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Abstract

Random Hermitian matrices are used to model complex systems without time-reversal invariance.
Adding an external source to the model can have the effect of shifting some of the matrix eigenvalues,
which corresponds to shifting some of the energy levels of the physical system. We consider the case
when the n× n external source matrix has two distinct real eigenvalues: a with multiplicity r and zero
with multiplicity n − r. For a Gaussian potential, it was shown by Péché [32] that when r is fixed or
grows sufficiently slowly with n (a small-rank source), r eigenvalues are expected to exit the main bulk
for |a| large enough. Furthermore, at the critical value of a when the outliers are at the edge of a band,
the eigenvalues at the edge are described by the r-Airy kernel. We establish the universality of the r-Airy
kernel for a general class of analytic potentials for r = O(nγ) for 0 ≤ γ < 1/12.
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1 Introduction

Fix a Hermitian matrix A. Equip the space of n× n Hermitian matrices M with the probability measure

µn(dM) =
1

Zn
e−nTr(V (M)−AM)dM; Zn :=

∫
e−nTr(V (M)−AM)dM, (1-1)

where dM is the entry-wise Lebesgue measure and the integration is over all Hermitian matrices. The

eigenvalues of M represent the energy levels of a system without time-reversal invariance [35]. When the

external field A is nonzero and V (M) = M2/2, this measure arises in the study of Hamiltonians that can

be written as the sum of a random matrix and a deterministic source matrix [18].

When A = 0 (no external source) and V (M) = M2/2, (1-1) describes the Gaussian Unitary Ensemble,

or GUE. For reasonable choices of V (z) the spectrum tends to accumulate on fixed bands on the real axis.

Introducing an external field A can have the effect of perturbing the expected position of the spectrum. For

example, Aptekarev, Bleher, and Kuijlaars [16, 3, 17] studied the Gaussian case when the matrix A has two

eigenvalues ±a, each of multiplicity n/2. When a is sufficiently small (the subcritical case), the eigenvalues

of M accumulate with probability one on a single interval, just as when A = 0. As a increases the interval

splits into two (the supercritical case). There is a transitional value of a between these two cases (the critical

case) where the local eigenvalue density near where the bands are about to split is described by the Pearcey

process. See [31] and [14] for further studies of large-rank external field models, and [2] for recent results on

the universality of the Pearcey process.

We are interested instead in small-rank sources of the form

A = diag(a, . . . , a︸ ︷︷ ︸
r

, 0, . . . , 0︸ ︷︷ ︸
n−r

) (1-2)

assuming that r(n) = O(nγ), 0 ≤ γ < 1/12. The ratio of r to n, which is asymptotically small, will be

denoted as

κ :=
r

n
= O(nγ−1). (1-3)

The limiting distribution of the largest eigenvalue for such a small-rank external source in the Gaussian case,

V (M) = M2/2, was studied by Péché [32]. Again three distinct behaviors were observed. For a sufficiently

close to zero, i.e. the subcritical case, the largest eigenvalue is expected to lie at the right band endpoint
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and behave as the largest eigenvalue of an n × n GUE matrix. For a large enough, i.e. the supercritical

case, r eigenvalues are expected to exit the bulk and be distributed as the eigenvalues of an r × r GUE

matrix. In the transitional critical case, when the outliers lie very near the band endpoint, the distribution

for the largest eigenvalue is an extension of the standard GUE Tracy-Widom function [34] when r = 0 (see

also [4, 5, 1]). These functions, denoted by Fr(x), were first discovered by Baik, Ben-Arous, and Péché [4]

in the context of sample covariance, or Wishart, matrices and were shown to be probability distributions

by Baik [5]. Adler, Delépine, and van Moerbeke [1] showed that these distributions also appear when n

non-intersecting Brownian motions start from x = 0 when t = 0 with n − r conditioned to end at x = 0

when t = 1 and r conditioned to end at x = a when t = 1. The walkers all start out in a single group, but at

a critical time depending on a, a group of r walkers separates from the main bulk. At this critical time the

walkers on the edge where separation is about to occur follow the r-Airy process, which is connected with

Fr(x). See [5] for other processes in which the functions Fr(x) arise.

In this paper we extend Péché’s result in the critical case to more general functions V (M). Our specific

assumptions are listed in Section 1.3, but we essentially assume V (M) is a generic analytic potential with

sufficient growth at infinity. This establishes a new universality class of matrix ensembles with the local

eigenvalue density near the critical point described by the r-Airy process. The universality of the supercritical

and subcritical cases has been considered separately [9].

In the case of rank one perturbation (i.e. r = 1), the recent paper [7] by Baik and Wang has described

the limiting distribution of the largest eigenvalue for all the possible cases including the critical case that we

consider here.

1.1 The kernel and its connection to multiple orthogonal polynomials

Let pm(λ1, . . . , λm) be the probability density that the n × n matrix M chosen using (1-1) has eigen-

values {λ1, . . . , λm} (here m ≤ n). Then, when the λi are distinct, the m-point correlation function is
n!

(n−m)!pm(λ1, . . . , λm). Brézin and Hikami [18, 19, 20, 21] showed that in the Gaussian case, the m-point

correlation functions can all be expressed in terms of a single kernel K(x, y):

n!

(n−m)!
pm(λ1, . . . , λm) = det(K(λi, λj))i,j=1,...,m. (1-4)

Zinn-Justin [36, 37] extended this result to the case of more general V (M). We will find the leading term in

the large-n asymptotic expansion of the kernel in the critical regime near the critical endpoint.

Bleher and Kuijlaars [15] showed that the kernel can be written in terms of multiple orthogonal poly-

nomials. Furthermore, these multiple orthogonal polynomials can be written in terms of the solution to a

certain Riemann-Hilbert problem. Specifically, suppose Y(z) is a 3×3 matrix-valued function of the complex

variable z satisfying 

Y(z) is analytic for z /∈ R,

Y+(x) = Y−(x)

1 e−nV (x) e−n(V (x)−ax)

0 1 0

0 0 1

 for x ∈ R,

Y(z) =
(
I +O

(
1
z

))zn 0 0

0 z−(n−r) 0

0 0 z−r

 as z →∞.

(1-5)
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Here Y±(x) := limε→0 Y(x± iε) denote the non-tangential limits of Y(z) as z approaches the real axis from

the upper and lower half-planes. Whenever posing a Riemann-Hilbert problem we assume (unless otherwise

stated) that the solution has uniformly Hölder continuous boundary values with any exponent p ∈ (0, 1]

along the jump contour when approached from either side. Under our assumption (iv) in Section 1.3, the

unique solution Y(z) can be written explicitly in terms of multiple orthogonal polynomials of the second

kind (see [16], Section 2). In the case of two distinct eigenvalues a and 0, which is our case, the kernel

Kn(x, y) may be written in terms of the function Y(z) as

Kn(x, y) =
e−

1
2n(V (x)+V (y))

2πi(x− y)

(
0 1 enay

)
Y(y)−1Y(x)

1
0
0

 . (1-6)

To analyze the asymptotic behavior of Y we will use the standard nonlinear steepest descent method for

Riemann-Hilbert problems, as well as certain ideas introduced by Bertola and Lee [10, 11] to study the first

finitely many eigenvalues in the birth of a new spectral band for the random Hermitian matrix model without

source.

A potential alternate method for establishing universality for finite r would be to use Baik’s result [6]

writing the kernel Kn(x, y) in terms of the standard (not multiple) orthogonal polynomials. The rank of the

matrices in this alternate expression grows with r, whereas the size of the Riemann-Hilbert problem (1-5)

grows with the number of distinct eigenvalues. As such, for growing r it is more convenient to analyze the

Riemann-Hilbert problem for multiple orthogonal polynomials.

1.2 Definition of the critical regime

We recall the setting of our work [9]. Let g(z) be the g-function associated with the orthogonal polynomials

with potential V (z) (see, for instance, [23] or [25]). It may be written as

g(z;κ) :=
1

1− κ/2

∫
R

log(z − s)ρmin(s;κ)ds = log(z) +O
(

1

z

)
, (1-7)

where ρminds = ρmin(s;κ)ds is the unique measure minimizing the functional

F [ρ] :=

∫
R
V (s)ρ(s)ds−

∫
R

∫
R
ρ(s)ρ(s′) log |s− s′|ds ds′ ,

∫
R
ρ(s)ds = 1− κ

2
. (1-8)

Here κ is a small parameter which is identified with the ratio κ = r
n . The variational equations are equivalent

to the statement that [33] there exists a real constant `1 = `1(κ) such that

Re
[
V (x)− (2− κ)g(x;κ)− `1(κ)

]{ ≥ 0 on R \ supp ρmin,
≡ 0 on supp ρmin.

(1-9)

We shall denote

g(z) := g(z; 0) , l1 := `1(0). (1-10)

Our first assumption will be

Assumption 1.1. The unperturbed (κ = 0) variational problem is regular in the sense of [30] which means

that the inequalities in (1-9) are strict and the behavior of V (x)− 2g− l1 at any boundary point x = ξ of the

support of ρ is asymptotic to ∝ (x− ξ) 3
2 (approaching ξ from the complement of the support).
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It has been shown in [30] at Theorem 1.31 that, for real-analytic V (x),

i) If V (x) is regular for κ = 0 then V (x) is still regular for κ small enough, and

ii) The locations of the spectral edges (the α’s and β’s) are real-analytic functions of κ such that the bands

of the support of the equilibrium measure stay separated as κ ranges in a small open set around κ = 0.

In addition it is also known that the support (under the real–analyticity assumption) consists of a finite

union of bounded intervals; we will denote the support of the density ρmin by (see Figure 2)

supp ρmin =

 g⋃
j=1

[αj(κ), βj(κ)]

 ∪ [α(κ), β(κ)],

α1(κ) < β1(κ) < α2(κ) < β2(κ) < · · · < αg(κ) < βg(κ) < α(κ) < β(κ).

(1-11)

We will consider the unperturbed density to be the solution of the above variational problem with κ = 0; in

this case the reference to κ will be tacitly suppressed, and so αj = αj(κ)
∣∣
κ=0

, etc. Define for the unperturbed

(κ = 0) problem the following quantities:

P1(z) := −V (z) + 2g(z) + l1, (1-12)

P2(z) := −V (z) + az + g(z) + l1 − l3, (1-13)

P3(z) := −P1(z) + P2(z) = az − g(z)−l3. (1-14)

Note that V (β) = 1
2g(β)− l1 and hence P2(β) = P3(β); we choose l3 such that P2(β) = P3(β) = 0.

It is also known that Reg(z) is a continuous function on R and harmonic (and convex) on the complement

of the support (up to a sign it is also known as the logarithmic potential in potential theory).

Definition 1.1. Define ac to be the (unique) value of a so that P ′2(β) = 0 (here κ = 0).

The uniqueness is promptly seen because P ′2(β) = −V ′(β) + a + g′(β); in fact the effective potential P1

is known [24] to satisfy

P ′1(z) = O(z − β)
1
2 . (1-15)

In particular, P ′1(β) = 0 and hence P ′2(β) = a− g′(β) = a− 1
2V
′(β). Thus the critical value of a is given by

ac = g′(β) =
1

2
V ′(β). (1-16)

We also recall that for regular potentials the behavior of (a suitable branch of) the function P1(z) near

any of the endpoints of the interval of support is

P1(z) = −C(z − β)
3
2 (1 +O(z − β)) (1-17)

for some constant C. For the point β = sup [supp ρmin] one can also prove that C > 0; this allows us to

introduce the scaling coordinate ζ near z = β via the definition

ζ = ζ(z;n) :=

(
−3n

4
P1(z)

) 2
3

= n
2
3 c1(z − β)(1 +O(z − β)) , c1 > 0. (1-18)

1In the theorem, the changing parameter is essentially κ after rescaling.
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We now define the critical and near-crtical regimes. A more extensive context for these definition can be

found in [9]. For completeness we also define the supercritical, subcritical, and jumping outlier regimes. The

supercritical and subcritical regimes are dealt with separately in [9]; we plan to consider the (non-generic)

jumping outlier regime in a future work.

Definition 1.2. The matrix model specified by (1-1) is in the critical regime if a = ac and P2(x) < P2(β)

for x > β. The scaling regime of a− ac = O
(
n−1/3

)
will be called near-critical. We define the exploration

parameter τ by

τ := lim
n→∞

n1/3(a− ac)/c1, (1-19)

where c1 is the positive constant defined at (1-18).

We define, for 0 < a < ac, b
∗ to be the unique point on the real axis greater than β such that P ′3(β) = 0.

For a ≥ ac we can choose b∗ := β.

Definition 1.3. The model is in the supercritical regime if P2 has a unique global maximum on {x ≥
max{β, b∗}} at a point x = a∗ ∈ R and any of the three conditions below is satisfied:

• a > ac.

• a = ac and P3(β) = P2(β) < P2(x) for some x > β.

• 0 < a < ac and P3(b∗) < P2(x) for some x > b∗.

Note that a∗ is always greater than β and b∗. If the global maximum on [max{β, b∗},∞) is attained at several

distinct points then we will say that we are in the jumping outlier regime.

Definition 1.4. The matrix model specified by (1-1) is in the subcritical regime if a < ac and P2(x) <

P3(b∗) for all x ≥ b∗.

1.3 Assumptions and results

We will make the following assumptions on a, A, and V (z):

(i) a > 0.

(ii) A is a small-rank external source of the form (1-2) with r = O(nγ), 0 ≤ γ < 1/12.

(iii) V (z) is real analytic and regular in the sense of [30].

(iv) lim
|z|→∞

V (z)

log(1 + z2)
=∞ and lim

|z|→∞

V (z)− az
log(1 + z2)

=∞.

