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THOM POLYNOMIALS AND THE GREEN-GRIFFITHS CONJECTURE

GERGELY BÉRCZI
MATHEMATICAL INSTITUTE, OXFORD

1. Introduction

The Green-Griffiths conjecture from 1979 ([24]) states that every projective algebraic
varietyX of general type contains a certain proper algebraic subvarietyY ⊂ X such that
all nonconstant entire holomorphic curvesf : C→ X necessarily lie inY.

This conjecture is related to the stronger concept of a hyperbolic variety in the sense
of Kobayashi ([27]). A projective varietyX is called Kobayashi-hyperbolic if there is
no nonconstant entire holomorphic curve inX, i.e any holomorphic mapf : C → X
must be constant. Hyperbolic algebraic varieties have attracted considerable attention,
in part because of their conjectured diophantine properties. For instance, Lang ([28] has
conjectured that any hyperbolic complex projective variety over a number field K can
contain only finitely many rational points over K.

A positive answer to the Green-Griffiths conjecture has been given for surfaces by
McQuillan [29] under the assumption that the second Segre number c2

1 − c2 is posi-
tive. More recently, Siu established in [40, 41] that there exists a integerdn such that
generic hypersurfacesX ⊂ Pn+1 of degree greater thandn are Kobayashi-hyperbolic. His
estimates fordn are, however, not effective. Following his strategy and using the alge-
braic Morse inequalities of Trapani, Diverio gave a short, elegant proof in [14] for the
non-effective Green-Griffiths conjecture for projective hypersurfaces. The key idea in
Diverio’s work is that the Morse inequalities ensure the existence of global holomorphic
invariant jet differentials onX if a certain intersection number of then-th projectivized
jet bundle overX—also called the Demailly-Semple tower—is positive.

The first effective lower bounds for the degree of the hypersurface in theGreen-
Griffiths conjecture was given recently by Diverio, Merker and Rousseau in [13]. They
prove that for a projective hypersurfaceX ⊂ Pn+1 of degree> 2n5

the Green-Griffiths
conjecture holds. Their proof follows the strategy of Siu and Diverio combined with a
delicate, long calculation with the cohomology ring of the Demailly-Semple tower to
prove the positivity of Diverio’s intersection number.

In the first half of this paper we apply equivariant localization techniques on the
Demailly-Semple tower to give a closed formula for Diverio‘s intersection number (The-
orem 4.8). The key idea is to transform the Atiyah-Bott localization into an iterated
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2 GERGELY BÉRCZI MATHEMATICAL INSTITUTE, OXFORD

residue formula, which allows us to give a better lower boundin the Green-Griffiths
problem. We prove:

Theorem 1.1. Let X ⊂ Pn+1 be a generic smooth projective hypersurface of degree
deg(X) ≥ 28n logn. Then there exists a proper algebraic subvariety Y⊂ X such that every
nonconstant entire holomorphic curve f: C→ X has image contained in Y.

Let us give a short historical overview of the background andthe proof.
Jet differentials of a complex manifoldX are, roughly speaking, differential operators

acting on germs of holomorphic curves inX. The fundamental idea, that global jet
differentials vanishing on an ample divisor provide some algebraic differential equations
that every entire holomorphic curvef : C → X should satisfy, first appeared in the
seminal paper of Bloch [8]. In [24] Green and Griffiths put these ideas in an algebraic
context by defining the bundleJk = Jk(TX) of k-jets at 0 of germs of holomorphic curves
f : C → X over X, andEGG

k,m = C[Jk], the bundle of algebraic differential operators
whose elements are polynomial functionsQ( f ′, . . . , f (k)) of weighted degreem.

In [10] Demailly refined the theory by defining jet differentials that are invariant under
reparametrization of the sourceC, also called the Demailly subbundleEk,m ⊂ EGG

k,m. It is
acted on fiberwise by the groupGk of k-jets of reparametrization germs (C, 0)→ (C, 0)
at the origin, and⊕∞m=1Ek,m = O(Jk)Gk is the algebra if invariant jet differentials. This
bundle gives a better reflection of the geometry of entire curves, since it only takes care
of the image of such curves and not of the way they are parametrized. However, it
also comes with a technical difficulty, namely, the reparametrization groupGk is non-
reductive, and the classical geometric invariant theory ofMumford is not applicable to
describe the invariants and the quotientJk/Gk.

In [10] Demailly overcomes this problem by describing a smooth compactification of
Jk/Gk as a tower of projectivized bundles onX—the Demailly-Semple tower—endowed
with tautological bundles whose sections areGk-invariants. Diverio in [14] then applies
the algebraic Morse inequalities to provide global invariant jet differentials onX by
proving the positivity of a certain intersection number of the tautological bundle on the
Demailly-Semple tower.

However, existence of global jet differentials is not enough: they provide constraints
only on the jets of of holomorphic curves inX of a fix order. The final step of the strategy
– which was established by Siu based on earlier works of Voisin, and then turned into a
final form in [13] – is the deformation of such jet differentials by means of slanted vector
fields having low pole order to produce, by plain differentiation, many new algebraically
independent invariant jet differentials, which then force entire curves to lie in a proper
closed subvarietyY ⊂ X.

Recently, in [33] Merker proves the existence of global jet differentials of orderk
sufficiently bigger than the dimensionn of the hypersurfaceX with deg(X) ≥ n+ 3. De-
mailly in [12] generalizes this result proving the existence of global jet differentials for
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projective varieties of general type, not just hypersurfaces. The results of the present pa-
per, however, focus on thek = n case, where Siu’s deformation arguments give effective
lower bounds for the Green-Griffiths conjecture whenX is a hypersurface. Moreover,
we work with invariant jet differentials instead of Green-Griffiths jet differentials (i.e
non-invariant ones), in contrast to [33, 12].

In the second half of the present paper we describe a new compactification of Jk/Gk

and the invariant jet differentials. This construction is motivated by the author’s earlier
work in global singularity theory, where jet differentials also play a very important role.

Consider a holomorphic mapf : N → M between two complex manifolds, of dimen-
sionsn ≤ m. We say thatp ∈ N is a singularpoint of f (or f has a singularity atp)
if the rank of the differentiald fp : TpN → T f (p)M is less thann. The topology of the
situation often forcesf to be singular at some points ofN.

To introduce a finer classification of singular points, choose local coordinates near
p ∈ N and f (p) ∈ M, and consider the resulting map-germfp : (Cn, 0)→ (Cm, 0), which
may be thought of as a sequence ofmpower series inn variables without constant terms.
Let Diffn denote the group of germs of local holomorphic reparametrisations (Cn, 0)→
(Cn, 0). Then Diffn × Diffm acts on the spaceJ(n,m) of all such map-germs. We will
call Diffn ×Diffm-orbits or, more generally, Diffn×Diffm-invariant subsetsO ⊂ J(n,m)
singularities. For a singularityO and holomorphicf : N → M, we can define the set

ZO[ f ] = {p ∈ N; fp ∈ O},

which is independent of any coordinate choices. Then, undersome additional technical
assumptions, forN compact, appropriate closedO, and f sufficiently generic,ZO[ f ] is an
analytic subvariety ofN. The computation of the Poincaré dual classαO[ f ] ∈ H∗(N,Z)
of this subvariety is one of the fundamental problems of global singularity theory. This
is genuinely useful: for example, if we can prove thatαO[ f ] does not vanish, then we
can guarantee that the singularityO occurs at some point of the mapf .

This problem was first studied by René Thom (cf. [45, 25]) in the category of smooth
varieties and smooth maps; in this case cohomology withZ/2Z-coefficients is used.
This study was later extended to the holomorphic category aswell (cf. [26, 9, 37]. To
describe the classαO[ f ] in more concrete terms, denote byC[λ, θ]Sn×Sm the space of
those polynomials in the variables (λ1 . . . λn, θ1 . . . θm) which are invariant under the per-
mutations of theλ’s and the permutations of theθ’s. According to the structure theorem
of symmetric polynomials,C[λ, θ]Sn×Sm is itself a polynomial ring in the elementary
symmetric polynomials:

C[λ, θ]Sn×Sm = C[c1(λ) . . . cn(λ), c1(θ) . . . cm(θ)].

Using the Chern-Weil map, any polynomialb ∈ C[λ, θ]Sn×Sm, and every pair of bundles
(E, F) overN of ranksn andm, respectively, produces a characteristic classb(E, F) ∈
H∗(N,C). The following result is called Thom’s principle in the literature:
For appropriateDiffn × Diffm-invariant O of codimension j inJ(n,m), there exists a
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homogeneous polynomialTpO ∈ C[λ, θ]Sn×Sm of degree j such that for an arbitrary,
sufficiently generic map f: N → M, the cycle Zf [O] ⊂ N is Poincaré dual to the
characteristic classTpO(TN, f ∗T M).

A precise version of this statement is described in [4]. The polynomial TpO is called
theThom polynomialof O. The computation of these polynomials is a central problem
of singularity theory.

There is an important class of orbits which is relevant to theGreen-Griffiths problem.
Define

Ok = { f = ( f 1, . . . f m) ∈ J(n,m) : C[x1, . . . , xn]/〈 f
1, . . . , f m〉 ≃ C[t]/tk+1}.

