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Abstract

Several distributions are studied, simultaneously in the real, complex, quaternion
and octonion cases. Specifically, these are the central, nonsingular matricvariate
and matrix multivariate T and beta type II distributions and the joint density of
the singular values are obtained for real normed division algebras.

1 Introduction

The complex case has renewed interest in multivariate analysis in diverse areas of science and
technology, see Mehta [29], Ratnarajah et al. [33] and Micheas et al. [30], among many others.
Moreover, diverse works involving multivariate analysis have appeared in the context of the
quaternion case, see Bhavsar [2], Forrester [17], Li and Xue [28], among others. However,
with respect to the octonion case, only a few, theoretical results have been published, see
Forrester [17] and Khatri [25]. This lack of widespread interest may be, because as stated
by Baez [1], ...there is still no proof that the octonions are useful for understanding the real
world. Nevertheless, for the sake of completeness, we include results in the octonion case as
conjectures.

Using definitions, properties and notation from abstract algebra, we propose a unified
approach that enables the simultaneous study of the distribution of a random matrix in the
real, complex, quaternion and octonion cases, which is generically termed the, distribution
of a random matrix for real normed division algebras.

In particular, the matricvariate T distribution has been studied by many authors in the
real case, see Dickey [12], Box and Tiao [3], Press [32], Kotz and Nadarajah [27] and Dı́az-
Garćıa and Gutiérrez-Jáimez [8], among many others. The matricvariate T distribution
appears in the frequentist approach to normal regression as the distribution of the Stu-
dentised error, see Dı́az-Garćıa and Gutiérrez-Jáimez [4] and Kotz and Nadarajah [27]. In
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Bayesian conjugate-prior and diffuse-prior analysis for the same sampling models, it appears
as the marginal prior or posterior distribution of the unknown coefficients matrix, and also
as the predictive distribution of a future data array, see Dickey [12], Box and Tiao [3], Press
[32], Dı́az-Garćıa and Ramos-Quiroga [11], Fang and Li [15] and Kotz and Nadarajah [27].
It has been applied in microeconomic modeling to describe the operation of a market for
a particular economic commodity and in macroeconomic modeling to describe the interre-
lations between a large number of macroeconomic variables, as an application of the linear
simultaneous equation model, see Kotz and Nadarajah [27]. In the complex case, the matric-
variate T distribution has been applied in Bayesian estimation of a multivariate regression
model, see Kotz and Nadarajah [27]. No less important is the role of the T distribution,
because if the matrix T has a T distribution, then the matrix TT∗ (or T∗T) is distributed
as beta type II; and the distribution of the latter, in particular, plays a fundamental role in
the MANOVA model, see Srivastava & Khatri [34], Press [32], and Muirhead [31].

In this work, the nonsingular central matricvariate T and the beta type II distributions
and some of their basic properties are studied, see Section 2. The matrix multivariate T
distribution and its corresponding beta type II distribution is studied in Section 3. Finally,
the joint densities of the singular values are derived in Section 4. We emphasize that all
these results are derived for real normed division algebras. Some concepts and the notation
of abstract algebra and Jacobians are summarised as an Appendix.

2 Matricvariate T distribution

We begin this section by distinguishing between matricvariate and matrix multivariate (or
matrix variate) distributions. We say that the random matrix X has a matricvariate dis-
tribution if the kernel g(·) of its density is written as a function solely in terms of the
determinant operator g(|X|). In any other case it is said that X has a matrix multivariate
distribution. The term matricvariate distribution was introducing by Dickey [12], but the
expression matrix-variate distribution (or matrix variate distribution) was later used to de-
scribe any distribution of a random matrix, see Gupta, and Varga [21], Gupta and Nagar
[20], and references therein. Alternatively, the term matrix multivariate (instead of matrix
variate) has been used by Goodall and Mardia [18], and this is the approach adopted in our
paper.

Theorem 2.1. Let T ∈ Lβ
m,n defined as

T = L−1Y + µ

where L is any square root of V such that LL∗ = V ∼ Wβ
m(ν,Ξ), Ξ ∈ Pβ

m and ν > β(m−1);

independent of Y ∼ N β
m×n(0, Im ⊗Σ), Σ ∈ Pβ

n. Then the density of T is

Γβ
m[β(n+ ν)/2]

πmnβ/2Γβ
m[βν/2]|Ξ|βν/2|Σ|βm/2

|Ξ−1 + (T− µ)Σ−1(T− µ)∗|−β(n+ν)/2, (1)

which is termed the matricvariate T distribution1 and is denoted as

T ∼ T β
m×n(ν,µ,Ξ,Σ).