Regarding assumption (i), the case when a < 0 is equivalent by sending a → −a and V (z) → V (−z).
As for assumption (ii), in the general case when A has m > 2 distinct eigenvalues the kernel can be

written in terms of multiple orthogonal polynomials associated to an (m + 1) × (m + 1) Riemann-Hilbert

problem, which is beyond the scope of this paper. The assumption of analyticity in (iii) allows us to use
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the nonlinear steepest-descent method for Riemann-Hilbert problems. The assumption of regularity ensures

that the equilibrium measure of V (z) has square-root decay at each band endpoint (so that we can use Airy

parametrices) and that these endpoints are analytic functions of κ near κ = 0.

Next, (iv) guarantees the existence of the multiple orthogonal polynomials needed to ensure the Riemann-

Hilbert problem has a solution. We note that the allowed V (z) include any convex V (z) (see the introduction

of [9]).

We compute the large-n behavior of the kernel function (1-6) in the critical regime. We explicitly compute

the kernel in a neighborhood of β. In the remaining portions of the complex plane, our result is that the

kernel function converges to the kernel for the classical orthogonal polynomial problem with respect to V (x).

That is, away from β the standard universality classes apply (i.e. the sine kernel in the bulk of the spectrum

and Airy kernels at the other edges). Our main result is:

Theorem 1. Suppose V (z) and a satisfy conditions (i)–(iv). Let ζx, ζy be fixed in some bounded set. Also

let c1 be the constant appearing in (1-18). Then for large n, and for a positive integer r such that r = O(nγ)

with 0 ≤ γ < 1/12,

Kn

(
β +

ζx + δ

c1n
2
3

, β +
ζy + δ

c1n
2
3

)
=
c1n

2/3

(2πi)2

∫
C̃
ds

∫
C
dt

(t+ τ)r

(s+ τ)r
e

1
3 (s3−t3)+ζxt−ζys

t− s

(
1 +O

(
1

n1/3

))
, (1-20)

where the oriented contours C and C̃ are given in Figure 1 and δ is a quantity independent of ζx, ζy and of

the form

δ := c1β̇κn
2
3 = O(nγ−

1
3 ) , β̇ :=

dβ(κ)

dκ

∣∣∣∣
κ=0

. (1-21)

Remark 1. By dropping the drift term δ in (1-20) we would simply deteriorate the error estimate to O(nγ−
1
3 )

which is however still vanishing since γ < 1
12 .

The constant β̇ admits an explicit integral representation for an arbitrary real-analytic potential V (z)

but it is a bit complicated when the equilibrium measure is supported on multiple intervals. In the simplest

case where the support of the equilibrium measure consists of a single interval [α, β] then we have

β̇ =
1

(β − α)
∮ V ′(z)dz

(z−β)R(z)2iπ

, (1-22)

where the contour of integration is a simple closed contour surrounding the support [α, β] in the complex

plane. We will not be using in any way the explicit form of β̇, except the fact that it is a well–defined

quantity due to the smoothness of β(κ) guaranteed by the already cited Kuijlaars’ Theorem 1.3 in [30].

We show in Section 6.3 that our kernel is the same as the one found for nonintersecting Brownian walkers

in [1].

Acknowledgments. The authors would like to thank Jinho Baik, Ken McLaughlin, and Dong Wang for

several illuminating discussions. M. Bertola was supported by NSERC. R. Buckingham was supported by

the Charles Phelps Taft Research Foundation. V. Pierce was supported by NSF grant DMS-0806219.
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Figure 1: The contours C and C̃ used in the r-Airy Kernel. The straight lines cross at −τ .

2 The perturbed equilibrium measure and the local coordinate ζ

To describe a growing number of outliers, we define a perturbed equilibrium measure problem with parameter

of perturbation κ = r/n = O(nγ−1) for 0 ≤ γ < 1/12. Using the g-function (1-7) we define

P1(x;κ) := −V (x) + (2− κ)g(x;κ) + `1,

P2(x;κ) := −V (x) + ax+
1

2
(2− κ)g(x;κ) +

3κ

2
log(x− β) + `1 − `3,

P3(x;κ) := −P1+P2 = ax−1

2
(2− κ)g(x;κ)+

3κ

2
log(x− β)−`3.

(2-1)

The other constant `3 will be defined by (2-7) after we define the locally holomorphic function h(z).

We also note that we have

lim
κ→0
P ′j(x) = P ′j(x), j = 1, 2, 3, (2-2)

uniformly over compact subsets of R \ {β}. The Pj(x)’s (j = 1, 2, 3) are defined by the same equations

as the Pj ’s except that κ is set to zero (hence all the log terms are dropped) and that g(x) is replaced by

g(x) = limκ→0 g(x). Such convergence is uniform (outside a finite disk around β and inside a compact set)

according to [30].

Since V is regular for κ = 0, it will still remain regular for small values of κ. Hence there exists a

holomorphic function ζ(z) in a finite disk around β such that

− nP1(z;κ) =
4

3
ζ(z;κ)3/2, ζ(β(κ);κ) = 0, (2-3)
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and thus

ζ = n2/3c1(κ)(z − β(κ))(1 +O(z − β(κ))) (2-4)

for some constant c1(κ) > 0.

Previously, we have defined ac at κ = 0. To describe the effect of growing r we introduce a more exact

definition ac(κ). Note that

h(z;κ) :=
1

2
P1(z;κ)+P3(z;κ)− 3κ

2
log ζ = −1

2
V (z) + az +

3κ

2
log

z − β
ζ

+
`1(κ)

2
− `3(κ) (2-5)

is a locally holomorphic function at z = β because V (z) is real analytic.

Definition 2.1 (ac(κ) and `3(κ)). For κ > 0, ac(κ) is such that h′(β(κ);κ) = 0 at a = ac(κ), i.e.

ac(κ) :=
1

2
V ′(β(κ))− 3κ

2

d

dz
log

z − β(κ)

ζ

∣∣∣
z=β(κ)

. (2-6)

We also define `3(κ) such that

h(β(κ);κ) =
1

n

(
− log Γ(r)− log

(
η0(τ)

2
√
πi

))
, (2-7)

where Γ(r) is Euler’s Gamma function and

η0(τ) :=

∫ ∞
0

Ai(t)
(
eτt/ω + eωτt + eτt

)
dt , ω := exp

(
2πi

3

)
. (2-8)

One finds explicitly

`3(κ) :=
1

n

(
log Γ(r) + log

(
η0(τ)

2
√
πi

))
− 1

2
V (β(κ)) + aβ(κ)− `1(κ)

2
+

3κ

2
log

(
1

n2/3c1(κ)

)
. (2-9)

We observe that if r grows with n then Re(h(β(κ);κ)) < 0 for sufficiently large n, which will be used in

the proof of Proposition 5.5. One can verify that ac(κ) converges to ac := ac(0) (see Definition (1.1)) when

κ→ 0 at the rate

ac(κ) = ac +O(κ) = ac +O(nγ−1) . (2-10)

Since for κ = 0 we have ac = 1
2V
′(β) = g′(β) > 0, for sufficiently small κ we still have ac(κ) > 0.

From Definition 2.1, we have h(z) = h(β(κ);κ)+O((z−β(κ))2) at a = ac(κ) (because h′(β(κ);κ) = 0). For

other values of a, since only the term az in h(z;κ) depends on a, we get h(z;κ) = O((z−β(κ))2)+(a−ac(κ))z.

For the subsequent exposition, we redefine τ in a way that is compatible with the earlier Definition 1.2.

Definition 2.2 (replacing Definition 1.2).

τ := n1/3 (a− ac(κ)) /c1(κ). (2-11)

From (2-4) and the above definition, we get

h(z;κ) = h(β(κ);κ) +
τ

n
ζ +O

(
(z − β(κ))2

)
= h(β(κ);κ) +

c1(κ)

n1/3
τ(z − β(κ)) +O

(
(z − β(κ))2

)
. (2-12)
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3 Initial analysis of the Riemann-Hilbert problem: the global
parametrix

We define the contour L as the positively-oriented circle centered at α1 (the leftmost edge of the spectrum)

and passing through β (the rightmost edge of the spectrum). We choose the circle L large enough so that

P2 is negative on the real axis to the left of L. Until further notice the dependence of the various quantities

on κ (i.e. ac, β, g, etc.) will be understood throughout. We have:

Lemma 3.1. For sufficiently small κ and a = ac, the function Re
(
−P3(z) + 3κ

2 log(z − β)
)

increases as one

follows L in either direction starting from β (i.e. through the upper half-plane or the lower half-plane).

Proof. From the definition (2-1), we have −P3(z) + 3κ
2 log(z − β) = −az + 1

2 (2 − κ)g(z) − ˜̀. It is obvious

that Re(−az) increases when a = ac > 0. It is also simple to see that Re
(

1
2 (2− κ)g(z)

)
increases along the

referred contour because Re log(z − x) increases along the contour for any x in [α1, β].

We now open up lenses around each of the bands in the standard way (as in the analysis of the orthogonal

polynomials associated to V (z)). We introduce the following open regions (see Figure 2):

Ω±j , j = 1, ..., g: The area in the upper half-plane (+) or lower half-plane (−) between the band [αj , βj ]

and its appropriate adjacent lens.

Ω±main: The area in the upper half-plane (+) or lower half-plane (−) between the band [α, β] and the

appropriate adjacent lens.

Ω±L : The area in the upper half-plane (+) or lower half-plane (−) inside the contour L but outside the

lenses.

Ω±out: The part of the upper half-plane (+) or lower half-plane (−) outside the contour L.

We also define

Ω±lens :=

 g⋃
j=1

Ω±j

 ∪ Ω±main, Ωlens := Ω+
lens ∪ Ω−lens, ΩL := Ω+

L ∪ Ω−L , Ωout := Ω+
out ∪ Ω−out. (3-1)

With these definitions of regions and contours, we define W(z) in each region by

W(z) := ΛY(z)

e−n2 V 0 0
0 e

n
2 V 0

0 0 e
n
2 (V−2az)

J(z)

e−n2 P1 0 0
0 e

n
2 P1 0

0 0 e
n
2 (P1−2P3)

 e−
n
2 κ log(z−β), (3-2)

where

Λ :=

en2 `1 0 0
0 e−

n
2 `1 0

0 0 e
n
2 (2`3−`1)

 (3-3)

and

J(z) :=

 I,

1 0 0
0 1 −1
0 0 1

 ,

 1 0 0
∓1 1 −1
0 0 1

 .

z ∈ Ωout z ∈ ΩL z ∈ Ω±lens

(3-4)
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β1 β2 βα1 α2 α

L

L

Dc

D(β, δ)

Ω+
main

Ω−main

L

Ω+
main

Ω−main

Ω+
L

Ω−L

Ω+
L

Ω−L

Ω+
out

Ω+
out

Ω+
1

Ω−1

Ω+
2

Ω−2

Figure 2: The contours for the critical case. When we construct the local parametrix near β we will deform
the contour L inside Dc such that ∂Ω±main and L overlap.
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Then W(z) satisfies the following jump conditions (see Figure 2 for the orientation of the contours):

W+(z) = W−(z)×



1 0 0
0 1 −enP3(z)

0 0 1

 , z ∈ L = ∂Ωout ∩ ∂ΩL, 1 0 0
e−nP1(z) 1 0

0 0 1

 , z ∈ ∂Ωlens ∩ ∂ΩL, 0 (−1)r 0
(−1)r+1 0 0

0 0 1

 , z ∈
(⋃g

j=1[αj , βj ]
)
∪ [α, β],

e−inσ(z)(−1)r (−1)renReP1(z) 0
0 (−1)reinσ(z) 0
0 0 1

 , z ∈ ∂Ω+
L ∩ ∂Ω−L ,1 enP1(z) enP2(z)

0 1 0
0 0 1

 , z ∈ ∂Ω+
out ∩ ∂Ω−out,

(3-5)

and the boundary condition

W(z) = I +O
(

1

z

)
, z →∞. (3-6)

Here we have defined σ(x) by σ(x) := 1
1−κ2

∫ x
−∞ ρmin(s;κ)ds which is some constant on each gap.

We will show below that the above Riemann-Hilbert problem is exponentially close to a simpler one away

from the turning points such as β. To be more precise, let us define a shrinking disk centered at β by

Dc :=
{
z
∣∣ |z − β| < n−1/2

}
. (3-7)

Here we have chosen the diameter of the disk Dc so that (refer to (2-12))

n
(
h(z)− h(β)− τ

n
ζ
)

= nO
(
(z − β)2

)
(3-8)

is uniformly bounded on Dc as n→∞. From the expansion (2-4) and (3-7) we note

ζ = O(n1/6) on ∂Dc. (3-9)

To complete the error analysis we will also need a fixed-size disk around β. Fix a small δ > 0 and define

D(β, δ) to be the finite disk centered at β with fixed radius δ. For n large enough, we have Dc ⊂ D(β, δ).

We will show in Section 5 that, for z outside Dc and a finite distance away from the other turning points

(the αj ’s, βj ’s, and α), the Riemann-Hilbert problem for W(z) is exponentially close to that for the outer-

parametrix Ψ as n→∞ with the proper choices of `1 and `3. The necessary data on the effective potentials

P1(z), P2(z), and P3(z) is contained in Lemma 5.5. Thus we propose the following model Riemann-Hilbert

problem for the outer parametrix.
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Definition 3.2. In the critical case, the outer parametrix Ψ(z) is defined as the solution of the Riemann-

Hilbert problem

Ψ+(z) = Ψ−(z)

 0 (−1)r 0
(−1)r+1 0 0

0 0 1

 , z ∈
(⋃g

j=1[αj , βj ]
)
∪ [α, β],

Ψ+(z) = Ψ−(z)

(−1)re−inσ(z) 0 0
0 (−1)reinσ(z) 0
0 0 1

 , z ∈ R \
((⋃g

j=1[αj , βj ]
)
∪ [α, β]

)
,

Ψ(z) = O
(
(z − ?)−1/4

)
, z → ?, ? = αj , βj , α, β.

