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Abstract: Pair-wise Markov random fields (MRF) are considered for application to the 

development of low complexity, iterative MIMO detection. Specifically, we consider two 

types of MRF, namely, the fully-connected and ring-type. For the edge potentials, we use the 

bivariate Gaussian function obtained by marginalizing the posterior joint probability density 

under the Gaussian assumption. Since the corresponding factor graphs are sparse, in the sense 

that the number of edges connected to a factor node (edge degree) is only 2, the computations 

are much easier than that of ML, which is similar to the belief propagation (BP), or sum-

product, algorithm that is run over the fully connected factor graph. The BER performances 

for non-Gaussian input are evaluated via simulation, and the results show the validity of the 

proposed algorithms. We also customize the algorithm for Gaussian input to obtain the 

Gaussian BP that is run over the two MRF and proves its convergence in mean to the linear 

MMSE estimates. The result lies on the same line of those in [16] and [24], but with 

differences in its graphical model and the message passing rule. Since the MAP estimator for 

the Gaussian input is equivalent to the linear MMSE estimator, it shows the optimality, in 

mean, of the scheme for Gaussian input. 
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I. INTRODUCTION 

 
Recent works on multi-input and multi-output (MIMO) detection were mainly focused on the 

so-called sphere decoding [1-6]. Sphere decoding is a two stage detector in which the channel 

matrix is first converted into an upper triangular form and, utilizing this structure, a tree 

search is used for joint data detection. Since the full tree search has the same complexity of 
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maximum likelihood (ML) detection, a sort of reduced search algorithm is applied by limiting 

the search space, e.g., the number of candidate symbols or radius at each tree search stage. 

One advantage of sphere decoding is that it can provide a tradeoff between performance and 

complexity by choosing an appropriate value of radius or list size. The performance of sphere 

decoding was shown to be quite close to that of ML with reasonable complexity [6].  

Another type of MIMO detectors, which has not received much attention, is the channel 

truncation approach [7-10]. It is also a two stage detector, where the channel is first converted 

into a bi-diagonal or, more generally, a poly-diagonal form [9,10] and, utilizing the effective 

channel structure, a trellis search, e.g., Viterbi algorithm or the forward-backward algorithm 

[11][12], is used for post-joint detection. The scheme is similar to the concatenated channel 

shortening equalizer and maximum likelihood sequence estimator (MLSE) for the inter-

symbol interference channel [13]. By employing channel shortening, rather than channel 

inversion, the noise enhancement that severely affects the performance can be eased, while 

the number of interferences is limited so that MLSE can be implemented with less complexity.  

Graph based detection [14-20] is another class that is worthy of attention. The approaches 

are based on the belief propagation (BP) algorithm [21,22] that also has been extensively 

studied for decoding of the channel codes, such as the turbo codes and low density parity 

check codes. In these approaches, the MIMO channel is modeled as a fully-connected factor 

graph, which consists of a multiple N factor nodes representing the received signal, a multiple 

M variable nodes representing the hidden data, and the edges connecting the factor nodes 

with the variable nodes. The resulting graph has the maximal edge degree, i.e., every factor 

node is connected to every variable node. When applying the BP algorithm [21], or the sum-

product algorithm [22], to such graphs, the complexity is as high as the ML or MAP detector 

due mainly to the marginalization operation required for the message update at the factor 

nodes. To reduce the computational complexity, the Gaussian BP has been considered in [16] 

and [17], where the input data and messages are all assumed to be Gaussian so that the 

message and posterior probability can be represented by a pair of mean and variance, 

resulting in a very simple message update rule. As shown in [16] and [17], however, the 

algorithm converges only to the linear minimum mean squared error (LMMSE) solution that 

is inferior to the ML detector for non-Gaussian input. On the other hand, in [18] and [20], 

complexity reduction via model simplification has been studied. Especially, in [18], it was 

suggested to prune some edges in the fully connected factor graph, based on the strength of 

the channel coefficients, in order to reduce the edge degree. By doing so, not only the number 

of messages is reduced, but also the marginalization operation on factor nodes can be 
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performed at much less cost. Reduction in the marginalization cost is exponential with the 

edge degree reduction resulting in far less complexity than ML. The problem here, however, 

is that the performance loss can be more severe with the edge degree reduction.  

Another interesting graph-based approach is the one in [20] based on the pair-wise 

Markov random field [23]. Here, noticing that BP may not work well for a loopy graph, a tree 

approximation was proposed on the basis of Kullback-Leibler distance (KLD) optimality 

criterion. One difference of this approach from other graph and BP based detectors is that it 

utilizes the Markov random field (MRF), rather than factor graphs. In MRF, we have only 

one type representing the hidden data and the edges reflecting the local dependency among 

them. The local dependency is represented by potential functions and, specifically in pair-

wise MRF, they are functions of one or two variables. In fact, as noticed in [20] and [23] (also 

in [16] and [19]), a multivariate Gaussian function can be decomposed into a product of 

functions of one or two variables resulting in a fully connected pair-wise MRF. 

In this paper, we examine two types of pair-wise MRF, i.e., the fully-connected and ring-

type. However, instead of using the potential functions obtained from the direct 

decomposition of multivariate Gaussian function, we propose to use the potential functions 

that are obtained by marginalizing the posterior joint probability density under the Gaussian 

assumption. As will be shown later, the corresponding factor graph only has an edge degree 

of 2, as also implicated in [20] and [23], and the proposed scheme has much less complexity 

than that of ML/MAP. Unlike the one in [18], however, performance degradation is shown to 

be reasonable and, as shown in the simulation results, the bit error performance is shown to 

have close-to ML performance for non-Gaussian input.  