Proof. From Kabe [24] and Dı́az-Garćıa and Gutiérrez-Jáimez [6, 10], the joint density of V
and Y is

∝ |V|β(ν−m+1)/2−1 etr{−β(Ξ−1V +Σ−1Y∗Y)/2},
1In the literature, it is customary to use the expressions real matricvariate T distribution, complex ma-

tricvariate T distribution, quaternion matricvariate T distribution and octonion matricvariate T distribution
distribution; here, however, we use simply matricvariate T distribution as the generic term.
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where the constant of proportionality is

c =
1

(2β−1)βmν/2Γβ
m[βν/2]|Ξ|βν/2

· 1

(2πβ−1)βmn/2|Σ|βm/2
.

Making the change of variable Y = LT, where V = LL∗, then by (A-3)

(dV)(dY) = |LL∗|βn/2(dV)(dT) = |V|βn/2(dV)(dT).

Thus, the joint density of V and T is

∝ |V|β(ν+n−m+1)/2−1 etr{−β(Ξ−1 + (T − ν)Σ−1(T− ν)∗)/2}.

Finally, integrating over V ∈ Pβ
m, we have

(2β−1)βm(n+ν)/2Γ[β(n+ ν)/2]|Ξ−1 + (T− ν)Σ−1(T − ν)∗|−β(n+ν)/2,

from which the desired result is obtained.

Now, observe that by Dickey [12]

Γβ
m[β(n+ ν)/2]

πmnβ/2Γβ
m[βν/2]

=
Γβ
n[β(n+ ν)/2]

πmnβ/2Γβ
n[β(n+ ν −m)/2]

and
|Ξ−1 + (T− ν)Σ−1(T− ν)∗| = |Ξ|−1|Σ|−1|Σ+ (T− ν)∗Ξ(T− ν)|,

from which, alternatively, the density (1) can be expressed as

Γβ
n[β(n+ ν)/2]|Ξ|βn/2|Σ|β(n+ν−m)/2

πmnβ/2Γβ
n[β(n+ ν −m)/2]

|Σ+ (T− ν)∗Ξ(T− ν)|−β(n+ν)/2, (2)

Corollary 2.1. Let T ∈ Lβ
m,n defined as

T = XL−1
1 + µ

where L1 is any square root of U such that L1L
∗
1 = U ∼ Wβ

n (ν + n − m,Σ−1), Σ ∈ Pβ
n,

independent of X ∼ N β
m×n(0,Ξ

−1 ⊗ In), with Ξ ∈ Pβ
m. Then, T ∼ T β

m×n(ν,µ,Ξ,Σ).

Proof. The proof is a verbatim copy of the proof of Theorem 2.1.

Now, assume that T ∼ T β
m×n(ν,0, Im, In) with n ≥ m and let F ∈ Pβ

m defined as
F = TT∗ then, under the conditions of Theorem 2.1 and Corollary 2.1, we have

F = L−1YY∗(L−1)∗ = L−1S(L−1)∗

= XU−1X∗,

with S = YY∗ ∼ Wβ
m(n, Im), n > β(m− 1). Thus:

Theorem 2.2. The density of F is

1

Bβ
m[βν/2, βn/2]

|F|β(n−m+1)/2−1|Im + F|−β(n+ν)/2, (3)

where Bβ
m[·, ·] is given by (A-2) and F is said to have a matricvariate beta type II distribu-

tion.
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Proof. The proof follows from (1) by applying (A-1) and (A-6).

In addition, assume that n < m and let F̃ ∈ Pβ
n defined as F̃ = T∗T then, under the

conditions of Theorem 2.1 and Corollary 2.1 we have

F̃ = X∗U−1X

= L−1
1 X∗X(L−1

1 )∗ = L−1
1 S1(L

−1
1 )∗

with S1 = X∗X ∼ Wβ
n (m, In), m > β(n− 1), Thus:

Theorem 2.3. F̃ has the density

1

Bβ
n[β(ν + n−m)/2, βm/2]

|F̃|β(m−n+1)/2−1|In + F̃|−β(n+ν)/2−1. (4)

Furthermore, we say that F̃ has a matricvariate beta type II distribution.

