11 =0 ip=0

In other words, the projection of the soluti®h ¢(x, t) is assumed to approximadéz, t)
well, in some appropriate norm, farlarge enough. As one has to choose finite values for
A, Eq.[4.56) will sometimes fail to approximate correctlg golution of the PDE.

In the applications of this paper, the basis of functionsweuse consist of the Cheby-
shev polynomials of the first kitid Below we provide bound estimates for the truncation
error |[Pag(x,t) — ¢(x,t)[|12;_1,1)x, to understand the quality of the approximate solu-
tions for different values of, (see alsd[[7,11] for different choices of basis functions).

More precisely, as thé? inner product and norm in the Chebyshev problem are:

(4.57) (, 9) afen = /[_1 " H m

and

(4.58) (K " —/[ H \/ﬁ

2 One can work either with the basis of functiofi®; (z)} onz € [—1,1], or with the re-scaled basis
{R;(z)} defined onx € [0, 1], by performing a simple scale transformation.
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the terms in the expansion Ef. (4.56) can be computed bynpeirfg inner products
(4.59)

K K
iy g, ine (T) = <z> /[1,1]K Oz, )5, (1) Ty (22) - Tipe (k¢ H L

b)
T / 2
j=1 Cijy/1 T

with ¢ = 2 ande; = 1 (5 > 0). A consequence of the orthogonality of the basis functions
is that the squared truncation error admits a simple fortimran terms of the coefficients
in the expansion:

2 K
@60)  [Pao(e) = o 0l g = (2) X Xl a0
i1 >A i >A

Thus, the truncation error depends only on the decay of thleehimodesa;, i, i, | In
the expansion. On the other hand, the decay of these hightesaepend on the analytical
properties ofp(z, t) itself. For instance, ifp(z,t) € C?0~12e—12ax =1 ([—] 1]K),

< 00,

i.e. if
g\l / g \2e-1 9 \2ax—1
9 9 N it
<3f€1> <3f€2> <‘9$K> o L2[—1,1]K

we can integrate by parts Eq._(4159), as we did in Eq._{4.b8)rite the decay of each
mode as

(4.62)
Ty, (z1) Ty (zk)

(4.61)

/11]K [ﬁ( 1w )2% (b(:v,t)] «

j=1

K
2
a0 = (2)
dxl ..

i i3\ /1 — 22 CZKZ?K\/l—xK
Eq. (4.62) implies that the truncation error is directlyated to the smoothness ¢fx, ¢);

it follows that we can bound the truncation error as a fumctibA:
(4.63)

1PAg( )=z, Bl 2 e < Cla)A™ o0 H{\/l—a: R

d,TK

- L2[-1,1]K
Another convenient measure of smoothness is the Sobolev:.nor
q1 qdK K a S;
@68) 19w o= > Y T () o ;
s1=0 sp=0 ||j=1 J L2[=1,1]K

in terms of the Sobolev norm, the truncation error is bouraed
(4.65)  [[Pad(@,t) — ¢(@, 1)l 21,1 < CA™ 259 || §(@, 1) | ppra oo [—1.175

A corollary of Eq. [46b) is that ifs(x, ¢) is smooth;Po¢(z, t) converges ta(x, t) more
rapidly than any finite power of ~!. This is indeed the basic property that has given name
to spectral methods.

In the case of the diffusion problem that we consider in tlisqy, the boundary condi-
tions are absorbing and there is not flux of mutations wRer 1. It is easy to see how
|eviy is..ix (t)] = 0 @st — oo in the absence of influx of polymorphisms in the population.
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This means that diffusion acts as a smoothing operator byedsing the Sobolev norm of
the initial density. Eq.[{4.85) imposes important limitghe set of parameters of the model
where spectral methods work; for instance, in the absenicdlox of polymorphisms and
for long diffusion times the truncation error will remaino

After two populations split and th& -dimensional diffusion becomesfa + 1 dimen-
sional process, th& + 1 dimensional density becomes a distribution concentrateid
linear subspace df-1,1]%+! defined byz, = x,41 (With @ anda + 1 labeling the two
daughter populations that just splited). Such density mamfinite Sobolev norm and
cannot be represented as a finite sum of polynomials. Fdselynthe diffusion generator
acts on the density by smoothing it out, and by bringing thesdg to a density with finite
Sobolev norm. The main variables involved in this processidie time difference between
the current splitting event and the next offig,;.; — T4 , and the effective population sizes
N, . andN, .41 of the daughters populations. Therefore, depending onttbee of the
truncation parametek, a minimun diffusion time,,,(Ne o, Ne o+1, A) Will be necessary
to bring the truncation error within desired limit®a¢(x, t,,) — ¢(z, )| L2 < €. Here,
€, is the control parameter on numerical error. Thereforebiljger is the largest effective
population size of the two daughters populations, the biggk be such minimum dif-
fusion time. If the time difference between the currenttsplj event and the next one is
bigger than