Ψ(z) = I +O
(

1
z

)
, z →∞.

(3-10)

The function σ(z) is defined below the equation (3-6).

This Riemann-Hilbert problem is essentially 2 × 2. The unique solution is given in [25] Lemma 4.3, or

in [13] Lemma 4.6 in a slightly more generalized setup. We refer the interested reader to those papers since

this is not essential here. In the subsequent analysis we will only need the following information.

Lemma 3.3. Define

S(ζ;n) :=


(

ζ
n2/3

)−1/4

0 0

0
(

ζ
n2/3

)1/4

0

0 0 1

U

(−1)r 0 0
0 1 0
0 0 (−1)r

 ; U :=

 1
2

i
2 0

− 1
2

i
2 0

0 0 −2i

 . (3-11)

Then for z ∈ Dc, there is a unique holomorphic 3 × 3 matrix-valued function H(0)(z;n) with determinant

one such that

Ψ(z) = H(0)(z)S(ζ) (3-12)

as ζ →∞. In addition, H(0)(z;n) has a limit as n→∞ and

H(0)(z;n)− lim
n→∞

H(0)(z;n) = O(κ). (3-13)

Proof. A direct check shows that S(ζ;n) has the same jumps as Ψ(z) in a neighborhood of z = β. Thus

the ratio ΨS−1 has no jump discontinuities inside Dc and hence may have at most an isolated singularity at

z = β. Furthermore, this product has at worst a square-root singularity at β (coming from the product of

the quarter-root singularities in Ψ and S). In the absence of a branch cut, this means H(0) is holomorphic.

Finally, (3-13) follows from the definition of ζ(z) in (2-3) and the dependence of P1 on κ.

4 The local parametrix near z = β

We begin this section by expressing the Riemann-Hilbert problem satisfied by W inside Dc in terms of the

local coordinate ζ. Zooming in on Dc, the contours are shown in Figure 3. There we collapse the global

contours L and a part of ∂Ωmain into Γ2 and Γ4. The regions II and III are parts of the region Ωmain.
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Figure 3: Contours where Ar has jumps. The location of the center can be in any finite domain.

Figure 4: Contours to define the generalized Airy functions. The center is located at −τ .

Using the identities below,

P2(z) =
1

2
P1(z) + h(z) +

3κ

2
log ζ, (4-1)

P3(z) = −1

2
P1(z)+h(z)+

3κ

2
log ζ, (4-2)

we see that W(z) satisfies the following Riemann-Hilbert problem inside the disk Dc:

W+(z) = W−(z)



1 e−
4
3 ζ

3/2

ζ
3r
2 e−

2
3 ζ

3/2+nh(z)

0 1 0
0 0 1

 , z ∈ Γ1,

 1 0 0

−e 4
3 ζ

3/2

1 −ζ 3r
2 e

2
3 ζ

3/2+nh(z)

0 0 1

 , z ∈ Γ2,

 0 (−1)r 0
(−1)r+1 0 0

0 0 1

 , z ∈ Γ3,

 1 0 0

e
4
3 ζ

3/2

1 −ζ 3r
2 e

2
3 ζ

3/2+nh(z)

0 0 1

 , z ∈ Γ4.

(4-3)

We construct below a local parametrix that solves a Riemann-Hilbert problem similar to the above.

4.1 r-Airy parametrix

The rth derivative of the standard Airy function admits the contour integral representation

dr

dζr
Ai(ζ) =

1

2iπ

∫
C1
treζt−t

3/3dt , r = 0, 1, 2, ..., (4-4)
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where the contour C1 is shown in Figure 4. Extending the standard Airy function, we will need the following

generalized Airy functions.

Definition 4.1. Let us define the following generalized Airy functions corresponding to each contour in

Figure 4.

Ai
(r)
Cm(ζ; τ) :=

1

2iπ

∫
Cm

(t+ τ)reζt−t
3/3dt, (4-5)

where m = 1, ..., 6 indicates the contour depicted at Figure 4, and r is a non-negative integer.

Using the generalized Airy functions, we shall construct a matrix Ar(ζ) satisfying the jump condition

(see Figure 3) below.

Ar(ζ)+ = Ar(ζ)−×

ζ ∈ Γ1 ζ ∈ Γ2 ζ ∈ Γ3 ζ ∈ Γ4
1 1 1

0 1 0
0 0 1

 ,

 1 0 0
−1 1 −1
0 0 1

 ,

 0 1 0
−1 0 0
0 0 1

 ,

1 0 0
1 1 −1
0 0 1

 .
(4-6)

Theorem 2. For a positive integer r, the following definition satisfies the jump condition in (4-6).

Ar(ζ) :=

 v
(r)
1 (ζ) v

(r)
2 (ζ) v

(r)
3 (ζ)

∂ζv
(r)
1 (ζ) ∂ζv

(r)
2 (ζ) ∂ζv

(r)
3 (ζ)

v
(r−1)
1 (ζ) v

(r−1)
2 (ζ) v

(r−1)
3 (ζ)


 1 0 0

F 1 0
0 0 1

 , F :=


−1 for II,

1 for III,

0 for I and IV,

(4-7)

where

v
(r)
1 (ζ) = Ai

(r)
C1 (ζ), v

(r)
2 (ζ) =

{
Ai

(r)
C2 (ζ), ζ ∈ I and II,

Ai
(r)
C6 (ζ), ζ ∈ III and IV,

v
(r)
3 (ζ) =


Ai

(r)
C3 (ζ), ζ ∈ I

Ai
(r)
C4 (ζ), ζ ∈ II and III,

Ai
(r)
C5 (ζ), ζ ∈ IV.

(4-8)

Proof. By applying the Sokhotskyi-Plemelj formula, one can satisfy the jump condition (4-6) by defining

v
(r)
1 (ζ) := Ai

(r)
C1 (ζ; τ),

v
(r)
2 (ζ) :=

e−τζ

2iπ

∫
R

v
(r)
1 (s)eτs

s− ζ
ds−Ai

(r)
C4 (ζ; τ),

v
(r)
3 (ζ) :=

e−τζ

2iπ

∫
C6

v
(r)
2 (t)eτtdt

t− ζ
− e−τζ

2iπ

∫
C2

v
(r)
2 (t)eτtdt

t− ζ
.

(4-9)

Here we note that Ai
(r)
C4 (ζ; τ) is holomorphic (therefore having no jump). The next step is to verify that the

definitions in (4-9) are equivalent to the advocated form in (4-7) and (4-8).

First let us consider v
(r)
2 (ζ).

v
(r)
2 (ζ) =

e−τζ

2iπ

∫
R

ds

s− ζ
1

2iπ

(∫ −τ
−τ−i∞

dt+

∫ i∞−τ

−τ
dt

)
(t+ τ)res(t+τ)−t3/3 −Ai

(r)
C4 (ζ; τ) (4-10)

=
e−τζ

(2iπ)2

(∫
sc−
ds

∫ −τ
−τ−i∞

dt+

∫
sc+

ds

∫ i∞−τ

−τ
dt

)
(t+ τ)res(t+τ)−t3/3

s− ζ
+

1

2iπ

∫ −τ
∞

(t+ τ)reζt−t
3/3dt (4-11)

=


1

2iπ

∫
C2

(t+ τ)reζt−t
3/3dt = Ai

(r)
C2 (ζ; τ), ζ ∈ H+,

1

2iπ

∫
C6

(t+ τ)reζt−t
3/3dt = Ai

(r)
C6 (ζ; τ), ζ ∈ H−,

(4-12)
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where, at the second equality, sc- and sc+ are respectively the completions of the contour R by adding the

infinite half-circle through the lower (−) half-plane and the upper (+) half-plane; sc stands for “semi-circle.”

Using this result, v
(r)
3 (ζ) becomes

v
(r)
3 (ζ) =

e−τζ

2iπ

(∫
C6

Ai
(r)
C6 (t; τ)eτtdt

t− ζ
−
∫
C2

Ai
(r)
C2 (t; τ)eτtdt

t− ζ

)

=
e−τζ

2iπ

∫
C6

eτt
(

Ai
(r)
C5 (t; τ)−Ai

(r)
C4 (t; τ)

)
t− ζ

dt+

∫
C2

eτt
(

Ai
(r)
C4 (t; τ)−Ai

(r)
C3 (t; τ)

)
t− ζ

dt


=
e−τζ

2iπ

(∫
C1

Ai
(r)
C4 (t; τ)eτtdt

t− ζ
+

∫
C6

Ai
(r)
C5 (t; τ)eτtdt

t− ζ
−
∫
C2

Ai
(r)
C3 (t; τ)eτtdt

t− ζ

)
.

(4-13)

It can be noticed that, in all three terms in the last expression, one can close the contours C1, C2, and C6 by

adding the corresponding arcs of infinite radius. For instance, C1 can be made a closed contour by adding

the arc {reθ|θ ∈ [2π/3, 4π/3]; r →∞}. Such addition is allowed because the term e(s+τ)t in

Ai
(r)
C4 (t; τ)eτt

t− ζ
=

1

2πi(t− ζ)

∫
C4

(s+ τ)ret(s+τ)−s3ds (4-14)

is suppressed over the infinite arc when s is integrated over C4. The other terms work the same. Then

each integration on the closed contour becomes a residue calculation that leads to the definitions in the

theorem.

4.2 Asymptotic behavior of Ar(ζ) for large ζ and growing r

The matrix Ar(ζ) will be used to build an appropriate local parametrix near z = β. The resulting global

parametrix will have a jump across ∂Dc. To control this jump it is necessary to see how Ar(ζ) behaves as

ζ → ∞ (recall from (3-9) that ζ = O(n1/6) on ∂Dc). Special care is needed because r is also growing with

n as r = O(nγ) for 0 ≤ γ < 1/12.

Let A(r,ij) stand for the (i,j) entry of Ar(ζ). We will show in Section 6 that the leading-order asymptotics

of the kernel are smooth near z = β. Therefore it is sufficient to restrict ourselves to ζ in region I. The

proofs of the following two propositions are given in Appendix A.

Proposition 4.2. As ζ → ∞ with ζ ∈ I and for r = O(nγ), 0 ≤ γ < 1/12, the entries of the first and
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second columns of Ar(ζ) behave as follows:

Ar,11(ζ) = Ai
(r)
C1 (ζ; τ) =

(−1)r

2
√
π

(
ζ1/2 − τ

)r
ζ−1/4e−

2
3 ζ

3/2

1 +

6M+5∑
j=3

A
(r,11)
j ζ−j/2 +O

(
r4M+4

ζ3M+3

) , (4-15)

Ar,21(ζ) = ∂ζAi
(r)
C1 (ζ; τ) =

(−1)r

2
√
π

(ζ1/2 − τ)rζ1/4e−
2
3 ζ

3/2

−1 +

6M+5∑
j=3

A
(r,21)
j ζ−j/2 +O

(
r4M+4

ζ3M+3

) ,
(4-16)

Ar,31(ζ) = Ai
(r−1)
C1 (ζ; τ) =

(−1)r−1

2
√
π

(ζ1/2 − τ)re−
2
3 ζ

3/2

 1

ζ3/4
+

τ

ζ5/4
+

τ2

ζ7/4
+

6M+5∑
j=3

A
(r,31)
j ζ−3/4−j/2

+O
(

r4M+4

ζ3M+15/4

)]
,

(4-17)

A(r,12)(ζ) = Ai
(r)
C2 (ζ; τ) = − 1

2
√
πi

(
ζ1/2 + τ

)r
ζ−1/4e

2
3 ζ

3/2

1 +

6M+5∑
j=3

A
(r,12)
j ζ−j/2 +O

(
r4M+4

ζ3M+3

) , (4-18)

A(r,22)(ζ) = ∂ζAi
(r)
C2 (ζ; τ) = − 1

2
√
πi

(
ζ1/2 + τ

)r
ζ1/4e

2
3 ζ

3/2

1 +

6M+5∑
j=3

A
(r,22)
j +O

(
r4M+4

ζ3M+3

) , (4-19)

A(r,32)(ζ) = Ai
(r−1)
C2 (ζ; τ) = − 1

2
√
πi

(
ζ1/2 + τ

)r
e

2
3 ζ

3/2

 1

ζ3/4
− τ

ζ5/4
+

τ2

ζ7/4
+

6M+5∑
j=3

A
(r,32)
j ζ−3/4−j/2

+O
(

r4M+4

ζ3M+15/4

)]
,

(4-20)

where the A
(r,ik)
j are polynomial functions of r and τ .

We will not need the exact form of the coefficients A
(r,k`)
j , but they can be determined algorithmically

through the proof in Appendix A.

Proposition 4.3. The entries of the third column of Ar(ζ) behave as follows as ζ →∞ and for r = O(nγ),

0 ≤ γ < 1/12:

A(r,13)(ζ) =
(−1)r+1r!

2iπ

e−τζ

ζr+1

 M∑
j=0

ηj(τ)

ζj
+O

(
rM+1

|ζ|M+1

) , ζ ∈ ∂Dc, (4-21)

where

ηj(τ) :=
∑

(A,B)

∫
CB

Ai
(0)
CA (t; τ)eτttjdt. (4-22)

The asymptotic expansion of A(r,23) = ∂v
(r)
3 is given in the same form but with different coefficients:

ηj(τ)→ η̂j(τ) := −τηj(τ)− (r + 1 + j)ηj−1(τ), η−1(τ) := 0. (4-23)

The asymptotic expansion of Ar,33 is given by A(r−1,13) using (4-21).
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As a side remark, by applying the rotational symmetry of the Airy function, we get (2-8) repeated here:

η0(τ) =

∫ ∞
0

Ai(t)
(
eτt/ω + eωτt + eτt

)
dt, ω := exp

(
2πi

3

)
. (4-24)

Evaluating the integral, η0(τ) is 1 at τ = 0.