Proof. The proof is the same as that given in Theorem 2.2. Alternatively, observe that den-
sity (4) can be obtained from density (3) making the following substitutions, see Muirhead
[31, Eq. (7), p. 455] and Srivastava & Khatri [34, p. 96],

m → n, n → m, ν → ν + n−m. (5)

Finally, assume that M ∈ Lβ
m×m is any square root of constant matrix∆ = MM∗ ∈ Pβ

m.
Also, define Z = M∗FM, therefore:

Corollary 2.2. The density of Z is

|∆|βν/2
Bβ
m[βν/2, βn/2]

|Z|β(n−m+1)/2−1|∆+ Z|−β(n+ν)/2.

Z is said to have a nonstandardised matricvariate beta type II distribution.

Proof. The proof follows from (3) by applying (A-4).

Densities (3) and (4) have been studied by several authors in the real case, see Khatri
[26] and Srivastava & Khatri [34], Gupta and Nagar [20], among many others; and by James
[23], Muirhead [31], Dı́az-Garćıa and Gutiérrez-Jáimez [7] and Dı́az-Garćıa and Gutiérrez-
Jáimez [5] and Dı́az-Garćıa and Gutiérrez-Jáimez [9], in the noncentral, doubly noncentral,
singular and nonsingular and complex cases, among many other authors.

3 Matrix multivariate T distribution

Theorem 3.1. Let T1 = S−1/2Y+µ ∈ Lβ
m,n where (S1/2)2 = S ∼ Γβ(ν, ρ) (that is, S has a

gamma distribution with parameters ν and ρ), ρ > 0, independent of Y ∼ N β
m×n(0, Im⊗Σ),

Σ ∈ Pβ
n. Then the density of T1 is

Γβ
1 [β(ν +mn)/2]ρβmn/2

πβmn/2Γβ
1 [βν/2]|Σ|βm/2

[
1 + ρ trΣ−1(T1 − µ)∗(T1 − µ)

]−β(ν+mn)/2
, (6)

which is termed the matrix multivariate T distribution and is denoted as T1 ∼ MT β
m×n(ν,µ, Im,Σ).
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Proof. The joint density of S and Y is

∝ sβν/2−1 etr{−β(s/ρ+ trYY∗)/2},

where the constant of proportionality is

c =
1

(2β−1)βν/2Γβ
1 [βν/2]ρ

βν/2
· 1

(2πβ−1)βmn/2|Σ|βm/2
.

Noting that by (A-3)
(ds)(dY) = sβmn/2(ds)(dT1),

the desired result is obtained analogously to the proof of Theorem 2.1.

Corollary 3.1. Assume that T1 ∼ MT β
m×n(ν,µ, Im, In), and let M and N be any square

root of the constant matrices ∆ = MM∗ ∈ Pβ
m and Λ = NN∗ ∈ Pβ

n, respectively. Also let
(M∗)−1T1N

−1 + µ = Q1 ∈ Lβ
m,n, where µ ∈ Lβ

m,n is constant. Then,

Γβ
1 [β(ν +mn)/2]

πβmn/2Γβ
1 [βν/2]

|∆|βn/2|Λ|βm/2 [1− tr∆(Q1 − µ)Λ(Q1 − µ)∗]−β(ν+mn)/2 ,

Hence, we write Q1 ∼ MT β
m×n(ν,µ,∆,Λ).

Proof. The proof follows observing that, by (A-3)

(dT1) = |MM∗|βn/2|NN∗|βm/2(dQ1) = |∆|βn/2|Λ|βm/2(dQ1).

Now, assuming that T1 ∼ MT β
m×n(ν,0, Im, In), with n ≥ m and defining F1 = T1T

∗
1 ∈

Pβ
m, then, under the conditions of Theorem 3.1 we have that

F1 = S−1YY∗ = S−1W

where W = YY∗ ∼ Wβ
m(n, Im), n > β(m− 1).

Theorem 3.2. The density of F1 is

Γβ
1 [β(ν +mn)/2]

Γβ
1 [βν/2]Γ

β
m[βn/2]

|F1|β(n−m+1)/2−1(1 + trF1)
−β(ν+mn)/2, (7)

F1 is said to have a matrix multivariate beta type II distribution.