These are called Morin singularities, and in a recent paper ([4]) the author with A.
Szenes gave a formula for their Thom polynomials Tpk = TpOk

.
The relevance of Morin singularities becomes clear from thealgebraic characteriza-

tion of Ok. This is called thetest curve modelof T. Gaffney (see [23, 4]), saying that an
elementf of (an open dense subset of)J(n,m) lies inOk if and only if there exist a test
curveγ ∈ Jk(1, n) such that thek-jet of f ◦ γ is 0. Reparametrization of the test curve is
again a test curve, and therefore we arrive the following observation
Od fibers over the quotientJk(1, n)/Gk whereGk is the group ofk-jets of reparametisa-
tions (C, 0)→ (C, 0). (In other wordsGk is the truncated Diff1 at degreek+ 1. )

Note that for an open dense subsetJreg
k (1, n) ⊂ Jk(1, n) the geometric quotientJreg

k (1, n)/Gk

exists and the fiber of the Demailly-Semple tower over anyx ∈ X is a smooth compact-
ification of this quotient. In [4] we developed a different construction of the quotient
Jreg

k (1, n)/Gk, and applied equivariant localization on this quotient to integrate the so-
called equivariant Thom class, and then we transformed the formula into an iterated
residue. We proved a vanishing property of this iterated residue, saying that only one
fixed point contributes to the sum, leaving us with a closed, short formula for the Thom
polynomial:

(1) Tpm−n
k (c1, . . .) = Res

z=∞

(−1)k
∏

m<l(zm− zl) Qk(z1 . . . zk)
∏

m+r≤l≤k(zm + zr − zl)

k∏

l=1

C

(

1
zl

)

zm−n
l dzl,

where

C

(

1
zl

)

= 1+
c1

zl
+

c2

z2
l

+ . . .

is the total Chern class ofTN− f ∗T M, andQk(z1, . . . , zk) is a homogeneous polynomial
defined as the dual of a Borel orbit in [4].

The coefficients of the Thom-polynomials are therefore contained in the Thom gen-
erating function

(2) Tpk(z1, . . . , zk) =
∏

m<l(zm− zl) Qk(z1 . . . zk)
∏

m+r≤l≤k(zm+ zr − zl)
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The polynomialQk in the formula is known fork ≤ 6, but only sporadic results are
known in the generic case (see [2] for details). The precise definition of this homoge-
neous polynomial is given in Remark (6.8). The total degree of Tpk is 0, that is, the
homogeneous polynomials in its numerator and denominator have equal degree.

It is conjectured in [37], (Conjecture 5.5) that all coefficients of the Thom polynomials
Tpk(c1, c2, . . .) expressed in terms of the relative Chern classes are nonnegative. In [4]
we prove this fork = 1, 2, 3. The second part of the following conjecture is motivated
in §8.

Conjecture 1.2.For i = (i1, . . . , ik) ∈ Zk with i1+. . .+ik = 0 let Tpi denote the coefficient
of zi1

1 . . . z
ik
k in the Laurent expansion ofTpk(z1, . . . , zk) in the domain|z1| ≪ · · · ≪ |zd|.

Then

(1) (Rimányi,[37]) Tpi ≥ 0 for any i.

(2) Let1 ≤ m, l ≤ k and i1+. . .+ik = 0, and ej = (0, . . . , 1 j, . . . , 0). Then
Tpi+el−em

Tpi
< k2

In the second part of the paper we generalize and extend the localization method
developed in [4] to produce a closed iterated residue formula for intersection pairings
on the quotientJk/Gk. Detailed analysis of the formula accompanied with the numerical
bounds coming from Siu‘s deformation arguments leads us to

Theorem 1.3. Let X ⊂ Pn+1 be a generic smooth projective hypersurface of degree
deg(X) ≥ n6. Then Conjecture 1.2 for k= n implies the existence of a proper algebraic
subvariety Y⊂ X such that every nonconstant entire holomorphic curve f: C→ X has
image f(C) contained in Y.

AcknowledgmentsI am indebted to Damiano Testa, who called my attention to this
beautiful problem and the relation to our earlier work on non-reductive groups, and to
Frances Kirwan for useful discussions, hints, advice and joint work on this project.

The author warmly thanks Andras Szenes, his former PhD supervisor for his patience
and the collaboration from which this paper has outgrown.

I would also like to thank Brent Doran for the helpful discussions.

2. Jet differentials

The central object of this paper is the algebra of invariant jet differentials under
reparametrization of the source spaceC. For more details see the survey paper [10].

2.1. Invariant jet di fferentials. Let X be a complexn-dimensional manifold, andV ⊂
TX a holomorphic subbundle of the tangent bundle ofX. Note thatV is not necessarily
integrable.

Green and Griffiths in [24] introduced a bundleJkV → X, the bundle ofk-jets of
germs of parametrized curves inX tangent toV; that is, the fibre overx ∈ X is the set
of equivalence classes of holomorphic mapsf : (C, 0) → (X, x), such thatf ′(t) ∈ Vf (t)

for all t in a neighbourhood of 0, with the equivalence relationf ∼ g if and only if
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all derivativesf ( j)(0) = g( j)(0) equal for 0≤ j ≤ k. If we choose local holomorphic
coordinates (z1, . . . , zn) on an open neighbourhoodΩ ⊂ X aroundx, the elements of the
fibre Jk,xV areCn-valued maps

f = ( f1, f2, . . . , fn) : (C, 0)→ (Ω, x),

and two maps represent the same jet if their Taylor expansions att = 0

f (t) = x+ t f ′(t) +
t2

2!
f ′′(0)+ . . . +

tk

k!
f (k)(0)+O(tk+1)

coincide up to orderk. In these coordinates the fibre is

Jk,x =

{

( f ′(0), . . . , f (k)(0))
}

= (Cn)k,

which we identify withCnk.
Note thatJkV is not a vector bundle, since the transition functions are polynomial, but

not linear.
LetGk be the group ofk-jets of biholomorphism germs

(C, 0)→ (C, 0);

that is, thek-jets at the origin of local reparametrisations

t 7→ ϕ(t) = α1t + α2t
2
+ . . . + αkt

k, α1 ∈ C
∗, α2, . . . , αk ∈ C,

in which the composition law is taken modulo termst j for j > k. This group acts
fibrewise onJkV by substitution. A short computation shows that this is a linear action
on the fibre:

f ◦ ϕ(t) = f ′(0) · (a1t + a2t
2
+ . . . + akt

k) +
f ′′(0)
2!
· (a1t + a2t

2
+ . . . + akt

k)2
+ . . .

. . . +
f (k)(0)

k!
· (a1t + a2t

2
+ . . . + akt

k)k
=

( f ′a1)t + ( f ′a2 +
f ′′

2!
a2

1)t
2
+ . . .

so the linear action ofϕ on thek-jet ( f ′(0), . . . , f (k)(0)) is given by the following matrix
multiplication:

f ◦ ϕ(0) = ( f ′(0), . . . ,
f (k)(0)

k!
) ·





a1 a2 a3 . . . ak

0 a2
1 2a1a2 . . .

0 0 a3
1 . . .

. . . . .
0 0 0 0 ak

1





,

where the (i, j)th entry of the matrix is
∑

s1+...+si= j

as1 . . .asi .
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There is an exact sequence of groups:

0→ G′k→ Gk→ C
∗ → 0,

whereGk → C
∗ is the morphismϕ→ ϕ′(0) = a1 with the notation used above, and

Gk = G
′
k ⋊ C

∗

is an extension of a unipotent group withC∗. With the above identification,C∗ is the
subgroup of diagonal matrices satisfyinga2 = . . . = ak = 0 andG′k is the unipotent
radical ofGk, i.e witha1 = 1. The action ofλ ∈ C∗ on k-jets describes a grading by

λ · ( f ′(0), f ′′(0), . . . , f (k)(0)) = (λ f ′(0), λ2 f ′′(0), . . . , λk f (k)(0)),

so the weight off (i) is i.
The Green-Griffiths bundle, introduced by Green and Griffiths in [24], is the bundle

EGG
k,mV∗ → X, whose fibers are polynomial differential operatorsQ( f ′, f ′′, . . . , f (k)) on

the fibers ofJkV of weighted degreem with respect to the fiberwiseC∗ action onJkV.
Note that this makes sense, since the transition functions are polynomial.

The action ofGk naturally induces an action onEGG
k,mV∗ fiberwise.

Definition 2.1. Following Demailly (see[10]), we define the vector bundle of invariant
jet differentials of order k and degree m as the bundle Ek,mV∗ ⊂ EGG

k,mV∗ over X, whose
fibers are invariant polynomial differential operators on JkV, that is for anyϕ ∈ Gk they
satisfy

Q(( f ◦ ϕ)′, ( f ◦ ϕ)′′, . . . , ( f ◦ ϕ)(k)) = ϕ′(0)m · Q( f ′, f ′′, . . . , f (k)).

Let En
k = ⊕mEn

k,m denote the graded algebra of invariants. This algebra has attracted
considerable attention for long time. In [5] the authors give a geometric description of
this invariant algebra.

2.2. Compactification of JkV/Gk. Given a space with a group action, intuitively we
think of the ring of invariant polynomial functions on a space as polynomial functions
on the quotient of the space by the group. Informally, we would like to think of the
Demailly algebra of invariant jet differentials as sections of a line bundle over a GIT-
like quotientJkV//Gk w.r.t a line bundle onJkV, that is,

⊕∞m=1Ek,mV = C[JkV]Gk = C[JkV//Gk].