The first few terms in the leading-order expansion of the entries of A(r)(ζ) are given in Section A.3.

For r = O(nγ), 0 ≤ γ < 1/12 and ζ ∈ I, Propositions 4.2 and 4.3 yield immediately the following expres-

sion for Ar(ζ):

Ar(ζ) =

n−1/6 0 0
0 n1/6 0
0 0 1

L(0)(ζ)S(ζ)C(ζ), (4-25)

where S(ζ) is given by (3-11),

C(ζ) :=


1√
π
ζr/2e−

2
3 ζ

3/2

0 0

0 1√
π
ζr/2e

2
3 ζ

3/2

0

0 0 1
2πiΓ(r)η(τ)ζ−re−τζ

 , (4-26)

and

L(0)(ζ) = I +


O
(
r2

ζ

)
O
(
rn1/3

ζ

)
−rn1/6

ζ +O
(
r2n1/6

ζ2

)
O
(

r
n1/3

)
O
(
r2

ζ

)
O
(

r
ζn1/6

)
O
(

r
ζn1/6

)
O
(
n1/6

ζ

)
O
(
r
ζ

)
 . (4-27)

There are several important points to note concerning L(0)(ζ), which we will use to define the global

parametrix inside Dc. We are specifically interested in the behavior of L(0)(ζ) for ζ ∈ ∂Dc, where ζ = O(n1/6).

The observant reader will note that several of the terms in L(0)(ζ) are not decaying as n→∞ for ζ ∈ ∂Dc.
Ideally we would have L(0)(ζ) close to the identity for large n. This will be achieved by a series of pseudo-

Schlesinger transforms (from now on, we simply use the term “Schlesinger transform”). Each transform

only impacts one column at a time and will modify L(0) into a new L(j) where the most dominant term in

that column of the expansion (4-27) is sequentially removed. At each step the rate of convergence for that

column will be improved.

We will show in detail how such a transform is used to define a new matrix L(1)(ζ) with the same entry-

wise growth as L(0)(ζ) except that the highest-order term in the third column (the explicit −rn1/6/ζ term

in the (1, 3) entry) is removed.

A note is in order concerning the ζ-independent term in the (2, 1) entry. There is a nilpotent matrix N0

such that L(0)N0 is the same as L(0) except this term is removed. We then redefine H(0) := H(0)N0 and

L(0) := L(0)N0 as our starting point.

We then apply a finite sequence of Schlesinger transforms to the improved L(1)(ζ) matrix to yield a final

matrix L(2)(ζ) of the form I +O(n−2/3). In fact it is possible to use such procedure to change L(0)(ζ) into a

matrix arbitrarily close to the identity. However, other factors in the calculation (see (6-19)) will introduce

an O(n−2/3) error into the kernel computation, so there is no point in removing smaller terms.

We start with two observations. First off, L(0)(ζ) has no jump discontinuities, and the expansion of

L(0)(ζ) has only negative integer powers of ζ. This is important since the Schlesinger transform will remove
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pole terms. Secondly, L(0)(ζ) has an asymptotic expansion for large n. More exactly, once the pole of the

lowest order is removed from a given entry, the remaining terms are asymptotically smaller as n→∞ than

what was removed. Furthermore, each entry can be made to decay at an arbitrarily fast rate by removing

a finite number of terms from the Laurent expansion of that entry. This follows from the behavior of the

entries of Ar(ζ); see Propositions 4.2 and 4.3. The leading-order entries of L(0)(ζ) can be read off from the

formulas in Section A.3, and in principle any term can be computed as described in the proofs.

Now is an appropriate time to explain where the limitation γ < 1/12 arises (recall r = O(nγ) for

0 ≤ γ < 1/12). Note in Proposition 4.2 the terms (ζ1/2 ± τ)r. To explicitly compute the entries of L(0)(ζ),

it is necessary to use the expansions(
1± τ

ζ1/2

)r
= 1± rτ

ζ1/2
+
r(r − 1)τ2

2ζ
± r(r − 1)(r − 2)τ3

3!ζ3/2
+O

(
r4

ζ2

)
, (4-28)

which are asymptotic expansions for ζ ∈ ∂Dc only for γ < 1/12. Note that the number of terms in L(0)(ζ)

that need to be removed to leave an error of O(n−2/3) will depend on how fast r is growing. Indeed, if γ is

close to 1/12, then a very large number of terms will need to be removed!

5 The error analysis

5.1 Global Parametrix Construction

The asymptotic expansion of the outer parametrix Ψ(z) on the boundary of Dc (Lemma 3.3) will guide our

first attempt at defining the global parametrix Ψ∞(0). Around all of the band endpoints except for β we will use

standard Airy parametrices which match with Ψ(z) up to O(1/n). For more details on the Airy parametrix

in a 3 × 3 Riemann-Hilbert problem see, for example, Bleher and Kuijlaars [16]. For convenience, we will

denote the Airy parametrices by PAi(z). We also define DAi to be the union of 2g+ 1 small, fixed-size disks

centered around α1, β1, ..., αg, βg, and α in which the Airy parametrices will be used. We set

Ψ∞(0)(z) :=


Ψ(z) = H(0)(z)S(ζ) z /∈ (Dc ∪ DAi),

H(0)(z)D(z)−1L(0)(ζ)S(ζ)D(z) z ∈ Dc,
PAi(z) z ∈ DAi,

(5-1)

where H(0)(z) is defined by Lemma 3.3, L(0)(ζ) is defined by (4-25), S(ζ) is defined by (3-11), and

D(z) :=

1 0 0
0 1 0
0 0 enh(z)−nh(β)−τζ

 . (5-2)
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Direct calculation shows that Ψ∞(0)(z) satisfies exactly the same jumps as W(z) inside Dc:

Ψ∞(0)+(z) = Ψ∞(0)−(z)

1 e−
4
3 ζ

3/2

e−
2
3 ζ

3/2+nh(z)

0 1 0
0 0 1

 z ∈ Γ1 ∩ Dc,

Ψ∞(0)+(z) = Ψ∞(0)−(z)

 1 0 0

−e 4
3 ζ

3/2

1 −e 2
3 ζ

3/2+nh(z)

0 0 1

 z ∈ Γ2 ∩ Dc,

Ψ∞(0)+(z) = Ψ∞(0)−(z)

 0 (−1)r 0
(−1)r+1 0 0

0 0 1

 z ∈ Γ3 ∩ Dc,

Ψ∞(0)+(z) = Ψ∞(0)−(z)

 1 0 0

e
4
3 ζ

3/2

1 −e 2
3 ζ

3/2+nh(z)

0 0 1

 z ∈ Γ4 ∩ Dc.

(5-3)

We now define the error matrix E(0)(z) by

E(0)(z) := W(z)
(
Ψ∞(0)(z)

)−1

. (5-4)

Note that E(0)(z) has no jumps on the contours inside Dc. We take the boundary of Dc to be oriented

clockwise (i.e. inside/outside is −/+ respectively). Then, using the expansion (3-12), the jump for E(0)(z)

is given on Dc by

V
(E)
(0) (z) := E(0)(z)

−1
− E(0)(z)+ = Ψ∞(0)(z)−Ψ∞(0)(z)

−1
+ = H(0)(z)D(z)−1L(0)(ζ)D(z)H(0)(z)

−1. (5-5)

We would like this jump matrix to be close to the identity as n → ∞ for ζ ∈ Dc. However, as noted

previously, L(0)(ζ) does not decay to the identity for ζ = O(n1/6) (see (4-27)). To remedy this situation, we

will modify L(0)(ζ) in a series of Schlesinger transforms:

L(0)(ζ)→ L(1)(ζ)→ L(2)(ζ). (5-6)

The first step will be carried out explicitly to explain the procedure and will remove one representative term.

The second step will remove the remaining error terms up to O(n−2/3). There is no need to carry out these

transforms explicitly as we will show they only affect the subdominant terms in the kernel. We will then use

L(2)(ζ) to define a refined global parametrix Ψ∞(2)(z). The new error matrix E(2)(z) defined using Ψ∞(2)(z)

will be shown to be close to I.

Our first transform removes the term −rn1/6/ζ in the (13) entry of L(0): define a new matrix

L(1)(ζ) := L(0)(ζ)

1 0 rn1/6

ζ

0 1 0
0 0 1

 , ζ ∈ Dc. (5-7)

Then it follows that

L(1)(ζ) =


L(0,11) L(0,12) O

(
r3n1/6

ζ2

)
L(0,21) L(0,22) L(0,23) +O

(
r2

n1/6ζ

)
L(0,31) L(0,32) L(0,33) +O

(
r2

ζ2

)
 . (5-8)
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Now there is a unique 3× 3 matrix F(1), independent of z, such that

H(1)(z) :=

(
I +

F(1)

z − β

)
H(0)(z)D(z)−1

1 0 rn1/6

ζ

0 1 0
0 0 1

D(z)

=

(
I +

F(1)

z − β

)
H(0)(z)

1 0 enh−τζ rn
1/6

ζ

0 1 0
0 0 1


(5-9)

is holomorphic for z ∈ Dc. The matrix F(1) can be computed explicitly, but since its exact form will not be

significant we use the following proposition to assert its existence.

Proposition 5.1. Fix a function ε(n) so limn→∞ ε(n) = 0. Assume that we are given a constant q × q
two-nilpotent matrix N (i.e. N2 = 0) , a series of numbers {dj(n)

∣∣ − ∞ < j ≤ k} so that dk 6= 0 and

dj = O(ε), and a q × q matrix H(z;n) that is locally holomorphic at z = 0 and det H(z;n) ≡ 1. We also

assume that H(z;n)− limn→∞H(z;n) = O(ε) uniformly on a fixed, finite disk around z = 0. Then one can

uniquely determine k constant (in z) matrices F1, ...,Fk by requiring that H̃(z;n) defined below is locally

holomorphic at z = 0:

H̃(z;n) :=

(
I +

F1

z
+ ...+

Fk
zk

)
H(z;n)

I + N

k∑
j=−∞

dj
zj

 . (5-10)

In addition,

Fj(n) = O(ε), j = 1, ..., k (5-11)

and

H̃(z;n)− lim
n→∞

H̃(z;n) = O(ε) (5-12)

uniformly in the same disk around z = 0, and det H̃(z;n) ≡ 1.

Proof. Denote as follows the expansion at z = 0:

H(z;n) = H0(n) + H1(n)z + H2(n)z2 + · · · (5-13)

Let us collect all the terms of the order z−m from (5-10).

Terms of order z−m :

k−m∑
l=0

Fl+mHl +

k∑
j=1−k

k−(m−j)∑
l=0

Fl+m−jHl

Ndj +

k−m∑
l=0

HlNdl+m. (5-14)

This must be zero for m = 1, ..., 2k for H̃(z;n) to be holomorphic at the origin. Since we have only k

unknown matrices: F1, ...,Fk, the number of equations must be reduced to k equations. We will show that

the equations for m = k + 1, ..., 2k are contained in the equations for m = 1, ..., k.

For m > k the first and the last (summation) terms are absent and we have only the middle term (with double

summations). The middle term is a linear combination of
{(∑k−m̃

l=0 Fl+m̃Hl

)
N
∣∣m̃ = 1, ..., k

}
(which gives
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an invertible linear system of equations because dk 6= 0) and, therefore, the set of equations are equivalent

to

0 =

(
k−m∑
l=0

Fl+mHl

)
N for m = 1, ..., k. (5-15)

These are also obtained by right multiplication of (5-14) for m = 1, ..., k by N because the second and the

last terms vanish given that NN = 0. Therefore the vanishing of (5-14) for m = 1, ..., k is a sufficient

condition to solve for Fj ’s. To solve these k equations consider a big (block) matrix of size qk × qk (where

q is the size of the matrices that appear in (5-14); q = 3 in our case) obtained by adjoining the Fj ’s side by

side as [F1,F2, ...,Fk]. Then we can write the k equations into a single matrix equation as follows.

[F1,F2, ...,Fk]




H0 0 · · · 0
H1 H0 0
...

. . .
...

Hk−1 Hk−2 · · · H0

+O(ε)


= −

[
k−1∑
l=0

HlNdl+1,

k−2∑
l=0

HlNdl+2, ...,H0Ndk−1 + H1Ndk,H0Ndk

]
,

(5-16)

where the middle term of (5-14) is hidden in O(ε). Because det H(z;n) = det H0 = 1, the big matrix of size

qk×qk multiplied on the right of [F1, ...,Fk] is invertible and, therefore, the solution can be uniquely obtained.

Also it follows immediately that [F1, ...,Fk] = O(ε). From this, it also follows that H̃(z;n)− limn→∞ H̃(z; 0)

is uniformly bounded by O(ε).

Lastly, to show that det H̃(z;n) ≡ 1, we take the determinant of (5-10).

det H̃(z;n) = det

[(
I +

F1

z
+ ...+

Fk
zk

)]
det H(z;n) det

[(
I + N

k∑
j=−∞

dj
zj

)]
(5-17)

= det

[(
I +

F1

z
+ ...+

Fk
zk

)]
. (5-18)

The left hand side is holomorphic (at the origin) and therefore it must be 1 to match the right hand side.

