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Structure Theorem for Modular Galois Extensions
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Abstract

Let G be a finite p-group and k a field of characteristic p > 0. We show that G has a non-linear
faithful action on a polynomial ring U of dimension n = logp(|G|) such that the invariant ring

UG is also polynomial. This contrasts with the case of linear and graded group actions with
polynomial rings of invariants, where the classical theorem of Chevalley-Shephard-Todd and
Serre requires G to be generated by pseudo-reflections.
Our result is part of a general theory of “trace surjective G-algebras”, which, in the case
of p-groups, coincide with the Galois ring-extensions in the sense of [3]. We consider the
dehomogenized symmetric algebra Dk, a polynomial ring with non-linear G-action, containing
U as a retract and we show that DG

k is a polynomial ring. Thus U turns out to be universal in
the sense that every trace surjective G-algebra can be constructed from U by “forming quotients
and extending invariants”. As a consequence we obtain a general structure theorem for Galois-
extensions with given p-group as Galois group and any prescribed commutative k-algebra R as
invariant ring. This is a generalization of the Artin-Schreier-Witt theory of modular Galois field
extensions of degree ps.

1. Introduction

Let k be a field and let G be a finite group acting linearly on a polynomial ring A :=
k[X1, . . . , Xn]. Due to a classical theorem of Chevalley-Shephard-Todd and Serre it is known
that if the invariant ring AG is a polynomial ring, then G is generated by pseudo-reflections.
The converse is also true if |G| ∈ k∗, but is known to fail if char(k) | |G|. The assumption on the
group action to be linear in degree one and degree preserving on A is essential for that result. In
contrast to this we prove that if char(k) = p > 0, then every finite p-group G has a non-linear
faithful action on a polynomial ring U of Krull dimension n = logp(|G|), such that the ring of
invariants UG is also a polynomial ring. This is part of a more general theory of group actions
on noetherian, not necessarily artinian, k-algebras A with surjective trace function

tr : A → AG, a 7→
∑

g∈G

ag.

This condition is equivalent to A being a projective kG-module. In this paper we begin the
systematic study (mainly in the commutative and non-artinian case) of these trace-surjective
G-algebras. They have a beautiful structure theory and they arise naturally in various contexts,
such as modular invariant theory, linear algebraic groups, Galois theory, ramification theory of
commutative rings and in the cohomology of finite groups.
In invariant theory for example, one usually considers the symmetric algebra A = Symk(W ),
whereW is a faithful finitely-generated kG-module. Then G acts on the graded k-algebraA and
the ring of invariants AG is finitely generated. If the characteristic char(k) of k is coprime to
|G|, then AG can be generated by invariants of degree at most |G| (see [12] for char(k) = 0 and
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[6] or [9] for char(k) = p > 0). If p divides |G|, however, there is no such bound that depends
only on the size of G (see e.g.[4] and [14]). However, there exists a non-zero homogeneous
transfer element c = tr(f) ∈ AG with f ∈ A of degree less than |G| (see [7]). Let Ac := A[ 1c ],
the localization of A at c. Then it is shown in [7] that the invariant ring AG

c always satisfies
a “monomial degree bound” close to the Noether bound. In fact, Ac is a trace-surjective G-
algebra and, if G is a p-group and k has characteristic p, then this implies that Ac is a free
AG

c [G]-module of rank 1 with basis f
c (see Theorem 4.1).

Localizations like these do arise naturally in the theory of linear algebraic groups: Assume
for the moment that k is algebraically closed and that G ≤ SLn(k) is a finite subgroup. The
left multiplication action of G on Matn(k) induces a homogeneous right regular action on the
coordinate ring k[M ] := k[Matn(k)] ∼= k[Xij | 1 ≤ i, j ≤ n] with det := det(Xij) ∈ k[M ]G. It
can be shown that det ∈

√

tr(k[M ]), i.e. tr(f) = (det)N for some N ∈ N and some f ∈ k[M ].
It follows that the coordinate ring k[GLn] = k[M ][1/det] is a trace-surjective G-algebra. Since
epimorphic images of trace-surjective algebras are again trace-surjective (see Theorem 4.1 (iii)
in the case of p-groups), a similar conclusion holds, if GLn is replaced by an arbitrary closed
linear algebraic subgroup containing G (see Corollary 4.5, where this is proved in a different
way). As a consequence we obtain a plethora of examples of trace-surjective algebras, arising
in the theory of algebraic groups. We are indebted to Stephen Donkin and Bram Broer for
bringing these to our attention.
Another one of these localizations, which is particularly important for the theory to come, is
the ring of Laurent-polynomials Dk[t, 1/t], where Dk is the dehomogenized symmetric algebra
in the sense of Bruns-Herzog ([2] pg.38). This means that Dk = Symk(kG)/(α), with α =
−1 +

∑

g∈G Xg where kG = ⊕g∈GkXg.
Now let A be a commutative ring and let G ≤ Aut(A) be a finite subgroup with ring of
invariants R := AG. In the classical paper [3], a notion of Galois extensions of commutative
rings is defined and it is shown how the main results of the Galois theory of fields, in particular
the correspondence between subgroups H ≤ G and intermediate Galois-extensions AH ≤ A,
can be generalized to commutative rings, provided the G-action satisfies some natural axioms.
These axioms hold for example in the “unramified step” (Aq)

I ≤ AQ of a general ring extension,
where Q ∈ Spec(A) with inertia group I := {g ∈ G | ag − a ∈ Q}E StabG(Q) and q = Q ∩ AI .
We will show in Section 4, that for p-groups and k-algebras of characteristic p, the concepts of
Galois-extensions and trace-surjective algebras are equivalent (see Corollary 4.4).
In the cohomology of p-groups, a significant appearance of trace-surjective algebras has recently
been observed by one of the authors ([16]), motivating some of the investigations in this paper.
The following are the main results of this paper:

Theorem 1.1. LetG be an arbitrary finite p-group of order pn and k a field of characteristic
p > 0. Then the following hold:

(i) There is a trace-surjective G-subalgebra U ≤ Dk, such that U is a polynomial ring of
Krull-dimension n and a retract of Dk, i.e. Dk = U ⊕ I with a G-stable ideal I EDk

(see Theorem 5.4).
(ii) The algebra U can be constructed in such a way that U = k[Y0, . . . , Yn−1] with

“triangular” G-action of the form (Yi)g = Yi + fi(Yi+1, . . . , Yn−1) for i = 0, . . . , n− 1
(see Remark 7 (iii)).

(iii) The ring of invariants UG is also a polynomial ring of Krull-dimension n.

Let Ts denote the category of all commutative trace-surjective G-algebras, with morphisms
being G-equivariant homomorphisms of k-algebras. The algebra U turns out to be a projective
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† object in Ts, and its Krull-dimension logp(|G|) is minimal among all finitely generated
projective objects, at least if k = Fp. Finitely generated projective objects in Ts are precisely the
retracts of the tensor powers of Dk. Since Dk and its tensor powers are polynomial algebras it is
natural to ask whether or not every finitely-generated projective algebra is a polynomial algebra
(see [5], [15] for related open questions/conjectures). It would be interesting to determine all
the projective objects in Ts of minimal dimension. We will address these and related categorical
questions about Ts in a separate paper.
Let us now fix a polynomial retract k[Y0, Y1, . . . , Yn−1] ∼= U ≤ Dk with polynomial ring of
invariants UG = k[σ0(Y ), . . . , σn−1(Y )] as described in Theorem 1.1 (see Theorem 6.1 for more
details). Then we obtain the following

Theorem 1.2 Structure theorem for Ts. Let |G| = pn, k a field of characteristic p > 0
and R be a commutative k-algebra. Then every algebra A ∈ Ts, with given ring of invariants
AG = R is of the form

A ∼= R[Y0, . . . , Yn−1]/(σ0(Y )− r0, . . . , σn−1(Y )− rn−1)

with suitable r0, . . . , rn−1 ∈ R, and G-action derived from the action on U .
The σi can be determined explicitly and are of the form

σi(Y ) = Yi − Y p
i + γi(Yi+1, . . . , Yn−1).

Since A ∈ Ts if and only if AG ≤ A is a Galois-extension in the sense of [3] (see Corollary
4.4), this can also be viewed as a structure theorem for arbitrary p-group-Galois-extensions of
commutative k-algebras. A further application of Theorem 1.1 provides

Theorem 1.3. The invariant ring DG
k is a polynomial ring of Krull-dimension |G| − 1.