The question is, how can we interpret the quotientJkV//Gk to realise this principle.
SinceGk is not a reductive group, the arguments of Mumford‘s geometric invariant
theory do not apply automatically here. However, we prove in[5] that the algebra of
invariantsC[JkV]Gk is finitely generated, and therefore the categorical quotient

JkV//Gk = Spec([C[JkV]]Gk)

exists.
A more detailed study of the GIT-like quotientJkV//Gk can be found in [5].
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Demailly’s ”projectivized jet bundle” construction provides a smooth compactifica-
tion of the geometric quotientJkV/Gk of an open dense subsetJreg

k (V) ⊂ Jk(V), con-
structed as an iterated tower of projectivized bundles overX. We will call this the
Demailly-Semple tower. It is also called the Semple jet-bundle in the literature.

Let (X,V) be a directed manifold withV ⊂ TX, dim(X) = n, rk(V) = r. With (X,V),
we associate another directed manifold (X̃, Ṽ) where X̃ = P(V) is the projectivized
bundle,π : X̃ → X is the natural projection and̃V is the subbundle ofTX̃ defined
fiberwise as

Ṽ(x0,[v0]) = {ξ ∈ TX̃(x0,[v0]) |π∗(ξ) ∈ C · v0}.

for any x0 ∈ X andv0 ∈ TXx0\0. We also have a lifting operator which assigns to a
germ of holomorphic curvef : (C, 0) → X tangent toV a germ of holomorphic curve
f̃ : (C, 0)→ X̃ tangent toṼ in such a way that̃f (t) = ( f (t), [ f ′(t)]).

Let X ⊂ Pn+1 be a projective hypersurface. Following Demailly [10], we define in-
ductively thek-jet bundlePkTX = Xk and the associated subbundleVk ⊂ TXk as follows.

(X0,V0) = (X,TX), (Xk,Vk) = (X̃k−1, Ṽk−1).

In other words, (Xk,Vk) is obtained from (X,TX) by iteratingk-times the lifting construc-
tion (X,V) 7→ (X̃, Ṽ). Therefore,

dimPkTX = n+ k(n− 1), rankVk = n− 1,

and the construction can be described inductively by the following exat sequences:

0 // TPkTX/Pk−1TX
// Vk

(πk)∗
// OPkTX(−1) // 0

0 // OPkTX
// π∗kVk−1 ⊗ OPkV(−1) // TPkTX/Pk−1TX

// 0

whereπk : PkTX → Pk−1TX is the natural projection and (πk)∗ is its differential.
We also have natural projections

(3) π j,k = π j+1 ◦ . . . ◦ πk−1 ◦ πk : PkTX → P jTX,

and with this notationπ0,k : PkTX → X = P0TX is a locally trivial holomorphic fiber
bundle overX, and the fibersXk,x(PkTX)x = π

−1
0,k(x) arek-stage towers ofPn−1 bundles.

Theorem 2.2. ([10]) Suppose that n> 2. The quotient Jreg
k TX/Gk has the structure of a

locally trivial bundle over X, and there is a holomorphic embedding Jreg
k TX/Gk ֒→ Xk

which identifies Jreg
k TX/Gk with Xreg

k , that is the set of points in Xk of the form f[k](0) for
some non singular k-jet f . In other words Xk is a relative compactification of Jreg

k TX/Gk

over X. Moreover, one has the direct image formula:

(π0,k)∗OXk(m) = O(Ek,mT∗X).
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3. Localization on the Demailly-Semple tower

Let T = (C∗)n be then-dimensional torus, and suppose we are given a localT-action
onX near the pointx ∈ X. By the definition, this action induces an action on the Semple
jet bundlePkTX aroundx. Indeed, we saw in the previous chapter that it induces an
action onX̃ andṼ, so by induction it defines an action onPkTX.

Now fix a pointx ∈ X. Take a localT-action onX nearx such thatx is a fixed point
of the action. To do so, we can take an affine chart with origin atx, and define a linear
T-action on this affine chart. This action induces aT-action onV = TX,x, and sincex is
a fixed point, it also induces an action on the fiberXk,x andVk|Xk,x.

We aim to apply equvivariant localization on the fiberXk,x w.r.t thisT-action. This is
a k-stage tower of projective fibrations, and to understand thefixed point data and the
weights of the action at the fixed points we use the exact sequences (2.2), restricted to
the fibre overx. Note that (2.2) restricted toXk,x is T-equivariant.

Fork = 1 we get

0 // TP(V) // V1|P(V) // OP(V)(−1) // 0,

Let {e1, . . . , en} be an eigenbasis for theT-action onV = TX,x with weightsλ1, . . . , λn.
Locally, V1|P(V) = TP(V) ⊕OP(V)(−1) as aT-module, and we can choose basis on the fibers
of V1, such that the induced action is diagonal.

In particular, at the fixed point [ej] = [0 : . . .0 : 1 : 0 : · · · : 0] the weights in a local
diagonal basis on (V1)[ej ] areλi − λ j , i , j, i = 1, . . .n (coming fromTP(V),[ej ]), andλ j

(the weight onOP(V)(−1),[ej ]). Therefore we say, that

(4) the weights onV1|[ej ] are
{

λ j, λi − λ j, i , j
}

.

Now (2.2) restricted to the fiberXk,x gives us:

0 // TXk,x/Xk−1,x
// Vk|Xk,x

// OXk,x(−1) // 0, .

Locally, again,Vk is the direct sum of the two bundles on the ends. Fix a pointy ∈ Xk,x,
and letVk−1,π∗y denote the fiber ofVk−1 at the pointπ∗y ∈ Xk−1,x, whereπ = πk,k−1. If y
is a fixed point of theT-action onXk,x, thenπ∗y is a fixed point onXk−1,x, and therefore
Vk−1,π∗y is T-invariant, acting on byT with weightsw1, . . . ,wn ∈ Lin(λ1, . . . , λn) in the
eigenbasise1, . . . , en. ThenXk,x = P(Vk−1), and sincey is a fixed point,y = [ej] for some
1 ≤ j ≤ n. The weight on (Ty(Xk,x/Xk−1,x) = TP(Vk−1,π∗y) at y are therefore

(5) wi − wj for i = 1, . . .n, i , j.

The weight on the tautologiacal bundleOXk,x(−1) at y ∈ Xk,x is wj, and by (3) the weights
on (Vk,y) are

(6) wi − wj for i = 1, . . .n, i , j, andwj .
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To make reference to the fixed points and the weights easier, we introduce the follow-
ing notations. Recall thatXk,x is ak-stage tower of projective fibrations

Vk

��

Pn−1 // Xk,x = P(Vk−1)

��

Pn−1 // Xk−1,x = P(Vk−2)

��. . .

��

X1,x = P(TX,x)

If y ∈ Xk,x is a fixed point, thenπk,0(y) = x, andπk,1(y) ∈ P(TX,x) is a fixed point,
corresponding to a weight onTX,x, sayλi1. In general,πk,s(y) ∈ Xs,x is a fixed point, and
Vk|πk,s(y) is invariant under theT action andXk−1,y corresponds to one of the eigenbasis.

Therefore, a fixed pointy = Pw1,...,wk is characterised by a sequence of weightswi ∈

Lin(λ1, . . . , λn), i = 1, . . . , k with the following properties. For a setS ⊂ Lin(λ1, . . . , λn)
let S,0 ⊂ S denote the nonzero elements ofS.

w1 ∈ S1 = {λ1, . . . , λn}

w2 ∈ S2(w1) = {w1, λi − w1 : λi − w1 , 0, 1 ≤ i ≤ n}

w3 ∈ S3(w1,w2) = {w2,w− w2 : w ∈ S2(w1)}
,0
= {λi − w1 − w2,w1 − w2,w2 : λi − w1 , 0},0

. . . . . .(7)

wk ∈ Sk(w1, . . . ,wk−1) = {wk−1,w− wk−1 : w ∈ Sk−1(w1, . . . ,wk−2)}
,0
=

= {λi − w1 − . . . − wk−1,w1 − w2 − . . . − wk−1, . . . ,wk−2 − wk−1,wk−1 :

λi − w1 , 0,w1 − w2 , 0,w2 − w3 , 0, . . . ,wk−2 − wk−1 , 0},0

Note, thatSi containsn weights fori = 1, . . . , k. The weights inSi are the weights
of the T action onVi−1|πk,i−1(y). More precisely,wi ∈ Si is the weight ofOXi,x(−1)|πk,i (y),
whereas{w− wi : w ∈ Si−1}

,0 are the weights of the tangent spaceTπk,i (y)P(Vi−1|πk,i−1(y)) at
the the pointπk,i(y).

Forn = k = 3 the following table contains the setsSi and the fixed points.
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(8)

(λ1, λ2 − 2λ1, λ3 − 2l1)
(λ1, λ2 − λ1, λ3 − λ1) (2λ1 − λ2, λ2 − λ1, λ3 − λ2)

(2λ1 − λ3, λ2 − λ3, λ3 − λ1)
(λ1 − λ2, 2λ2 − λ1, λ3 − λ1)

(λ1, λ2, λ3) (λ1 − λ2, λ2, λ3 − λ2) (λ1 − 2λ2, λ2, λ3 − 2λ2)
(λ1 − λ3, 2λ2 − λ3, λ3 − λ2)

(λ3, λ1 − 2λ3, λ2 − 2λ3)
(λ3, λ1 − λ3, λ2 − λ3) (2λ3 − λ1, λ1 − λ3, λ2 − λ1)

(2λ3 − λ2, λ1 − λ2, λ2 − λ3)

The Atiyah-Bott localization on the Demailly-Semple jet bundle reads as follows:

Proposition 3.1. Let Xk,x be the fiber of the Demailly-Semple k-jet bundle over X. Then
dim(Xk,x) = k(n− 1) and forα ∈ Ωk(n−1)(Xk,x)

(9)
∫

Xk,x

α =
∑

p(w1,...,wk)∈F

α|p(w1,...,wk)
∏k

j=1

∏

w∈S j (w1,...,wj−1)
w,wj

(w− wj)
,

whereF denotes the set of fixed points on Xk,x, i.e the last column of our table(8)

Proof. The equivariant Euler class of the tangent bundle at the fixedpoint p(w1, . . . ,wk)
is the product of the weights at that fixed point.