We now show how to apply Proposition 5.1 to guarantee the existence of the matrix F(1). First, using

the holomorphicity of ζ(z) in Dc, we see there are unique functions d(1,j)(n) such that

enh−τζ
rn1/6

ζ
=

1∑
j=−∞

d(1,j)(n)

(z − β)j
. (5-19)

Furthermore, using (2-4) and (2-12),

d(1,j)(n) = O
( r

n1/2

)
. (5-20)

We shift z by β and choose

H(z;n) := H(0)(z;n), ε(n) :=
r

n1/2
, N :=

0 0 1
0 0 0
0 0 0

 . (5-21)
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Recall from Lemma 3.3 that the determinant of H(0) is one and that H(0)(z;n)− limn→∞H(0)(z;n) = O(κ).

Therefore, Proposition 5.1 shows that the matrices F(1,m) exist and

H(1)(z;n)− lim
n→∞

H(1)(z;n) = O
( r

n1/2

)
. (5-22)

Furthermore, any series expansion of a unimodular matrix can be decomposed into products of the form

[I + N], where N is nilpotent as we show below in Lemma 5.2 These products can then be dealt with as

explained in Proposition 5.1.

Lemma 5.2. Consider a unimodular matrix M(z) with expansion

M(z) = I + M1/z + M2/z
2 + M3/z

3 + ..., Mj ∈ Mat3×3(C), Tr M1 = 0. (5-23)

Then, for arbitrary K > 0 we can find a finite number of nilpotent matrices Nj and integers kj ≥ 1 such

that

M(z) =
∏
j

(
I +

Nj

zkj

)(
I +O(z−K−1)

)
. (5-24)

Proof. The matrix M1 can be expressed as a linear combination of the following nilpotent matrices: 0 1 0
0 0 0
0 0 0

 ,

 0 0 1
0 0 0
0 0 0

,
 0 0 0

0 0 1
0 0 0

 ,

 0 0 0
0 0 0
1 0 0

 ,

 0 0 0
0 0 0
0 1 0

 ,

 0 0 0
1 0 0
0 0 0

 ,

 1 1 0
−1 −1 0
0 0 0

 ,

 0 0 0
0 1 1
0 −1 −1

 .

(5-25)

We label these basis elements as Nj with j = 1, . . . , 8 so that

M1 =

8∑
j=1

cjNj (5-26)

for some constants {cj}. Now we may decompose M(z) as

M(z) =

 8∏
j=1

(
I +

cjNj

z

) M̃(z). (5-27)

The factor M̃(z) does not have a z−1 term in its expansion:

M̃(z) = I +
M̃2

z2
+ · · · (5-28)

The matrix M̃(z) is still unimodular and hence M̃2 is traceless and can be decomposed similarly as before

M̃(z) =

 8∏
j=1

(
I +

c̃jNj

z2

) ˜̃
M(z). (5-29)

One can iterate this procedure to obtain the decomposition to any arbitrary order.
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We can thus apply Proposition 5.1 to each entry in L(1)(ζ) in (5-8) to remove all error terms up to

O(1/n2/3). Let T(ζ) be the appropriate transform from L(1)(ζ) to L(2)(ζ):

L(2)(ζ) := L(1)(ζ)T(ζ), ζ ∈ Dc. (5-30)

The matrix T(ζ) is chosen so that for z on the boundary of Dc (where ζ = O(n1/6)),

L(2)(ζ(z)) = I +O
(

1

n2/3

)
, z ∈ ∂Dc. (5-31)

Let p be the order of the highest-order pole in ζ which will need to be removed. Then Proposition 5.1 shows

there are unique 3× 3 matrices F(2,1), ...,F(2,p), independent of z, such that

H(2)(z) :=

(
I +

p∑
m=1

F(2,m)

(z − β)m

)
H(1)(z)D(z)−1T(ζ)D(z) (5-32)

is holomorphic for z ∈ Dc. In addition,

H(2)(z;n)− lim
n→∞

H(2)(z;n) = O
( r

n1/3

)
(5-33)

and

F(2,m) = O
( r

n1/3

)
, (5-34)

where this O(r/n1/3) error comes from removing terms in the (12) entry of L(1)(ζ). Now we can define

Ψ∞(2)(z) :=


R(z)H(0)(z)S(ζ) z /∈ (Dc ∪ DAi),

H(2)(z)D(z)−1L(0)(ζ)S(ζ)D(z) z ∈ Dc,
R(z)PAi(z) z ∈ DAi,

(5-35)

where

R(z) :=

(
I +

p∑
m=1

F(2,m)

(z − β)m

)(
I +

F(1)

z − β

)
. (5-36)

The new parametrix Ψ∞(2)(z) has the same jumps as W(z) inside Dc. Define the new error matrix by

E(2)(z) := W(z)
(
Ψ∞(2)(z)

)−1

(5-37)

and note that its jump for z ∈ ∂Dc is

V
(E)
(2) (z) = H(2)(z)D(z)−1L(0)(ζ)D(z)H(0)(z)

−1R(z)−1

= H(2)(z)D(z)−1L(2)(ζ)D(z)H(2)(z)
−1.

(5-38)

5.2 Global Error Computation

We have defined the global parametrix after two Schlesinger transforms as Ψ∞(2)(z) in (5-35) and the resulting

error matrix E(2)(z) by (5-37). This matrix satisfies a Riemann-Hilbert problem with jumps across the

contours pictured in Figure 2 and the boundaries of DAi and Dc.
Explicitly the jumps on these contours are:
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• For z on the contours outside of the disks DAi and Dc, the jump of E(2) is

V
(E)
(2) (z) = Ψ∞(2)(z)V

(A)(z)
(
Ψ∞(2)(z)

)−1

. (5-39)

Here we define the notation

V(A) := (Jump of Ψ∞(0))
−1(Jump of W)

=



1 0 0
0 1 −enP3(z)

0 0 1

 ,

 1 0 0
e−nP1(z) 1 0

0 0 1

 ,

0 en(ReP1(z)+iσ) 0
0 1 0
0 0 1

 ,

L = ∂Ωout ∩ ∂ΩL, ∂Ωlens ∩ ∂ΩL, ∂Ω+
L ∩ ∂Ω−L ,1 enP1(z) enP2(z)

0 1 0
0 0 1


∂Ω+

out ∩ ∂Ω−out

.

(5-40)

• For z on the boundary of Dc, the jump of E(2) is given in formula (5-38).

• For z on the boundary of DAi, the jump of E(2) is

V
(E)
(2) (z) = R(z)H0(z)S(ζ)

(
PAi(z)

)−1
R(z)−1. (5-41)

• On the bands outside of the disks DAi and Dc, V
(E)
(2) (z) ≡ I. Also, on contours inside DAi and Dc,

V
(E)
(2) (z) ≡ I.

The next result follows from the definition of g(z;κ) in (1-7).

Lemma 5.3. For sufficiently small κ we have the estimate below, uniformly in z over compact sets bounded

away from the turning points αj, βj, α, and β:

g(z;κ) = g(z) +O (κ) . (5-42)

Lemma 5.4. In the critical regime, the inner and outer lenses have been chosen so that

(a) On L outside of the disks DAi and D(β, δ): The real part of P3 is negative and bounded away from zero.

(b) On ∂Ωlens ∩ ∂ΩL outside of the disks DAi and D(β, δ): The real part of P1 is positive and bounded away

from zero.

(c) On the real axis, away from the bands and outside of the disks DAi and D(β, δ): The real part of P1 is

negative and bounded away from zero.

(d) On the real axis, to the right of β, and outside of the disk D(β, δ): The real part of P2 is negative and

bounded away from zero.
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Proof. Statements (b) and (c) follow from the analysis of the Riemann-Hilbert problem for the standard

orthogonal polynomials (see, for instance, [23]). Statement (d) follows from the definition of the critical

regime, that P2(β) is a unique global maximum for P2(x) in R \ [α, β] (see Definition 1.2). To prove (a),

recall that P3(z) = az − g(z) − `1 + `2, and that P3(β) = 0. Along the contour L it is clear that Re [az] is

decreasing. Likewise

Re [g(z)] =

∫
R

log |z − s|ρmin(s)ds (5-43)

increases along L, as |z − s| is increasing along this contour for each s ∈ supp(ρmin). See Lemma 3.1.

We will use the following data about the functions P1(z), P2(z), and P3(z) to control the jumps of the

error matrices on the contours outside of the disks.

Lemma 5.5. For κ sufficiently small:

(a) There exists b > 0 such that on L outside of the disk Dc:

Re [P3]< −bn−3/4. (5-44)

(b) There exists b > 0 such that on ∂Ωlens ∩ ∂ΩL outside of the disks Dc and DAi:

Re [P1] > bn−3/4. (5-45)

(c) On the real axis, off the bands and outside D(β, δ) and DAi: The real part of P1 is negative and bounded

away from zero.

(d) There exists b > 0 such that on the real axis, to the right of β, and outside of the disk Dc:

Re [P1] < −bn−3/4. (5-46)

(e) There exists a b > 0 such that on the real axis, to the right of β, and outside of the disk Dc:

Re [P2] < −bn−3/4. (5-47)

Proof. Part (c) follows directly from Lemmas 5.3 and 5.4 (c). To prove (a) we divide the contour into two

parts: one is the section of L outside of D(β, δ) and the other is the section of L inside of D(β, δ) \ Dc.
We have choosen L such that Re

(
P3(z)− 3κ

2 log(z − β)
)

is decreasing along L (see Lemma 3.1). The proof

of Lemma 3.1 can be modified to show that Re (P3(z)) is also decreasing along L. When z /∈ D(β, δ), by

Lemma 5.3 Re
(
P3(z)− 3κ

2 log(z − β)
)

converges to P3(z) for κ → 0, hence by Lemma 5.4 (a) there is a κ

small enough so that Re (P3(z)) is decreasing along L and is therefore negative on L\Dc, and bounded away

from zero on L \ D(β, δ).

From (2-5) one can see that

P3(z) = −1

2
P1(z)+h(z)+

3κ

2
log ζ = h(β)+

2

3
c
3/2
1 (z−β)3/2+

τ

n1/3
c1(z−β)+

3κ

2
log ζ+O

(
(z − β)2

)
. (5-48)
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We start by noting that h(β)<0 for n sufficiently large so this term will only improve our bound. Next for

z ∈ L ∩ (D(β, δ) \ Dc), we will show that, for n large enough, the 2
3c

3/2
1 (z − β)3/2 term dominates the other

two. We have ∣∣∣∣∣ − τ
n1/3 c1(z − β)

− 2
3c

3/2
1 (z − β)3/2

∣∣∣∣∣ =
3τ

2c
1/2
1

1

n1/3|z − β|1/2
≤ 3τ

2c
1/2
1

1

n1/12
, (5-49)

and ∣∣∣∣∣ − 3κ
2 log ζ

− 2
3c

3/2
1 (z − β)3/2

∣∣∣∣∣ =
9κ

4c
3/2
1

| log ζ|
|z − β|3/2

≤ 3c

8c
3/2
1

nγ−
1
4

[
log(n) +O

(
n−1/2

)]
(5-50)

for some constant c > 0.

To conclude the proof of (a) we note that there is a b > 0 such that Re
[

2
3c

3/2
1 (z − β)3/2

]
<bn−3/4 provided

that the segments of L lie in the sector π/3 < θ < 5π/3.

To prove (b) we divide the contour into two parts: one is the sections of the inner lenses outside of DAi
and D(β, δ), the other is the sections of the inner lenses inside of D(β, δ) \ Dc. That Re [P1] is positive and

bounded away from zero follows from Lemmas 5.3 and 5.4(b). Inside D(β, δ) \ Dc we have

P1(z) = −4

3
c
3/2
1 (z − β)3/2 +O

(
(z − β)2

)
, (5-51)

and the result follows as above.

To prove (d) and (e) we divide the contour into two parts: one is the interval [β + δ,∞) the other is

[β + n−1/2, β + δ). That Re [P1] and Re [P2] are negative and bounded away from zero on the first interval

follows from Lemmas 5.3 and 5.4(c)–(d). Within the interval [β + n−1/2, β + δ), (5-51) gives the result for

(d), and for (e) we have

P2(z) = h(β)− 2

3
c
3/2
1 (z − β)3/2 +

τ

n1/3
c1(z − β) +

3κ

2
log ζ +O

(
(z − β)2

)
. (5-52)

Again, h(β) < 0 for n sufficiently large so this term improves the bound. For z ∈ [β + n−1/2, β + δ), we will

show that for n large enough the − 2
3c

3/2
1 (z − β)3/2 term dominates the other two. We have∣∣∣∣∣ τ

n1/3 c1(z − β)

− 2
3c

3/2
1 (z − β)3/2

∣∣∣∣∣ =
3τ

2c
1/2
1

1

n1/3|z − β|1/2
≤ 3τ

2c
1/2
1

1

n1/12
, (5-53)

and ∣∣∣∣∣ 3κ
2 log ζ

− 2
3c

3/2
1 (z − β)3/2

∣∣∣∣∣ =
9κ

4c
3/2
1

| log ζ|
|z − β|3/2

≤ 3c

8c
3/2
1

nγ−
1
4

[
log(n) +O

(
n−1/2

)]
(5-54)

for some constant c > 0. To conclude the proof of (e) we note that there is a b > 0 such that

Re

[
−2

3
c
3/2
1 (z − β)3/2

]
< −bn−3/4.

We can now give bounds on the jumps V
(E)
(2) (z) of the error problem.

