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Recently, level crossings in the energy bands of crystals have been identified as a key signature
for topological phase transitions. In general, three independent parameters must be tuned appro-
priately to bring two quantum levels into degeneracy. Using realistic models we show that for Bloch
electrons in a crystal the parameter space controlling the occurrence of level coincidences has a
much richer structure than anticipated previously. In particular, we identify cases where level co-
incidences depend on only two independent parameters thus making the level coincidences robust,
i.e., they cannot be removed by a small perturbation of the Hamiltonian compatible with the crystal
symmetry. We consider HgTe/CdTe quantum wells as a specific example.

Recently level crossings in the energy bands of crys-
tals have become a subject of significant interest as they
represent a key signature for topological phase transi-
tions induced, e.g., by tuning the composition of an alloy
or the thickness of a quasi two-dimensional (2D) system
[1–5]. For example, it was proposed [6] and soon after
confirmed experimentally [7, 8] that HgTe/CdTe quan-
tum wells (QWs) show a phase transition from spin Hall
insulator to a quantum spin Hall regime when the low-
est electron-like and the highest hole-like subbands cross
at a critical QW width of ∼ 65 Å; see also [2, 9–11].
Here we present a systematic study of level crossings and
anticrossings in the subband structure of quasi 2D sys-
tems. We show that the parameter space characterizing
level crossings has a much richer structure than previ-
ously anticipated. In particular, we present examples for
robust level coincidences that are preserved while the sys-
tem parameters are varied within a finite range. We take
HgTe/CdTe QWs as a specific example, though many
results are relevant also for other quasi 2D systems

Level crossings were studied already in the early days
of quantum mechanics [12–15]. They occur, e.g., when
atoms are placed in magnetic fields in the transition
region between the weak-field Zeeman effect and the
high-field Paschen-Back effect. Also, they occur when
molecules and solids are formed from isolated atoms.
Hund [12] pointed out that adiabatic changes of one-
dimensional systems — unlike multi-dimensional systems
— cannot give rise to level crossings. Von Neumann
and Wigner [13] quantified how many parameters need
to be varied for a level crossing. While levels of differ-
ent symmetries (i.e., levels transforming according to dif-
ferent irreducible representations, IRs) may cross when
a single parameter is varied, to achieve a level crossing
among two levels of the same symmetry, it is in general
necessary to vary three (two) independent parameters if
the underlying eigenvalue problem is Hermitian (orthogo-
nal). Subsequently, this problem was revisited by Herring
[14, 15] who found that the analysis by von Neumann and

Wigner was not easily transferable to the energy bands
of Bloch electrons in a crystal due to the symmetry of
the crystal potential. Similar to energy levels in finite
systems, levels may coincide in periodic crystals if the
levels have different symmetries. Of course, unless the
crystal is invariant under inversion, this can occur only
for high-symmetry lines or planes in the Brillouin zone
(BZ), where the group of the wave vector is different from
the trivial group C1. If at one end point k1 of a line of
symmetry a band with symmetry Γi is higher in energy
than the band with symmetry Γj , while at the other end
point k2 the order of Γi and Γj is reversed, these levels
cross somewhere in between k1 and k2. Herring classified
a level crossing as “vanishingly improbable” if it disap-
peared upon an infinitesimal perturbation of the crystal
potential compatible with all crystal symmetries. In that
sense, a level crossing at a high-symmetry point of the
BZ such as the Γ point k = 0 becomes vanishingly im-
probable. For energy levels with the same symmetry,
Herring derived several theorems characterizing the con-
ditions under which level crossings may occur. In partic-
ular, he found that in the absence of inversion symmetry
level crossings that are not vanishingly improbable may
occur for isolated points k such that these crossings can-
not be destroyed by an infinitesimal change in the crystal
potential, but they will occur at some point near k. Here
we will identify several examples for such robust level
coincidences. This illustrates that level coincidences for
Bloch electrons can be qualitatively different from level
coincidences in other systems [13].