EulerT(Tp(w1,...,wk)Xk,x =

k∏

j=1

EulerT(Tπk, j p(w1,...,wk)P(V j−1|πk, j−1p(w1,...,wk))

and the weights onV j−1|πk, j−1p(w1,...,wk) are collected inS j−1. �

3.1. Transforming the localization formula into iterated residue. In this section we
derive an iterated residue formula for the right hand side ofthe localization (9). The
geometric meaning of this residue formula is not entirely clear, but its effectiveness
enables us to avoid the lenghty and complicated computations with the cohomology
ring of the Demailly-Semple tower and to handle the coefficients of the Green-Griffiths
polynomial. This section can therefore be considered as theheart of our computations.

Assume thatα|p(w1,...,wk) is a homogeneous polyomial of the Chern classeswi = c1(OP(Vi)(−1)),
at the fixed pointp(w1, . . . ,wk), that is,

α|p(w1,...,wk) = Q(w1, . . . ,wk)

with some homogeneous polynomialQ of degree dimXk,x = k(n − 1). Note that the
Diverio-form satisfies this condition, since it is the first Chern class of

⊗k
i=1π

∗
i,kOP(Vi)(ai)

We explain the details in the next section.
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We aim to find an iterated residue formula for the general Atiyah-Bott localization
expression

(10) AB(Q,Xk) =
∑

p(w1,...,wk)∈Fk

Q(w1, . . . ,wk)
∏k

j=1

∏

w∈S j (w1,...,wj−1),w,wj
(w− wj)

.

To describe this formula, we will need the notion of aniterated residue(cf. e.g. [43])
at infinity. Let ω1, . . . , ωN be affine linear forms onCk; denoting the coordinates by
z1, . . . , zk, this means that we can writeωi = a0

i + a1
i z1 + . . . + ak

i zk. We will use the
shorthandh(z) for a functionh(z1 . . . zk), and dz for the holomorphicn-form dz1 ∧ · · · ∧

dzk. Now, let h(z) be an entire function, and define theiterated residue at infinityas
follows:

(11) Res
z1=∞

Res
z2=∞
. . .Res

zk=∞

h(z) dz
∏N

i=1ωi

def
=

(

1
2πi

)k ∫

|z1|=R1

. . .

∫

|zk|=Rk

h(z) dz
∏N

i=1ωi

,

where 1≪ R1 ≪ . . . ≪ Rk. The torus{|zm| = Rm; m= 1 . . . k} is oriented in such a way
that Resz1=∞ . . .Reszk=∞ dz/(z1 · · · zk) = (−1)k.

We will also use the following simplified notation:

Res
z=∞

def
= Res

z1=∞
Res
z2=∞
. . .Res

zk=∞
.

In practice, the iterated residue 11 may be computed using the followingalgorithm :
for eachi, use the expansion

(12)
1
ωi
=

∞∑

j=0

(−1)j (a
0
i + a1

i z1 + . . . + aq(i)−1
i zq(i)−1) j

(aq(i)
i zq(i)) j+1

,

whereq(i) is the largest value ofm for which am
i , 0, then multiply the product of

these expressions with (−1)kh(z1 . . . zk), and then take the coefficient ofz−1
1 . . . z

−1
k in the

resulting Laurent series.

3.2. Warm-up: residues on projective spaces.First we show how iterated residues
arise whenk = 1. In this caseX1,x = P(TX), the projectivized tangent bundle ofX ∈
Pn+1, and the fiber over anyx ∈ X is P(TxX) = P(V).

Suppose we have a diagonal torus action ofTn onTxX with weightsλ1, λ2, . . . , λn, as
before.

We have the following residue theorem.

Proposition 3.2. For a polynomial Q onCn, we have

(13) AB(Q,X1,n) =
n∑

i=1

Q(λi)
∏

j,i(λ j − λi)
= Res

z=∞

Q(z)
∏n

j=1(λ j − z)
dz
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Proof. We compute the residue (13) using the Residue Theorem on the projective line
C ∪ {∞}. This residue is a contour integral, whose value is minus thesum of thez-
residues of the form in (13). These poles are atz = λ j, j = 1 . . .n, and after canceling
the signs that arise, we obtain the left hand side of (13). �

3.3. Residues on a projective bundle.For k = 2 the Demailly-Semple towerX2 is a
projective bundle over the projectivized bundle ofTX. The fiberX2,x over x ∈ X is a
Pn−1 bundle overP(TxX) = Pn−1. The fixed point data can be read off from the first two
columns of table (8). The Atiyah-Bott localization formula(9) has the following form:

(14) AB(Q,X2) =
n∑

j1=1

n∑

j2=1, j2, j1

Q(λ j1, λ j2 − λ j1)
∏

i, j1(λi − λ j1)
∏

i, j1, j2((λi − λ j2) · (2λ j1 − λ j2)
+

+

n∑

j1=1

Q(λ j1, λ j1)
∏

i, j1(λi − λ j1)
∏

i, j1(λi − 2λ j1)
.

Here the first sum corresponds to the fixed pointsw1 = λ j1,w2 = λ j2 −λ j1 whereas the
second sum to the fixed pointsw1 = w2 = λ j1.

Proposition 3.3.

(15) AB(Q,X2,n) = Res
z1=∞

Res
z2=∞

−z2

z1 − z2

Q(z1, z2)dz2dz1
∏n

i=1(λi − z1)
∏n

i=1(λi − z1 − z2)

Proof. Again, as in the warm-up, we compute the iterated residue (15) using the Residue
Theorem on the projective lineC ∪ {∞}. The first residue, which is taken with respect
to z2, is a contour integral, whose value is minus the sum of thez2-residues of the form
in (15). These poles are atz2 = λi − z1, i = 1 . . .n, andz2 = z1 After canceling the signs
that arise, we obtain the following expression for the righthand side of (15):
(16)

Res
z1=∞





n∑

j1=1

z1 − λ j1

2z1 − λ j1

Q(z1, λ j1 − z1)
∏n

i=1(λi − z1)
∏

i, j1(λi − λ j1)
+

−z1Q(z1, z1)
∏n

i=1(λi − z1)
∏n

i=1(λi − 2z1)




dz1

After cancellation and exchanging the sum and the residue operation, at the next step,
we have

(17)
n∑

j1=1

Res
z1=∞

−Q(z1, λ j1 − z1)dz1

(2z1 − λ j1)
∏

i, j1(λi − z1)
∏

i, j1(λi − λ j1)
+ Res

z1=∞

−z1Q(z1, z1)dz1
∏n

i=1(λi − z1)
∏n

i=1(λi − 2z1)

The first sum corresponds to the fixed pointsp(w1,w2) wherew2 = λ j1 − w1, and
the second to the ones withw2 = w1. We denote these conributions byAB1 andAB2,
respectively. Now we again apply the Residue Theorem separately to AB1 and AB2,
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transforming the residue into a sum over the poles. The polesof AB1 arez1 = λi , i , j1
andz1 = λ j1/2, giving us

AB1 =

n∑

j1=1

∑

j2, j1

Q(λ j2, λ j1 − λ j2)

(2λ j2 − λ j1)
∏

i, j2(λi − λ j2)
∏

i, j1, j2(λi − λ j1)
︸                                                    ︷︷                                                    ︸

AB(w1=λ j2 ,w2=λ j1)−w1

+(18)

+

n∑

j1=1

1
2

Q(λ j1/2, λ j1/2)
∏

i, j1(λi − λ j1/2)
∏

i, j1(λi − λ j1)
︸                                       ︷︷                                       ︸

AB(w=λ j1/2,w2=λ j1−w1)

(19)

The poles ofAB2 arez1 = λi andz1 = λi/2 giving us

AB2 =

n∑

j1=1

n∑

j2=1

−λ j2Q(λ j2, λ j2)
∏

i, j2(λi − λ j2)
∏n

i=1(λi − 2λ j2)
︸                                  ︷︷                                  ︸

AB(w1=λ j2 ,w2=w1)

+(20)

+

n∑

j1=1

n∑

j2=1

−λ j2/2Q(λ j2/2, λ j2/2)
∏n

i=1(λi − λ j2/2)
∏

i, j2(λi − λ j2)
︸                                    ︷︷                                    ︸

AB(w1=λ j2/2,w2=w1)

(21)

SinceAB(w1 = λ j1/2,w2 = λ j1 − w1) = −AB(w1 = λ j1/2,w2 = w1) (note thatλ j2/2 in
the numerator cancels withλ j2 − λ j2/2 in the denominator) , we arrive at (14).

�

3.4. General case: iterated residues on the Demailly-Semple tower.

Proposition 3.4.
(22)

AB(Q,Xk) = Res
z=∞

∏

2≤t1≤t2≤k−(zt1 + zt1+1 + . . . + zt2)
∏

1≤s1<s2≤k(zs1 − zs1+1 − . . . zs2)
Q(z1, . . . , zk)

∏k
j=1

∏

i=1n(λi − z1 − z2 − . . . − zj)
dz

Note that the denominator is the product of the tangent weights at a generic fixed
point (see (7)), and the factors in the numrator serve the cancelation of the zero elements
which we omitted when we formed the, 0 part of the sets at (7).

