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THE HOMOTOPY LIMIT PROBLEM AND (ETALE)

HERMITIAN K-THEORY

MARCO SCHLICHTING

Abstract. Let X be a noetherian separated scheme with 2 invertible in the
ring of regular functions. Assume further that X has finite Krull dimension
and there is a global bound on the virtual 2 cohomological dimension of all
its residue fields. We show that the map from hermitian K-theory of X to
homotopy fixed points of K-theory under the natural Z/2-action is a 2-adic
equivalence. If −1 is a sum of squares in the ring of regular functions, then
the map is an integral equivalence. Furthermore, we show that the map from
hermitian K-theory of X to its etale version is an isomorphism in the same
range is it is for K-theory.

1. Introduction

Let X be a noetherian separated scheme of finite Krull dimension such that
1
2 ∈ Γ(X,OX). Write vcd2(X) for vcd2(X) = max{vcd2(k(x)|x ∈ X} where for
a field k, the number vcd2(k) is the etale 2-cohomological dimension of the field
k[
√
−1]. For instance, every separated scheme of finite type over Z or over a field

k with vcd2(k) < ∞ has vcd2(X) < ∞.
Let GWn(X,L) be the higher Grothendieck-Witt spectrum of X with coeffi-

cients in the n-th shifted line-bundle L[n]. It is the Grothendieck-Witt spectrum

of the category Chb Vect(X) of bounded chain complexes of vector bundles over
X equipped with the duality E 7→ E♯n

L = Hom(E,L[n]) and quasi-isomorphisms
as weak equivalences. The zero-th space of the associated Ω-spectrum is the one
defined in [Sch10, §8 Definition 7] and for an affine X = Spec(R), n = 0, L = OX ,
this space agrees with Karoubi’s hermitian K-theory space of R. For the spec-
trum GW , we use the delooping constructed in [Sch] whose negative homotopy
groups GWn

i (X,L) are naturally isomorphic to Balmer’s triangular Witt groups
Wn−i(X,L) for i < 0; see [Sch]. We could equally well work with the delooping
constructed in [Sch10, §10] but the negative homotopy groups of this spectrum are
less well-understood.

Write K [n](X,L) for the K-theory spectrum K(X) of X equipped with the
C2 = Z/2-action induced by the duality ♯Ln . There is a natural map of spectra

GWn(X,L) → (K [n](X,L))hC2

from hermitian K-theory to homotopy fixed points of K-theory [Sch], [Kob99]. In
this note we shall prove the following.
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1.1. Theorem. Let X be a noetherian separated scheme of finite Krull dimension

with 1
2 ∈ Γ(X,OX). Assume that X has an ample family of line-bundles and

vcd2(X) < ∞. Then for all ν ≥ 1, the natural map

GWn(X,L;Z/2ν) → (K [n](X,L;Z/2ν))hC2

is an equivalence.

This theorem was proved for fields in characteristic 0 by Hu-Kriz-Ormsby in
[HKO]. The theorem was conjectured by Williams in [Wil05, 3.4.2 Examples 3]
for affine X and without the restriction on cohomological dimensions. However,
without this restriction, there are counter examples; see [HKO].

If −1 is a sum of squares we also prove the following integral version.

1.2. Theorem. Let X be a noetherian separated scheme of finite Krull dimension

with 1
2 ∈ Γ(X,OX). Assume that X has an ample family of line-bundles and

vcd2(X) < ∞. Assume furthermore that −1 ∈ Γ(X,OX) is a sum of squares.

Then the natural map

GWn(X,L) → (K [n](X,L))hC2

is an equivalence.

This holds, for instance when X is of finite type over a field that is not formally
real, e.g., a finite field or an algebraically closed field.

Write GWn(Xet, L) for the value at X of a globally fibrant replacement of
GWn( , L) on a sufficiently large etale site. We prove the following.

1.3. Theorem. Let X be a noetherian separated scheme of finite Krull dimension

with 1
2 ∈ Γ(X,OX). Assume that X has an ample family of line-bundles and

vcd2(X) < ∞. Then for all ν ≥ 1, the natural map

GWn(X,L;Z/2ν) → GWn(Xet, L;Z/2ν)

is an equivalence on vcd2(X) − 2-connected covers.

This is the evident analogue for hermitian K-theory of the K-theoretical Quillen-
Lichtenbaum conjecture. The statement of the theorem was conjectured in [BKØ]
where they show that the map is split surjective in high degrees. The K-theoretical
analogue was proved in this generality in [RØ05].