This result and Theorem 1.1 show that, for every finite p-group G, there are faithful non-
homogeneous modular representations as automorphisms of polynomial rings of dimensions
|G| − 1 and logp(|G|), respectively, such that the corresponding rings of invariants are
polynomial rings. As mentioned before, this is quite different from the situation of faithful
linear and graded group actions on polynomial rings, where it is known that the rings of
invariants being polynomial again requires G to be generated by (pseudo-) reflections. The
paper is organized as follows:

In Section 2 we recall some basic results from the representation theory of finite groups. Most
of the material is well known and can be found in standard textbooks, formulated and proved
for finitely generated artinian rings and modules. Since we would like to avoid this restriction,
we will, where needed, include short proofs of some of these results, in a more general context.
In Section 3 we will look at the example whereG is cyclic of order p. Lemma 3.1 and Proposition
3.2 provide an induction base for the proof of Theorem 5.4, and Corollary 3.3 for Theorem
1.3. We also state a structure theorem for “Artin-Schreier” extensions of commutative rings,
generalizing the corresponding theorem for Cp-extensions of fields of characteristic p > 0. This
follows as a special case from Theorem 1.2, so we omit a proof in Section 3.
In Section 4 we introduce and study the trace-surjectiveG-algebras for arbitrary finite p-groups
and particularly consider the dehomogenized ring Dk and its quotients.
In Section 5 we define “standard subalgebras” of Dk, from which, quite surprisingly, all objects

†with respect to surjective functions rather than epimorphisms
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in Ts can be constructed by forming a quotient, followed by an “extension of invariants”. In
particular we prove that there is always a polynomial ring U of dimension logp(|G|), which
is a standard subalgebra and we show that this is the minimal possible dimension of such a
polynomial ring, at least if k = Fp.
Section 6 will finish the proofs of the main theorems, using the results of Section 5.
Finally in Section 7 we outline some future paths of research and point out some open questions
and conjectures related to this work.
Acknowledgements: The authors would like to thank an anonymous referee for many helpful
comments and suggestions, which we hope considerably improve the readability of the paper.

2. Basic observations

Notation: From now on throughout the paper k will be a field of characteristic p > 0 and
G will be a finite p-group. All group actions on sets will be written as right actions and if Ω
is a set on which the group G acts, then ΩG := {ω ∈ Ω | ωg = ω ∀g ∈ G}, the set of G-fixed
points in Ω. Usually A will denote a commutative k-algebra, on which G acts by k-algebra
automorphisms. As a shorthand we will refer to such an algebra A as a G-algebra. For any
ring A, its Krull-dimension will be denoted by Dim(A). We will now collect some well known
elementary facts needed later.

Lemma 2.1. Let W be a (right) kG - module with finite dimensional submodules Vi for
i ∈ I. Then

∑

i∈I

Vi = ⊕i∈IVi ⇐⇒
∑

i∈I

V G
i = ⊕i∈IV

G
i .

Proof. We only need to prove “⇐” and for this it suffices to show
∑k

ℓ=1 Viℓ = ⊕k
ℓ=1Viℓ for

any finite number k ∈ N. The proof is by induction starting with k = 1, where the claim is
obvious. Let Y := Vik+1

∩ (⊕k
ℓ=1Viℓ) with ik+1 6∈ {i1, . . . , ik}, then V G

ik+1
∩ Y =

V G
ik+1

∩ (⊕k
ℓ=1Viℓ) = V G

ik+1
∩ (⊕k

ℓ=1V
G
iℓ
) = 0.

Since V G
ik+1

≤ Vik+1
is an essential extension, i.e. V G

ik+1
∩M 6= 0 for every 0 6= M ≤ Vik+1

, we
conclude that Y = 0.

Now let V be a (right) kG - module. The transfer map is defined to be the k-linear map

tr := tr(G) : V → V G, v 7→
∑

g∈G

vg.

If W is another right kG-module, then G has a natural action on Homk(V,W ) by conjugation,
i.e. αg(v) = (α(vg−1))g with Homk(V,W )G = HomkG(V,W ). Note that tr(α) =

∑

x∈G αx ∈
HomkG(V,W ).

Proposition 2.2. (Higman’s projectivity criterion) Let V be a kG-module, then the
following are equivalent:

(i) There is α ∈ Endk(V ) with tr(α) = idV .
(ii) V is a direct summand of kG⊗k V.
(iii) V is a free kG-module.

Proof. See e.g. [10] Theorem 7.8 pg.86, or [1] Proposition 3.6.4 pg.70.
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The following lemma tells us how to recognize free summands in kG-modules, using the
transfer map tr. In the literature it is usually stated for finitely generated kG-modules, but
since we need it without that hypothesis, we include a short proof:

Lemma 2.3. Let V be an arbitrary kG-module. Then the following are equivalent:

(i) tr(V ) 6= 0;
(ii) there is a free direct summand 0 6= F ≤ V containing tr(V ).

Moreover V is free if and only if tr(V ) = V G. If v ∈ V satisfies tr(v) 6= 0, then 〈vg |g ∈ G〉 ∈
kG−mod is free of rank one.

Proof. (i)⇒ (ii): Let {wi | i ∈ I} be a k - basis of tr(V ) with 0 6= wi := tr(vi) for vi ∈ V . The
homomorphism θi : kG → V, f 7→ vif maps the one-dimensional socle (kG)G = k · tr(1G) onto
the line k · wi ⊆ V G. Hence every θi is a monomorphism. Let Vi := θi(kG), then (Vi)

G ∼= k · wi,
hence, by Lemma 2.1, F :=

∑

i∈I Vi = ⊕i∈IVi is a free submodule of V . It is well known that for
kG-modules the notions of finitely generated projective, injective and free modules coincide.
Since kG is Noetherian, it follows from a result by H. Bass (see [2] Remark 3.1.4 or [13]
Theorem 4.10), that arbitrary direct sums of injective modules are injective, so F is an injective
submodule of V with V ∼= F ⊕W and tr(V ) = tr(F ).
(ii) ⇒ (i): Since 0 6= F ∼= ⊕i∈I(kG)(i) for some index set I 6= ∅, we obtain tr(V ) ≥ tr(F ) 6= 0.
We have seen that every kG-module V splits as V ∼= F ⊕W , such that F is free with

tr(V ) = tr(F ) = FG ≤ FG ⊕WG = V G.

In this equation we have equality if and only if WG = 0, which is equivalent to W = 0 or to
V = F being a free kG-module.
If tr(v) 6= 0 for v ∈ V , then 〈vg | g ∈ G〉 is of dimension ≤ |G| and has a free summand; hence
it must be free of rank one.

Lemma 2.4. Let A be a G-algebra, then the following are equivalent:

(i) 1 = tr(a) for some a ∈ A.
(ii) AG = tr(A).
(iii) A is free as a kG-module.
(iv) There is a kG -submodule W ≤ A, isomorphic to the regular kG-module Vreg, such that

1A ∈ W .

Proof. Clearly (i) ⇐⇒ (ii), since tr(A) is a two-sided ideal of AG.
For a ∈ A let µa ∈ Endk(A) denote the homomorphism given by left-multiplication, i.e. µa(s) =
a · s for all s ∈ A. Then

(µa)
g(s) = (µa(sg

−1))g = (a · sg−1)g = (ag) · s = µag(s),

hence the map µ : A → Endk(A), a 7→ µa is a unitary homomorphism of G-algebras. On
the other hand the map e : Endk(A) → A, α 7→ α(1) satisfies e(αg) = (α(1g−1))g = α(1)g =
(e(α))g, hence it is a homomorphism of kG-modules with e(idA) = 1. We have e ◦ µ = idA and
(µ ◦ e)(idA) = idA. If 1 = tr(a), then idA = µ(1) = µ(tr(a)) = tr(µ(a)). On the other hand if
idA = tr(α), then 1 = e(idA) = tr(e(α)). It now follows from Proposition 2.2 that (i) and (iii)
are equivalent.
“(i) ⇒ (iv)” follows from Lemma 2.3;
“(iv) ⇒ (i)”: Since W ∼= Vreg, W

G = tr(W ) = k1A.
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Definition 1. Let A be a G-algebra such that tr(A) = AG, or any of the other conditions
in Lemma 2.4 is satisfied. Then A will be called a trace-surjective G-algebra (or a ts-algebra,
if G is clear from the context). An element a ∈ A with tr(a) = 1 will be called a point of A.
Recall that Ts denotes the category of all commutative trace-surjective G-algebras, with
morphisms being G-equivariant homomorphisms of k-algebras.

3. Example of cyclic group of order p

In this section let G := 〈g〉 ∼= Cp be cyclic of order p, Vreg := ⊕g∈GkXg the regular kG-
module with Xgh := (Xg)h for g, h ∈ G. We define Dk(G) := Sym(Vreg)/(α) with α = −1 +
∑

g∈G Xg. Then Dk(G) = k[x0, x1, . . . , xp−1] with xi := (X1)g
i + (α) and x0 + . . .+ xp−1 = 1

and G-action defined by xig = xi+1mod(p). The results in Lemma 3.1 and Proposition 3.2 will
be used in section 5 as a base of induction for the general case of arbitrary finite p-groups. In
the same way Corollary 3.3 will be used for Theorem 1.3. Define y :=

∑p−1
i=1 ixi, then (with

xp := x0):

yg =

p−1
∑

i=1

ixi+1 =

p−1
∑

i=1

(i+ 1)xi+1 −

p−1
∑

i=1

xi+1 =

p−1
∑

i=1

ixi −

p
∑

i=1

xi = y − 1.