This paper is organized as follows. In the next section, we briefly review the ML/MAP 

and the graph-based approach to MIMO detection. In Section III, the proposed iterative 

detection algorithm is derived for fully-connected and ring type pair-wise MRFs, respectively, 

for non-Gaussian input. In Section IV, assuming the Gaussian input, we customize the 

proposed algorithms for Gaussian input, i.e., Gaussian BP, and discuss its convergence 

property. The performances are evaluated and compared via link-level simulations in Section 

V and, finally, the concluding remarks are given in Section VI. 

 

II. MAP AND GRAPH-BASED DETECTION 

 

In this section, we briefly review the channel model and some of the graph-based detectors 

related to our work.  
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A. System model, MAP and graph-based detection  

A Gaussian MIMO system with a constant NM channel matrix H (N  M) is modeled by 

 nhnHxy  


M

k
kk x
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      (1) 

where x is M1 transmitted data symbol vector, n is N1 noise vector, y is N1 received 

signal vector and hm is the mth column of H. n is assumed to be complex Gaussian with mean 

0 and covariance E[nnH] = 2I and the transmitted data symbol vector, x, is assumed to have 

mean 0 and the covariance matrix E[xxH] = I. In practice, each element of x is usually a 2m-

ary symbol drawn from a finite alphabet set  of size 2m, such as QPSK or 16QAM. 

 MAP detection: The maximum a posteriori (MAP) detector selects x* that maximizes 

the a posteriori likelihood 
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with CN(y; , C) representing the multivariate complex Gaussian PDF of mean  and 

covariance C defined as  
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The search space of the MAP is an M-dimensional space, M, and the complexity is O(2mM). 

When using concatenated channel coding and MIMO, MIMO detector is required to produce 

soft-decision value, aka, log-likelihood ratio (LLR). Denoting the jth data symbol as xj(bj1, 

bj2,…, bjm), LLR of bjk can be obtained by first marginalizing p(x|y) over x\xj = (x1, x2,…, xj1, 

xj+1,…, xM) to get 
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where A = p1(y) is a normalizing constant, and we used the assumption that xj’s are 

independent of each other. The LLR for each bit is then computed as 
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The prohibitive complexity, especially when m and M are large, comes from the 

marginalization operation in (4) and (5).  

 Since the noise covariance is given by a diagonal matrix, the marginalization can also 

be performed for each element of y, i.e., 
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where  
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such that p(y|x) = k p(yk|x). Note that the marginalization in (6) as well as in (4) is 

performed over M1 dimensional space. Since the number of lattice points in M1 

dimensional space is 2m(M1) and the marginalization must be performed for the total number 

2m states of xj, the complexity remains the same as that of MAP.  

 Graph based detection (BP over fully-connected factor graph): The MAP detection 

in (4) or (6) is very useful for turbo equalization [27][28], where the reader can find a vast 

amount of literature showing the validity of iterative MIMO detection and channel decoding. 

Although the turbo equalization is not our focus in this paper, it is worthy of paying attention 

to the iterative detection as in [18], i.e., the BP over the fully-connected factor graph. As a 

matter of fact, the MAP detection in (4) can be regarded as a belief propagation that is run 

over the singly connected factor graph in Fig.1 (a), where each variable node, representing a 

data symbol, first passes a priori information to the factor node, representing the received 

vector, y. The factor node then provides each variable node with the corresponding a 

posteriori likelihood by computing the marginalization in (4). Since the graph is singly 

connected and all variable nodes are connected via one factor node, the BP over this graph 

will surely converge, in one iteration, to the correct a posteriori probability. The graph based 

detection in [18], on the other hand, is a BP over the fully connected factor graph in Fig.1 (b), 

which can be summarized as follows.  

 
BP 1 over the fully-connected factor graph [18] 

(1) Initialize, for all edge, 

 j→i(xj)= p(xj)       (8) 

(2) Factor Node computation:  
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(3) Belief update:  
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(4) Variable Node computation:  
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with ),...,,..,,|( 21k Mj xxxxxyp   given by (7). The message update (9)-(11) 

are repeated by a pre-defined number or until the belief does not 

change any more.  

 

Although its complexity is similar to the MAP detector, it provides us a base structure for the 

development of low complexity detector as to be discussed in the next. 

 

 

Fig.1 Factor graphs for a 4x4 MIMO channel 

 

B. Complexity reduction via edge pruning 

 To reduce the computational burden of the marginalization in (9) for non-Gaussian 

input, [18] proposed to prune some edges for which the corresponding variable and 

observation nodes are weakly coupled together, e.g., those variable-factor node pairs with 

small value of |hjk|. By using only df < M edges per factor node (i.e., pruning Mdf edges), the 

complexity is reduced by a factor of 1/2m(Md
f
) relative to ML/MAP or the BP 1 of complexity 

O(2mM). The problem of this scheme is that df must not be too small to ensure reasonable 

performance as shown in [18].  

 An alternative strategy to prune edges has been proposed in [7-10], where the edges 

are pruned by a linear transformation, namely, the poly-diagonalization. The simplest one is 

the bi-diagonalization, where the effective channel is, for example, given by 
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for M = 4. The resulting channel structure looks like a "tail-biting" ISI channel and, hence, 

utilizing the poly-diagonal structure of the underlying channel matrix, a tail-biting trellis 

decoding (known also as the forward-backward algorithm) is applied to produce the a 

posterior likelihoods. In this approach, the edge degree, df, could be as small as 2 for a 

reasonable performance degradation. 