1.4. Remark. All the theorems above remain valid if one replaces GW and K
with their “non-connective” versions GW and IK as defined in [Sch10], [Sch] for
GW and [TT90], [Sch06] for K; see 2.5.

1.5. Remark. The theorems above remain valid if one drops the assumption “am-
ple family of line-bundles” and replaces vector-bundle GW - and K-theories by their
versions that use perfect complexes instead of complexes of vector bundles.

1.6. Remark. The odd-primary analogues of Theorems 1.1 and 1.3 are essentially
of no interest because

GWn
i (X,L) ⊗ Z[1/2] = K

[n]
i (X,L)C2 ⊗ Z[1/2] ⊕Wn−i(X) ⊗ Z[1/2]

where Wn denotes Balmer’s Witt groups.
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2. Proofs

Fix a line-bundle L on X , and a two power integer l = 2ν . To simplify nota-
tion, we will write GW (X), K(X), etc for GWn(X,L), K [n](X,L), GW/l(X) for
GW (X ;Z/l), GW et/l(X) for GW (Xet;Z/l) etc.

2.1. Preliminaries. We recall a few facts from [Sch]. The affine non-connective
versions can also be found in [Kob99], [Wil05]. They generalize to schemes via the
Mayer-Vietoris principle [Sch10], though we take a different approach in [Sch].

(1) Let η ∈ GW−1
−1 (Z[ 12 ]) ∼= W 0(Z[ 12 ]) be the element corresponding to 1 ∈

W 0(Z[ 12 ]). Then there is a homotopy fibration of spectra

K(X)hC2
→ GW (X) → GW (X)[η−1]

where GW (X)[η−1] =  L is a spectrum whose homotopy groups πi  L
[n](X,L)

are naturally isomorphic to Balmer’s Witt groups Wn−i(X,L) for all n, i ∈
Z.

(2) There is a homotopy cartesian square of spectra

GW (X)

��

// GW (X)[η−1]

��

K(X)hC2 // K(X)hC2[η−1]

where K(X)hC2[η−1] = Ĥ(C2,K) is the Tate spectrum of C2 acting on

K [n](X,L). Both spectra  L and Ĥ(C2,K(X)) are 4-periodic, and the map

 L → Ĥ(C2,K(X)) commutes with the periodicity maps [Sch], [WW00]. In
particular, the homotopy fibre F(X) of GW (X) → (K(X))hC2 satisfies

πiF(X) ∼= πi+4F(X)

for all i ∈ Z.

2.2. Lemma. Theorem 1.1 holds for fields.

Proof. Denote by F the homotopy fibre of GW/l → (K/l)hC2. We have to show
that F(k) ∼ 0 for all fields k (with vcd2(k) < ∞). By a results of [HKO], we have
F(k) ∼ 0 for fields k of characteristic 0 (with vcd2(k) < ∞).

For a field k of characteristic p > 0 (with vcd2(k) < ∞), the reduction to
characteristic 0 is standard. Here are the details. We can assume that k is perfect
since a purely transcendental extension of fields dosen’t change K/l, Witt groups
nor GW/l. Let V be the ring of Witt-vectors over k. It is a complete (hence
henselian) DVR with residue field k and fraction field F of characteristic 0, and
vcd2(F ) < ∞.

Let π ∈ V be a uniformizing element. I claim that the map V [T, T−1] → F :
T 7→ π induces an equivalence F(V [T, T−1]) ≃ F(F ). It is known that the map
induces an equivalence for K/l (same argument as for Witt groups below), hence
it induces an equivalence for (K/l)hC2 (and (K/l)hC2

). Thus, we need to see that
the map induces an equivalence for GW/l. From the homotopy fibration of spectra
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KhC2
→ GW →  L (2.1 (1)) it suffices to show that the map induces an equivalence

for  L. Balmer Witt groups (that is, the homotopy groups of  L) are periodic of
period 4, they are trivial for local rings in degrees 6= 0 mod 4 and are homotopy
invariant for regular rings. From the localization sequence for V [T ] → V [T, T−1],
we see that W i(V [T, T−1]) = 0 for i 6= 0 mod 4. Thus, we only need to check
that the map W 0(V [T, T−1]) → W 0(F ) is an isomorphism. But this follows from
comparing the localization sequences for V [T ] → V [T, T−1] and V → F which
reduce to a map of short exact sequences

0 // W 0(V [T ])

��

// W 0(V [T, T−1])

��

// W 0(V )