Lemma 5.6. In the near-critical regime, for large n,

(a) Off the boundaries of Dc and DAi: There is a constant b > 0 such that

V
(E)
(2) (z) = I +O

(
e−bn

1/4
)
, z /∈ (∂Dc ∪ ∂DAi). (5-55)
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(b) On the boundary of Dc:

V
(E)
(2) (z) = I +O

(
1

n2/3

)
, z ∈ ∂Dc. (5-56)

(c) On the boundary of DAi:

V
(E)
(2) (z) = I +O

(
1

n

)
, z ∈ ∂DAi. (5-57)

Proof. Part (a) follows from equation (5-39), Lemma 5.5, and the boundedness of Ψ(2)(z).

Part (b) follows from (5-38) along with (5-31), (5-33), and the uniform boundedness of D(z) inside Dc as

n→∞.

For part (c), first recall from the Schlesinger calculations that F(1,m) = O(r/n1/2) and F(2,m) = O(r/n1/3)

(as follows from (5-11), (5-22), and (5-34)). Recalling the definition of R(z) in (5-36), we see that

R(z;n) = I +O
( r

n1/3

)
. (5-58)

Now from (5-41) we have

V
(E)
(2) (z) = R(z)

(
I +O

(
1

n

))
R(z)−1, (5-59)

from which (5-57) follows.

Lemma 5.7. In the critical regime, for n large,

E(2)(z) = I +O
(

1

n2/3

)
uniformly in z.

Proof. Denote ΓC := ∂Dc ∪ ∂DAi and ΓN the remaining contours on which the error E(2)(z) has a jump:

the inner and outer lenses, and the real axis, outside of the regions Dc and DAi. From Lemma 5.6(b)–(c),

V
(E)
(2) (z) = I +O

(
1

n2/3

)
, z ∈ ΓC . (5-60)

Then for n sufficiently large there exists a constant c such that

||V(E)
(2) − I||L2(ΓC) + ||V(E)

(2) − I||L∞(ΓC) ≤ cn−2/3. (5-61)

From Lemma 5.6(a), for n sufficiently large there is a constant c such that

||V(E)
(2) − I||L2(ΓN ) + ||V(E)

(2) − I||L∞(ΓN ) ≤ ce−cn. (5-62)

The lemma then follows by a standard technique that consists of writing the solution to the Riemann-Hilbert

problem in terms of a Neumann series involving V(E) − I ( see, for instance, [26] Section 7.2 or [27] Section

3.5).
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6 The kernel near the critical region

Our main goal now is to obtain the asymptotic form of the kernel Kn(x(ζx), y(ζy)) (see (1-6)) uniformly

for ζx, ζy in compact subsets. The first observation is that Kn(x, y) is smooth in x and y because i) the

first column of Y has no jump and ii) the second and the third rows of Y−1 have no jump. However, it is

still possible for the leading-order asymptotics of the kernel to exhibit a Stokes–like phenomenon, namely, a

discontinuous change with respect to parameters. We now show that the leading asymptotics of Kn are also

smooth.

Combining (3-2), (5-37), (5-35), and (4-25), we see we can write Y for z ∈ Dc as

Y =
√
π

(
z − β
ζ

)r/2
ΛE(2) H(2)D

−1

 n1/6 0 0
0 n−1/6 0
0 0 1

ArJ−1

 e−
n
2 V 0 0

0 e
n
2 V 0

0 0 e
n
2 (V−2az)

−1

.

(6-1)

We note that ArJ−1 and Y × diag[e−
n
2 V , e

n
2 V , e

n
2 (V−2az)] are the same up to a holomorphic prefactor.

Therefore they have the same jump, which is

(
ArJ−1

)
+

=
(
ArJ−1

)
−

 1 1 1
0 1 0
0 0 1

 , ζ ∈ R. (6-2)

This means that the first column of ArJ−1 and the second and third rows of JA−1
r have no jump. Since the

leading term in the asymptotic expansion of the kernel is written in terms of those column and rows, our

asymptotic expression of the kernel is smooth. Therefore, it is enough to consider, say, ζ in region I (see

Figure 3).

To arrive at our final expression for the kernel we will need to express Ar(ζy)−1Ar(ζx) in a simple form

involving contour integrals. To do so we take advantage of the machinery of the bilinear concomitant. This

requires writing Ar(ζ) as a constant multiple of a Wronskian matrix. Specifically, in region I,

Ar(ζ) =

τ 1 0
0 τ 1
1 0 0

χr−1(ζ), ζ ∈ I, (6-3)

where

χr(ζ) :=

 Ai
(r)
C1 (ζ) Ai

(r)
C2 (ζ) Ai

(r)
C3 (ζ)

∂ζAi
(r)
C1 (ζ) ∂ζAi

(r)
C2 (ζ) ∂ζAi

(r)
C3 (ζ)

∂2
ζAi

(r)
C1 (ζ) ∂2

ζAi
(r)
C2 (ζ) ∂2

ζAi
(r)
C3 (ζ)

 . (6-4)

Eq. (6-3) is obtained from the identity

∂ζAi
(r−1)
Cj (ζ) = Ai

(r)
Cj (ζ)− τAi

(r−1)
Cj (ζ). (6-5)

From (6-1) and (6-3), we can write

Y(z) =
√
π

(
z − β
ζ

)r/2
ΛE(2)H(2)D

−1

 n1/6 0 0
0 n−1/6 0
0 0 1

×
×

 τ 1 0
0 τ 1
1 0 0

χr−1(ζ)

 e−
n
2 V 0 0

0 e
n
2 V 0

0 0 e
n
2 (V−2az)

−1

, ζ ∈ I.

(6-6)
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Figure 5: The choice of contours for the r-Airy parametrix in region I.

We will now express χr−1(ζy)−1χr−1(ζx) in a simple form using the bilinear concomitant.

6.1 Simplifying χr−1(ζy)−1χr−1(ζx) using the bilinear concomitant

This proposition is a specific example of the more general results on the bilinear concomitant given in [8].

Proposition 6.1. Recall the contours C1, C2, and C3 are defined in Figure 4. Let the dual contours Ĉ1, Ĉ2,

and Ĉ3 be defined as in Figure 5. Then the entries of χr−1(ζy)−1χr−1(ζx) for i 6= j are given by

(
χr−1(ζy)−1χr−1(ζx)

)
ij

=
1

2πi
(ζx − ζy)

∫
Ĉi
ds

∫
Cj
dt

(t+ τ)r

(s+ τ)r
e
s3−t3

3 +ζxt−ζys

t− s
. (6-7)

Proof. In the proof we will use the same notation as [10] Section 3, and the technical details whose proofs

we leave out are given there.

Recall

Ai
(r−1)
Cj (ζ) =

1

2πi

∫
Cj

(t+ τ)r−1eζt−t
3/3dt, j = 1, 2, 3. (6-8)

The main observation is that, for fixed r, each Ai
(r−1)
Cj (j = 1, 2, 3) satisfies the same ordinary differential

equation of third order which we now derive using integration by parts:

0 =
1

2iπ

∫
Cj

d

dt

(
(t+ τ)reζt−t

3/3
)
dt =

1

2iπ

∫
Cj

(
r + (ζ − t2)(t+ τ)

)
(t+ τ)r−1eζt−t

3/3dt

=
1

2iπ

∫
Cj

(
r + (ζ − ∂2

ζ )(∂ζ + τ)
)

(t+ τ)r−1eζ(t+τ)−t3/3dt

=
(
ζ(∂ζ + τ) + (r − ∂3

ζ − τ∂2
ζ )
)

Ai
(r−1)
Cj (ζ).

(6-9)
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Associated to each of these equations is an adjoint equation [29] obtained by replacing ∂ζ 7→ −∂ζ and

interchanging the order of multiplications and differentiation operators. Its solutions have the form

Âi
(r−1)

Ĉj (ζ) :=

∫
Ĉj

1

(s+ τ)r
e
s3

3 −ζsds, j = 1, 2, 3, (6-10)

where the dual contours Ĉ1, Ĉ2, and Ĉ3 are defined in Figure 5. The bilinear concomitant [29] for this

differential equation is a bilinear pairing between the solution space of an equation and its adjoint. For the

case at hand it admits the following double–integral representation [8]:

B
(

Ai
(r−1)
Cj , Âi

(r−1)

Ĉi

)
=

1

2πi

∫
Ĉi

∫
Cj

(
(t+ s)(t+ τ) + s2 − ζ

) (t+ τ)r−1

(s+ τ)r
e
s3−t3

3 +ζ(t−s)dt ds. (6-11)

Although ζ appears in (6-11) it can be seen by direct differentiation that the expression (6-11) is independent

of ζ. We may follow the steps in the proof of Lemma 3.3 in [8] to show that 2

B
(

Ai
(r−1)
Cj , Âi

(r−1)

Ĉi

)
= Cj]Ĉi, (6-12)

where Cj]Ĉi is the intersection number of the contours Cj and Ĉi. Introduce the Wronskian χ̂r(ζ) of solutions

to the adjoint equations with entries

(χ̂r(ζ))im := (−1)m−1∂m−1
ζ Âi

(r)

Ĉi (ζ), 1 ≤ i,m ≤ 3, (6-13)

and denote

F(ζ) :=

 ζ −τ −1
−τ −1 0
−1 0 0

 . (6-14)

Then, by the definition of the bilinear concomitant in (6-11) and the pairing (6-12),[
B
(

Ai
(r−1)
Cj , Âi

(r−1)

Ĉi

)]
1≤i,j≤3

= χ̂r−1(ζ)F(ζ)χr−1(ζ) = I. (6-15)

Therefore χ̂r−1F is the inverse of χr−1. Expanding out the entries of χr−1 and χ̂r−1 in(
χr−1(ζy)−1χr−1(ζx)

)
ij

=
∑
k,m

(
χ̂r−1(ζy)

)
ik

(F(ζy))km
(
χr−1(ζx)

)
mj

(6-16)

gives

(
χr−1(ζy)−1χr−1(ζx)

)
ij

=
1

2πi

∫
Ĉi

∫
Cj

(
(t+ s)(t+ τ) + s2 − ζy

) (t+ τ)r−1

(s+ τ)r
e
s3−t3

3 +ζxt−ζysdt ds. (6-17)

We are interested only in the case i 6= j and hence the contours of integration in (6-17) have no intersection;

this allows us to integrate by parts and obtain in the integrand a harmless denominator (t − s). Then we

2The paper [10] contains a wrong sign in front of the intersection pairing. In fact formulas (3.38) and (3.39) should have the
opposite sign in front of the second term in the respective integrands. Moreover, the wrong overall sign was obtained in using
Lemma 3.3 to derive the final formula since formula (3.37) was to be the difference of (3.39) minus (3.38) but apparently it was
miscomputed later as (3.38) minus (3.39).
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have the straightforward chain of equalities, where only integration by parts is used:∫
Ĉi

∫
Cj

(t+ τ)r−1

(s+ τ)r

(
(t+ s)(t+ τ) + s2 − ζy

)
e
s3−t3

3 +ζxt−ζysdt ds

=

∫
Ĉi

∫
Cj

(t+ τ)r−1

(s+ τ)r

(
(t+ s)(t+ τ) + ∂s

)
e
s3−t3

3 +ζxt−ζysdt ds

=

∫
Ĉi

∫
Cj

(
(t+ s)

(t+ τ)r

(s+ τ)r
−
[
∂s

(t+ τ)r−1

(s+ τ)r

])
e
s3−t3

3 +ζxt−ζysdt ds

=

∫
Ĉi

∫
Cj

(
(t+ s) +

r

(t+ τ)(s+ τ)

)
(t+ τ)r

(s+ τ)r
e
s3−t3

3 +ζxt−ζysdt ds

=

∫
Ĉi

∫
Cj

eζxt−ζys

t− s

(
−r
t+ τ

+ t2 +
r

s+ τ
− s2

)
(t+ τ)r

(s+ τ)r
e
s3−t3

3 dt ds

=

∫
Ĉi

∫
Cj

eζxt−ζys

t− s
(−∂t − ∂s)

(t+ τ)r

(s+ τ)r
e
s3−t3

3 dt ds

=

∫
Ĉi

∫
Cj

(t+ τ)r

(s+ τ)r
e
s3−t3

3 (∂t + ∂s)
eζxt−ζys

t− s
dt ds

= (ζx − ζy)

∫
Ĉi

∫
Cj

(t+ τ)r

(s+ τ)r
e
s3−t3

3 +ζxt−ζys

t− s
dt ds,

(6-18)

as desired.

6.2 Proof of Theorem 1

Proof. From (2-4), it follows that

H(2)(y)−1H(2)(x) = I +O(x− y) = I +O
(
ζx − ζy
n2/3

)
, x, y ∈ Dc. (6-19)

Recalling E(2)(z) = I +O(1/n2/3) (see Lemma 5.7), we see τ 1 0
0 τ 1
1 0 0

−1 n1/6 0 0
0 n−1/6 0
0 0 1

−1

H(2)(x)−1E(2)(y)−1×

×E(2)(x)H(2)(x)

 n1/6 0 0
0 n−1/6 0
0 0 1

 τ 1 0
0 τ 1
1 0 0

 = I +O
(
ζx − ζy
n1/3

)
.

(6-20)
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Using this and (6-6), the kernel is given by

Kn(x, y) =
e−

n
2 (V (x)−V (y))

2πi(x− y)

[
0, e−nV (y), e−n(V (y)−ay)

]
Y(y)−1Y(x)

 1
0
0


=
e−

n
2 (V (x)−V (y))

2πi(x− y)

[
0, e−

n
2 V (y), e−

n
2 V (y)

]
χ(ζy)−1

(
I +O

(
ζx − ζy
n1/3

))
χ(ζx)

 e
n
2 V (x)

0
0


=

1

2πi(x− y)
[0, 1, 1]χ(ζy)−1χ(ζx)

 1
0
0

(1 +O
(
ζx − ζy
n1/3

))

=
(ζx − ζy)

(2πi)2(x− y)

∫
Ĉ2+Ĉ3

∫
C1

(t+ τ)r

(s+ τ)r
e

1
3 (s3−t3)+ζxt−ζys

t− s
dt ds

(
1 +O

(
ζx − ζy
n1/3

))
,

(6-21)

where, in the last equality, we have used Proposition 6.1. We now use

ζx − ζy
x− y

= n2/3c1(κ)
(

1 +O(n−2/3)
)
, (6-22)

which follows from (2-4).