Recently, several studies focusing on topological phase
transitions recognized the importance of symmetry for
level crossings in energy bands [2, 9–11]. Murakami et
al. [2] studied the phase transition separating spin Hall
insulators from the quantum spin Hall regime, focusing
on generic low-symmetry configurations with and with-
out inversion symmetry. They found that without inver-
sion symmetry the phase transition is accompanied by
a gap closing at points k that are not high-symmetry
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points. In inversion symmetric systems the gap closes
only at points k = G/2 where G is a reciprocal lat-
tice vector. Here we show that level crossings in quasi
2D systems can be characterized by a multitude of sce-
narios, taking HgTe/CdTe quantum wells as a specific
example for which it is known that the lowest electron-
like and the highest hole-like subbands (anti)cross for a
critical QW width of about 65 Å [6–8, 16]. In most semi-
conductors with a zinc blende structure (point group Td)
the s-antibonding orbitals form the conduction band (IR
Γ6 of Td), whereas the p-bonding orbitals form the va-
lence band (Γ8 and Γ7 of Td). The curvature of the Γ6

band is thus positive whereas it is negative for the Γ8

band. For finite k, the fourfold degenerate Γ8 states (ef-
fective spin j = 3/2) split into so-called heavy hole (HH,
mz = ±3/2) and light hole (LH, mz = ±1/2) branches.
In HgTe, the order of the Γ8 and Γ6 bands is reversed: Γ6

is located below Γ8 and it has a negative (hole-like) cur-
vature, whereas Γ8 splits into an electron (mz = ±1/2)
and a hole (mz = ±3/2) branch [17]. HgTe and CdTe
can be combined to form a ternary alloy HgxCd1−xTe,
where the fundamental gap E0 between the Γ6 and Γ8

bands can be tuned continuously from E0 = +1.6 eV in
CdTe to E0 = −0.3 eV in HgTe with a gapless material
around x = 0.16 [17]. Tuning the material composition x
thus allows one to overcome Herring’s conclusion [14, 15]
that a degeneracy at k = 0 between two levels of different
symmetries is, in general, vanishingly improbable.

Layers of HgTe and CdTe can also be grown epitaxially
on top of each other to form QWs. At the interface the
corresponding states need to be matched appropriately.
The opposite signs of the effective mass inside and outside
the well result in eigenstates localized at the interfaces
between these materials [18]. We calculate these eigen-
states as well as the corresponding subband dispersion
Eα(k) using a realistic 8 × 8 multiband Hamiltonian H
for the bulk bands Γ6, Γ8, and Γ7, which fully takes into
account important details of Eα(k) such as anisotropy,
nonparabolicity, HH-LH coupling, and spin-orbit cou-
pling both due to bulk inversion asymmetry (BIA) of the
zinc blende structure of HgTe and CdTe as well as struc-
ture inversion asymmetry (SIA) if the confining potential
V (z) of the QW is asymmetric. For details concerning
H and its numerical solution see Refs. [19, 20]. In the
following k = (kx, ky) denotes the 2D wave vector.

The symmetry group G of a QW and thus the allowed
level crossings depend on the crystallographic orientation
of the surface used to grow a QW [a (001) surface being
the most common in experiments]. It also depends on
whether we have a system without or with BIA and/or
SIA. The resulting point groups are summarized in Ta-
ble I. We will show below that these different groups give
rise to a rich parameter space for the occurrence of level
coincidences. For a proper symmetry classification we
project the eigenstates of H onto the IRs of the respec-
tive point group [21]. In the following, all IRs are labeled

TABLE I: The point group of a QW for different growth di-
rections starting from a bulk semiconductor with diamond
structure (point group Oh) or zinc blende structure (point
group Td) for a system without (“sym.”) or with (“asym.”)
SIA.

[001] [111] [110] [mmn] [0mn] [lmn]
axial
appr.

Oh sym. D4h D3d D2h C2h C2h Ci D∞h

asym. C4v C3v C2v Cs Cs C1 C∞v

Td sym. D2d C3v C2v Cs C2 C1 D∞h

asym. C2v C3v Cs Cs C1 C1 C∞v

FIG. 1: (Color online) Subband states in a symmetric
HgTe/CdTe quantum well (for k = 0) as a function of well
width w calculated with an 8× 8 Hamiltonian (a) neglecting
BIA (point group D4h) and (b) with BIA (D2d). States trans-
forming according to Γ±

6 of D4h (Γ6 of D2d) are shown in red;
states shown in black transform according to Γ±

7 of D4h (Γ7

of D2d).

according to Koster et al. [22]. As spin-orbit coupling
plays a crucial role for BIA and SIA [19], all IRs referred
to in this work are double-group IRs. For comparison,
Table I also lists the point groups if the prevalent ax-
ial (or spherical) approximation is used for H. In this
approximation, BIA is ignored and different surface ori-
entations become indistinguishable.