Proof. The proof follows from (6) by applying (A-1) and (A-6).

Similarly, if n < m and F̃1 = T∗
1T1 ∈ Pβ

n.

Theorem 3.3. F̃1 has the density

Γβ
1 [β(ν +mn)/2]

Γβ
1 [βν/2]Γ

β
n[βm/2]

|F̃1|β(m−n+1)/2−1(1 + tr F̃1)
−β(ν+mn)/2. (8)

Thus, F̃1 is said to have a matrix multivariate distribution type II distribution.
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Proof. The proof is the same as that given in Theorem 3.2. Alternatively, the density (8)
can be obtained from density (7) by making the following substitutions,

m → n, n → m. (9)

As in the matricvariate beta type II distributions, assume that A ∈ Lβ
m×m is any square

root of constant matrix Π = AA∗ ∈ Pβ
m. Also, define Z = A∗FA, therefore:

Corollary 3.2. The density of Z is

Γβ
1 [β(ν +mn)/2]|Π|βn/2
Γβ
1 [βν/2]Γ

β
n[βm/2]

|Z|β(n−m+1)/2−1(1 +ΠZ)−β(n+ν)/2.

Z is said to have a nonstandardised matrix multivariate beta type II distribution.

Proof. The proof follows from (7) by applying (A-4).

In the real and singular case, the matricvariate and matrix multivariate T distributions
have been studied by Dı́az-Garćıa and Gutiérrez-Jáimez [8].

4 Singular value densities

In this section, the joint densities of the singular values of matrices T, T̃, T1 and T̃1 are
derived. In addition, and as a direct consequence, the joint densities of the eigenvalues of
F, F̃, F1 and F̃1 are obtained for real normed division algebras.

Theorem 4.1. Let δ1, . . . , δm be the singular values of T ∼ T β
m×n(ν,0, Im, In), δ1 > · · · >

δm > 0. Then its joint density is

2m πβm2+τ

Γβ
m[βm/2]Bβ

m[βν/2, βn/2]

m∏

i=1

δ
β(n−m+1)−1
i (1 + δ2i )

−β(ν+n)/2
m∏

i<j

(δ2i − δ2j )
β (10)

where τ is defined in Lemma .3.

Proof. This follows immediately from (1), first using (A-5) and then applying (A-1).

The joint density of the singular values of T̃ is obtained from (10) after making the
substitutions (5).

Theorem 4.2. Assume that T1 ∼ MT β
m×n(ν,0, Im, In) and let α1, . . . , αm, α1 > · · · >

,αm > 0, be its singular values. Then its joint density is

2mπβm2/2+τΓβ
1 [β(ν +mn)/2]

Γβ
1 [βν/2]Γ

β
m[βm/2]Γβ

m[βn/2]

m
∏

i=1

α
β(n−m+1)−1
i

(

1 +
m
∑

i=1

α2
i

)

−β(ν+mn)/2 m
∏

i<j

(α2
i − α2

j )
β (11)

Proof. The proof is identical to that given for Theorem 4.1.

Analogously, the joint density of the singular values of T̃1 is obtained from (11), making
the substitutions (9).
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Finally, observe that δi =
√
eigi(TT∗) and αi =

√
eigi(T1T

∗
1), where eigi(A), i =

1, . . . ,m, denotes the i-th eigenvalue of A. Let λi = eigi(TT∗) = eigi(F) and γi =
eigi(T1T

∗
1) = eigi(F1), observing that, for example, δi =

√
λi. Then

m∧

i=1

dδi =

m∧

i=1

2−m
m∏

i=1

λ
−1/2
i dλi,

the corresponding joint density of λ1, . . . , λm, λ1 > · · · > λm > 0 is obtained from (10) as

πβm2+τ

Γβ
m[βm/2]Bβ

m[βν/2, βn/2]

m∏

i=1

λ
β(n−m+1)/2−1
i (1 + λi)

−β(ν+n)/2
m∏

i<j

(λi − λj)
β .

Analogously, the joint density of γ1, . . . , γm, γ1 > · · · > γm > 0, is obtained from (11) as

πβm2/2+τΓβ
1 [β(ν +mn)/2]

Γβ
1 [βν/2]Γ

β
m[βm/2]Γβ

m[βn/2]

m
∏

i=1

γ
β(n−m+1)/2−1
i

(

1 +
m
∑

i=1

γi

)

−β(ν+mn)/2 m
∏

i<j

(γi − γj)
β.