We now recall that

ζz(κ) = ζ(z;κ) = n
2
3 c1(κ)(z − β(κ))(1 +O(z − β(κ)))

= n2/3c1(0)(z − β(0)− κβ̇) +O(n−2/3)
(6-23)

as long as z − β(0) = O(n−2/3), i.e. as long as ζz stays finite for n→∞.

This implies that we can replace ζx and ζy in the kernel by the leading approximation in (6-23) without

changing the error in the kernel. The mismatch from this approximation produces an error of smaller order

than the one already indicated in (6-21) and yields the overall error term O(n−1/3) advocated in Theorem

1.

By dropping the O(n−2/3) in (6-23) and using δ := c1β̇κn
2/3 in Theorem 1,

ζz := n2/3c1(0)(z − β)− δ ⇐⇒ z = β +
ζz + δ

n2/3c1(0)
, (6-24)

and evaluating K(x, y) at

x ≡ β +
ζx + δ

n
2
3 c1(0)

, y ≡ β +
ζy + δ

n
2
3 c1(0)

, (6-25)

we obtain the statement in Theorem 1.

We conclude the proof noting that C1 may be deformed to C and that Ĉ2 + Ĉ3 may be deformed to C̃.

6.3 Connection to the kernel in [1] for nonintersecting Brownian motions

In conclusion we observe that our expression for the kernel near the critical point is the same that was found

previously in the literature for nonintersecting Brownian motions: Theorem 0.1 of [1] gives the formula

Kn(ζx, ζy) =
1

4π2

∫ ∞
0

∫
C

∫
C

(−ib− τ)r

(ia− τ)r
e

1
3 (ia3+ib3)+ia(w+ζx)+ib(w+ζy)db da dw, (6-26)
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where C is a contour proceeding from ∞e5πi/6 to ∞eπi/6 and such that −iτ is above C. To see that our

formula matches (6-26) we first compute the w-integral to find

Kn(ζx, ζy) =
1

(2πi)2

∫
C

∫
C

(−ib− τ)r

(ia− τ)r
e

1
3 (ia3+ib3)+iaζx+ibζy

ia+ ib
db da. (6-27)

One makes the changes of variables ib 7→ t and −ia 7→ s.

Kn(ζx, ζy) =
1

(2πi)2

∫
−iC

∫
iC

(t+ τ)r

(s+ τ)r
e

1
3 (s3−t3)+ζxt−ζys

t− s
dt ds. (6-28)

We conclude by observing that iC = C (i.e. C rotated counter-clockwise by 90 degrees) and −iC = C̃ (i.e. C

rotated clockwise by 90 degrees) (with C, C̃ depicted in Figure 1). Note that the dt contour can be deformed

(in the finite complex plane) as the integrand lacks a pole in t-space.

A The asymptotic expansion of A(r)(ζ)

A.1 Proof of Proposition 4.2

Here we prove the existence of general asymptotic expansions for the first and second columns of A(r)(ζ)

with arbitrarily small errors (i.e. (4-15)–(4-20)). First, observe that (4-16) and (4-17) follow from (4-15),

while (4-19) and (4-20) follow from (4-18). We then perform a steepest-descent analysis on the original

integral representation of the generalized Airy function

Ai
(r)
Cj (ζ) :=

1

2iπ

∫
Cj

(t+ τ)reζt−t
3/3dt =

1

2iπ

∫
Cj
er log(t+τ)+ζt− t33 dt. (A-1)

Let us define Z, T , and T to be scaled versions of ζ, τ , and t, respectively:

Z :=
ζ

r2/3
, T :=

τ

r1/3
, T :=

t

r1/3
. (A-2)

Using these new variables, the exponent in (A-1) becomes

r log (t+ τ) + ζt− t3

3
=
r

3
log r + rF (T ), F (T ) = F (T ; {Z, T }) := log(T + T ) + ZT − T 3

3
. (A-3)

We define the saddle points Ts for s = 1, 2, 3, as the solutions of ∂TF (T ) = 0. As solutions to a cubic

equation, the Ts’s can be written explicitly. Let us, however, only write their asymptotic expressions at large

Z:

T1 = −
√
Z +

1

2Z
+
T

2Z3/2
+
T 2

2Z2
+O

(
1

Z5/2

)
= −
√
Z +

3m−1∑
j=3

r
(1)
j Z(1−j)/2 +O

(
1

Z3m/2
,

T
Z(3m+1)/2

,
T 2

Z(3m+2)/2

)
,

T2 =
√
Z +

1

2Z
− T

2Z3/2
+
T 2

2Z2
+O

(
1

Z5/2

)
=
√
Z +

3m−1∑
j=3

r
(2)
j Z(1−j)/2 +O

(
1

Z3m/2
,

T
Z(3m+1)/2

,
T 2

Z(3m+2)/2

)
,

T3 = −T − 1

Z
− T

2

Z2
+O

(
1

Z5/2

)
.

(A-4)
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For large r the coefficients have the asymptotic form r
(i)
j = O

(
T jmod(3)

)
. This can be seen from the cubic

structure of the equation ∂TF (T ) = 0. It should be mentioned that the above bounds are uniform in T
inside a finite disk around T = 0.

Given a saddle point Ts, one can expand F (T ) by

F (T ) = F (Ts) +
F ′′(Ts)

2
(T − Ts)2 + δF (T ), δF (T ) = O((T − Ts)3). (A-5)

The standard steepest descent method gives the leading behavior (in large r) by

Ai
(r)
Cj (r2/3Z; r1/3T ) ∼ r(r+1)/3

2πi
erF (Ts)

∫
e
r
2F
′′(Ts)(T−Ts)2dT =

r(r+1)/3

2πi

erF (Ts)√
− r2F ′′(Ts)

(
±
∫ ∞
−∞

e−x
2

dx

)
,

(A-6)

where the overall sign must be determined from the direction of the contour Cj .
We find the expansions

Lemma A.1. For s = 1, 2:

F (Ts) = (−1)s
2

3
Z3/2 + log

(
(−1)s

√
Z + T

)
+

3m−1∑
j=3

F
(s)
0,j Z

−j/2 +O
(

1

Z3m/2
,

T
Z(3m+1)/2

,
T 2

Z(3m+2)/2

)
,

(A-7)

∂2
TF (Ts) = −2(−1)s

√
Z

1 +

3m−1∑
j=3

F
(s)
2,j Z

−j/2 +O
(

1

Z3m/2
,

T
Z(3m+1)/2

,
T 2

Z(3m+2)/2

) , (A-8)

∂3
TF (Ts) = −2 +

3m−1∑
j=3

F
(s)
3,j Z

−j/2 +O
(

1

Z3m/2
,

T
Z(3m+1)/2

,
T 2

Z(3m+2)/2

)
, (A-9)

∂kTF (Ts) = (−1)k−1(−1)sk(k − 1)!Z−k/2 +

3m+k−1∑
j=k+1

F
(s)
k,jZ

−j/2

+O
(

1

Z(3m+k)/2
,

T
Z(3m+k+1)/2

,
T 2

Z(3m+k+2)/2

)
, j > 3.

(A-10)

Furthermore, for large r the coefficients satisfy F
(s)
k,j = O

(
T jmod(3)

)
for k = 0, 2, and F

(s)
k,j = O

(
T (j−k)mod(3)

)
for k ≥ 3.

Based on Lemma A.1, we may obtain the higher order expansion using the general formula

1

2iπ

∫
erF (T )dT =

erF (Ts)

2iπ

∫
exp

r ∞∑
j=2

fj
j!

(T − Ts)j
 dT

(
where fj := ∂jTF (Ts)

)

=
erF (Ts)

2iπ

∫
e
rf2
2 (T−Ts)2

[
1 +

∞∑
k=3

Sk

(
0, 0,

rf3

3!
,
rf4

4!
, . . . ,

rfk
k!

)
(T − Ts)k

]

= ±e
rF (Ts)

2iπ

 Γ (1/2)(
− rf22

)1/2
+

∞∑
k=2

S2k

(
0, 0,

rf3

3!
,
rf4

4!
, . . . ,

rf2k

(2k)!

)
Γ ((2k + 1)/2)(
− rf22

)(2k+1)/2


(A-11)
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where the overall sign is related to the contour involved, and the Sk are the polynomials defined by

exp

 ∞∑
j=1

xjz
j

 = 1 +

∞∑
j=1

Sk(x1, x2, . . . , xk)zk. (A-12)

Note that only the even powered terms contribute after the Gaussian integrals, which all come form the

formula ∫ ∞
−∞

e−x
2

xjdx = Γ

(
1 + j

2

)
. (A-13)

We require a lemma to control the growth of the Sk(0, 0, rf3/3!, rf4/4!, . . . , rfk/k!) for large r and Z:

Lemma A.2. We find for an integer M ≥ 0 that

S3M+1

(
0, 0,

rf3

3!
,
rf4

4!
, . . .

)
= O

(
rM

Z2

)
,

S3M+2

(
0, 0,

rf3

3!
,
rf4

4!
, . . .

)
= O

(
rM

Z5/2

)
,

S3M+3

(
0, 0,

rf3

3!
,
rf4

4!
, . . .

)
= O

(
rM+1

)
.

(A-14)

Proof. Using Proposition A.1 we see that the leading terms in Sk are those with the highest powers of f3

possible, therefore we have

S3M+1 = rM
fM−1

3 f4

M(3!)M−14!
+ . . .

S3M+2 = rM
fM−1

3 f5

M(3!)M−15!
+ . . .

S3M+3 = rM+1 fM+1
3

(3!)M+1
+ . . . .

(A-15)

The terms left off are lower order in r and higher order in 1/Z. An application of the f3, f4, and f5 entries

of Proposition A.1 gives the result.

The series in (A-11) does not converge in most cases, and one must use the original quantity (not the

series expansion) to estimate the error. We can use that erF (T ) is analytic at T = T1 and therefore

erF (T )−rF (T1)− r2F
′′(T1)(T−T1)2 −

[
1 +

6M∑
k=3

Sk(0, 0,
rf3

3!
,
rf4

4!
, . . . ,

rfk
k!

)(T − T1)k

]

= O
(
r2M

Z2
(T − T1)6M+1,

r2M

Z5/2
(T − T1)6M+2, r2M+1(T − T1)6M+3,

r2M+1

Z2
(T − T1)6M+4,

r2M+1

Z5/2
(T − T1)6M+5, r2M+2(T − T1)6M+6

) (A-16)

on a finite disk around T1 of order n−1/3 (the radius of convergence is determined by that of F (T )). The

right-hand side of this expression follows from Lemma A.2. Note also that only the even terms will contribute
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to the Gaussian integration. Then the error is given by(
−r

2
F ′′(T1)

)1/2
∫

e
r
2F
′′(T1)(T−T1)2

[
O
(
r2M

Z2
(T − T1)6M+1,

r2M

Z5/2
(T − T1)6M+2, r2M+1(T − T1)6M+3,

r2M+1

Z2
(T − T1)6M+4,

r2M+1

Z5/2
(T − T1)6M+5, r2M+2(T − T1)6M+6

)]
dT

= O
(
r2M

Z5/2

(
−r

2
f2

)−3M−1

,
r2M+1

Z2

(
−r

2
f2

)−3M−2

, r2M+2
(
−r

2
f2

)−3M−3
)

= O

((
r

ζ3

)M+1
)
,

(A-17)

where in the last step we used Proposition A.1. Note that

r

n3( 2
3−µ)

= O
(
nγ−2+3µ

)
< O

(
nγ−2+(2−2γ)

)
= O(n−γ). (A-18)

We will give here a general argument for the existence of the expansion to arbitrary order of v
(r)
1 . A

similar argument will give the existence of the expansion to arbitrary order of v
(r)
2 .

v
(r)
1 (ζ) = Ai

(r)
C1 (ζ) =− r(r+1)/3

2
√
πi

erF (T1)(
− r2F ′′(T1)

)1/2×
×

(
1 +

3M∑
k=2

S2k
Γ ((2k + 1)/2)√

π

(
−r

2
F ′′(T1)

)−k
+O

((
r

ζ3

)M+1
))

.

(A-19)

Each of the terms in (A-19) have a truncated expansion whose error is dominated by O
(
r4M+4/ζ3M+3

)
.

To see this we begin with

(
−r

2
F ′′(T1)

)−1/2

=
1

ir1/3ζ1/4

1−
6M+5∑
j=3

F
(1)
2,j

rj/3

ζj/2
+O

(
r2M+2

ζ3M+3
,
r2M+3

ζ3M+9/2

)−1/2

=
1

ir1/3ζ1/4

1 +

6M+5∑
j=3

Rj(0, 0, F
(1)
2,3 r, F

(1)
2,4 r

4/3, . . . )ζ−j/2 +O
(
r2M+2

ζ3M+3
,
r2M+3

ζ3M+9/2

) ,
(A-20)

where 1 +

∞∑
j=1

xjz
j

−1/2

= 1 +

∞∑
j=1

Rj(x1, x2, . . . , xj)z
j , (A-21)

and we have used Proposition A.1. One checks that indeed Rj = O
(
rbj/3c

ζj/2

)
.