First we neglect the small corrections in H due to
BIA so that the corresponding bulk Hamiltonian has the
point group Oh. In the absence of SIA, a quasi 2D sys-
tem grown on a (001) surface has the point group D4h

(which includes inversion) and all electron and hole states
throughout the BZ are two-fold degenerate [21]. Subband
states in a HgTe/CdTe QW for k = 0 as a function of
well width w are shown in Fig. 1(a). The HH states (red
curves) transform according to Γ±

6 of D4h. The electron-
like and LH-like subbands transform according to Γ±

7 .
As expected, the Γ±

6 and Γ±

7 subbands may cross as a
function of well width.

In the presence of SIA we cannot classify the eigen-
states anymore according to their behavior under parity.
Without BIA the point group becomes C4v. HH states
transform according to Γ6 of C4v and electron- and LH-
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like states transform according to Γ7. The level crossings
depicted in Fig. 1(a) remain allowed in this case [9, 23].
The situation changes when taking into account BIA.

Without SIA the point group becomes D2d. In this case
all subbands transform alternately according to the IRs
Γ6 and Γ7 of D2d, irrespective of the dominant spinor
components. In particular, both the uppermost HH state
and the lowest conduction band state transform accord-
ing to Γ6 of D2d so that around w ≃ 65 Å we obtain an
anticrossing between these levels of about 2.9 meV (for
k = 0), see Fig. 1(b) [9–11]. With both BIA and SIA the
point group becomes C2v. Now we have only one double
group IR Γ5. Thus it follows readily that all subbands
anticross as a function of a continuous parameter such as
the well width.
While BIA opens a gap at k = 0, level crossings remain

possible for some k̃ 6= 0 when the well width w is tuned
to a critical value w̃, as shown previously by Murakami
et al. [2]. Considering a (001) surface with BIA, we find,
indeed, that for each direction φ of k = (k, φ), critical
values w̃ and k̃ exist that give rise to a band crossing.
Thus we get a line in k space where the bands cross when
w is varied within some finite range. This result holds
for QWs on a (001) surface with BIA, without and with
SIA. As an example, Fig. 2(a) shows k̃ in the presence of
a perpendicular electric field Ez = 100 kV/cm.
In general, three independent parameters must be

tuned for a level coincidence in a quantum mechanical
systems [13] if the underlying eigenvalue problem is Her-
mitian. While the multiband Hamiltonian H used here
[19] is likewise Hermitian (not orthogonal), only two in-
dependent parameters (w and k = |k|) are necessary to
achieve a level degeneracy. We have here an example for
the robustness of level crossings of energy bands under
perturbations that was predicted by Herring [14, 15] to
occur in systems without a center of inversion. It demon-
strates that level coincidences in energy bands [14, 15]
can behave qualitatively different from level coincidences
in other quantum mechanical systems [13].
The situation is different for a quasi 2D system grown

on a (111) surface. In the absence of BIA and SIA,
the point group is D3d. HH states at k = 0 trans-
form according to the complex conjugate IRs Γ+

5 ⊕ Γ+
6

or Γ−

5 ⊕ Γ−

6 , where ⊕ indicates that these IRs must be
combined due to time reversal symmetry. All other sub-
band edges transform according to Γ±

4 . In the presence
of BIA and/or SIA the point group becomes C3v. Then
HH states transform according to the complex conjugate
IRs Γ5 ⊕ Γ6. Electron-like and LH-like states transform
according to Γ4. Thus it follows that on a (111) surface
the HH states always cross the other states at k = 0 as
a function of a continuous parameter such as the well
width [similar to Fig. 1(a)]. The IRs for different ge-
ometries starting out from a (001) or (111) surface are
summarized in Table II.
Next we consider quasi 2D states on a (110) surface.

FIG. 2: Critical wave vectors k̃ that give rise to a level coinci-
dence in a HgTe/CdTe QW (a) on a (001) surface taking into
account BIA (b) on a (110) surface neglecting BIA. In both
cases a perpendicular field Ez = 100 kV/cm was assumed. In
(a) the level coincidence requires a well width w̃ = 66.1 Å

for k̃ ‖ [110] and w̃ = 66.3 Å for k̃ ‖ [1̄10]. In (b) we have

w̃ = 60.9 Å for k̃ ‖ [001] and w̃ = 60.7 Å for k̃ ‖ [1̄10].

TABLE II: Irreducible representations of quasi 2D states on
a (001) and (111) surface, starting from a bulk semiconduc-
tor with diamond (point group Oh) or zinc blende (point
group Td) structure for a system without (“sym.”) or with
(“asym.”) structure inversion asymmetry.