Remark 4.1. Observe that Y ∈ Lβ
m,n has a matrix multivariate elliptically contoured

distribution for real normed division algebras if its density, with respect to the Lebesgue
measure, is given by (see Dı́az-Garćıa and Gutiérrez-Jáimez [6]):

Cβ(m,n)

|Σ|βn/2|Θ|βm/2
h
{
tr
[
Σ−1(Y − µ)Θ−1(Y − µ)∗

]}
, (12)

where µ ∈ Lβ
m,n, Σ ∈ Pβ

m, Θ ∈ Pβ
m. The function h : F → [0,∞) is termed the generator

function, and it is such that
∫
P

β
1

uβnm−1h(u2)du < ∞ and

Cβ(m,n) =
Γ[βmn/2]

2πβmn/2

{∫

P
β
1

uβnm−1h(u2)du

}

Such a distribution is denoted by Y ∼ Eβ
n×m(µ,Σ,Θ, h), for the real case, see Fang and

Zhang [16] and Gupta, and Varga [21]; and Micheas et al. [30] for the complex case. Observe
that this class of matrix multivariate distributions includes normal, contaminated normal,
Pearson type II and VII, Kotz, Jensen-Logistic, power exponential and Bessel distributions,
among others; these distributions have tails that are more or less weighted, and/or present
a greater or smaller degree of kurtosis than the normal distribution.

Assume that Y = ( Y1
m×n

... Y2
m×ν

) ∼ Eβ
m×n+ν(0, Im, In+ν , h), n, ν ≥ m; and define,

T = L−1Y1, where L is any square root of V = Y2Y
∗
2 such that LL∗ = V. Then

T ∼ T β
m×n(ν,0, Im, In). From (12) the density of Y is

Cβ(m,n+ ν)h {tr (Y1Y
∗
1 +Y2Y

∗
2)} .

Let V = Y2Y
∗
2 then by (.4), (dY2) = 2−m|V|β(ν−m+1)/2−1(dV)(H1dH

∗
1). Thus, the

marginal density of Y1 and V is obtained by integrating over H1 ∈ Vβ
m,n by using (A-1),

hence
Cβ(m,n+ ν)πβνm/2

Γβ
m[βν/2]

|V|β(ν−m+1)/2−1h {tr (Y1Y
∗
1 +V)} .

Now, let T = L−1Y1, where LL∗ = V, then by (.1)

(dY1)(dV) = |V|βn/2(dT)(dV).

7



Therefore, the joint density of T and V is

Cβ(m,n+ ν)πβνm/2

Γβ
m[βν/2]

|V|β(n+ν−m+1)/2−1h {tr(Im +TT∗)V} .

The desired result follows by applying the next equally,

∫

V∈P
β
m

|V|β(n+ν−m+1)/2−1h {trAV} (dV) =
Γβ
m[β(n+ ν)2]|A|−β(n+ν)/2

πβm(n+ν)/2Cβ(m,n+ ν)
,

see Dı́az-Garćıa and Gutiérrez-Jáimez [6] and Dı́az-Garćıa and Gutiérrez-Jáimez [10].
Observe that in this case, Y1 and Y2 (or V = Y2Y

∗
2) are stochastically dependent.

Furthermore, note that only when the particular matrix multivariate elliptical distribution
is the matrix multivariate normal distribution, are Y1 and Y2 (or V = Y2Y

∗
2) indepen-

dent. Therefore, we can say that the matricvariate T distribution is invariant under the
family of matrix multivariate elliptical distributions for real normed division algebras, and
furthermore, its density is the same as when normality is assumed. Analogously, it can be
proved that the matrix multivariate T , matricvariate and matrix multivariate beta type II
distributions are invariant under the family of matrix multivariate elliptical distributions
for real normed division algebras. Furthermore, this invariance prevails under other classes
of elliptical models for real normed division algebras, see Fang and Zhang [16], Gupta, and
Varga [21] and Dı́az-Garćıa and Gutiérrez-Jáimez [6].