   The idea in the poly-dagonalization procedure is to use a multi-modal linear estimator, 

c(j) for j = 1,2,…,M, either in zero-forcing (ZF) sense or in minimum mean squared error 

(MMSE) sense, where (j) is the indices set consisting of ordered numbers {(jl)M +1; l 

=1,…,L} with L defined as the order of poly-diagonalization. The index j in (j) corresponds 

to the target signal, all others in (j) are its companion, while those not in (j) are considered 

as interference to be nullified or suppressed. For example, for the case M = 4 and L = 2, (1) 

= {4, 1} and (3) = {2, 3}. By applying c(j) to the received vector y, we have  
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where )( j  is the complementary set of )( j . c(j) is chosen such that the interference in 

the r.h.s. of (13) is nullified (in ZF sense) or the interference plus noise is suppressed (in 

MMSE sense). In MMSE sense, the multi-modal MMSE estimator, c(j), can be chosen such 

that for arbitrary constant B 

jj
j

H
jj

H

C
j B

N

hK
ccK

chhc
c

c

1
)(

)(
)( maxarg 




       (14) 

where K(j) is the partial covariance matrix of the noise plus nominal interferences, 
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where nj is the suppressed interference plus noise and 
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Based on the Gaussian approximation of nj, we have 
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and the a posterior likelihood, corresponding to (6), is obtained by marginalizing (18) as  

 


 


1
11   ),...,(

)(21 )(),...,,|() (
L

jLj xx
jk kjLjLjjjj xpxxxypyxxp   (19) 

In (18) and (19), we omitted the modulo operation ()M for notational convenience. Since the 

marginalization in (19) is performed over only L1 dimensional space and typically L = 2 or 

3, the computational complexity can be far less than that in (6).  

Defining the matrix C as a NM matrix with its jth column given by c(j), the 

effective channel model is given by  

'nxHyC  eff
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where n = [n1, n2,…, nM]T and the effective channel, Heff, is given by (12). Fig.2 (a) shows 

the graphical model for the poly-diagonalized MIMO channel with M = 4 and L = 2 and Fig.2 

(b) is the same model plotted as a ring, with which the implementation of belief propagation 

algorithm is clearer. With L = 2, (18) and (19) become 
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where (22) is the factor node message passing in the forward direction. Replacing p(xj1) and 

p(xj|yj) with the incoming message, j,j1(xj1), and the outgoing message, j,j1(xj), 

respectively, the message flow from the variable node j1 to j becomes 
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The backward message passing can also be obtained in a similar way, i.e., using (21), we also 

have  
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And, by replacing p(xj) and p(xj1 | yj) with j1,j (xj) and j1,j(xj1), respectively, we have 
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(a)                (b) 

Fig.2 Factor graphs for a 4x4 bi-diagonalized MIMO channel 

 

The detection algorithm in (21)-(25) is equivalent to the graph-based, iterative 

detection for the ISI channel in [26][27] for a channel length of 2. As in [26], this message 

passing detection can also be easily extended to more general cases where L>2. As mentioned 

in [9], the direct graphical model has many local loops and the problem become complicated. 

To develop the corresponding BP rule, which is intuitively more meaningful for the general 

case of L>2, we define the “state” as a group of neighboring symbols. By deriving the BP rule 

among these state variables, the forward and backward message passing principle can also be 

applied for L >2 [9]. 

 

D. Sphere decoding 

Sphere decoding can also be described in the context of graph-based detection. In sphere 

decoding, the QR decomposition is first used to effectively triangularize the channel, and a 

tree search is then applied for post joint detection. In QR decomposition, the channel matrix, 

H, is decomposed into H = QR, where Q is NN unitary matrix such that QHQ = I and R is 

an upper triangular matrix. By pre-multiplying the received signal vector y with QH, we 

obtain the effective channel given by y  QHy = Rx + n where n QHn for which the 

covariance matrix is E[nnH] = 2I. Since the preprocessor Q is a unitary matrix that does not 

alter the noise correlation or singular values, there is no loss in capacity by pre-multiplying Q 

with the received signal vector y. Fig.3 shows an example graphical model for the 

triangularized MIMO channel.  

Once the channel is triangularized, the sphere decoding employs a sort of reduced tree 

search, where, starting from the root node, the algorithm searches only those nodes that lie 

within the sphere of radius, r, centered at the received signal vector y. Apparently, the sphere 
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decoding is equivalent to the ML detector when using a full tree search. And, certainly, there 

exists a tradeoff between the performance and complexity that can be controlled by the radius, 

r. That is, with a small r, the number of nodes to be searched along the tree can be 

considerably reduced, while it cannot be too small since the set of candidate nodes may be 

dried out and/or the nearest lattice may be excluded before we reach the final tree stage 

resulting in inaccurate detection.  

 

 

Fig.3 Factor graph for a 4x4 triangular MIMO channel 

 

III. DETECTION ALGORITHM BASED ON PAIR-WISE MARKOV RANDOM FIELD 

 
In this section, we develop low complexity iterative MIMO detection algorithms based on the 

pair-wise Markov random fields. We consider two types, namely, a fully-connected MRF and 

a ring-type-MRF, and derive the corresponding BP algorithms (sum-product algorithm) that 

work for the non-Gaussian input. As will be shown later, BP over the ring-type MRF is 

effectively equivalent to the one in [10] with a slight difference. 