Next we examine

erF (T1) = exp

−2

3
ζ3 + rπi− r

3
log(r) + r log(ζ1/2 − τ) +

6M∑
j=3

r1+j/3F
(1)
0,j ζ

−j/2 +O
(
r2M+3

ζ3M+3
,
r2M+4

ζ3M+9/2

)
= (−1)r(ζ1/2 − τ)rr−r/3 exp

−2

3
ζ3/2 +

6M+6∑
j=3

r1+j/3F
(1)
0,j ζ

−j/2

[1 +O
(
r2M+3

ζ3M+3
,
r2M+4

ζ3M+9/2

)]
.

(A-22)
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We control each of the remaining terms in the exponent of (A-22) separately:

er
1+j/3F

(1)
0,j ζ

−j/2
=

d(6M+6)/je−1∑
k=0

1

k!

(
r1+j/3F

(1)
0,j ζ

−j/2
)k

+O

((
rbj/3c+1

ζj/2

)d(6M+6)/je)
, (A-23)

where we have used Proposition A.1 and the identity j/3 − (jmod(3))/3 = bj/3c. This error will be the

dominant one (for some choices of j). We have

rbj/3c+1

ζj/2
(A-24)

is largest when jmod(3) = 0. Suppose j = 3l, then we have the error arising from the expansion (A-23) is

O
(
r(l+1)d(2M+2)/le

ζ
3
2 ld(2M+2)/le

)
. (A-25)

Noting that

γ(l + 1)− 3l/2 < 2γ − 3/2, for l > 1, (A-26)

we conclude that the dominant error contribution to (A-22) from the expansions (A-23) for 3 ≤ j ≤ 6M + 5

is

O
(
r4M+4

ζ3M+3

)
. (A-27)

The remaining terms in (A-19) may be analyzed in a similar way, the error term (A-27) remains the dominant

one, and our conclusion is that v
(r)
1 may be written as a finite collection of terms of decreasing order plus an

error term of the form

O
(
r4M+4

ζ3M+3

)
. (A-28)

This is small (in large n) for γ < 1
8 . A similar analysis may be carried out for v

(r)
2 (ζ) to derive an identical

error bound. The entries of the second row are then computed directly by taking a derivative in ζ of these

expressions; the entries of the third row are also computed directly by substituting for r = r − 1 in the

formulas for the first row. This completes the proof that the expansions in (4-15)–(4-20) in Proposition 4.2

are asymptotic.

A.2 Proof of Proposition 4.3

Here we prove the existence of general asymptotic expansions for the third column of A(r)(ζ) (see (4-21)).

To obtain the expansion of A(r,13) we use the definition (4-9) in terms of Cauchy transforms.

v
(r)
3 (ζ) =

e−τζ

2iπ

(∫
C6

Ai
(r)
C6 (t)eτtdt

t− ζ
−
∫
C2

Ai
(r)
C2 (t)eτtdt

t− ζ

)

=
e−τζ

2iπ

(∫
C5

Ai
(r)
C6 (t)eτtdt

t− ζ
−
∫
C3

Ai
(r)
C2 (t)eτtdt

t− ζ
+

∫
C4

Ai
(r)
C1 (t)eτtdt

t− ζ

)
.

(A-29)
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The above equality is simply the recombination of contours. Then, from Definition 4.1, we can see that the

numerator is a total derivative, i.e. Ai
(r)
C6 (ζ)eτt = ∂ζ

(
Ai

(r−1)
C6 (ζ)eτt

)
. Performing integration by parts, we

get

(above) =
e−τζ

2iπ

(
Ai

(r−1)
C6 (t)eτt

t− ζ

∣∣∣∣∣
C5

−
Ai

(r−1)
C2 (t)eτt

t− ζ

∣∣∣∣∣
C3

+
Ai

(r−1)
C1 (t)eτt

t− ζ

∣∣∣∣∣
C4

)

+
e−τζ

2iπ

(∫
C5

Ai
(r−1)
C6 (t)eτtdt

(t− ζ)2
−
∫
C3

Ai
(r−1)
C2 (t)eτtdt

(t− ζ)2
+

∫
C4

Ai
(r−1)
C1 (t)eτtdt

(t− ζ)2

)
.

(A-30)

The first three terms are evaluated at the endpoints of the contours, C3, C4, and C5. Each contour starts from

the same point and goes to infinity. By Ai
(r)
C1 − Ai

(r)
C2 + Ai

(r)
C6 ≡ 0 and the decay property of each integrand

at the corresponding infinity, the first three terms vanish.

We can perform the integration by parts on the remaining three integrals recursively to finally get

v
(r)
3 (ζ) = r!

e−τζ

2iπ

(∫
C5

Ai
(0)
C6 (t)eτtdt

(t− ζ)r+1
−
∫
C3

Ai
(0)
C2 (t)eτtdt

(t− ζ)r+1
+

∫
C4

Ai
(0)
C1 (t)eτtdt

(t− ζ)r+1

)
. (A-31)

We intend to obtain the asymptotic expansion of the above in large ζ. We define ∆M such that

v
(r)
3 (ζ) =

r!

(−1)r+1

e−τζ

2iπ

∆M +
∑

(A,B)

∫
CB

Ai
(0)
CA (t)

eτt

ζr+1

(
1 +

r + 1

ζ
t+ · · ·+ (r +M)!

r!M !

tM

ζM

)
dt

 , (A-32)

that is,

∆M :=
∑

(A,B)

∫
CB

Ai
(0)
CA (t)eτt

[
(−1)r+1

(t− ζ)r+1
−
(

1

ζr+1
+
r + 1

ζr+2
t+ · · ·+ (r +M)!

r!M !

tM

ζr+M+1

)]
dt, (A-33)

where (A,B) = (6, 5), (−2, 3), (1, 4).

We divide the above t-integral (on CB) into two parts: one for |t| < L and the other for |t| ≥ L where L

is set by

L = nδ, 0 < δ < 1/12. (A-34)

There exists n0 > 0 such that, for n > n0,∣∣∣Ai
(0)
CA (t)

∣∣∣ =
1

2π

e−
2
3 |t|

3/2

|t|1/4

(
1 +O

(
1

|t|3/2

))
, t ∈ CB , |t| ≥ L = nδ. (A-35)

For r = O(nγ), 0 ≤ γ < 1/12, and |ζ| = O(n1/6), there exists n0 such that the following crude estimate

holds for all n > n0:∣∣∣∣ (−1)r+1

(t− ζ)r+1
−
(

1

ζr+1
+
r + 1

ζr+2
t+ · · ·+ (r +M)!

r!M !

tM

ζr+M+1

)∣∣∣∣ < e|t|, |t| ≥ L = nδ. (A-36)

This is true since each term in the left hand side is bounded by O(|t|M ) for n large enough.
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Using the above two estimates, we conclude that, for n > n0 (where n0 satisfies the above two charac-

terizations), the contribution of |t| ≥ L to ∆M is bounded by

|∆M |from |t| ≥ L < 3|ζ|r+1

∫
|t|>L

1

2π

e−
2
3 |t|

3/2

|t|1/4
e(|τ |+1)|t||dt|

< 3|ζ|r+1

∫ ∞
L

e−
1
3 t

3/2

dt < 6|ζ|r+1e−
1
3L

3/2

∼ 3n(r+1)/6e−
1
3n

3δ/2

.

(A-37)

The second inequality holds if we choose n0 large enough. The third inequality is obtained by
∫∞
L

e−
1
3 t

3/2

dt <∫∞
L

e−
1
3 t

3/2 3
2 t

1/2dt for L large enough. The last estimate is for |ζ| ∼ n1/6.

Now we consider |t| < L.

An error bound of a finite Taylor expansion for a general analytic function f is given by∣∣∣∣f(x+ y)−
(
f(x) + yf ′(x) + ...

yM

M !
f (M)(x)

)∣∣∣∣ =

∣∣∣∣∫ y

0

ds1

∫ s1

0

ds2 · · ·
∫ sM

0

dsM+1f
(M+1)(x+ sM+1)

∣∣∣∣
≤ yM+1

(M + 1)!
max
s∈[0,y]

∣∣∣f (M+1)(x+ s)
∣∣∣ .

(A-38)

Let us apply this to our case, f(x) = 1/xr+1 and y = −t. We get, for |t| < L,∣∣∣∣ (−1)r+1

(t− ζ)r+1
−
(

1

ζr+1
+
r + 1

ζr+2
t+ · · ·+ (r +M)!

r!M !

tM

ζr+M+1

)∣∣∣∣ ≤ |t|M+1

(M + 1)!
max

s∈[−t,0]

∣∣∣∣ (r +M + 1)!

r!(ζ + s)r+M+2

∣∣∣∣
≤ |t|M+1

(M + 1)!

(r +M + 1)!

r!(|ζ| − |L|)r+M+2
=

(
r +M + 1

M + 1

)
|t|M+1

|ζ|r+M+2

1

(1− |L/ζ|)r+M+2
.

(A-39)

The last factor is bounded by 2 for n large enough because

1

(1− |L/ζ|)r+M+1
=

(
1−

∣∣∣∣Lζ
∣∣∣∣)|

ζ
L |×|Lζ (r+M+1)|

→ 1 (A-40)

as n→∞. Here we have used that Lr/ζ ∼ nδ+γ− 1
6 → 0 for δ < 1/12.

The contribution of |t| < L to ∆M is then bounded by

|∆M |from t < L <

(
r +M + 1

M + 1

)
2

|ζ|r+M+2

∑
(A,B)

∫
t∈CB ,t<L

∣∣∣Ai
(0)
CA (t)

∣∣∣ e|τt||t|M+1|dt|

<

(
r +M + 1

M + 1

)
6

|ζ|r+M+2

∫ ∞
0

Ai(t)e|τ |ttM+1dt < const.
rM+1

|ζ|r+M+2
,

(A-41)

where the constant factor depends only on M and τ , not on n.

From (A-37) and (A-41) we get

|∆M | = O
(

rM+1

|ζ|r+M+2

)
(A-42)

and we obtain the asymptotic expansion

v
(r)
3 (ζ) =

r!

(−1)r+1

e−τζ

2iπ

 M∑
j=0

ηj(τ)

ζr+j+1
+O

(
rM+1

|ζ|r+M+2

) , ζ ∈ ∂Dc, (A-43)

where

ηj(τ) :=
∑

(A,B)

∫
CB

Ai
(0)
CA (t)eτttjdt. (A-44)

This concludes the proof.
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A.3 The leading-order terms in the expansion of A(r)(ζ)

We include here the explicit form of the first few terms of the asymptotic expansions of the entries of A(r)(ζ)

to give an idea of their form. Note that more terms would be needed to carry out the Schlesinger calculations

explicitly, but we do not need the exact formulas for our results. We find:

A(r,11)(ζ) =
(−1)r

2
√
π

(
ζ1/2 − τ

)r
ζ−1/4e−

2
3 ζ

3/2

×(
1 +

(
−r

2

4
+
r

2
− 5

48

)
1

ζ3/2
+

(
−r

2τ

2
+

3rτ

4

)
1

ζ2
+

1

32

r4

ζ3
+O

(
r2

ζ5/2

)
+O

(
r3

ζ3

))
,

(A-45)

A(r,21)(ζ) =
(−1)r

2
√
π

(ζ1/2 − τ)rζ1/4e−
2
3 ζ

3/2

×(
−1 +

(
r2

4
− 7

48

)
1

ζ3/2
+

(
r2τ

2
− rτ

4

)
1

ζ2
− 1

32

r4

ζ3
+O

(
r2

ζ5/2

)
+O

(
r3

ζ3

))
,

(A-46)

A(r,31)(ζ) =
(−1)r−1

2
√
π

(ζ1/2 − τ)re−
2
3 ζ

3/2

(
1

ζ3/4
+

τ

ζ5/4
+

τ2

ζ7/4
+O

(
r2

ζ9/4

))
, (A-47)

A(r,12)(ζ) = − 1

2
√
πi

(
ζ1/2 + τ

)r
ζ−1/4e

2
3 ζ

3/2

×(
1 +

(
r2

4
− r

2
+

5

48

)
1

ζ3/2
+

(
−r

2τ

2
+

3rτ

4

)
1

ζ2
+

1

32

r4

ζ3
+O

(
r2

ζ5/2

)
+O

(
r3

ζ3

))
,

(A-48)

A(r,22)(ζ) = − 1

2
√
πi

(
ζ1/2 + τ

)r
ζ1/4e

2
3 ζ

3/2

×(
1 +

(
r2

4
− 7

48

)
1

ζ3/2
+

(
−r

2τ

2
+
rτ

4

)
1

ζ2
+

1

32

r4

ζ3
+O

(
r2

ζ5/2

)
+O

(
r3

ζ3

))
,

(A-49)

A(r,32)(ζ) = − 1

2
√
πi

(
ζ1/2 + τ

)r
e

2
3 ζ

3/2

(
1

ζ3/4
− τ

ζ5/4
+

τ2

ζ7/4
+O

(
r2

ζ9/4

))
, (A-50)

A(r,13)(ζ) = Ai
(r)
C3 (ζ) =

(−1)r+1

2πi
ζ−rr!e−τζη0(τ)

(
1

ζ
+O

(
r

ζ2

))
, (A-51)

A(r,23)(ζ) = ∂ζAi
(r)
C3 (ζ) =

(−1)r+1

2πi
ζ−rr!e−τζη0(τ)

(
−τ
ζ

+O
(
r

ζ2

))
, (A-52)

A(r,33)(ζ) = Ai
(r−1)
C3 (ζ) =

(−1)r

2πi
ζ−r(r − 1)!e−τζη0(τ)

(
1 +O

(
r

ζ

))
, (A-53)

where η0(τ) is given by (4-22).
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