Proof. Recall that for the fixed pointy = p(w1, . . . ,wk) ∈ Xk,x we have defined in (7) the
sets

Si(w1, . . .wi−1),S
,0
i (w1, . . . ,wi−1) ⊂ Lin(λ1, . . . , λn),

such that the equivariant Euler class of the tangent bundle at p(w1, . . . ,wk), that is, the
product of the weights is equal to

(23) EulerT(Tp(w1,...,wk)Xk,x) =
k∏

j=1

∏

w∈S,0
j (w1,...,wj−1),w,wj

(w− wj).
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Note that by definition

{

w− wj : w ∈ S,0
j (w1, . . . ,wj−1)

}

=

=

{

λi − w1 − . . . ,−wj ,w1 − w2 − . . . − wj ,w2 − w3 − . . . − wj , . . . ,wj−1 − wj : 1 ≤ i ≤ n
}

\

\
{

−(wt + wt+1 + . . . + wj) : 2 ≤ t ≤ j
}

.

Therefore,

(24)
1

EulerT(Tp(w1,...,wk)Xk,x)
=

k∏

j=1

∏

2≤t≤ j −(wt + . . . + wj)

˜∏
1≤s≤ j(ws − ws+1 − . . . − wj) ˜∏n

i=1(λi − w1 − w2 − . . . − wj)
,

where
˜∏

γ∈Γ
γ =

∏

γ∈Γ,γ,0

γ

denotes the product of the nonzero elements of the set we sum over. The condition
w , wj in (23) is equivalent to replacing

∏

by ˜∏. The Atiyah-Bott localization reads as

(25) AB(Q,Xk,n) =
∑

p(w1,...,wk)∈Fk,n

Q(w1, . . . ,wk)
∏k

j=1

∏

w∈S j (w1,...,wj−1),w,wj
(w− wj)

=

=

∑

p(w1,...,wk)∈Fk,n

∏

2≤t1≤t2≤k−(wt1 + . . . + wt2)Q(w1, . . . ,wk)
˜∏

1≤s1<s2≤k(ws1 − ws1+1 − . . .ws2)
∏k

j=1
˜∏n

i=1(λi − w1 − w2 − . . . − wj)
.

The iterated residue on the right hand side in (22) can be computed using the Residue
Theorem on the projective lineC ∪ {∞}. The first residue, which is taken with respect
to zk, is a contour integral, whose value is minus the sum of thezk-residues at the finite
poles. These poles are at

zk ∈Pk =

{

λi − z1 − . . . − zk−1, zq − zq+1 − . . . − zk−1, zk−1 : i = 1 . . .n, q = 1, . . . k− 2
}

.

Note that by definition
Pk = Sk(z1, . . . , zk−1),

and therefore after canceling the signs that arise we obtainthe following expression for
the right hand side of (22):

(26)

Res
z1=∞
. . . Res

zk−1=∞

∏

2≤t1≤t2≤k−1−(zt1 + zt1+1 + . . . + zt2)
∏

1≤s1<s2≤k−1(zs1 − zs1+1 − . . . − zs2)
∏k−1

j=1

∏n
i=1(λi − z1 − z2 − . . . − zj)

·

·
∑

wk∈Pk

∏

2≤t≤k−1 −(zt + zt+1 + . . . + zk−1 + wk)(−wk)Q(z1, . . . , zk−1,wk)
˜∏

1≤s≤k−1(zs− zs+1 − . . . − zk−1 − wk) ˜∏n
i=1(λi − z1 − z2 − . . . − zk−1 − wk)

dz
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Now take the next residue, with respect tozk−1. The poles of (26) coming from the
first factor are

Pk−1 = Sk−1(z1, . . . , zk−2).(27)

The second term formally has poles at

(28) Qk−1(wk) = {λi−z1−. . .−zk−2−wk, zs−zs+1−. . .−zk−2−wk : 1 ≤ i ≤ n, 1 ≤ s≤ k−2}.

More precisely:

(1) If wk = λi0 − z1 − . . . − zk−1 then the denominator is

(29)
˜∏

1≤s≤k−1
(zs− zs+1 − . . . − zk−1 − wk)

˜∏n

i=1
(λi − z1 − z2 − . . . − zk−1 − wk) =

=

∏

i,i0

(λi − λi0)
∏

1≤s≤k−1

(z1 + . . . + zs−1 + 2zs− λi0),

and

Q(wk) = λi0 − z1 − . . . − zk−1) = {(z1 + . . . + zk−2 − λi0)/2},

containing a single element.
(2) If wk = zq0 − zq0+1 − . . . − zk−1, leq0 ≤ k− 2, then the denominator is

(30)
˜∏

1≤q≤k−1
(zq − zq+1 − . . . − zk−1 − wk)

˜∏n

i=1
(λi − z1 − z2 − . . . − zk−1 − wk) =

=

∏

1≤q<s0

(zq−zq+1−. . .−zq0−1−2zq0)
∏

q0<q≤k−2

(−zq0+zq0+1+. . .+zq−1+2zq)
n∏

i=1

(λi−z1−z2−. . .−zq0−1−2zq0) =

and

Q(wk = zq0 − zq0+1 − . . . − zk−1) = {(zq0 − zq0+1 − . . . − zk−2)/2},

containing a single element again.
(3) Finally, forwk = zk−1 we have

(31)
˜∏

1≤q≤k−1
(zq − zq+1 − . . . − zk−1 − wk)

˜∏n

i=1
(λi − z1 − z2 − . . . − zk−1 − wk) =

=

∏

1≤q≤k−2

(zq − zq+1 − . . . − zk−2 − 2zk−1)
n∏

i=1

(λi − z1 − . . . − zk−2 − 2zk−1),

and therefore

Q(wk = zk−1) = {(zq−zq+1− . . .−zk−2)/2, (λi−z1− . . .−zk−2)/2 : 1≤ q ≤ k−2, 1 ≤ i ≤ n}.
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Applying the Residue Theorem with respect tozk−1 in (26), we get a sum over these
poles. We claim that the terms corresponding to the poles inQk−1 add up to 0, that is,

(32)
∑

wk∈Pk

∑

wk−1∈Q(wk)

c(wk,wk−1)·

∏

2≤t1≤t2≤k−1−(zt1 + zt1+1 + . . . + zt2)
∏

1≤s1<s2≤k−1(zs1 − zs1+1 − . . . − zs2)
∏k−1

j=1

∏n
i=1(λi − z1 − z2 − . . . − zj) |zk−1↔wk−1

·

−(wk−1 + wk) · (−wk)
∏

1≤t≤k−1 Q(z1, . . . , zk−2,wk−1,wk)
˜∏

1≤s≤k−1(zs − zs+1 − . . . zk−2 − wk−1 − wk) ˜∏n
i=1(λi − z1 − z2 − . . . − zk−2 − wk−1 − wk)

= 0,

wherec(wk,wk−1) is the coefficient ofzk−1 in the corresponding term, see below.
We pair the terms in (32), such that each couple adds up to 0. Wehave described the

setsQ(wk) above, and get

(1)

(wk,wk−1) = (λi0−z1−. . .−zk−1, (z1+. . .+zk−2−λi0)/2) = ((z1+. . .+zk−2−λi0)/2, (z1+. . .+zk−2−λi0)/2)

Herec(wk,wk−1) = −1/2.
(2)

(wk,wk−1) = (zq0−zq0+1−. . .−zk−1, zq0−zq0+1−. . .−zk−2/2) = (zq0−zq0+1−. . .−zk−2/2, zq0−zq0+1−. . .−zk−2/2)

Herec(wk,wk−1 = −1/2.
(3)

(wk,wk−1) = (zk−1, (zq−zq+1−. . .−zk−2)/2) = ((zq−zq+1−. . .−zk−2)/2, (zq−zq+1−. . .−zk−2)/2)

Herec(wk,wk−1) = −1/2
(4)

(wk,wk−1) = (zk−1, (λi −z1− . . .−zk−2)/2) = ((λi −z1− . . .−zk−2)/2, (λi −z1− . . .−zk−2)/2)

Herec(wk,wk−1) = −1/2

We see that in (32) the terms under (1) cancel with the terms under (3), and the terms
under (2) cancel with the terms under (4).

Therefore taking the residue w.r.tzk−1 in (26), only the poles atzk−1 ∈Pk−1 contribute,
and we get the following expression for the iterated residue:

(33)

Res
z1=∞
. . . Res

zk−2=∞

∏

2≤t1≤t2≤k−2−(zt1 + zt1+1 + . . . + zt2)
∏

1≤s1<s2≤k−2(zs1 − zs1+1 − . . . − zs2)
∏k−2

j=1

∏n
i=1(λi − z1 − z2 − . . . − zj)

·

·
∑

wk∈Pk
wk−1∈Pk−1

∏

2≤t≤k−2 −(zt + zt+1 + . . . + zk−2 + wk−1 + wk)(−wk−1 − wk)(−wk)Q(z1, . . . , zk−2,wk−1,wk)
˜∏

1≤s≤k−2(zs − zs+1 − . . . − zk−2 − wk−1 − wk)(wk−1 − wk) ˜∏n
i=1(λi − z1 − . . . − zk−2 − wk−1 − wk)

dz
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Now take the residue w.r.tzk−2 and play the same game again to prove that the contri-
butions of the poles in the denominator of the second factor add up to 0. The poles in
the second factor are formally at

Q(wk,wk−1) =

{λi−z1−. . .−zk−3−wk−1−wk, zq−zq+1−. . .−zk−3−wk−1−wk,wk−1+wk : 1 ≤ i ≤ n, 2 ≤ q ≤ k−3}.