 
A. Detection algorithm based on fully-connected MRF 

MRF is an undirected graph that describes local dependencies among a set of random 

variables. In MRF, the joint PDF of all r.v. involved can be represented by a product of joint 

PDF of each clique. The pair-wise MRF [23] is defined as MRF where, for each clique, the 

joint PDF of a set of random variables can be represented by a product of two dimensional 

joint PDFs of any two neighbors. Let N = {1,2,…,M} be the set of nodes in the MRF 

corresponding to the random variables x1, x2,…,xM, respectively, and let E be the set of all 

edges connecting these nodes. For a compact expression, we also denote the edge connecting 

nodes j and k as e(j,k) and the set of neighbors of the jth node as N(j). In pair-wise MRF, the a 

posteriori joint PDF p(x1, x2,…,xM |y) is modeled by a product of pair-wise potential functions 

[23][17], e.g., 



11 

 

  



Ejieji

jiij
Ni

iiM xxxAxxxp
),(:),(

21 ),()(|,...,ˆ y     (26) 

 

x1 x2

x4 x3

(x1, x2)

(x3, x4)

(x
1 , x

3 )

(x 2, 
x 4)

(x1) (x2)

(x4) (x3)
 

Fig.4 Fully-connected Markov Random Fields with 4 variables 

 

Fig.4 shows a MRF with 4 variables, where self-potential, (xi), is assigned to each 

node and the edge potential, (xi, xj) is assigned to each edge. One choice of such potential 

function can be, as suggested in [16], [17] and [20],  
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where j
H
iijR hh  and yhH

ijy  . Denoting the (incoming) message from the ith node to 

the jth as i→j(xj), the belief propagation through the pair-wise MRF can be described as [17] 
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where N(i)\j is the set of neighbors of node i excluding node j. In (29), the incoming 

messages are combined first to produce the extrinsic information, kN(i)\jk→i(xi), and they 

are then "translated" by the potential function, i(xi)ij(xi,xj). The belief on the variable, xj, is 

given by 





)(

)()(
jNk

jjkj xxb         (30) 

Note that, when xj‘s are Gaussian (continuous) random variables, the messages, i→j(xj), can 

be summarized by a pair of mean and variance giving us a very simple message update rule 

as in [16] and [17]. As pointed out in [17] and proved in [16], however, the Gaussian belief 

propagation based on the above potential functions results in the solution of nothing but the 

linear MMSE estimator. As discussed before, it is optimum for the Gaussian input in the 
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sense that it is the true a posterior probability. However, for non-Gaussian input, it is 

generally inferior to the ML/MAP detector. 

 In this paper, we propose to use the pair-wise MRF but with different choice and 

usage of the edge potentials. Specifically, by assigning to each edge e(i, j) a pair-wise joint 

PDF, p(xi, xj |y), derived from the a posteriori PDF, p(x1, x2,…,xM |y), under Gaussian 

assumption, we model the component-wise a posteriori probability, the jth, as a product of 

these edge potentials, i.e.,  

   












)(

)|,(|ˆ
jNi x

jijj

i

xxpAxp yy  

 












)(

)|(),|(
jNi x

iijj

i

xpxxpA yy     (31) 

where Aj is the normalizing constant. Note that )|(ˆ yixp  is certainly not equal to the true 

component wise a posteriori probability p(xi |y) obtained by (4). However, by replacing 

p(xi|y) in the summand with the estimates of its neighbors, )|(ˆ yixp , we obtain a set of 

recursive relations giving us a desired message passing rule, where the message is given by 

)|(ˆ yixp  and the translation is performed by p( xj | xj, y).  

 Now, we take a look at the edge potential, p(xj, xj | y), and the translation function, 

p(xj | xj, y), derived from it. They are related by  

 ),(),|(),(),|()()|,( yyyyy iijjijiji xpxxpxxpxxppxxp    

resulting in 

)|(

)(),|(
),(

i

jji
ij xp

xpxxp
xxp

y

y
y        (32) 

where we used (3). For non-Gaussian input, it is quite difficult to derive p(y| xi, xj) and p(y|xj) 

in the right hand side of (32). Hence, at this step, we assume xj‘s are Gaussian, even though 

the messages will not be treated as such. Under the Gaussian assumption on xj, each term in 

(32) is given by 

 },{, ;),|( ijjjiiji xxxxp Khhyy CN      (33) 

 }{,;)|( iiii xxp Khyy CN       (34) 

where  












k

H
kk

M

k

H
kk

k

H
kk

hhhhI

hhIK

1

2

2




     (35) 
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for  = {i, j} or {i}. Moreover, the Gaussian assumption leads us to a much simpler 

expression. That is, from the information theoretic optimality (sufficiency) of the MMSE 

estimator for Gaussian input, we have 

 )|;()|;( | i
H

ijjij xxIxxI ycy        (36) 

where 

jijij hKc 1
},{|

 .         (37) 

is the conditional MMSE estimator for xj given xi. Denoting ycH
ijjiy | , we have, in a similar 

way to (13)-(15), 

 ijiiijjjij
H

ijij nxaxay |,|,|||  yc       (38) 

where 

kij
H
jk

H
ijkija hKhhc 1

},{|,|
  for k = i or j     (39) 

2
|

1
},{|},{|

2
| || ijjij

H
jijij

H
ijijnE   hKhcKc      (40) 

The sufficiency in (36) suggests using the following as the translation function, instead of 

(32), i.e., 

)(

)(),(
),|(

|

|

|
iij

jjiij

ijij xyp

xpxxyp
yxxp




      (41) 

with 

),;(),( 2
|,|,||| ijiiijjjijijjiij xaxayxxyp  CN     (42) 

)||,;()( 2
,|

2
|,|| jijijiiijiij axayxyp  CN      (43) 

In (42) and (43), we used the Gaussian assumption, )1,0;()( jj xxp CN . Plugging (42) and 

(43) into (41) and by replacing )( jxp  with )1,0;( jxCN , we have the simplified translation 

function from the derivation in the appendix. 

 

  

































2
|

,||2
|

2
,|

2
|

2
|

,||2
,|

2
|

*
,|

|

1

1
,

1

1
;

||
,

||
;),(

ij
iiijij

ij
j

jijij

ij
iiijij

jijij

jij
jijij

xayx

a
xay

a

a
xyxxp








CN

CN

  (44) 

where, in the last line, we used the fact that aj|i,j is real valued and is equal to 2
j|i. Note that in 

(44), the mean is the conditional MMSE estimate of xj given xi. 