Hence we find inside Dk(G) the polynomial subalgebra U := k[y] of Krull-dimension one, on
which G has the natural (inhomogeneous) action defined by g : y 7→ y − 1.

Lemma 3.1. Let k[T ] be the polynomial ring with G-action by algebra homomorphisms,
defined by Tg := T − 1. Let tr : k[T ] → k[T ]G be the transfer map f 7→

∑

g∈G fg. Then

(i) For 0 ≤ j ≤ 2p− 2: tr(T j) =
∑p−1

i=0 (T − i)j =

{

−1 if j=p-1 or j=2p-2
1 if j=p=2
0 otherwise

.

(ii) For 0 ≤ j ≤ p− 1:
∑p−1

i=1 i(T − i)j =











−T if j = p− 1 ≥ 2
(T + 1)j if p=2
1 if j=p-2
0 otherwise

.

In particular tr(T p−1) = −1.

Proof. The claims are obviously true for p = 2, so we can assume p > 2. Set σ := T p − T ∈
k[T ]G. Assume first that 0 ≤ j ≤ p− 1. We have

∑p−1
i=0 (T − i)j =

∑p−1
i=0

∑j
s=0

(

j
s

)

(−i)sT j−s =
∑j

s=0

(

j
s

)

(−1)sT j−s ·
∑p−1

i=0 is = −
(

j
p−1

)

T j−p+1, since
∑p−1

i=0 is =

{

0 ∀ 0 ≤ s < p− 1
−1 for s = p− 1.

If p ≤

j = p− 1 + k ≤ 2p− 2, then tr(T j) = tr(T pT k−1) = tr(T k) + σtr(T k−1) = tr(T k), and the
result (i) follows.
We also have:

∑p−1
i=0 i(T − i)j =

∑p−1
i=0 i ·

∑j
s=0

(

j
s

)

(−i)sT j−s =

j
∑

s=0

(−1)s
(

j

s

)

T j−s[

p−1
∑

i=0

is+1] = (−1)p−2

(

j

p− 2

)

(−1)T j−(p−2),

since for 0 ≤ s ≤ p− 1 we have
∑p−1

i=0 is+1 = −1 · δs,p−2. The results in (ii) follow directly.
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Proposition 3.2. The univariate polynomial ring U := k[y] ≤ Dk is a retract with point
w = −yp−1†. In particular there is a G-equivariant morphism of k-algebras

θ = θ2 : Dk → Dk with Im(θ) = k[y],

defined by the map xi 7→ −(y − i)p−1, if p > 2 and θ = idDk
, if p = 2 such that

Dk = DG
k ⊗k[σ] k[y] ∼= k[y]⊕ ker(θ),

with k[y]G = k[σ], a univariate polynomial ring in σ := yp − y.

Proof. If p = 2, y = x1, k[y] = Dk and the statements are trivially true, so we can assume
p > 2. It follows from Lemma 3.1 that tr(−yp−1) = 1, hence the map θ is a well-defined G-
equivariant morphism of k-algebras. Again by Lemma 3.1, θ(y) = −

∑p−1
i=1 i(y − i)p−1 = y, so

Im(θ) = k[y] and θ2 = θ, hence Dk = k[y]⊕ ker(θ) (for the general case see Lemma 5.1). Let
L be the quotient field of Dk, then clearly L = L

G[y] = ⊕p−1
i=0L

Gyi. Write ℓ ∈ L in the form
ℓ =

∑p−1
i=0 ℓiy

i, then the formulae in Lemma 3.1 (i) show that ℓ0 = −tr(ℓyp−1) + tr(ℓ) and
ℓi = −tr(ℓyp−1−i) for 1 ≤ i ≤ p− 1. Picking ℓ ∈ Dk we see Dk = ⊕p−1

i=0D
G
k y

i. Obviously k[y] =
⊕p−1

i=0 k[σ]y
i. Let f ∈ k[y]G, then f = f · tr(−yp−1) = tr(−yp−1f). Write −yp−1f =

∑p−1
i=0 fiy

i

with fi ∈ k[σ], then the formulae in Lemma 3.1 (i) again show f = −fp−1, so k[y]G = k[σ].
Finally DG

k ⊗k[σ] k[y] ∼= DG
k ⊗k[σ] ⊕

p−1
i=0 k[σ]y

i ∼= ⊕p−1
i=0D

G
k y

i = Dk.

Corollary 3.3. DG
k (G) is isomorphic to a polynomial ring in p− 1 variables.

Proof. If p = 2, then Dk = k[y] and therefore DG
k = k[sigma], so we can assume that

p > 2. Set σ := yp − y, then Dk = DG
k ⊗k[σ] k[y] ∼= ⊕p−1

i=0D
G
k y

i. Write x0 =
∑p−1

i=0 biy
i with

bi ∈ DG
k and set C := k[σ, bi | i = 0, . . . , p− 1] ≤ DG

k . Since yg = y − 1, x0g ∈ C[y] and Dk =
k[x0g

i| gi ∈ G] ≤ C[y] = ⊕p−1
i=0Cyi ≤ ⊕p−1

i=0D
G
k y

i = Dk, hence DG
k = C. Moreover 1 = tr(x0) =

∑p−1
i=0 bitr(y

i) = −bp−1 and −bp−2 = tr(yx0) =

yx0 + (y − 1) · x0g + (y − 2) · x0g
2 + . . .+ (y − (p− 1)) · x0g

p−1 = y − y = 0.

Hence DG
k = k[σ, b0, . . . , bp−3] is a polynomial ring, as Dk and DG

k have Krull-dimension p− 1.

Remark 1. The result above is in marked contrast with the usual homogeneous algebra
Symk(kG)G, which is far more inscrutable (see for example [8] for the general construction of
this ring of invariants).

We obtain the following structure theorem for trace-surjective G-algebras with prescribed
ring of invariants:

Theorem 3.4. Let G = 〈g〉 ∼= Cp, R an arbitrary commutative k-algebra and A ∈ Ts with
R = AG, then A ∼= R[Y ]/(Y p − Y − γ) for suitable γ ∈ R and Y g = Y − 1.

Proof. This is the special case of Theorem 1.2 with n = 1, which will be proved in Section
6.

†a “reflexive point” as in Definition 4, if p > 2
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Corollary 3.5. [Artin-Schreier] Let char k = p > 0. Suppose that L is a Galois extension
of k with Galois-group G := Cp, then there is γ ∈ k, such that L = k[α] with α being a root of
the irreducible polynomial Xp −X + γ ∈ k[X ].
Conversely, if the polynomial f := Xp −X + γ ∈ k[X ] is irreducible and α ∈ k is a root of f ,
L := k(α) is the splitting field of f and is a Galois extension of k with Galois-group G := Cp.

Remark 2. If β ∈ L is any root of the irreducible polynomial Xp −X + γ ∈ k[X ], then
β − i with i = 0, . . . , p− 1 are the conjugates and tr(βp−1) = −1. It follows from Lemma 2.3,
that the conjugate elements (β − i)p−1, i = 0, . . . , p− 1 are linearly independent and therefore
form a normal basis of L over k.

4. General trace-surjective G-algebras

Theorem 4.1. Let A be a trace-surjective G-algebra. Let {ai | i ∈ I} be a k-basis of the
ring of invariantsAG and {wg | g ∈ G}, a basis ofW ≤ A (with wg := (w1)g and 1 ∈ W ∼= Vreg).
Then the following hold:

(i) For every 0 6= a ∈ AG we have aW ∼= W ∼= Vreg .
(ii) A = AG ·W = ⊕i∈Iai ·W = ⊕g∈GA

G · wg. In particular, A is a free AG-module and a
free AG[G] module of rank one.

(iii) For every G-stable proper ideal JEA the quotient ring Ā := A/J is again a ts-algebra,
with (A/J)G ∼= AG/JG.

(iv) Every ideal of AG is contracted from a G-stable ideal in A. Conversely every G-stable
ideal of A is extended from an ideal of AG. In other words the mappings I 7→ AI and
J 7→ J ∩ AG are inverse bijections on the sets of ideals of AG and G-stable ones of A.

Proof. We use the equivalent conditions of Lemma 2.4.
(i): Since W ∼= kG, we have WG ∼= k and we can choose the basis {wg | g ∈ G} such that
1 =

∑

g∈G (w1)g = tr(w1). Assume a ∈ AG such that aW 6∼= W , then aW ∼= W/X with 0 6=
X ≤ W , so WG = tr(W ) ≤ X and tr(W/X) ≤ WGX/X ≤ X/X = 0. Hence

a = a · 1 = a · tr(w1) = tr(a · w1) = 0.