Note thatwk−1,wk depends onzk−2, but formally we have the following cases:

(1) zk−2 = λi0 − z1− . . .− zk−3−wk−1 −wk, then the denominator of the second factor
is

(34)
˜∏

1≤s≤k−2
(zs−zs+1−. . .−zk−2−wk−1−wk)(wk−1−wk)

˜∏n

i=1
(λi−z1−. . .−zk−2−wk−1−wk) =

=

∏

i,i0

(λi − λi0)
∏

1≤s≤k−2

(z1 + . . . + zs−1 + 2zs− λi0)

and therefore

Q(wk−1,wk) = {(λi0 − z1 − . . . − zk−3)/2},

independent ofwk−1,wk.
(2) If zk−2 = zq0 − . . . − zk−3 − wk−1 − wk, we get similarly that the only pole is at

Q(wk−1,wk) = {(zq0 − . . . − zk−3)/2},

independent ofwk−1,wk.
(3) If zk−2 = wk−1 + wk, then the denominator of the second factor is

(35)
˜∏

1≤s≤k−2
(zs−zs+1−. . .−zk−2−wk−1−wk)(wk−1−wk)

˜∏n

i=1
(λi−z1−. . .−zk−2−wk−1−wk) =

=

∏

1≤q≤k−3

(zq − zq+1 − . . . − zk−3 − 2zk−2)(wk−1 − wk)
n∏

i=1

(λi − z1 − . . . − zk−3 − 2zk−2),

and the linear formwk−1 − wk does not containzk−2 if wk ∈ Pk,wk−1 ∈ Pk−1,
therefore the only poles forzk−2 are at

Q(wk−1,wk) = {(zq−zq+1− . . .−zk−3)/2, (λi −z1− . . .−zk−3)/2 : 1≤ q ≤ k−3, 1 ≤ i ≤ n}

Again, the terms under (1) and (2) cancel out with the terms in(3), leaving us with
the poles forzk−2 in the first factor in (33)

Iterating this process we finally arive at (25), proving Proposition 3.4.
�

Remark 3.5. Changing the order of the variables in iterated residues, usually, changes
the result. In this case, however, because all the poles are normal crossing, formula
(3.4) remains true no matter in what order we take the iterated residues.
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4. Proof of Theorem 1.1

Let X ⊂ Pn+1 be a smooth hypersurface of degree degX = d, and letXk denote the
k-level Demailly-Semple tower onX.

To start with, we recall the classical result of Demailly which connects jet differentials
to the Green-Griffiths Conjecture:

Theorem 4.1. ([24, 10, 40]) Assume that there exist integers k,m > 0 and ample line
bundle A→ X such that

H0(Xk,OXk(m) ⊗ π∗A−1) ≃ H0(X,Ek,mT∗X ⊗ A−1) , 0

has non zero sectionsσ1, . . . , σN, and let Z⊂ Xk be the base locus of these sections.
Then every entire holomorphic curce f: C → X necessarily satisfies f[k](C) ⊂ Z. In
other words, for every globalGk-invariant differential equation P vanishing on an ample
divisor, every entire holomorphic curve f must satisfy the algebraic differential equation
P( jk f (t)) ≡ 0.

Note, that by Theorem 1. of [14],

H0(X,Ek,mT∗X ⊗ A−1) = 0

holds for allm≥ 1 if k < n, so we can restrict our attention to the rangek ≥ n.
To control the order of vanishing of these differential forms along the ample divisor

we chooseA to be –as in [13] – a proper twist of the canonical bundle ofX. Recall that
the canonical bundle of the smooth, degreed hypersurfaceX is

KX = OX(d − n− 2),

which is ample as soon asd ≥ n+ 3.
The crucial step which connects algebraic degeneracy of germs with the degeneracy

of the holomorphic curve is Siu’s strategy of constructiunglinealy independent jet dif-
ferentials using the bundle of vertical jets. The followingtheorem is a reformulation of
the results of§3 in [13].

Theorem 4.2. (Algebraic degeneracy of entire curves,[13], §3)
Assume that n= k, and there exist aδ = δ(n) > 0 and D= D(n, δ) such that

H0(Xn,OXn(m) ⊗ π∗K−δmX ) ≃ H0(X,Ed,mT∗X ⊗ K−δmX ) , 0

wheneverdeg(X) > D(n, δ) for some m≫ 0. Then the Green-Griffiths conjecture holds
for

deg(X) ≥ max(D(n, δ),
n2
+ 2n
δ

+ n+ 2).

Following [10], for (a1, . . . , ak) ∈ Zk, we define the following line bundle onXk:

(36) OXk(a) = π∗1,kOX1(a1) ⊗ π
∗
2,kOX2(a2) ⊗ · · · ⊗ OXk(ak).

The following theorem is from [10], and [14]
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Proposition 4.3. (1) ([10],Prop. 6.16)
If a1 ≥ 3a2, . . . , ak−2 ≥ 3ak−1, and ak−1 ≥ 2ak ≥ 0, the line bundleOXk(a) is
relatively nef over X. If, moreover,

(37) a1 ≥ 3a2, . . . , ak−2 ≥ 3ak−1 and ak−1 > 2ak > 0

holds, thenOXk(a) is relatively ample over X.
(2) ([14], Prop. 3.2)

Let OX(1) denote the hyperplane divisor on X. If(37) holds, thenOXk(a) ⊗
π∗0,kOX(l) is nef, provided that l≥ 2|a|, where|a| = a1 + . . . + ak.

Theorem 4.2 accompanied with the following theorem gives usTheorem 1.1.

Theorem 4.4. Let X ⊂ Pn+1 be a smooth complex hypersurface with ample canonical
bundle, that isdegX ≥ n+ 3. If ai = n8(n+1−i),δ = 1

n8n and d> D(n) = n8n then

H0(Xn,OXn(|a|) ⊗ π
∗K−δ|a|X ) ≃ H0(X,En,|a|T

∗
X ⊗ K−δ|a|X ) , 0,

nonzero.

To prove Theorem 4.4 we follow [13] using the algebraic Morseinequalities of De-
mailly and Trapani. LetL → X be a holomorphic line bundle over a compact Kahler
manifold of dimensionn andE → X a holomorphic vector bundle of rankr. Suppose
thatL can be written as the difference of two nef line bundles,L = F ⊗G−1, with F,G
numerically effective. Demailly proved in [11] the following strong algebraic Morse
inequalities.

Theorem 4.5. ([11, 44]) With this notation we have
q∑

j=0

(−1)q− jh j(X, L⊗m ⊗ E) ≤ r
mn

n!

q∑

j=0

(−1)q− j

(

n
j

)

Fn− j ·G j
+ o(mn).

In particular, q= 1 asserts that L⊗m ⊗ E has a global section for m large as soon as

Fn − nFn−1G > 0.

For d > n + 3 the canonical bundleKX ≃ OX(d − n − 2) is ample, and therefore we
have the following expressions forOXk(a) andOXk(a) ⊗ π∗0,kK

−δa
X as a difference of two

nef line bundles overX:
• OXk(a) = (OXk(a) ⊗ π∗0,kOX(2|a|)) ⊗ (π∗0,kOX(2|a|))−1

• OXk(a) ⊗ π∗0,kK
−δa
X = (OXk(a) ⊗ π∗0,kOX(2|a|)) ⊗ (π∗0,kOX(2|a|) ⊗ π∗0,kK

δa
X )−1

Applying the Morse algebraic inequalities, we need to provethe positivity of the
following intersection product:

I (X, n, k, a, δ) = (OXk(a) ⊗ π∗0,kOX(2|a|))n+k(n−1)−

((k + 1)(n− 1))(OXk(a) ⊗ π∗0,kOX(2|a|))(k+1)(n−1) · (π∗0,kOX(2|a|) ⊗ π∗0,kK
δa
X ).
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Let h = c1(OX(1)) denote the first Chern class of the tautological line bundleOX(1),
cl = cl(TX) for l = 1, . . . , n, andus = c1(OXs(1)) for s = 1, . . . , s. Thenc1(KX) = −c1 =

(d − n− 2)h, and the intersection product we have to evaluate becomes

I (X, n, k, a, δ) =

= (a1u1+. . .+akuk+2|a|h)n+k(n−1)−(k+1)(n−1)(a1u1+. . .+akuk+2|a|h)(k+1)(n−1)(2|a|h−δ|a|c1) =

= (a1u1+. . .+akuk+2|a|h)(k+1)(n−1) (a1u1 + . . . + akuk + 2|a|h− (k + 1)(n− 1)|a|h(2+ δ(d − n− 2)))

We look at this intersection product as a polynomial in the variablesu1, . . . , uk, and
also use the notationIX,n,k,a,δ(u1, . . . , uk).

The following proposition presents the first iterated residue formula for the Demailly
intersection number.

Proposition 4.6.
(38)
∫

Xk

I (X, n, k, a, δ) = (−1)k
∫

X
Res
z=∞

∏

2≤t1≤t2≤k(zt1 + zt1+1 + . . . + zt2)
∏

1≤s1<s2≤k(−zs1 + zs1+1 + . . . + zs2)
IX,n,k,a,δ(z1, . . . , zk)

∏k
j=1

∏

i=1n(λi + z1 + z2 + . . . + zj)
dz

Proof. Integrating first along the fibers we get
∫

Xk

I (X, n, k, a, δ) =
∫

X

∫

Xk,x

I (X, n, k, a, δ)

We apply the ABBV localization on the fiberXk,x with respect to theTn action onXk,x

described in the previous section, and get that (see (25))
∫

Xk

I (X, n, k, a, δ) = AB(IX,n,k,a,δ(−u1, . . . ,−uk)).