Using the equations from (37) to (44), the message passing rule in (31) can be 

simplified and summarized as follows.  
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BP 2 over the fully-connected MRF 

Given the messages in the previous iteration, k→i(xi) 

(1) Compute the extrinsic information for all pairs (i,j) with i≠j 




 
jiNk

iikiji xx
\)(

)()(         (45) 

(2) Translate the message i→j(xi) to i→j(xj) 




 
ix

ijiijijjji xyxxpx )(),|()( |       (46) 

with ),( |ijij yxxp   given by (44). (45) and (46) are computed for all 

edges in both directions, and the message update is repeated by a 

pre-defined number or until the belief does not change any more and, 

finally, the belief is obtained the same as that in (30).  

 

Note that, although we adopted the Gaussian input assumption to obtain the Gaussian 

translation function (44), the messages, i→j(xj) and i→j(xi), in the above algorithm may not 

necessarily be Gaussian.  

 

B. Detection algorithm based on Ring-type-MRF  

It is also interesting to note that the message passing rule 2 is quite similar to the 

forward-backward recursion in [9] and [10], i.e., (23) and (25), with two differences. One is 

in the underlying structure and the other in message translation. To clarify the similarity and 

difference, we consider the ring-type MRF shown in Fig.5. In this ring-type MRF, each node 

has only two neighbors and, hence, (31) becomes 

  



















 







 11

) |,() |,(|ˆ 11

jj x
jj

x
jjjj xxpxxpAxp yyy    (47) 

Note that, in the computation of extrinsic information, the incoming message from one 

neighbor is simply passed to the other so that the message update rule (45) and (46) can be 

modified as follows:  

 

BP 3 over the ring-type MRF (Forward-backward recursion) 

Extrinsic information:  
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)()( 11 jjjjjj xx           (48) 

Message translation:   




 
jx

jjjjjjjjjj xyxxpx )(),|()( 11|111      (49) 

After a pre-defined number of iteration, the belief is obtained by 

 )()()( 11 jjjjjjj xxxb          (50) 

 

 

Fig.5 Ring-type Markov Random Fields with 4 variables 

 

This message update rule is a forward-backward algorithm similar to (23) and (25), i.e., the 

message from the (j1)th node to the jth node corresponds to the forward message, and the 

one from the (j1)th node to the jth node corresponds to the backward message. The 

difference is in the message translation. In (49), the message translation from the jth node to 

the ith and its reverse utilize a different translation function, i.e., 

),|(
)(

)(),(
),|( |

|

|

||| jiji
iij

jjiij

ijijjiij yxxp
xyp

xpxxyp
yxxpyy 




   (51) 

This means the branch metrics used for the forward and backward recursion are separately 

optimized to maximize their SINR, as also proposed in [10]. The translation function is also 

different from the branch metric in [10], i.e., the mean and variance in (44) have MMSE 

scaling by a factor of )||/( 2
,|

2
|

*
,| jijijjij aa   and )||/(1 2

,|
2
| jijij a , instead of 2

,|
*

,| ||/ jijjij aa  

and 2
,| ||/1 jija , though it has a minor impact on the error rate performances.  

 The factor graphs corresponding to the fully-connected MRF and the ring-type MRF 

are shown in Fig.6 (a) and (b), respectively, where the observation used for the message 

translation from the jth node to the ith and its reverse is clearly denoted by ijy |  and jiy | , 

respectively.  
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 Note that, for ring-type MRF, we obtain different performance with a different 

antenna permutation, as also noted in [7, 8], while, in the fully-connected one, we do not need 

antenna permutation, which is one possible advantage of the latter to the former.  

 Since the proposed MRFs have short cycle(s), it is quite questionable whether or not 

the BP 2 and 3 will converge. In the literature, it was known that the convergence of BP over 

a loopy graph is not guaranteed, even though it does converge in most practical cases. Since 

the convergence proof for non-Gaussian input is not tractable, we will tackle this question in 

the next section by modifying them for Gaussian input. 

 

 

Fig.6 The Factor graph for (a) the fully-connected MRF and (b) ring-type MRF, respectively, 

for a 4xN MIMO channel  

 

C. Complexity  

The computational complexity is clear from Fig.6. When compared to the MAP 

detector, where the marginalization in (4) is performed over all combination of (x1, 

x2,…,xj1,x j+1,…,xM) M1 for each of 2m alphabet, resulting in a complexity of O(2mM), the 

computational burden in the message passing rule 2 for the fully-connected MRF in Fig.6 (a) 

for n iterations is O(nM(M1)2m) since the marginalization for each M node is performed 

for M1 separately of its neighbors and repeated n times. Although some additional 

computation is required for the linear processing in (37)-(40), it is typically much smaller 

than 2m(M1), resulting in considerable computational reduction, which certainly comes from 

modeling through the pair-wise MRF. On the other hand, the computational complexity for 

the ring-type MRF in Fig.6 (b) is O(n2M2m), which is the same as that of message passing 

rule 1 and is even less than that of the fully-connected MRF. 
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IV. MESSAGE PASSING WITH GAUSSIAN INPUT  

 
In the previous section, we developed belief propagation algorithms using the pair-wise 

MRFs for non-Gaussian messages. The Gaussian assumption on xj’s was employed to obtain 

the two-dimensional joint PDFs, corresponding to each edge potential, and the translation 

function. While, we used the exact marginalization in the message translation step. In this 

section, we further simplify the message passing rule by extending the Gaussian assumption 

to the message translation step, as was done in [16], [17], and [19], to obtain the Gaussian BP 

over the two MRF under consideration.  