(ii): Since for all i we have aiW ∼= W , (aiW )G = k · ai. It follows from Lemma 2.1, that
AG ·W = ⊕i∈Ik · ai ·W with each ai ·W ∼= Vreg and again this is an injective module by
H. Bass’ theorem. Hence A = AG ·W ⊕ C with some complementary free kG - module C.
However CG ≤ AG ≤ AG ·W , since 1 ∈ W and therefore CG = 0. Thus C is a free kG-module
not containing an invariant, hence C = 0. This shows that AG ·W = A, from which the second
direct sum decomposition immediately follows.
(iii): Let JEA be aG-stable proper ideal. Then tr(w̄1) =

∑

g∈G w̄1g = 1̄, so A/J is a ts-algebra.

Let x̄ ∈ (A/J)G, then x̄ = 1 · x̄ = tr(w1)x̄ =
∑

g∈G w1g · x̄ =
∑

g∈G w1g · x̄g =
∑

g∈G(w1x)g =

tr(w1x) = tr(w1x) ∈ AG/JG. Hence AG/JG = (A/J)G.
(iv): Let I ≤ AG be an ideal and x =

∑

ℓ aℓiℓ ∈ AI ∩ AG. Then x = 1 · x = tr(w1x) =
∑

ℓ tr(w1aℓiℓ) =
∑

ℓ tr(w1aℓ)iℓ ∈ AGI = I, hence AI ∩ AG = I. Now let JEA be a G-stable

ideal, let () : A → A := A/J denote the G-equivariant canonical epimorphism and choose the
basis {ai | i ∈ I}, such that it extends a basis for JG over k. Applying Theorem 4.1 (i) to A/J
and using 4.1 (ii) we get J = ⊕ ai∈JG

i∈I

aiW ⊆ JGA.

Remark 3. The results in 4.1 also hold for non-commutative k-algebras and one or two-
sided ideals, respectively. There is also a version of 4.1 for arbitrary finite groups X : Let B be
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a (not necessarily commutative) trace surjective X-algebra, {ai | i ∈ I} a k-basis of BX and
{wj | j = 1, . . . , s} a basis of W ≤ B with 1 ∈ W ∼= P (k), the projective cover of the trivial
kX-module. Then

(i) B = BX ·W ⊕ C with BXW = ⊕i∈Iai ·W = ⊕s
j=1B

X · wj and C is a projective kX-
module not containing a summand ∼= P (k). In particular, BXW is a free BX -module.

(ii) For every X-stable proper ideal JE BB the kX-module B/J is projective and we have
(B/J)X ∼= BX/JX . For every X-stable two-sided proper ideal I EB the quotient ring
B̄ := B/I is again a trace-surjective X-algebra.

Definition 2. Let Vreg := ⊕g∈GkXg be the regular kG-module. Define:

Dk := Dk(G) := Symk(Vreg)/(α)

with α = −1 +
∑

g∈GXg.

Setting xg := Xg + (α), it follows that Dk
∼= k[xg | 1 6= g ∈ G] is a polynomial ring of Krull-

dimension Dim(Dk) = |G| − 1. Moreover, for t := tr(X1) the map

Dk → (Symk(Vreg)[1/t])0; xg 7→ Xg/t

is a G-equivariant isomorphism of G-algebras. In other words, Dk is the degree zero component
of the homogeneous localization of Symk(Vreg) at the G-invariant t, or the G-equivariant
“dehomogenization of Symk(kG)” as described in [2] (Proposition 1.5.18 pg.38). In particular
Symk(Vreg)[1/t] ∼= Dk[t, 1/t] and

(Symk(Vreg)[1/t])
G ∼= Symk(Vreg)

G[1/t] ∼= DG
k [t, 1/t].

The algebra Dk is “universal” in the sense that every trace-surjective algebra can be
constructed from quotients of Dk by extending invariants:

Proposition 4.2. Let A ∈ Ts with point a ∈ A, generating the kG-subspace W :=
〈ag | g ∈ G〉k ≤ A. Then there is an epimorphism of G-algebras

θ : Dk → k[W ] ≤ A

such that A = AG ⊗k[W ]G k[W ]. The algebras Dk and k[W ] are free kG - modules.

Proof. Let S be the subalgebra S := k[W ] ≤ A. Then by Theorem 4.1, S = SG ·W ∼=
⊕g∈GS

Gwg is a free kG-module. Let φ be the canonical extension of the map Xg 7→ wg to
a k-algebra homomorphism of Symk(Vreg) onto S, then clearly the ideal (α) is contained in
ker(φ), so S is a quotient of Dk. Moreover

AG ⊗SG S ∼= ⊕g∈GA
G ⊗SG SGwg

∼= ⊕g∈GA
Gwg = A.

Note that the W in Proposition 4.2 can be chosen to be any submodule isomorphic to
Vreg with 1A ∈ W , and the subalgebra k[W ] ≤ A is isomorphic to Dk/I

′ with a suitable G-
stable ideal I ′ EDk. Conversely, for any G-stable ideal I EDk with quotient S := Dk/I, and
any extension of commutative k-algebras T ≥ SG, the tensor product A := T ⊗SG S, with G-
action only on the right tensor factor, is a trace-surjective G-algebra with AG = T . In other
words, A is an “extension by invariants” of a “cyclic” ts-algebra of the form Dk/I with I EDk

a G-stable ideal.
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We end this section by pointing out a connection between the concepts of commutative
trace-surjective algebras and Galois extensions of commutative rings in the sense of [3]. Let Γ
be an arbitrary finite group, A be a Γ-algebra, R := AΓ and let Γ ∗A be the trivially crossed
group ring, i.e. the “semidirect product” Γ×A with multiplication ga · g′a′ := gg′(a)g′a′. Note
that Γ ∗A acts naturally on A by R-algebra homomorphisms, giving rise to a homomorphism

j : Γ ∗A → EndR(A), ga 7→ (a′ 7→ (aa′)g−1).

Theorem 4.3. (Chase-Harrison-Rosenberg [3]) The following statements are equivalent:
(i) There are elements x1, . . . , xn, y1, . . . , yn in A, such that

∑n
i=1 xi(yi)σ = δ1,σ ∀σ ∈ Γ.

(ii) A is a finitely generated projective R-module and j : Γ ∗A → EndR(A) is an
isomorphism.

(iii) For every 1 6= σ ∈ Γ and maximal ideal p of A there is a ∈ A with a− (a)σ 6∈ p.

If R = AΓ ≤ A satisfies any of these conditions, then the ring extension R ≤ A is called a
Galois-extension. It follows easily from condition (i) in Theorem 4.3, that

∑n
i=1 xitr(yi) = 1,

which implies tr(A) = R (see [3] Lemma 1.6), so every Galois extension is trace-surjective. For
arbitrary finite groups, not every trace-surjective algebra needs to be a Galois-extension, but
in the case of a finite p-group G in characteristic p, we have:

Proposition 4.4. Let A be a G-algebra. Then A is trace-surjective, if and only if AG ≤ A
is a Galois-extension (in the sense of [3]).

Proof. It remains to show that a ts-algebra is a Galois-extension and by Theorem 4.3 (iii)
it suffices to show that AG →֒ A is unramified.
Let P ∈ Spec(A) with residue class field L := Quot(A/P), decomposition group GP :=
StabG(P), inertia group TP := {g ∈ GP | g acts trivially on L}EGP and C := A/P. Let 1L
be the unit in L, then 1L = 1C = 1C · 1A = 1C · tr(a1) =

1C
∑

x∈G/GP

∑

y∈GP

(a1)yx = 1C
∑

x∈G/GP

∑

y∈GP

(a1)x
−1y−1 = 1C

∑

y∈GP

(s̃)y = tr(GP)(1C s̃) =

t
GP

TP
◦ tr(TP)(1C s̃) = |TP| · t

GP

TP
(1C s̃),

so we conclude that TP = 1. (Here t
GP

TP
denotes an obvious “relative transfer map”).

Corollary 4.5. Let k be algebraically closed and X an affine algebraic group with finite
subgroup Γ. Then the ring k[X ] of regular functions is a trace-surjective Γ-algebra.

Proof. The right regular action of Γ on X = max− Spec(k[X ]) is fixed point free, hence
the claim follows from Theorem 4.3 (iii) and the remark after that Theorem (or Proposition
4.4, if Γ is a p-group).