To see this, recall that in formula (25),wi stands for the weight of theTn action on the
tautological line bundleOXi(−1), which is by definitionui. Now Proposition 3.4 gives
the result, noticing that we made the substitutionzi ↔ −zi, resulting the sign (−1)k. �

We can get rid of theλi ’s on the right hand side of (38) with a small trick. To do it,
we use the following well-known fact

Remark 4.7. The Chern classes of X are expressible with d, h via the following identity:

(1+ h)n+2
= (1+ deg(X)h)c(X),

where c(X) = c(TX) is the total Chern class of X. After expansion we get for1 ≤ j ≤ n

(39) cj(X) = (−1)jh j
j∑

i=0

(−1)i
(

n+ 2
i

)

d j−i

.
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Therefore we have
n∏

i=1

(λi + z1 − . . . + zj) = (z1 + . . . + zj)
n

n∏

i=1

(1+
λi

z1 + . . . + zj
) =(40)

= (z1 + . . . + zj)
n · c

(

1
z1 + . . . + zj

)

= (z1 + . . . + zj)
n

(

1+ h
z1+...+zj

)n+2

1+ dh
z1+...+zj

and we arrive to the main formula of the first half of this paper.

Theorem 4.8.
∫

Xk

I (X, n, k, a, δ) =(41)

= (−1)k
∫

X
Res
z=∞

∏

2≤t1≤t2≤k(zt1 + zt1+1 + . . . + zt2)IX,n,k,a,δ(z1, . . . , zk)
∏

1≤s1<s2≤k(−zs1 + zs1+1 + . . . + zs2)
∏k

j=1(z1 + . . . + zj)n

k∏

j=1

1+ dh
z1+...+zj

(

1+ h
z1+...+zj

)n+2
dz

This formula has the pleasant feature that it expresses the aimed intersection number
directly in terms ofn, k, d, δ. Indeed, the result of the iterated residue is a polynomial in
n, k, δ andhn, and integrating overX simply means a substitutiond = hn.

4.1. Computations with the iterated residue forn = k. From now on we assume that
n = k, focusing on Theorem 4.4. Before we start the explicit analysis of our formula
(41), we carry out a simplification to get a formula which is easier to handle. Multiplying
the terms in the denominator we get the following expressionfor the R.H.S of (41)

(42)

(−1)n
∫

X
Res
z=∞

∏

2≤t1≤t2≤n

zt1 + zt1+1 + . . . + zt2

−zt1−1 + zt1 + . . . + zt2

n∏

j=1

(z1 + . . . + zj)(z1 + . . . + zj + dh)

(z1 + . . . + zj + h)n+2
IX,n,a,δ(z1, . . . , zn) dz

The iterated residue is formally a contour integral, but as we have explained in§3.1,
it simply means an expansion of the fraction respecting the order 1≪ |z1| ≪ . . . ≪ |zk|.
The terms in (42) then have the following expansions

(1)

1
z1 + . . . + zj + h

=
1
zj



1−
z1 + . . . zj−1 + h

zj
+

(
z1 + . . . zj−1 + h

zj

)2

− . . .





(2)

zt1 + zt1+1 + . . . + zt2

−zt1−1 + zt1 + . . . + zt2

= 1+
zt1−1

zt2



1+
zt1−1 − zt1 − . . . − zt2−1

zt2

(

zt1−1 − zt1 − . . . − zt2−1

zt2

)2

+ . . .




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(3)

IX,n,d,δ,a = (a1z1 + . . . + anzn + 2|a|h)n2−1
(

a1z1 + . . . + anzn + 2|a|h− (n2 − 1)|a|h(2+ δ(d − n− 2))
)

=

= (a1z1 + . . . + anzn + 2|a|h)n2−1
(

a1z1 + . . . + anzn + |a|h(4− 2n2
+ δ(n+ 2))− δ|a|dh

)

Substituting these into (41) we arrive at
∫

Xn

I (X, n, d, a, δ) =

= (−1)n
∫

X
Res
z=∞

∏

2≤t1≤t2≤n

zt1 + zt1+1 + . . . + zt2

−zt1−1 + zt1 + . . . + zt2

n∏

j=2

(1+
z1 + . . . + zj−1

zj
)

n∏

j=2

(1+
z1 + . . . + zj−1 + dh

zj
) ·

n∏

j=2



1−
z1 + . . . zj−1 + h

zj
+

(
z1 + . . . zj−1 + h

zj

)2

− . . .





n+2

·

(a1z1 + . . . + anzn + 2|a|h)n2−1
(

a1z1 + . . . + anzn + |a|h(4− 2n2
+ δ(n+ 2))− δ|a|dh

)

(z1 . . . zn)n
dz

Notation 4.1. (1) For a monomialzi
= zi1

1 . . . z
in
n , is ∈ Z we call

Defect(i) = ni1 + (n− 1)i2 . . . + in

the defectof i. Moreover, we define the set of positive roots as the semigroup
generated by the simple positive roots

Λ
+
= Z

≥0〈(0, . . . , 1i, . . . ,−1 j, . . . , 0), (0, . . . ,−1i , . . . , 0) : 1≤ i < j ≤ n〉.

The negative roots areΛ− = −Λ+.
(2) We say thata ≥ b if there is ac ∈ Λ+ with b + c = a.

Theorem 4.9.With ai = n8(n+1−i) andδ = 1
n8n we have

∫

Xn
I (X, n, d, a, δ) > 0 for d > n8n.

We devote the rest of this section to the proof of Theorem 4.9.For the sake of keeping
our formulas under control, we introduce

(43) A(z) =
∏

2≤t1≤t2≤n

zt1 + zt1+1 + . . . + zt2

−zt1−1 + zt1 + . . . + zt2
︸                                ︷︷                                ︸

A1

n∏

j=2

(1+
z1 + . . . + zj−1

zj
)

︸                        ︷︷                        ︸

A2

·

n∏

j=2



1−
z1 + . . . zj−1 + h

zj
+

(
z1 + . . . zj−1 + h

zj

)2

− . . .





n+2

︸                                                                    ︷︷                                                                    ︸

A3

n∏

j=2

(1+
z1 + . . . + zj−1 + dh

zj
)

︸                               ︷︷                               ︸

A0

,

and

(44) B(z) =
(a1z1 + . . . + anzn + 2|a|h)n2−1 (a1z1 + . . . + anzn + S(n, δ)|a|h− δ|a|dh)

(z1 . . . zn)n
,
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whereS(n, δ) = (4− 2n2
+ δ(n+ 2)).

Observation 4.10.Azi (dh)m = coeffzi (dh)mA(z) = 0 unlessa ∈ Λ−, for any m≥ 0.

Let’s have a short break and step back a bit looking at formula(43). The residue
is by definition the coefficient of 1

z1...zn
in the appropriate Laurent expansion of the big

rational expression inz1, . . . , zn, n, d, h and δ, multiplied by (−1)n. We can therefore
omit the (−1)n factor and simply compute the corresponding coefficient. The result
is a polynomial inn, d, h, δ, and in fact, a relatively easy argument shows that it is a
polynomial inn, d, δmultiplied byhn

Indeed, giving degree 1 toz1, . . . , zn, h and 0 ton, d, δ, the rational expression in the
residue has total degree 0. Therefore the coefficient of 1

z1...zn
has degreen, so it has the

form hnp(n, d, δ) with a polynomialp. Sinced appears only as a linear factor next toh,
the degree ofp in d is n.

Moreover,
∫

X
hn
= d, so the integration overX is simply a substitutionhn

= d, result-
ing the equation

I (X, d, n, a, δ) = dp(n, d, a, δ),
where

p(n, d, a, δ) = pn(n, a, δ)dn
+ . . . + p1(n, a, δ)d+ p0(n, a, δ)

is a polynomial ind of degreen.

4.2. Estimation of the leading coefficent. The next goal is to compute the leading
coefficient pn(n, a, δ). From (43),(44)

(45) pn =

∑

Σi=0

Bzi Az−i−1(dh)n − δ|a|
∑

Σi=−1

Bzi(dh)Az−i−1(dh)n−1

where1 = (1, . . . , 1). Note that – according to Observation 4.10 – some terms on the
r.h.s is 0, since we have not made any restrictions on the relation of i toΛ+.

There is a dominant term on the r.h.s, corresponding toi = (0, . . . , 0) in the first sum:

B0 = Bz0A(dh)n

z1
= (a1 . . .an)

n

(

n2

n, . . . , n

)

We show that the absolute sum of the remaining terms is less than this dominant term,
implying a lower bound forpn whenδ, a as in Theorem 4.9.

First observe that forΣi = 0

(46) Bzi =

(

n2

i1 + n, . . . , in + n

)

ai1+n
1 . . .ain+n

n < ai1
1 . . .a

in
n B0 = n8Defect(i)B0

On the other hand

(47) Az−i−1(dh)n =

∑

i1+i2+i3=−i

A1
i1A

2
i2A

3
i3 < 3−Defect(i)n−3Defect(i),

according to the following two lemmas, which will be repeteadly used:
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Lemma 4.11.LetΣi = 0, i ∈ Λ+. Then

♯{(i1, . . . , is) ∈ (Λ+)s : i1 + . . . + is = i} ≤ sDefect(i)

Proof. Let i = j1 + . . . + jDefect(i) be the sum of simple roots. This decomposition is
unique, which can be seen eadily by induction. Then any term can be put into any of the
s multiindicesi1, . . . , is, and this gives us the desired upper bound. �

Lemma 4.12.LetΣi = 0. Then

A1
i ,A

2
i ,A

3
i < n3Defect(i)

Note that this means thatA1
i = A2

i = A3
i = 0 for Defect(i) > 0, as expected, since all

these coefficients are 0 unlessi ∈ Λ−.