��

// 0

0 // W 0(V ) // W 0(F ) // W 0(k) // 0

where the left two vertical maps are induced by T 7→ π and the right vertical map is
reduction mod π. By homotopy invariance, the left vertical map is an isomorphism.
By Rigidity, the right vertical map is an isomorphism. It follows that the middle
vertical map is an isomorphism. Thus, in the commutative diagram

F(V )
∼

// F(V [T ]) //

��

F(V [T, T−1])

��

F(V ) // F(F )

the vertical maps are equivalences, and the upper horizontal map has a retraction.
Therefore, F(V ) is a retract of F(F ). Since, F has characteristic 0, we have
F(F ) ≃ 0, hence, F(V ) ≃ 0. By Rigidity, the map V → k induces an equivalence
for F . Hence, F(k) ≃ F(V ) ≃ 0. �

2.3. Lemma. The map

GW et/l(X) → (Ket/l(X))hC2

is an equivalence on (−1)-connected covers.

Proof. There is a Bott element β ∈ (GW/l)p(Z[ 12 ]) which maps to (a power of
the) usual K-theoretical Bott element under the forgetful map GW/l → K/l. The
element is constructed in [BKØ] where it is shown that the map GW/l[β−1] →
GW et/l[β−1] is an equivalence, and GW et/l → GW et/l[β−1] is an equivalence on
(−1)-connected covers. The same is true for K-theory in place of higher Grothendieck-
Witt groups. From the homotopy cartesian square 2.1 (2), we obtain the homotopy
cartesian square

GW/l(X)[β−1]

��

// GW/l(X)[η−1][β−1]

��

K/l(X)hC2[β−1] // K/l(X)hC2[η−1][β−1]

In [BKØ] it is also shown that βη2 = 0. In particular, both right hand terms are
zero, and thus, the left vertical arrow is an equivalence. Finally, the natural map

(K/l)hC2 [β−1] → (K/l[β−1])hC2
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is an equivalence because cup-product with β is an isomorphism in high degrees,
by the solution of the K-theoretical Quillen-Lichtenbaum conjecture [RØ05]. �

2.4. Lemma. If Theorem 1.3 holds for the residue fields of X then it holds for X.

Proof. This is standard from K-theory. Here are the details. Both sides satisfy
Nisnevich descent [TT90], [Sch]. The map on the E2-terms of the corresponding
(strongly convergent) Nisnevich descent spectral sequences has the form

Hp
Nis(X, aNis(GW/l)

−q) → Hp
Nis(X, aNis(GW et/l)

−q).

The map of Nisnevich sheaves

aNis(GW/l)q → aNis(GW et/l)q

on X is an isomorphism for q ≥ vcd2X − 1, by Rigidity and the assumption of the
lemma. The result now follows from the Nisnevich descent spectral sequences. �

Proofs of Theorems 1.1 and 1.3. Consider the commutative diagram

(1) GW/l(X) //

��

GW et/l(X)

��

K/l(X)hC2 // (Ket/l(X))hC2

From the solution of the K-theoretical Quillen-Lichtenbaum conjecture [RØ05], we
know that the lower horizontal map is an equivalence on vcd2(X) − 2-connected
covers. From Lemma 2.3, we know that the right vertical map is an equivalence on
(−1)-connected covers. From Lemma 2.2, we know that the left vertical map is an
equivalence for fields. This implies that Theorem 1.3 holds for fields. From Lemma
2.4, we see that Theorem 1.3 holds for schemes. This implies that the homotopy
fibre of the left vertical map in diagram (1) is trivial in high degrees. Since the
homotopy fibre is periodic (2.1 (2)) we see that Theorem 1.1 holds. �

Proof of theorem 1.2. If −1 ∈ Γ(X,OX) is a sum of squares, then 2nW 0(X) = 0
for some n. Now, W 0 acts on all homotopy groups of the spectrum  L representing
Balmer Witt groups, and W 0 acts on the homotopy groups of the Tate spectrum
Ĥ(C2,K); see [WW00], [Sch]. It follows that the homotopy groups of the fibre

F(X) of  L → Ĥ(C2,K) are annihilated by l = 22n. However, by Theorem 1.1, the
homotopy cofibre of the multiplication map l : F(X) → F(X) is trivial. That is,
multiplication by l is an isomorphism on the homotopy groups of F(X). But we
just noticed that this map is the zero map. Hence, the homotopy groups of F(X)
are zero. �

2.5. Proof of Remark 1.4. The square

GW (X) //

��

GW (X)

��

K(X)hC2 // IK(X)hC2

is homotopy cartesian; see [Sch]. �
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