Remark 4. There is a more general version of Corollary 4.5: assume that Γ is realized as a
subgroup scheme of an affine k-group scheme X , then the algebra k[X ] is also trace-surjective.
This follows from the fact that in this situation k[X ] is an injective module of Γ as k-functor
([11] 5.5.(6),5.13 and 4.12). The description of injective modules in [11] 3.10 shows that k[X ]
is a projective kΓ-module. It is easy to see that Lemma 2.4 is valid, if G is replaced by Γ and
“free” by “projective”, hence it follows that k[X ] is a trace-surjective Γ-algebra.
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5. Standard subalgebras

Let A be a trace-surjectiveG-algebra; then as seen in Proposition 4.2,A ∼= AG ⊗(Dk/I)G Dk/I
with some G-stable ideal I EDk. In that sense Dk is a “universal model” for trace-surjective
G-algebras. However, if S is any trace-surjective subalgebra S ≤ Dk, then Dk

∼= DG
k ⊗SG S,

hence

A ∼= AG ⊗(S/J)G S/J

with S/J ≤ A and G-stable ideal J E S, so S is also “universal”. The subalgebras S ≤ Dk

which are also retracts turn out to be particularly useful. This motivates the following

Definition 3. A trace-surjective G-subalgebra U ≤ Dk will be called standard, if Dk =
U ⊕ J , where J is some G-stable ideal.

If U ≤ Dk is standard, then there is a projection morphism χ : Dk → U →֒ Dk, which is an
idempotent k-algebra endomorphism of Dk. More precisely:

Lemma 5.1. Let U ≤ Dk be a trace-surjective G-algebra, then the following are equivalent:

(i) U is standard.
(ii) ∃ χ = χ2 ∈ (Endk−alg(Dk))

G with U = χ(Dk).
(iii) ∃χ ∈ (Endk−alg(Dk))

G with χ2(x1) = χ(x1) =: w ∈ U = k[wg |g ∈ G].
(iv) ∃ w = W (x1, xg2 , . . . , xg|G|

) ∈ U with tr(w) = 1, w = W (w,wg2, . . . , wg|G|
) and U =

k[wg |g ∈ G] ≤ Dk.

Proof. “(i) ⇒ (ii)”: If Dk = U ⊕ I, choose χ to be the canonical projection χ : Dk → U.
“(ii) ⇒ (iii)”: U = χ(Dk) = χ(k[xg |g ∈ G]) = k[χ(x1)g |g ∈ G] = k[wg |g ∈ G].
“(iii) ⇒ (iv)”: Clearly χ2(x1) = χ(x1) implies χ2 = χ. Hence w := χ(x1) = χ2(x1) = χ(w) =
χ(W (x1, xg2 , . . . , xg|G|

)) =

W (χ(x1), χ(xg2), . . . , χ(xg|G|
)) = W (w,wg2, . . . , wg|G|

).

Clearly tr(w) = 1.
“(iv) ⇒ (i)”: Since tr(w) = 1, the map xg 7→ wg extends to a G-equivariant epimorphism of
k-algebras θ : Dk → U , satisfying θ(w) = W (. . . , wg . . .) = w. Hence θ(wg) = θ(w)g = wg and
we conclude that θ|U = id. It follows that Dk = U ⊕ ker(θ).

Let U ≤ Dk be standard. Since Dk is a polynomial ring it follows from [5] Corollary 1.11,
that U is a regular UFD. It is apparently still an open question, whether or not every retract
of a polynomial ring is again a polynomial ring (see also [15] pg 481).

Definition 4. A point w ∈ Dk will be called reflexive, if

w = W (x1, . . . , xg . . .) = W (w, . . . , wg, . . .) = θ(w),

where θ ∈ (Endk−alg(Dk))
G is defined by xg 7→ w · g ∀g ∈ G.

Remark 5.

(i) By definition a trace-surjective G-algebra is cyclic, if and only if it is generated as an
algebra by the G-orbit of one point. Lemma 5.1 shows, that the standard subalgebras
of Dk are precisely the subalgebras generated by the G-orbit of a reflexive point.
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(ii) There are categorical characterizations of Dk and its standard subalgebras. It turns
out that Dk is a projective generator in Ts and the standard subalgebras are precisely
the cyclic projective objects. We will investigate this and further properties of Ts in a
subsequent paper.

Before describing a general inductive procedure to construct reflexive points and standard
subalgebras of Dk here are some examples:

Example 1. Let G := 〈g〉 ∼= Cp be cyclic of order p > 2, then the subalgebra k[y] ≤ Dk of
section 3 is standard with reflexive point −yp−1 where y :=

∑p−1
i=1 ixi ∈ Dk.

Example 2. Let G = 〈g1, g2 | g
p
1 = gp2 = [g1, g2]

p = 1〉 be extraspecial of order p3, exponent
p > 2 and centre Z := Z(G) ∼= 〈g0〉 with g0 := [g1, g2]. Every element of G can be uniquely
written in the form g = ga0

0 ga1

1 ga2

2 , with ai ∈ Fp. Now define as before, Vreg := ⊕g∈GkXg
∼= kG,

the regular kG-module, D := Dk := Symk(Vreg)/J = k[xg |g ∈ G] with J = (j)Symk(Vreg),
j := −1 +

∑

g∈GXg, xg := Xg + J and
∑

g∈G xg = 1. For i = 0, 1, 2 set

yi :=
∑

a∈F3
p

ai · xg
a0
0

g
a1
1

g
a2
2

∈ Dk.

Then a straightforward calculation using Lemma 3.1 shows, that

y2 · g2 =
∑

a∈F3
p

a2 · xg
a0
0

g
a1
1

g
a2
2

· g2 =
∑

a∈F3
p

(a2 + 1)x
(g

a0
0

g
a1
1

g
a2+1

2
)
−

∑

a∈F3
p

x
(g

a0
0

g
a1
1

)g
a2+1

2

= y2 − 1,

and yj · g2 = yj for j < 2. Using the formula [xa, yb] = [x, y]ab for x, y ∈ G (since [x, y] ∈ Z(G))
one has

yj · g1 =
∑

a∈F3
p

aj · xg
a0
0

g
a1
1

g
a2
2

· g1 =
∑

a∈F3
p

aj · xg
a0−a2
0

·g
a1+1

1
·g

a2
2

.

Hence y1 · g1 = y1 − 1, y2 · g1 = y2, and for j = 0 we get

y0 · g1 =
∑

a∈F3
p

(a0 − a2)xg
a0−a2
0

·g
a1+1

1
·g

a2
2

+ a2 · xg
a0−a2
0

·g
a1+1

1
·g

a2
2

= y0 + y2.

Let B := {y0, y1, y2, 1}, then we see that the subspace 〈B〉 ≤ Dk is G-stable, providing a faithful
representation of G with

MB(g1) =









1 0 1 0
0 1 0 −1
0 0 1 0
0 0 0 1









and MB(g2) =









1 0 0 0
0 1 0 0
0 0 1 −1
0 0 0 1









.

It is not hard to see that

– the elements y0, y1, y2 ∈ Dk are algebraically independent.
– the subspace Y := 〈yz00 yz11 yz22 | 0 ≤ zi < p〉 ≤ Dk, is a free kG-module of rank one with
tr((y0y1y2)

p−1) = −1.
– The G-algebra endomorphism θ : Dk → Dk defined by the map xg → wg with w :=
−(y0y1y2)

p−1 satisfies θ(yi) = yi for i = 0, 1, 2.

Hence the polynomial ring U := k[y0, y1, y2] ≤ Dk is a standard G-subalgebra of Dk with
reflexive point w = −(y0y1y2)

p−1.
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Example 3. Consider the p-groupsG,H andG×H withDk(G) = k[xg | g ∈ G],Dk(H) =
k[yh | h ∈ H ] and Dk(G×H) = k[tgh | gh ∈ G×H ] and

∑

g∈G

xg = 1,
∑

h∈H

yh = 1,
∑

gh∈G×H

tgh = 1, respectively.

For g ∈ G and h ∈ H define Xg :=
∑

h∈H tgh and Yh :=
∑

g∈G tgh. Then it easy to see that
ω := X1Y1 ∈ Dk(G×H) is a point. Define a G×H-algebra homomorphism by

θ : Dk(G×H) → Dk(G×H), tegh 7→ (ω)gh,

then an elementary calculation shows that θ(ω) = ω, hence ω is a reflexive point in the
subalgebra S := k[Xg, Yh | 1 6= g ∈ G, 1 6= h ∈ H ] ≤ Dk(G×H). Obviously the Xg, Yh with
1 6= g, h are algebraically independent and the map Dk(G)⊗k Dk(H) → Dk(G×H) extending
xg ⊗ yh 7→ XgYh, is a G×H-equivariant k-algebra homomorphism. It maps the (generating)
point x1 ⊗ y1 ∈ Dk(G) ⊗k Dk(H) to ω and it maps Dk(G)⊗k Dk(H) isomorphically onto S =
k[ωG×H ]. It follows that the algebra Dk(G)⊗Dk(H) is a standard subalgebra of Dk(G×H)
of Krull-dimension |G|+ |H | − 2.