ML detection with Gaussian Input: With independent and identically distributed 

Gaussian input,  


M

j jxp
1

)1,0;()( CNx , the MAP detector in (4) becomes  

  Mjjjk kj dxdxdxdxxAxp  111
2 )1,0;(,;) (     CNCN Hxyy  

 )1 ,;( 11
j

H
j

H
jjx hKhyKh   CN      (52) 

where we appropriately chose the normalization constant, A, while the covariance matrix, K, 

is given by 

  IHHK 2 H  

Noting that, in (52), 

 jj hKc 1         (53) 

is the linear MMSE filter, the mean is the linear MMSE estimates of xj and the variance is the 

corresponding minimum MSE, i.e., 

 yKh 1ˆ  H
jjx          (54) 

 j
H
jj hKh 11MMSE         (55) 

This means that linear MMSE estimation is optimum for the Gaussian input, while it 

generally does not hold for the non-Gaussian input. 

 

A. Gaussian BP over the proposed MRF 

 Assuming that xj’s are Gaussian and the distributions i→j(xi), i→j(xj), and b(xi) are 

all Gaussian PDFs, they can be characterized by their mean and variance only. This means the 

messages, i→j(xi) and i→j(xj), and the belief, b(xi), in the message passing rules 1, 2 and 3 

can be replaced with the update rule for the mean and variance pair. Since the Gaussian BP 

corresponding to the BP 1 over the fully connected factor graph in (9)-(11) has already been 
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discussed in [16], here we consider only the BP 2 and 3 over the two MRF.  

 Let us denote the mean and variance pair of the complex Gaussian PDFs, i→j(xj), 

i→j(xi), and b(xi) as (,i→j, 2
,i→j), (,i→j, 2

,i→j) and (b,i, 2
b,i). Then, the BP 2 and 3 

under the Gaussian assumption can be rewritten as follows (The detailed derivations are 

shown in the appendix) 

 

Gaussian BP 2G over the fully-connected MRF 

Given the messages in the previous iteration (or the initial 

messages), k→i(xi)= (,k→i, 2
,k→i) 

Compute the extrinsic information from node i to node j  

 




 

jiNk ikji \)(

2
,

2
,          (56) 









 




 
jiNk ik

jiNk ikik

ji

\)(

2
,

\)( ,
2
,

,



 


       (57) 

Translate the message i→j(xi) to i→j(xj) 

2
,22

|

2
,|

2
|

2
, )1(

||

1

1
ji

ij

iij

ij
ji

a
 




  


       (58) 

ji
ij

iij

ij

ij
ji

ay
 





 ,2

|

,|

2
|

|
, 11  


       (59) 

After the iteration of (56)-(59), the belief on xi is obtained by 

 



 

)(

2
,

2

iNk iki         (60) 









 





)(

2
,

)( ,
2
,

iNk ik

iNk ikik

i







       (61) 

 

Gaussian BP 3G over the ring-type MRF (Gaussian forward-backward recursion) 

Given the messages in the previous iteration (or the initial 

messages), k→i(xi)= (,k→i, 2
,k→i) 

Extrinsic information:  

2
1,

2
1,





  iiii          (62) 

iiii   1,1,          (63) 

Message translation:  
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2
1,22

|1

2
,|1

2
|1

2
1, )1(
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1
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


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
 



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      (64) 

1,2
|1

,|1
|12

|1
1, 11

1








 




 ii
ii

iii
ii

ii
ii

a
y  


      (65) 

Final belief:    

2
1,

2
1,

2 





  iiiii          (66) 

2
1,

2
1,

1,
2

1,1,
2

1,



















iiii

iiiiiiii
i








      (67) 

 

Especially, in the Gaussian BP 3G, we observe the following: 

1) The variance and mean are updated separately (except in the final belief) 

2) In (62)-(65), there are two separate message flows; one is the forward from i to i+1 and 

the other is the backward from i to i1.  

3) (63) can be combined with (65) into a single step, i.e., by plugging (63) into (65), we 

have  

 Forward recursion:  iiiii F   1,1,        (68) 

 Backward recursion: iiiii B   1,1,        (69) 

    where the operations, Fi and Bi, are first order elementary function 

    iiiii vuF ,1,1        (70) 

    iiiii vuB ,1,1        (71) 

    with 
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    (73) 

Here, we used (37)-(40) and, in the last, the matrix inversion lemma 

 111111 )()(   ABBABIBAABBA HHH  

4) Similar to the means, (62) can be combined with (64) into a single step, i.e.,  

 Forward recursion:  2
1,

2
1, iiiii F          (74) 

 Backward recursion: 2
1,

2
1, iiiii B          (75) 

    where  
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    iiiii vuF ,1,1        (76) 

    iiiii vuB ,1,1        (77) 

    with 

 
jij

H
jij

iju
hKh 1

},{
2
|

, 1

1
  

1

1








      (78) 
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B. Convergence of Gaussian BP 

 Regarding the convergence of Gaussian BP, it was previously shown in [24] that 

Gaussian BP for arbitrary topology converges to the correct mean (see also [29]), and it was 

shown in [16] that the Gaussian BP over the factor graph in Fig.1 (a) converges to the linear 

MMSE solution, even though the underlying assumption is slightly different. Based on these 

findings, we can conjecture that, for both the Gaussian BP of rules 2G and 3G, the mean 

converges to the linear MMSE solution, as also verified by the simulation in the next section. 

One way to prove the convergence would be to use the idea of "unwrapped tree" in [24], 

which, however, can be a tedious derivation in our case. Therefore, we try an alternative 

approach that works for GBP 3G, but not for GBP 2G. Note, however, that the derivation here 

is different from [16] and [17] in the underlying graphical model and the edge potentials used. 

The objective in this sub-section is to prove the following theorem. 