(466) tm (Ne,a7 N€7a+1, A) = C(A) maX(N&a, Ne,a+1)7

(whereC'(A) is a function that can be computed numerically), the rasgiftiumerical error
will stay below the desired limits. As our model aims to refuroe the real SNP Allele

|Tat1 — Tal > C(A) max(Neat1, Nea)

[PaY(z) = F(2)lle <€

Frequency Spectrum density, there should exist low errpragmations of such density,
that we denote a$(x), in terms of polynomial expansions. Otherwise, the methwe
presented will fail to solve the problem. This can only hapgey(x) is so rugged, i.e.
the corresponding Sobolev norm is so high, that the largagt thoice forA that we can
implement in our computer-code is not large enough to apprate accuratelyy(z):

N A =45 |~
(4.67) ||PAma27(x) - "Y(I)HLZ[fl,l]K ~ CApmaz’ ! ||7(x)||wq1 ----- aK [—1,1]K > €.

In case that Eq.[(4.67) is obeyed, it is likely tltabr more populations are so closely
related that we can treat them as if they were one identigalijation. If we reduce the
dimensionality of the problem in this way, (by only incorpting differentiated popula-
tions), the correlations will disappear and the Sobolevmof4/(z), will be such, that we
will be able to find a sensible parameteto approximaté/’(z) as a truncated Chebyshev
expansion.

5. CONCLUSION

In this paper we have introduced a forward diffusion modehefjoint allele frequency
spectra, and a numerical method to solve the associated. RDlEsapproach is inspired
by recent work where similar models were proposed|[21] 4A8hlogously, our methods
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are quite general and can accomodate selection coeffi@adtime dependent effective
population sizes.
The major novelties of the model here presented with reqgeetous work are:

e The introduction of spectral methods/finite elements incihretext of forward dif-
fusion equations and infinite sites models. Traditiondtgse techniques yield
better results than finite differences schemes when thergiioe of the domain
is high (i.e., when the final number of populations is higiy ¢he solutions are
smooth. A comparison of our implementation using spectethmds, and previ-
ous implementations using finite differences [8], will be thatter of future work.

e A set of boundary conditions that deals with the possibifitsgt some polymor-
phisms reach fixation in some populations while remain palgghic in other
populations. When the differences in effective populasimes between different
populations are large, this phenomenon can become veryiarioHere, we have
introduced a solution to address such possible scenaravideis work imposed
zero flux at the boundariels|[8], and hence avoided the fixatiggolymorphisms
in some populations while remaining polymorphic in the rest

e The introduction of effective mutation densities, whicmggalize previous mod-
els for the influx of mutations[[4]. We have emphasized hoffecént ways to
inject mutations at very low frequencies converge to theesaatution for larger
frequencies.

The non-equilibrium theory of Allele Frequency Spectrafigpomary importance to
analyze population genomics data. Although it does not makeeof information about
haplotype structure or linkage non-equilibrium, the asmlyof AFS allows the study of
demographic history and the inference of natural selectiothis work, we have extended
the diffusion theory of the multi-population AFS, to accamhate spectral methods, a gen-
eral framework for the influx of mutations, and non-triviaiundary interactions.
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APPENDIXA. COMPARISON OF MUTATIONAL MODELS AT EQUILIBRIUM

In this appendix we compute the equilibrium densities assed to Wright-Fisher pro-
cesses with mutation. Two types of mutation processes argdered, both modeled by
a mutation density. The first mutation density is a Diracalefthile the second one is an
exponential distribution.

As the diffusion equation that describe the time evolutibthe density of alleles for
diallelic SNPs, is

Od(x,t) 1 02

(A1) o AN, 92

[I(l - x)¢(x7 t)] + 2Neuu(£6),

the equilibrium density, () satisfiesaqbg—@ = 0. By using instead the functiop(z) =
x(1 — z)¢.(z), the associated second order ordinary differential eqndtecomes

1 ()
4N, 0Ox?

As Eq. [A2) is just defined far > 0, we can use Laplace transforms to solve the equation.
Let

(A.2)

+ 2N up(z) = 0.

(A3) ils) = [ (o) exp(-sa)da.
0
be the Laplace transform associated to the mutation demgity and
o] 2 ~
(n.) | S exp-sa)de = 0(s) = su(0) 4/ 0),
0

the Laplace transform associated«t6(x), with ¢/(0) and’(0) integration constants.
Therefore, in thes domain,y(s) is

/ o 2,0
(AS) 1]}(5) _ 81/)(0) + U) (O) 8N€ U‘LL(S)’

52

and by performing the inverse Laplace transform we obtarstiution to the equilibrium
density

5 exp(sz)ds.