We are now going to describe an inductive procedure to construct reflexive points and
standard subalgebras in Dk(G) for arbitrary p-groups G: Let F = ⊕g∈Gkxg

∼= kG, F ≤ Dk

and let Z := 〈g0〉 ∼= Cp be a subgroup of the centre of G. For each ḡ := gZ ∈ G/Z we define

ηg := ηḡ :=
∑

h∈gZ

xh ∈ FZ , (5.1)

then the ηḡ for ḡ 6= 1̄ are algebraically independent,
∑

ḡ∈G/Z ηḡ = 1 and
∑

ḡ∈G/Z kηḡ =
⊕ḡ∈G/Zkηḡ ∼= k(G/Z). Hence

Dk(G/Z) ∼= D̃ := k[ηḡ|ḡ ∈ G/Z] ≤ Dk(G)Z . (5.2)

Let G = ⊎r∈RZr with R a transversal of Z-cosets in G. Set tR ∈ Endk(Dk(G)), mapping
f 7→

∑

r∈R fr and define y0 :=
∑p−1

i=1 i · tR(xgi
0
). For any h ∈ G we have

y0 · h = y0 −
∑

r∈R

er,h · ηrr,h ,

where er,h ∈ Fp and rr,h ∈ R are defined by the equation

rh = g
er,h
0 rr,h. (5.3)

Moreover, for every point w′ ∈ Dk(G/Z), the element

w := −(y0)
p−1 · w′ ∈ Dk(G) (5.4)

is a point. Indeed: we have y0 · h =
∑p−1

i=0 i ·
∑

r∈R xgi
0
rh =

∑p−1
i=0 i ·

∑

r∈R x
g
i+er,h
0

rr,h
=

∑

r∈R

(

∑

i∈Fp

(i+ er,h)x
g
i+er,h
0

rr,h
− er,h

∑

i∈Fp

x
g
i+er,h
0

rr,h

)

=

∑

r∈R

(

∑

i∈Fp

ixgi
0
rr,h − er,h

∑

i∈Fp

xgi
0
rr,h

)

= y0 −
∑

r∈R

er,h · ηrr,h .

Since er,g0 = 1 and rr,g0 = r for every r ∈ R, it follows that y0g0 = y0 − 1. Let w := −yp−1
0 · w′

and tGZ be the relative transfer map, then we get

tr(w) = tGZ ◦ tr(Z)(−w′ · yp−1
0 ) = −tGZ (w

′ · tr(Z)(yp−1
0 )) = −tr(G/Z)(w′ · (−1)) = 1,

and w is a point, but in general not a reflexive point.
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Lemma 5.2. Assume that w′ is a reflexive point in Dk(G/Z), with standard subalgebra

UG/Z := k[w′ḡ |ḡ ∈ G/Z] ≤ Dk(G/Z).

Let θ ∈ (Endk−alg(Dk))
G be defined by xg 7→ w · g with point w := −yp−1

0 · w′. Then the
following hold:

(i) Set ỹ0 = θp−1(y0), then the element

w̃ := θp(x1) = θp−1(w) = −ỹp−1
0 w′

is a reflexive point of Dk, generating a standard subalgebra

UG := k[w̃g | g ∈ G] = k[ỹ0, w
′ḡ |ḡ ∈ G/Z] = k[ỹ0, UG/Z ] = k[θ(y0), UG/Z ],

which is a subalgebra of the G-subalgebra k[y0, Dk(G/Z)] = k[ỹ0, Dk(G/Z)].
(ii) The G-action on UG is determined by the one on UG/Z and the formula

ỹ0g = ỹ0 −
∑

r∈R

er,g · (w
′rg) ∀g ∈ G. (5.5)

(iii) The element y0 is algebraically independent of Dk(G/Z) and ỹ0 is algebraically
independent of UG/Z .

Proof. Recall the definition of the ηḡ in equation (5.1); we define k-algebra endomorphisms
θ′ ∈ (Endk−alg(Dk(G/Z)))G/Z by θ′(ηḡ) := w′ · ḡ and θ ∈ (Endk−alg(Dk(G)))G by
θ(xg) := w · g. Since we assume now that w′ is a reflexive point of Dk(G/Z), we have θ′(w′) =
w′. We have θ(ηḡ) =

∑

i∈Fp
θ(xgi

0
g) =

∑

i∈Fp

(−yp−1
0 w′)gi0g =

∑

i∈Fp

(

[(−yp−1
0 )gi0] · w

′
)

g = w′g = θ′(ηḡ).

It follows that θ(w′) = w′. Moreover, using Lemma 3.1 we get

θ(y0) =
∑

i∈Fp
r∈R

i(−yp−1
0 w′)gi0r =

∑

i∈Fp
r∈R

[i(−yp−1
0 gi0)w

′]r =
∑

r∈R

(y0w
′)r, if p > 2

and
∑

r∈R[(y0 + 1)w′]r =
∑

r∈R(y0w
′)r +

∑

r∈R w′r = 1 +
∑

r∈R(y0w
′)r, if p = 2. †

Recall the definition of the er,h ∈ Fp and rr,h ∈ R in equation (5.3). We have
θ(y0) = (1+)

∑

r∈R(y0r)(w
′r) = (1+)

∑

r∈R(y0 −
∑

r′∈R er′,r · ηrr′,r )(w
′r) = y0 − ζ, where

ζ = (1+)
∑

r,r′∈R er′,r · ηrr′,r(w
′r) ∈ Dk(G/Z), but not necessarily in UG/Z . (The summand

“1+” appears only if p = 2). However, using θ(ηrr′,r ) = θ′(ηrr′,r) = w′rr′,r = w′r′r and
∑

r∈R w′r = 1 we get θ2(y0) = θ(θ(y0)) =

(1+)
∑

r∈R

(θ(y0)−
∑

r′∈R

er′,r · w
′r′r)(w′r) = θ(y0) + γ

with γ := (1+)−
∑

r∈R[
∑

r′∈R er′,r · (w′r′)w′]r ∈ UG/Z . Hence we have γ = θ(γ) and we
conclude that θi(θ(y0)) = θ(y0) + i · γ, so θp(θ(y0)) = θ(y0). It follows that θ(w) = θ2(x1) is
fixed under θp, as θ(w′) = w′, hence

(θp)2(x1) = θp−2(θp(θ2(x1))) = θp−2(θ2(x1)) = θp(x1).

Let χ := θp and w̃ = θp−1(w) = χ(x1), then χ(w̃) = w̃ and it follows from Lemma 5.1, that w̃
is a reflexive point, whose G-orbit generates a standard subalgebra

UG := χ(Dk(G)) = k[w̃ · g |g ∈ G].

†In particular θ(w) = w ⇐⇒ θ(y0)p−1 = y
p−1

0
⇐⇒ θ(y0) = λ · y0 for some 0 6= λ ∈ Fp.
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Define ỹ0 := θp−1(y0), then w̃ = −ỹp−1
0 · w′ ∈ k[ỹ0, UG/Z ]. For every h ∈ G we have ỹ0h = ỹ0 −

∑

r∈R er,h · θp−2(w′rh) = ỹ0 −
∑

r∈R er,h · (w′rh), so k[ỹ0, UG/Z ] is G-stable and contains UG.
On the other hand, ỹ0 = χ(ỹ0) ∈ χ(Dk(G)) = UG and likewise w′ = χ(w′) ∈ UG, hence UG =
k[ỹ0, UG/Z ].
For the last statement, recall that θ(y0) = y0 − ζ with ζ ∈ Dk(G/Z), hence ỹ0 = y0 + µ for
some µ ∈ Dk(G/Z) and k[y0, Dk(G/Z)] = k[ỹ0, Dk(G/Z)]. It therefore suffices to show that
the set S = {y0, ηr̄ |r ∈ R\{1}} is algebraically independent. It is contained in Dk(G), which
is a polynomial ring generated by the algebraically independent set {xgi

0
r 6= x1}, and is clearly

linearly independent over k. Since S ⊆ Dk(G)1 (the graded component of degree 1) it follows
directly that it is algebraically independent over k, as required.

Corollary 5.3. Let G = Z ×Q be a p-group with Z ∼= Cp and p > 2. If w′ ∈ Dk(Q) is
a reflexive point, then so is w = −yp−1

0 w′ ∈ Dk(G). If UQ = k[w′Q] ≤ Dk(Q) is a standard
subalgebra, then U := k[wG] ≤ Dk(G) is standard.

Proof. In this case we can choose R := Q and then have er,q = 0 for all r, q ∈ Q. Hence
y0 ∈ Dk(G)Q and the proof of Lemma 5.2 shows that θ(w) = w is a reflexive point.

Remark 6. If p = 2, w is not a reflexive point, but w + w′ = θ2(x1) is.

Theorem 5.4. Let G be an arbitrary finite p-group of order pn. Then there is a
trace-surjective standard G-subalgebra U ≤ Dk(G), such that U is a polynomial ring of
Krull-dimension n.