 

Theorem 1: In the Gaussian BP 3G over the ring-type MRF, the mean converges to the linear 

MMSE estimate (54) as the number of iteration goes to infinity. 

 

The proof is based on the following lemmas. 

 
Lemma 2: For arbitrary initial value (0), both the forward and backward recursion for the 

mean in (63) and (65) converge respectively to a unique, fixed point. 

 

Proof: Define one iteration as one complete turn of a message passing along the ring and 

consider, without loss of generality, the message at node 1. Based on observations 1) through 

3) in the previous subsection, we obtain the recursive relations for node 1, i.e., using an 

arbitrary initial value (0), we have 
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

      (81) 

where n is the iteration number and the collective operations for one iteration of 

forward/backward recursion are given, respectively, by  

  VUMT ffFFFFF ,1,1123,1       (82) 

  VUMT bbBBBBB ,1,1132,1       (83) 

for some constants, f1,U, f1,V, b1,U and b1,V, which, in turn, are monomials of uj,i and vj,i in (72) 

and (73). For example, we have for M = 4 
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for which  

 1,22,33,44,12,33,44,13,44,14,1,1 uvvvuvvuvuf U    

 1,22,33,44,1,1 vvvvf V  . 

 1,44,33,22,14,33,22,13,22,12,1,1 uvvvuvvuvub U    

 1,44,33,22,1,1 vvvvb V  . 

Here, we can show that Vf ,1  and Vb ,1  are given respectively by 
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j jjV vf
1 1,,1  and   

M

j jjV vb
1 1,,1      (84) 

On the other hand, using (82) and (83), (80) and (81) become 
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where, from the fact to be proved in the next lemma that 1|| , Vif  and 1|| , Vib , we have  
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Therefore, the unique fixed point of the mean in GBP 3G is given by 
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lemma 3: 1||
1 1,,    

M

j jjVi vf  and 1||
1 1,,    

M

j jjVi vb  for all i. 

 

Proof: By plugging (73) into (84), we have for any i 
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where, in the third line, we used )(tr HH baba   for arbitrary vector a and b, and, in the 

fourth line, )(tr)(tr)(tr BAAB   for arbitrary non-negative definite matrices A and B. In the 

third line from the bottom, we used the matrix inversion lemma to get 
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For the backward recursion, 1|| , Vib  can also be proved in a similar way.   ■ 
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which is similar to the result in [16]. Note that 1
1

}1{ 

 jj

H
j hKh  reflects the channel correlation 

between neighbor antennas. 

 On the other hand, the operations, Fi and Bi, are not permutable such that  ji FF  

and  ij FF  may not be the same, and so are TjF ,  and TiF ,  for ij  . That is, 

the fixed point for each node may be different from one another. Note also that the fixed point 

of the mean, (85) and (86), can be obtained by the direct computation of fj,U, fj,V, bj,U and bj,V 

using (72) and (73). However, it is not tractable for large M. Instead of direct computation, 

we can obtain the fixed point of the mean using the following lemma.  
 

Lemma 4: In the forward recursion, )(1, nii   is the linear MMSE estimates of xi+1 

provided that the previous message, )(1, nii  , is the linear MMSE estimates of xi. Likewise, 

in the backward recursion, )(1, nii   is the linear MMSE estimates of xi1 provided that 

)(1, nii   is the linear MMSE estimates of xi. 
 

Proof: From (53), the linear MMSE estimate of x i is given by yKh 1H
i . And, hence, the 

proof is to show from (68) and (69) that 
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where iju ,  and ijv ,  are given by (72) and (73). Plugging these into the r.h.s. of (89) for the 

forward recursion, we finally have 
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Similarly, for the backward recursion, we obtain 

 yKhyKh 1
1

1
,1,1 )( 
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  H
i

H
iiiii vu        ■ 

 

Proof of theorem 1: Theorem 1 is now obvious from the above lemmas, i.e., from lemma 2 

the mean in the Gaussian BP over the ring-type MRF converges to a fixed point and lemma 4 

shows that, once converged, the fixed point (mean) is given by the linear MMSE estimates. ■ 
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Since the message update rule for the variance in (74) and (75) have the same form as in (68) 

and (69), we also can prove the convergence of the variance in GBP 3G, which can be 

summarized by the following lemma. 

 

Lemma 5: For arbitrary initial value 2(0), both the forward and backward recursion for the 

variance in (62) and (64) converges respectively to a unique, fixed point. 

 

The proof is similar to that of lemma 3. Unfortunately, however, the fixed point is not 

necessarily correct, i.e., may not equal to the MMSE in (55), as also confirmed in [24]. In 

[28], the convergence property of the BP over such ring-type graph was shown to be optimal 

for binary input. For Gaussian input, however, it is optimal only in the mean, and we cannot 

say so in a strict sense.  

 

V. SIMULATION RESULTS 

 
In this section, we present the simulation results for the iterative algorithms with DVB-S2 

LDPC code of rates 3/4 and length 64800 [30]. The performances of ML, MMSE and the bi-

diagonalization approach in [9] are also evaluated as references. We generated a block of 

independent and identically distributed MIMO channel matrix, of which each element is also 

i.i.d. complex Gaussian random variable with mean 0 and variance 1. The resulting channel 

can be regarded as a fully interleaved frequency selective MIMO channel that can be seen on 

top of the orthogonal frequency division multiplexing (OFDM), especially for those channels 

where the transmission bandwidth is much larger than the channel coherence bandwidth. 

 Fig.7 shows a comparison of bit error rate performance as a function of SNR (1/2) 

for ML, MMSE, the bi-diagonalization approach in [9] and the proposed MRF-based detector 

of fully-connected and ring type. We used a 44 antenna configuration and QPSK modulation. 