L1 T s(0) +4/(0) - 8NZuii(s)
(A.6) @(@—mﬁ:rﬂo/e_n y

We fix the integration constantg(0) andv’(0), by requiring¢. (z) to be finite atr = 1,

and the probability flow at = 1 to be equal ta,

_ 1
4N,

As an example, we can evaluate exactly EQ.{A.6)fde) = §(x—1/2N,) andus(z) =

cexp(—kx). For the Dirac delta, the Laplace transform is

(A.8) fir(s) = exp(—s/2Ne).

If we compute the corresponding inverse Laplace transfarfy. [A.8), and fix the inte-
gration constants as explained above, we find the equitibdansity

_ 4N.(2N. — 1)uz — 8N2u(x — 1/2N.)0(x — 1/2N.)

B (1 —x) ’

(A7) (1) =~/ (0) = u.

(A.9) Pe ()
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with 6(y) the Heaviside step functiod(y) = 0 fory < 0, 6(y) = 1/2 fory = 0, and
O(y) = 1fory > 0). If z > 1/2N, Eqg. [A9) simplifies to

4N u
(A.10) de(1) = ——.
In the case Ofiz(x) = cexp(—kx), the Laplace transform is
- C
(A.11) fiz(s) = ot

and the corresponding equilibrium density, after intégpEq. [A.8), is
(A.12)

_ AN u(l — x) + %2”0 (exp(—k)(1 4 1/k) — exp(—k)z — L exp(—kx))

be(2) z(1—x) ’
which in the larges limit, and forz > 1/k, converges exponentially fast to
4N u
(A.13) b(w) = —=.
In the limitz — 0, ¢ () is finite just iff c = ﬁ X licxp(%g{mxp(%) , Which is the

normalization choice made in E4.(4137), and the only onisfyatg

1
(A.14) /0 zpz(x) = 2]1\7 .

This shows how a mutation model defined by a certain class ob#mmutation densities,

reaches the same equilibrium density, up to a small deviatis the standard model with
a Dirac delta.
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APPENDIXB. COMPARISON OF MUTATIONAL MODELS AT NON-EQUILIBRIUM

In this appendix we compare the non-equilibrium dynamicsotlels with a mutation
influx described by exponential distributions, with modilat consider a standard Dirac
delta.

More particularly, we prove that if; (z,t) is the solution to an infinite sites model
PDE, with absorbing boundaries,

8¢1 (ZC, t) 1 82

(B.1) ot IN.92 [z(1 — 2)¢1(x,t)] + 2Neud(z — 1/2Ne),

andgs(z, t) is the solution to the same model, but with an exponentiahtrart density
Opo(x,t) 1 97 k2 exp(—kKx)

(82) ot 4N, Ox2 [2(1 = 2)¢2(z, 1) + g exp(—k) — kexp(—k)’

then, thedeviationof ¢-(x,t) with respect top, (x,t), as function of time and for any
initial condition gz (z,t = 0) = ¢ (x,t = 0) = ¢(x), is, in the large limit,

(B.3) /0 |p1(z,t) — pa(z, t)|z(1l — z)dx = 4Neu(1 —exp(—t/2N.)) + O(e™").

R

Here,| - | is the absolute value, arfd(e ") are terms that decay exponentially as function
of x, which can be neglected in the largdimit.

As the total number of SNPs that are polymorphic in one pdjmiadepend on the
population size and the mutation rate, it is convenient tonatize the deviation EqL(B.3)

by lim;_, oo fol |p1 (2, t)|2(1 — 2)dx = (2N, — 1)u. In this normalization we have

1
By DI D DRIzl 2y o)+ o N2,
limy oo [y [¢1(2,t)|2(1 — x)da K
To prove Eq. [[B.B), we first describe the solutions to Hqg. )(Buid Eq. [B.2). Both
equations consist of a homogeneous term and an inhomoggeeotiibution given by the
mutation density. As they are linear equations, the salutiiothe PDE is the sum of a
homogeneous and an inhomogeneous term

(B5) le(xat) = ¢}11(Ivt) —|—¢T(.CC),
satisfying

6¢}1L(xa t) _ 1 62 h

o IN,0:2 [2(1 = z)p7 (x,1)] +
1
4N, Ox2
Hence, the only time-independent tersfi(z) that solves Eq. [(BI6) is the equilibrium
density Eq. [(AD), and?(z,t) obeys a standard diffusion equation with no mutation
density, and with initial condition} (z,t = 0) = ¢(x) — ¢§(z). If Lo (x,t) denotes the
Fokker-Planck operator acting o (z, t),

26" (1) = —— 2 a1 = )¢l (0]
L 4N, Oz2 130

we can write the solution to EJ_(B.6) in the following compform

(B.7) ¢1(x,t) = exp (tL) (p(x) — ¢1(x)) + ¢1(x).