Proof. The proof is by induction on n, where the case n = 1 follows from Proposition
3.2. With notation from Lemma 5.2, let w′ ∈ Dk(G/Z) be a reflexive point, chosen such that
UG/Z is polynomial of Krull-dimension n− 1 and set w̃ as in Lemma 5.2. Then UG = k[w̃G] =
k[ỹ0, UG/Z ], where ỹ0 is algebraically independent of UG/Z . Hence UG is a polynomial ring of
Krull dimension 1 + n− 1 = n.

The next result shows that, at least for k = Fp, the subalgebras of Theorem 5.4 have the
minimal possible Krull-dimension for polynomial retracts of Dk:

Proposition 5.5. Let k = Fp, |G| = pn and A = k[a1, . . . , am] ≤ Dk be a trace-surjective
G subalgebra, then m ≥ n. In particular, every polynomial standard subalgebra of Dk has
Krull-dimension ≥ n.

Proof. Let ∆k :=
∏

g∈G kbg ∼= k|G|, isomorphic to the regular kG-module but with diagonal
multiplication (i.e. a “totally disconnected” algebra). Then ∆k is a trace-surjective G-algebra
and there is a (necessarily surjective) morphism φ : Dk → ∆k. Since φ(A) is a free kG-module,
φ(A) = ∆k. Let J := ker(φ|A), then (api − ai | i = 1, . . . ,m)A ≤ J and pp

n

= #∆k =

#(A/J) ≤ #k[X1, . . . , Xm]/(Xp
i −Xi | i = 1, . . . ,m) = #(k⊕p)⊗m = pp

m

.
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6. Polynomial rings of invariants and a structure theorem

Theorem 5.4 together with the following result and Remark 7(iii) form our First Main
Theorem 1.1, stated in the Introduction:

Theorem 6.1. Let G be a finite group of order pn, then there exists a trace-surjective
standard polynomial subalgebra UG ≤ Dk(G) of Krull-dimension n, such that the ring of
invariants UG

G is again a polynomial ring of Krull-dimension n.

Proof. We use the notation of Lemma 5.2 and its proof. The proof is by induction on n,
based on Proposition 3.2, for n = 1.
For the induction step, assume n > 1 and the result to be true for groups of order pn−1. By
the induction hypothesis we have standard subalgebra, which is a polynomial algebra,

UG/Z
∼= k[ỹ1, . . . , ỹn−1] = k[w′G/Z ] ≤ Dk(G/Z),

with reflexive point w′ ∈ Dk(G/Z) ⊆ Dk(G)Z , such that U
G/Z
G/Z = k[σ1, . . . , σn−1] is a polyno-

mial ring. By Lemma 5.2 we can extend this to a standard subalgebra,

UG = k[ỹ0, ỹ1, . . . , ỹn−1] = k[w̃G],

which is a polynomial algebra (see Theorem 5.4) with reflexive point w̃ = −ỹp−1
0 w′ ∈ Dk(G)

and G action given by equation (5.5). In particular ỹ0g0 = ỹ0 − 1; recall also that rh =
g
er,h
0 rr,h ∀r ∈ R and h ∈ G, with er,g0 = 1, rr,g0 = r and G = ∪r∈R〈g0〉r. In particular rhg0 =

g
er,h+1
0 rr,h, hence er,hg0 = er,h + 1. Let ỹ0g = ỹ0 − α(g), with α(g) :=

∑

r∈R er,gw
′rg ∈ UG/Z ≤

UG, then

β(g) := α(g)− α(g)p =
∑

r∈R

er,g(w
′ − w′p)rg,

since er,g ∈ Fp. Hence

β(gg0)− β(g) =
∑

r∈R

(w′ − w′p)rg = tr(G/Z)(w′ − w′p) = 1− 1 = 0.

Therefore β(g) := β(g) ∈ UG/Z is well-defined for g = gZ ∈ G/Z. Now ỹp0g = ỹp0 − α(g)p, so
(ỹ0 − ỹp0)g = (ỹ0 − ỹp0)− β(g), hence β(g1g2) = β(g1)g2 + β(g2) for all g1, g2 ∈ G and therefore

β(g1g2) = β(g1)g2 + β(g2), ∀gi ∈ G/Z

with β(g) ∈ UG/Z . So β : G/Z → UG/Z is a 1-cocycle. Since UG/Z is a free U
G/Z
G/Z [G/Z]-module

of rank one (see Theorem 4.1), β is a co-boundary, hence there is γ ∈ UG/Z with

γg − γ = β(g) ∀g ∈ G/Z, (6.1)

and so γg − γ = β(g) for all g ∈ G. It follows that (ỹ0 − ỹp0)g = (ỹ0 − ỹp0)− (γg − γ) for all
g ∈ G, therefore σ0 := ỹ0 − ỹp0 + γ ∈ UG

G with γ ∈ UG/Z . Thus

UG = k[ỹ0, ỹ1, . . . , ỹn−1] ≥ UG
G ≥ T ≤ S

with T := k[σ0, σ1, . . . , σn−1] and S := k[σ0, ỹ1, . . . , ỹn−1] = k[ỹ0 − ỹp0 , ỹ1, . . . , ỹn−1], since γ ∈
UG/Z . By the induction hypothesis, the ring S is a free module of rank |G/Z| = pn−1 over the
polynomial ring T and UG is visibly free of rank p over S, hence UG is a free module of rank
pn over T . On the other hand we know from Theorem 4.1, that UG is a free module of rank
|G| = pn over UG

G , hence it follows easily that UG
G = T , as required.

Remark 7.
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(i) The proof of Theorem 6.1 shows that UG = k[ỹ0, ỹ1, . . . , ỹn−1] is free of rank p over
UZ
G = k[ỹ0 − ỹp0 , ỹ1, . . . , ỹn−1], which itself is free of rank pn−1 over UG

G = (UZ
G )G/Z =

k[σ0, σ1, . . . , σn−1]. Thus UG is free over UG
G with basis consisting of monomials

ỹi00 ỹi11 . . . ỹ
in−1

n−1 , 0 ≤ i0, i1, . . . , in−1 < p.
(ii) The generating invariants σi can be determined recursively, along an upper cen-

tral series 1 < Z := Z1 < Z2 < . . . < Zn = G with Zi+1/Zi ≤ Z(G/Zi), by solving the
cohomology-equations (6.1) and using the formulae

σi = ỹi − ỹpi + γi(ỹi+1, . . . , ỹn−1) for i = 0, 1, . . . , n− 1. (6.2)

(iii) It follows from equation (5.5) and an obvious induction argument, that UG can be
constructed in such a way that G acts in a “triangular” way of the form (ỹi)g = ỹi +
fi(ỹi+1, . . . , ỹn−1) for i = 0, . . . , n− 1.

As an application of Theorem 6.1, we obtain the Structure Theorem 1.2. We need two little
lemmas:

Lemma 6.2. Let R, T ≤ Ω and S ≤ T ∩R be commutative rings and I ER an ideal. Then

R/I ⊗S T ∼= R[T ]/(I).

Proof. Both sides form the coproduct R/I
∐

S T .

Lemma 6.3. Let R be a ring with modules M,N and ideal I := (annRM, annRN)ER. Set
R := R/I, M := M/annRN ·M and N := N/annRM ·N , then there is an isomorphism of R-
or R-modules

M ⊗R N ∼= M ⊗R N.

In particular, if θ : R → A, φ : R → B are ring homomorphisms, then for A := A/θ(ker(φ))A,
B := B/φ(ker(θ))B and R := R/(ker(θ), ker(φ)), there is a canonical isomorphism of R- or
R-algebras

A⊗R B ∼= A⊗R B.

Proof. Consider the map

Ψ : M ×N → M ⊗R N, (m̄, n̄) 7→ m⊗R n.

If n̄ = n̄′, then n− n′ =
∑

ri
rini with ri ∈ annRM , so m⊗R n−m⊗R n′ =
∑

ri

m⊗R rini =
∑

ri

mri ⊗R ni = 0.

Similarly m̄ = m̄′ implies m⊗R n = m′ ⊗R n, so the map Ψ is well-defined and clearly R-
balanced. It therefore induces a homomorphism

M ⊗R N = M ⊗R N → M ⊗R N,

which is easily seen to be a two sided inverse of the obvious homomorphism

M ⊗R N → M ⊗R N.