(001) (111)

bulk group c, LH HH group c, LH HH

Oh sym. D4h Γ±

7 Γ±

6 D3d Γ±

4 Γ±

5 ⊕ Γ±

6

asym. C4v Γ7 Γ6 C3v Γ4 Γ5 ⊕ Γ6

Td sym. D2d Γ7/6 Γ6/7 C3v Γ4 Γ5 ⊕ Γ6

asym. C2v Γ5 Γ5 C3v Γ4 Γ5 ⊕ Γ6

In the absence of BIA and SIA, the point group becomes
D2h. Here, all subbands transform alternately according
to Γ+

5 and Γ−

5 with the topmost HH-like subband being
Γ+
5 and the lowest electron-like subband being Γ−

5 . A
level crossing as a function of w is thus again allowed at
k = 0. In the presence of either BIA or SIA the sym-
metry is reduced to C2v. While the point group in both
cases is the same [24], we obtain a remarkable difference
between these cases. With SIA the level crossing oc-
curs for a line in k space, similar to the (001) surface,
see Fig. 2(b). With BIA we obtain a level crossing only
for k ‖ [110] with k̃ ≈ 0.0012 Å−1 and w̃ ≈ 62.5 Å,
thus giving an example for the level crossings occurring
for isolated points k̃ 6= 0 as discussed by Murakami et
al. [2]. These examples illustrate that the occurrence of
level crossings at either isolated points or along contin-
uous lines in parameter space is not simply related with
the system symmetry [24]. In the presence of both BIA
and SIA (group Cs) we have the same situation as with
BIA only, i.e., adding SIA changes the values of k̃ and w̃,
but we keep k̃ ‖ [110].

Finally, we briefly consider the low-symmetry surfaces
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listed in Table I. For all these surfaces with neither BIA
nor SIA, we obtain level crossings at k = 0, as expected.
For (mmn) surfaces with BIA and/or SIA the levels cross
for k̃ ‖ [110]. For (0mn) surfaces in the presence of only
BIA (only SIA), subbands cross for k̃ ‖ [100] (k̃ ‖ [0nm]).
In the presence of both BIA and SIA, the subbands cross
for a direction of k̃ in between these high-symmetry di-
rections that depends on the relative strength of BIA
and SIA and can only be calculated numerically. The
latter applies also to lowest-symmetry surfaces (lmn) in
the presence of BIA and/or SIA (trivial point group C1).
In conclusion, we have shown that a rich parameter

space characterizes the occurrence of level coincidences
in the subband structure of quasi 2D systems. In par-
ticular, we have identified robust level coincidences that
cannot be removed by a small perturbation of the Hamil-
tonian compatible with the QW symmetry. These level
coincidences can be achieved by tuning only two inde-
pendent parameters such as the thickness of the quasi
2D system and the magnitude (or the direction) of the
2D wave vector. This illustrates that level coincidences
in energy bands [14, 15] can behave qualitatively different
from level coincidences in other quantum mechanical sys-
tems for which it is known that they require the tuning
of three independent parameters [13].
As a specific example, we have considered HgTe/CdTe

QWs which lately attracted significant interest. While in
these systems the range of critical well widths w̃ giving
rise to level coincidences is rather small (about 0.1 mono-
layers), we expect that future research will be able to
identify materials showing larger parameter ranges that
can be probed more easily in experiments. We emphasize
that our symmetry-based classification of level crossings
is independent of specific numerical values of the band
structure parameters entering the multiband Hamilto-
nian H or specific numeric values characterizing the mul-
ticomponent eigenfunctions of H. Indeed, our findings
are directly applicable also to other quasi 2D systems
made of bulk semiconductors with a zinc blende or dia-
mond structure such as hole subbands in GaAs/AlGaAs
and SiGe quantum wells. In general, the k·p coupling be-
tween the LH1 (Γ+

7 ofD4h) and HH2 (Γ−

6 ) subbands gives
rise to an electron-like dispersion of the LH1 subband for
small wave vectors k [25]. If these subbands become (ap-
proximately) degenerate at k = 0, the coupling between
these subbands becomes the dominant effect. This situa-
tion is described by the same effective Hamiltonian that
characterizes the subspace consisting of the lowest elec-
tron and highest HH subband in a HgTe/CdTe QW [6].
It can be exploited if biaxial strain is used to tune the
separation between the LH1 and HH2 subbands [26].
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