(B.6) [z(1 — )¢5 (2)] + 2Neud(z — 1/2N,).
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Here,exp (t£) is the time-dependent action of the diffusion operator anitfitial den-

sity o(x) — ¢$(x) while preserving the absorbing boundary conditions. Suymérator

can be diagonalized in the basis of Gegenbauer polynomialg* ({0, 1]), see[12]. The

corresponding eigenvalues@ip (t£) areexp(—(i + 1)(i + 2)t/4N.) with i € [0, o0).
We can solve Eq[(BI2) in a similar way, by using the decontjuosi

(B.8) da(w, 1) = 9 (x,1) + ¢5().

Inthis casegs () is the equilibrium density associated to the exponentidgétion density,
as defined in Eq.[{A12). The tergt (z,t) evolves under pure random drift, with no
mutation influx, and initial condition? (z,t = 0) = p(z) — ¢§(z):

(B.9) P2 (x,t) = exp (tL) (p(x) — d5(x)) + d5(x).

By substracting Eq. [{Bl9) from Eq.[{B.7), we can describettine evolution of the
deviation as

(B.10) ¢1(x, 1) — d2(z,t) = —exp (L) (67 (z) — d5(x)) + 97 (x) — ¢3(x),

which is independent of the initial conditias(x).
One can show that$ () — ¢5(x) is non negative o0, 1], if k < 2N.. This can be
seen more clearly by computing (z) — ¢5(z) in the largex limit

(B.11) Gi(x) — G5(a) = TV, — ),z € [0,1/2N),
(BA2) (2) ~ 5(a) = TEC £ O/ (1 =x)). w e (1/2Ne1)

The terms of ordee—* in Eq. (B.12) exactly cancel the divergencerat 1. Therefore,
the action of the diffusion operator @ (z) — ¢5(z), will preserve the non-negativity of
the density

(B.13) exp (t£) (¢f(x) — ¢5(x)) > 0, Vo € ]0,1], Vt>0.

Because of this inequality, the absolute valaep (t£) (¢$(z) — ¢5(x))|, is the same as
exp (tL) (¢5(x) — ¢5()), and we can evaluate exactly the integral
(B.14)

1

1
/ |exp (t£) (61 (x) — ¢3(x))|x(1 — z)dx = / exp (t£) (¢1(x) — ¢3(x))x(1 — z)dz,
0 0

by expandingxp (t£) (¢ (x) — ¢5(x)) in the eigenbasis afp (¢tL£). This basis is orthog-
onal under the.2-product defined by the weight(1 — ), and the constant function on
[0, 1] corresponds to the eigenfunction with smallest eigenvdtuthis way we can inter-
pret the right hand side of Ed._(BI14) as a projection on simgénéunction, and evaluate
exactly the integral.

The eigenbasis afxp (¢£) is defined by the Gegenbauer polynomials. As an example,
the first three Gegenbauer polynomials[ont], orthonormal under thé?-product with
weightz(1 — z), are

(B.15) To(z) = V6,
(B.16) Ti(z) = V30(1 — 2z),

(B.17) Ta(z) = V84(1 — ba + 5a?).
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The corresponding eigenvaluesitp (t£), are eigenvaluaesip(—t /2N, ), exp(—3t/2N,),
andexp(—3t/N.). Thus, Eq.[(BIK) is the same as

(8.18) 1
/0 exp (L) (6 ()5 (2))a(1—)da — / exp (1L) (aﬁi(x)—sbé(x))Tf/(g)x(l—x)d:c,
and

1
(B.19) exp(—t/2N,) / (65 (@) g5 ()1 ~)da = T exp(—1/2N.) +O(e ™).

As 0 < exp (tL) (¢$(z) — ¢5(x)) < ¢5(x) — ¢5(z) for all zz € [0, 1] and fort > N, we
finally compute Eq.[(BI3), as

1 1
[ 10r(a.0) = ba(a a1 — 2o = [ (65(2) = G5()a(1 ~ )i
0 0
1
(B.20) - / exp (££) (65 (2) — 65 (2))x(1 — z)d,

which is

1
B21) [ Jon(a.t) = Ga(o. Dle(1 = ) = T (1= exp(—t/2N0) + O,

as we wanted to show.
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