Conclusions

Any topic in statistical literature, is usually first studied in the real case, later in the complex
case, later for the quaternion case and exceptionally for the octonion case. From the results
presented in this paper, the real, complex, quaternion and octonion cases are obtained by
simply replacing β with 1, 2, 4 or 8, respectively. Furthermore, as observed by Kabe [24],
these results can be extended to hypercomplex cases, that is, for biquaternion and bioctonion
algebras. Then, from the results presented here, the hypercomplex cases are obtained by
replacing β with 2β.
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[9] J. A. Dı́az-Garćıa, R. Gutiérrez-Jáimez, Doubly noncentral singular matrix variate beta
distributions, J. Statist. Theory & Practice 4(3)(2010) 421-431.
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Appendix

A detailed discussion of real normed division algebras may be found in Baez [1] and Gross
and Richards [19]. For convenience, we shall introduce some notation, although in general
we adhere to standard notation forms.

For our purposes, a vector space is always a finite-dimensional module over the field
of real numbers. An algebra F is a vector space that is equipped with a bilinear map
m : F × F → F termed multiplication and a nonzero element 1 ∈ F termed the unit such
that m(1, a) = m(a, 1) = 1. As usual, we abbreviate m(a, b) = ab as ab. We do not assume
F associative. Given an algebra, we freely think of real numbers as elements of this algebra
via the map ω 7→ ω1.

An algebra F is a division algebra if given a, b ∈ F with ab = 0, then either a = 0 or
b = 0. Equivalently, F is a division algebra if the operation of left and right multiplications
by any nonzero element is invertible. A normed division algebra is an algebra F that is
also a normed vector space with ||ab|| = ||a||||b||. This implies that F is a division algebra
and that ||1|| = 1.

There are exactly four normed division algebras: real numbers (ℜ), complex numbers
(C), quaternions (H) and octonions (O), see Baez [1]. We take into account that ℜ, C, H and
O are the only normed division algebras; moreover, they are the only alternative division
algebras, and all division algebras have a real dimension of 1, 2, 4 or 8, which is denoted by
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β, see Baez [1, Theorems 1, 2 and 3]. In other branches of mathematics, the parameters
α = 2/β and t = β/4 are used, see Edelman and Rao [14] and Kabe [24], respectively.

Let Lβ
m,n be the linear space of all m×n matrices of rank m ≤ n over F with m distinct

positive singular values, where F denotes a real finite-dimensional normed division algebra.
Let Fm×n be the set of all m× n matrices over F. The dimension of Fm×n over ℜ is βmn.

Let A ∈ Fm×n, then A∗ = A
T
denotes the usual conjugate transpose.

Table 1 sets out the equivalence between the same concepts in the four normed division
algebras.

Table 1: Notation

Real Complex Quaternion Octonion
Generic
notation

Semi-orthogonal Semi-unitary Semi-symplectic
Semi-exceptional

type
V

β
m,n

Orthogonal Unitary Symplectic
Exceptional

type
Uβ(m)

Symmetric Hermitian
Quaternion
hermitian

Octonion
hermitian

S
β
m

In addition, let Pβ
m be the cone of positive definite matrices S ∈ Fm×m; then Pβ

m is an
open subset of Sβ

m.
LetDβ

m be the diagonal subgroup of Lβ
m,m consisting of allD ∈ Fm×m, D = diag(d1, . . . , dm).

For any matrix X ∈ Fn×m, dX denotes the matrix of differentials (dxij). Finally, we
define the measure or volume element (dX) when X ∈ Fm×n,Sβ

m, Dβ
m or Vβ

m,n, see Dimitriu
[13].

If X ∈ Fm×n then (dX) (the Lebesgue measure in Fm×n) denotes the exterior product
of the βmn functionally independent variables

(dX) =

m∧

i=1

n∧

j=1

dxij where dxij =

β∧

k=1

dx
(k)
ij .

If S ∈ Sβ
m (or S ∈ T

β
L(m) is a lower triangular matrix) then (dS) (the Lebesgue measure

in Sβ
m or in T

β
L(m), the set of lower triangular matrices) denotes the exterior product of

the m(m+1)β/2 functionally independent variables (or denotes the exterior product of the
m(m− 1)β/2 + n functionally independent variables, if sii ∈ ℜ for all i = 1, . . . ,m)

(dS) =






m∧

i≤j

β∧

k=1

ds
(k)
ij ,

m∧

i=1

dsii

m∧

i<j

β∧

k=1

ds
(k)
ij , if sii ∈ ℜ.