Fig.7 shows that the pair-wise MRF based detector performs as well as ML. The SNR gap 

between the proposed scheme and the ML is shown to be around 0.1 and 0.3, respectively. In 

Fig.7, the number of iterations was set to 4 for BP 3 over ring-type MRF and 3 for BP 2 over 

fully connected MRF. These numbers of iterations are based on the simulation in Fig.8 and 9 

for the ring-type MRF and fully-connected MRF, respectively.  

 From Fig.8 and 9, the BP 3 over the ring-type MRF is shown to converge in 4 

iterations for the current antenna configurations while the BP 2 over the fully connected MRF 

is shown to converge in 3 iterations and, with more number of iteration, the performance is 
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slightly degraded. The difference in the convergence rate seems to stem from the short cycles 

in the graphical models. The factor graphs in Fig.6 (a) for the fully connected MRF is more 

densely connected than the one in Fig.6 (b) for the ring-type MRF. In densely connected 

graph, the message will propagate faster than in sparsely connected graph. Such situation can 

also be observed in the Gaussian BP. On the other hand, in densely connected graph, the 

messages may circulate along the short loops preventing steady convergence. The slight 

degradation with more iteration than 3 in Fig.8 seem to be due to this reason. 

Fig.10 shows the convergence behavior of the Gaussian BP discussed in the previous 

section. We generated 20 independent MIMO channels of 44 and performed simulations for 

each channel to obtain the residual MSE normalized by the minimum MSE in (55) as a 

function of the iteration number, i.e., 





j j

n
ne

MMSE

|)(|
)(

2xμ  

The Fig.10 shows that both Gaussian BP 2G over fully-connected MRF and 3G over ring-

type MRF finally converge to the MMSE solution. In the convergence rate, however, 

Gaussian BP 2G is shown to be faster than that of 3G on the average. This is one of the 

expected results. As can be inferred from the proof of lemma 3, the convergence of the GBP 

depends on the correlation between neighbor antennas. In ring-type MRF, there is only one 

message pathway and the convergence will get slower if antennas are badly ordered. In fully-

connected MRF, however, there exist other pathways (loops) which seem to facilitate the 

message passing even if some neighbor pairs have high antenna correlation.  

 

VI. CONCLUDING REMARKS 

 
In this paper, low complexity, iterative MIMO detection algorithms were derived based 

on the pair-wise Markov random fields (MRF) with the potential functions that are obtained 

by marginalizing the posterior joint probability density under the Gaussian assumption. We 

examined two MRFs, namely, the fully-connected and ring-type pair-wise MRF, where the 

latter is shown to be an extension of the previous work in [9] and [10].  

The factor graphs corresponding to the two MRF are rather sparse in the sense that the 

number of edges connected to a factor node, i.e., edge degree, is only 2 and, thus, the 

message passing becomes much easier than that over the fully connected factor graph. The 

simulation results show that the proposed schemes perform very close to the ML detection.  

We also investigated the proposed algorithm for Gaussian input, where it was shown that, 
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for the Gaussian BP over the fully-connected and ring-type MRF, the mean converges to the 

linear MMSE estimates, even though the variance does not converge to the correct value. 

These results lie on the same line of those in [16], [17], [24] and [29]. Compared to Gaussian 

BP over the ring-type MRF, that over the fully-connected MRF shows faster convergence rate.  

Although the convergence of the Gaussian BPs over the two MRFs are shown to be 

guaranteed, it seems not for non-Gaussian message as the performance of BP 2 and 3 for non-

Gaussian case are slightly degraded with more than 3 and 4 iterations, respectively. This 

phenomenon might stem from the short cycles in their graphical model and may be avoided 

by utilizing "global iteration" between MIMO detection and channel decoding. That is, by 

employing an appropriate channel code and interleaver, message circulation along local short 

cycles can be broken up not only for steady convergence but also for better performance. We 

leave this for our future work. 

 

APPENDIX A: DETAILED DERIVATIONS OF (44) AND THE GAUSSIAN BP 

 
To derive (44) and the Gaussian BP rule, (56)-(61), we use the properties of the Gaussian 

PDF in [21], some of which are as follows 
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Using these, (44) is obtained by direct computation as follows. 
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 On the other hand, assuming the Gaussian messages,  
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we have for the extrinsic information computation in (45) 
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and, similarly, for the belief update  
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In (A.8) and (A.9), we can identify the message update rules, (56), (57), (60) and (61). 

 For the message translation in (46), we first rewrite the last line of (A.5) as 
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By plugging the last equation into (46) and assuming the Gaussian messages, (A.6) and (A.7), 

we have 
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          (A.10) 

By comparing the mean and variance in the last two lines, we obtain the message passing 

rules of (58) and (59), respectively. 
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Fig.7 A comparison of Bit error rate performance of MMSE, MAP and the proposed detectors 

as a function of SNR (1/2); 44 antenna configuration, QPSK modulation with DVB-S2 

LDPC code of rate 3/4 (length 64800) 
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Fig.8 Bit error rate performance of BP 2 over ring-type MRF as a function of SNR (1/2); 

44 antenna configuration, QPSK modulation with DVB-S2 LDPC code of rate 3/4 (length 

64800), the number of iterations = 2, 3, 4 and 6, respectively 
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Fig.9 Bit error rate performance of BP 1 over fully connected MRF as a function of SNR 

(1/2); 44 antenna configuration, QPSK modulation with DVB-S2 LDPC code of rate 3/4 

(length 64800), the number of iterations = 2, 3, 4 and 6, respectively 
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Fig.10 Convergence characteristics of the Gaussian BP over the fully-connected and ring-type 

MRF, respectively; 44 antenna configuration, SNR = 5, 20 dB  