Page 18 of 20 PETER FLEISCHMANN AND CHRIS WOODCOCK

We now prove the second of our main theorems mentioned in the introduction, using the
notation thereof:
Proof of Theorem 1.2: Since UG is a standard subalgebra, it is “universal” (see the comment
before Proposition 4.2). Hence there is a G-epimorphism φ : UG → B onto a trace-surjective
subalgebra B ≤ A, hence B ∼= UG/i with BG = φ(UG

G ) = k[f0, . . . , fn−1] and fi := φ(σi) ∈ R,
where UG

G = k[σ0, . . . , σn−1]. Since by Theorem 4.1, ker(φ) = i = iGUG = (ker(φ|UG
G
))UG,

Lemma 6.3 gives

A ∼= R⊗φ(UG
G
) φ(UG) ∼= R⊗UG

G
φ(UG) = R⊗UG

G
UG =

R⊗k[σ0,...,σn−1] k[Y ] ∼= R[σ0, . . . , σn−1]/(σ0 − f0, . . . , σn−1 − fn−1)⊗k[σ0,...,σn−1] k[Y ],

with all isomorphisms being G-equivariant. By Lemma 6.2, this latter tensor product is
isomorphic to

R[Y0, . . . , Yn−1]/(σ0(Y )− f0, . . . , σn−1(Y )− fn−1).

�

We now prove the third main theorem of the introduction:
Proof of Theorem 1.3: Let G be a group of order pn. The proof is by induction on n,
where the induction base n = 1 is provided by Corollary 3.3. We use the notation of Lemma
5.2 and Theorem 6.1 and their proofs. For I := (i0, . . . , in−1), J := (j0, . . . , jn−1), we write
I ≤ J if all entries of J − I are non-negative and we write m for (m,m, . . . ,m). For I and
I ′ := (0, i1, ..., in−1) we define ỹI and ỹI

′

in the obvious way. We will also abuse notation
slightly by writing (i0, I

′) for I.
Let B := Dk(G)G and C := Dk(G/Z)G/Z ≤ B (see equation (5.2)); then Proposition 4.2 yields
that Dk(G) ∼= B ⊗UG

G
UG and from Remark 7 (i) we see that

Dk(G) = ⊕I≤p−1BỹI and Dk(G/Z) = ⊕I′≤p−1CỹI
′

.

Thus we can decompose xe ∈ Dk(G) as

xe =
∑

I≤p−1

bI ỹ
I , bI ∈ B.

Set X := k[σ0, C, bI | I ≤ p− 1] ⊆ B and S := ⊕I≤p−1X ỹI . It follows from Remark 7 (ii) that
σ1, . . . , σn−1 ∈ C, so σ0, . . . , σn−1 ∈ X and therefore powers of ỹsi with s ≥ p can be reduced in
S, showing that S = k[X , U ] is a G-stable k-subalgebra of Dk(G) containing xe. Hence xg ∈ S
for all g ∈ G, therefore Dk(G) = S and X = B. By the induction hypothesis, C is a polynomial
ring. It remains to show that an appropriate number of bI are redundant generators of B.
Consider tr(Z)(ỹI) = tr(Z)(ỹi00 )ỹI

′

; then by Lemma 3.1, tr(Z)(ỹ0xe) =
∑

(i0,I′)≤p−1

bItr
(Z)(ỹi0+1

0 )ỹI
′

= −
∑

I′≤p−1

bp−2,I′ ỹI
′

if p > 2 and tr(Z)(ỹ0xe) =
∑

I′≤p−1(b0,I′ + b1,I′)ỹI
′

if p = 2. On the other hand tr(Z)(ỹ0xe) =

ỹ0η1 − x̃ with x̃ = xg0 + 2xg2
0
+ . . . =

∑p−1
ℓ=0 ℓxgℓ

0
=

∑

I=(i0,I′)≤p−1

bI(

p−1
∑

ℓ=0

ℓ(ỹi00 )g0
ℓ)ỹI

′

.

We have from Lemma 3.1,

p−1
∑

ℓ=0

ℓ(ỹp−1
0 )g0

ℓ =

p−1
∑

ℓ=0

ℓ(ỹ0 − ℓ)p−1 = −ỹ0 (+1),
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where the term “(+1)” only appear if p = 2. Similarly

p−1
∑

ℓ=0

ℓ(ỹp−2
0 )g0

ℓ =

p−1
∑

ℓ=0

ℓ (ỹ0 − ℓ)p−2 = 1

and
∑p−1

ℓ=0 ℓ(ỹ
i0
0 )g0

ℓ = 0 for 0 ≤ i0 < p− 2. Therefore x̃ =
∑

I′

(

bp−2,I′ − bp−1,I′ ỹ0
)

ỹI
′

if p > 2

and x̃ =
∑

I′

(

bp−2,I′ − bp−1,I′(ỹ0 + 1)
)

ỹI
′

if p = 2. Since η1 =
∑

I′ cI′ ỹI
′

with cI′ ∈ C, we get
for p > 2:

tr(Z)(ỹ0xe) = −
∑

I′≤p−1

bp−2,I′ ỹI
′

=
∑

I′≤p−1

[(

− bp−2,I′

)

ỹI
′

+ (cI′ + bp−1,I′)ỹ0ỹ
I′]

,

while for p = 2 we get:

tr(Z)(ỹ0xe) =
∑

I′≤p−1

(b0,I′ + b1,I′)ỹI
′

=
∑

I′≤p−1

[(

b0,I′ + b1,I′

)

ỹI
′

+ (cI′ + bp−1,I′)ỹ0ỹ
I′]

.

Hence bp−1,I′ = −cI′ ∈ C. Moreover, since tR(ỹI
′

) = (−1)n−1 for
I ′ = (0, p− 1, . . . , p− 1) and zero for I ′ ≤ (0, p− 1, . . . , p− 1) and I ′ 6= (0, p− 1, . . . , p− 1), we
get t := tr(ỹ0xe) =

−
∑

I′≤p−1

bp−2,I′tR(ỹI
′

) = (−1)nbp−2,p−1,

if p > 2 and t = b0,p−1 + b1,p−1 if p = 2. On the other hand, by Lemma 5.2,
ỹ0g ∈ k[ỹ0, Dk(G/Z)] = k[y0, Dk(G/Z)] and η1 ∈ Dk(G/Z), hence t = tR(ỹ0η1)− tR(x̃) =
tR(ỹ0η1)− y0 ∈ k[ỹ0, Dk(G/Z)] (recall that y0 = ỹ0 − µ for some µ ∈ Dk(G/Z).) Using the
relation

ỹp0 = ỹ0 + γ0(ỹ1, . . . , ỹn−1)− σ0

we get

t =
∑

I≤p−1

ǫI ỹ
I ∈ (⊕I≤p−1C[σ0]ỹ

I) ∩B = C[σ0].

If p > 2 we conclude that t = (−1)nbp−2,p−1 ∈ C[σ0] and if p = 2 we get b0,p−1 + b1,p−1 ∈ C[σ0],
so b0,p−1 ∈ C[σ0] as well. It follows that

B = X = k[σ0, C, {bi0,I′ | 0 ≤ i0 < p− 1}\{bp−2,p−1}].

Since C is generated by pn−1 − 1 elements, the number of generators for B is

1 + (pn−1 − 1) + (pn − pn−1 − 1) = pn − 1.

Hence the result follows, since B = Dk(G)G has Krull-dimension pn − 1. �

7. Concluding remarks

In the light of the Structure Theorem 1.2, it is interesting and also challenging to construct
explicit standard polynomial algebras U ≤ Dk of Krull-dimension logp(|G|) and their rings of
invariants, for particular classes of p-groups. More explicit versions of the Structure Theorem
1.2 will depend on the finer structure of the p-groups considered. The authors have started this
investigation for example for cyclic groups of order larger than p, general abelian p-groups and
and extraspecial p-groups. The results will appear in subsequent papers.
In the context of Theorem 5.4 it would be interesting to classify all standard subalgebras of
Dk and particularly to check whether they exist in Krull-dimension < logp(|G|). In the case
k = Fp, such a standard subalgebra cannot be polynomial, due to Proposition 5.5. Therefore, if
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it exists, it would provide a counterexample to the conjecture discussed in [5], that all retracts
of polynomial rings are again polynomial.
In this context we are also interested in the structure of the category Ts for a general finite
p-group. Here are some question for which we only have partial answers:

- We know that A ∈ Ts is a finitely generated projective object if and only if A⊕ J = D⊗m
k

for some m with ideal J , i.e. A is a retract of D⊗m
k .

• We don’t know if all of these are polynomial rings. This is related to the aforementioned
general problem in algebra, whether every retract of a polynomial ring is again a
polynomial ring (see [5], [15]).

- We know that Uk is a projective object in Ts; moreover if k = Fp, then n = logp(|G|) is
the minimal possible Krull-dimension for such an object being a polynomial ring.

• We don’t know what the projective objects of minimal dimension in Ts are in general.
A further line of research opens up, if the finite p-group G is replaced by an arbitrary finite
group. As mentioned before, some of our results have variants in that general context, but
the theory needs further development. It should also be mentioned that some aspects of the
presented theory make perfect sense and promise interesting results in invariant theory and
representation theory, if the commutative k-algebra A is replaced by a non-commutative k −
G-algebra with surjective trace.
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