The context generally establishes the conditions on the elements of S, that is, if sij ∈ ℜ,
∈ C, ∈ H or ∈ O. It is considered that

(dS) =

m∧

i≤j

β∧

k=1

ds
(k)
ij ≡

m∧

i=1

dsii

m∧

i<j

β∧

k=1

ds
(k)
ij .

Observe, too, that for the Lebesgue measure (dS) defined thus, it is required that S ∈ Pβ
m,

that is, S must be a non singular Hermitian matrix (Hermitian definite positive matrix).
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If Λ ∈ Dβ
m then (dΛ) (the Legesgue measure in Dβ

m) denotes the exterior product of the
βm functionally independent variables

(dΛ) =
n∧

i=1

β∧

k=1

dλ
(k)
i .

If H1 ∈ Vβ
m,n then

(H∗
1dH1) =

m∧

i=1

n∧

j=i+1

h∗
jdhi.

where H = (H∗
1|H∗

2)
∗ = (h1, . . . ,hm|hm+1, . . . ,hn)

∗ ∈ Uβ(n). It can be proved that this

differential form does not depend on the choice of the H2 matrix. When n = 1; Vβ
m,1 defines

the unit sphere in Fm. This is, of course, an (m − 1)β- dimensional surface in Fm. When
n = m and denoting H1 by H, (HdH∗) is termed the Haar measure on Uβ(m).

The surface area or volume of the Stiefel manifold Vβ
m,n is

Vol(Vβ
m,n) =

∫

H1∈V
β
m,n

(H1dH
∗
1) =

2mπmnβ/2

Γβ
m[nβ/2]

, (A-1)

where Γβ
m[a] denotes the multivariate Gamma function for the space Sβ

m, and is defined by

Γβ
m[a] =

∫

A∈P
β
m

etr{−A}|A|a−(m−1)β/2−1(dA)

= πm(m−1)β/4
m∏

i=1

Γ[a− (i− 1)β/2],

where etr(·) = exp(tr(·)), | · | denotes the determinant and Re(a) > (m − 1)β/2, see Gross
and Richards [19]. Similarly, from Herz [22] the multivariate beta function for the space
Sβ

m, can be defined as

Bβ
m[b, a] =

∫

0<B<Im

|B|a−(m−1)β/2−1|Im −B|b−(m+1)β/2−1(dB)

=

∫

A∈P
β
m

|A|a−(m−1)β/2−1|Im +A|−(a+b)(dA)

=
Γβ
m[a]Γβ

m[b]

Γβ
m[a+ b]

, (A-2)

where A = (I−B)−1 − I, Re(a) > (m− 1)β/2 and Re(b) > (m− 1)β/2.
Now, we show two Jacobians in terms of the β parameter, which are based on the work

of Kabe [24] and Dimitriu [13]. These results are proposed as extensions of real, complex or
quaternion cases, see James [23], Khatri [25], Mehta [29], Ratnarajah et al. [33] and Li and
Xue [28].

Lemma .1. Let X and Y ∈ Lβ
m,n, and let Y = AXB + C, where A ∈ Lβ

m,m, B ∈ Lβ
n,n

and C ∈ Lβ
m,n are constant matrices. Then

(dY) = |A∗A|βn/2|B∗B|βm/2(dX). (A-3)

Lemma .2. Let X and Y ∈ Pβ
m, and let Y = AXA∗ + C, where A and C ∈ Lβ

m,m are
constant matrices. Then

(dY) = |A∗A|β(m−1)/2+1(dX). (A-4)
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Lemma .3 (Singular value decomposition, SV D). Let X ∈ Lβ
m,n, such that X = V1DW∗

with V1 ∈ Vβ
m,n, W ∈ Uβ(m) and D = diag(d1, · · · , dm) ∈ D1

m, d1 > · · · > dm > 0. Then

(dX) = 2−mπτ
m∏

i=1

d
β(n−m+1)−1
i

m∏

i<j

(d2i − d2j )
β(dD)(V1dV

∗
1)(WdW∗), (A-5)

where

τ =






0, β = 1;
−m, β = 2;

−2m, β = 4;
−4m, β = 8.

Lemma .4. Let X ∈ Lβ
m,n, and S = XX∗ ∈ Pβ

m. Then

(dX) = 2−m|S|β(n−m+1)/2−1(dS)(V1dV
∗
1). (A-6)
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