Proof.

(48)

|A1
i | =

∑

1≤t1<t2≤n
∑

t1,t2
i(t1,t2)=i

∏

t1,t2

coeffzi(t1,t2)



1+
zt1−1

zt2



1+
zt1−1 − zt1 − . . . − zt2−1

zt2

(

zt1−1 − zt1 − . . . − zt2−1

zt2

)2

+ . . .







 <

<
∑

i(t1,t2)
∑

t1,t2
i(t1,t2)=i

∏

t1,t2

comb(i+(t1, t2)),

wherei(t1, t2) = i+(t1, t2) − i−(t1, t2) for somei+, i− > 0, and comb(j ) =
(

j1+...+ jn
j1,..., jn

)

is the
number of different orders of the elements ofj = (1 j1, . . .n jn). Following the proof of
Lemma 4.11,

∑

i(t1,t2)
∑

t1,t2
i(t1,t2)=i

1 <

(

n
2

)Defect(i)

.

Moreover,

comb(i+(t1, t2)) < n|i
+(t1,t2)| ≤ nDefect(i(t1,t2)) so

∏

t1,t2

comb(i+(t1, t2)) < nDefect(i)

and therefore

|A1
i | < (n

(

n
2

)

)Defect(i).

Similarly, forΣi = 0

(49) |A2
i | < 2Defect(i)
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and finally, similarly as forA1:

(50) |A3
i | <

∑

∑n
j=2 i( j)=i

∏

j

coeffzi( j)



1−
z1 + . . . zj−1 + h

zj
+

(
z1 + . . . zj−1 + h

zj

)2

− . . .





n+2

<

<
∑

∑n
j=2 i( j)=i

∑

s1( j)+...+sn+2( j)=i( j)

∏

2≤ j≤n,
1≤m≤n+2

comb(s+m( j))

and again
∑

∑n
j=2 i( j)=i

∑

s1( j)+...+sn+2( j)=i( j)

1 < ((n− 1)(n+ 2))Defect(i),

and
comb(s+m( j)) < nDefect(sm( j))

giving us
|A3

i | < ((n− 1)n(n+ 2))Defect(i),

which proves Lemma 4.12. �

Substituting inequalities (46) and (47) into (45) we get
(51)
∑

i,0
Σi=0

Bzi Az−i−1(dh)n <

n2
∑

i=1

∑

i,0,Σi=0,i∈Λ−
Defect(i)=−i

(

3
n5

)i

B0 =

n2
∑

i=1

(

3
n5

)i ∑

i,0,Σi=0,i∈Λ−
Defect(i)=−i

1 <
n2
∑

i=1

(

3
n5

)i

niB0 <
1
4

B0

We can handle the second sum of the r.h.s in (46) in a similar fashion. ForΣi = −1,
andej = (0, . . . , 1 j, . . . , 0)

(52) Az−i−1(dh)n−1 =

n∑

j2=2

∑

j1≤ j2

∑

i1+i2+i3=−i−ej1
i1,i2,i3∈Λ+

A1
i1A

2
i2A

3
i3,

because we have to sum over all terms coming fromA0 in (43). So applying Lemma
4.12 again, we get

Az−i−1(dh)n−1 <

n∑

j2=2

∑

j1≤ j2
−i−ej1∈Λ

+

3−Defect(i)−n−1+ j1n−3(Defect(i)n+1− j1) <

<
∑

1≤ j≤n
−i−ej∈Λ

+

3−Defect(i)−n−1+ jn−3(Defect(i)+n+1− j)+1

Similarly to (46), forΣi = −1, i + ej ∈ Λ
−

(53) Bzi (dh) = −δ|a|
(

n2 − 1
i1 + n, . . . , in + n

)

ai1+n
1 . . .ain+n

n < n8Defect(i)B0.
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and therefore withδ = 1
n8n

∑

Σi=−1

Bzi (dh)Az−i−1(dh)n−1 < δ|a|
∑

1≤ j≤n
i+ej∈Λ

−

3−Defect(i)−n−1+ jn5Defect(i)−3n+3 j+4B0 <(54)

< δ|a|
∑

i∈Λ−
Σi=0

n5(Defect(i)+1)

3Defect(i)+1
B0 <

n2
∑

i=1

∑

i∈Λ−
Defect(i)=−i

n−4iB0 < B0

n2
∑

i=1

n−3i < B0 <
1
4

B0

4.3. Estimation of the the coefficientspn−1(n, δ). In this section we give a formula and
an upper bound for the coefficientspn−l(n, δ) = coeffdn+1−l IX(n, d, δ) in general. Using the
notations introduced in (43),(44) we get

(55) pn−l(n, δ) =
l∑

s=0

∑

Σi=−s

BzihsAz−i−1hl−s(dh)n−l − δ|a|
l+1∑

s=1

∑

Σi=−s−1

Bzihs(dh)Az−i−1hl−s(dh)n−l−1.

where forΣi = −s

(56)

Bzihs =

(

n2

s, i1 + n, . . . , in + n

)

(2|a|)sai1+n
1 . . .ain+n

n +(S(n, δ)−2)

(

n2 − 1
s− 1, i1 + n, . . . , in + n

)

(2|a|)sai1+n
1 . . .ain+n

n

and therefore

(57) |Bzihs| < 2n2

(

n2

s, i1 + n, . . . , in + n

)

(2|a|)sai1+n
1 . . .ain+n

n

With the choiceai = n8(n+1−i), δ = 1
n8n , the dominant term in (55) is (note that many of

the terms vanish, because theAz−i−1hl−s(dh)n−l = 0 unless−i − 1 ∈ Λ−. ) the one with

s= l andi l = (in = . . . = in−l+1 = −1, in−l = in−l−1 = . . . = i1 = 0)

that is

|Bzil hl Az−il−1(dh)n−l
︸      ︷︷      ︸

=1

| < 2n2

(

n2

l, n− 1, . . . , n− 1
︸             ︷︷             ︸

l

, n, . . . , n
︸  ︷︷  ︸

n−l

)

(2|a|)lan
1 . . .a

n
n−la

n−1
n−l+1 . . .a

n−1
n <

< 2n2(2|a|)ln−4l(l+1)B0 < n8lnB0Az−1(dh)n

The goal is to show that the sum of the rest of the terms in (55) is less than this
dominant term, proving the following

Proposition 4.13.For ai = n8(n+1−i) andδ = 1
n8n ,

|pn−l | < n8ln|pn|
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Theorem 4.9 is a straightforward consequence of this Proposition, applying the fol-
lowing elementary statement

Observation 4.14. If p(d) = pndn
+ pn−1dn−1

+ . . . + p1d + p0 ∈ R[d] satisfies the
inequalities

pn > 0; |pn−l | < Dl |pn| for l = 0, . . .n,

then p(d) > 0 for d > D.

We now prove that the term corresponding toi l is indeed dominant. Note first that by
(57)

(58) |Bzihs| < 2n2

(

n2

s, i1 + n, . . . , in + n

)

(2|a|)sai1+n
1 . . .ain+n

n < n8Defect(i−il )|a|s−lBilhl .

Since Defect(i l) ≥ Defect(i) when−i−1 ∈ Λ+, the exponent ofn is nonpositive, since
the other termAz−i−1hl−s(dh)n−l = 0 if −i − 1 < Λ+.

On the other hand, forΣi = −s

(59) Az−i−1hl−s(dh)n−l =

∑

1≤ j1<...< jl≤n

∑

m1≤ j1,...,ml≤ jl

∑

i1+i2+i3=−i−em1−...−eml
i1,i2,i3∈Λ+

A1
i1A

2
i2A

3
zi3hl−s

where in the summation we haveΣi1 = Σi2 = 0,Σi3 = s− l, otherwise the correspond-
ing coefficients are zero.

Lemma 4.15.LetΣi = −s. Then

|A3
zihs| < n3Defect(i)+s

Proof. The proof is analogous to the proof of Lemma 4.12: we first chooses factors in
the denominator ofzi and pair them withhs, and then repeat the same arguments.�

Applying Lemma 4.12 and Lemma 4.15 we get the following upperbound:

|Az−i−1hl−s(dh)n−l | <
∑

1≤ j1<...< jl≤n

∑

m1≤ j1,...,ml≤ jl

∑

i1+i2+i3=−i−em1−...−eml
i1,i2,i3∈bΛ+

n−3(Defect(i)+(n+1−m1)+...+(n+1−ml ))+l−s <

<
∑

1≤m1<...<ml≤n

∑

i1+i2+i3=−i−em1−...−eml
i1,i2,i3∈Λ+

(n+1−ml)(n−ml−1)·. . .·(n−l+2−m1)n
−3(Defect(i)+(n+1−m1)+...+(n1−ml ))+l−s <

<
∑

1≤m1<...<ml≤n

∑

i1+i2+i3=−i−em1−...−eml
i1,i2,i3∈Λ+

n−3Defect(i−il )+l−s

where we used that fact that for 1≤ m1 < . . . < ml ≤ n

(n+ 1−ml)(n−ml−1) . . . (n− l + 2−m1)n
−(n+1−m1)−...−(n+1−ml ) ≤ n−l−(l−1)−...−1

= nDefect(il ).
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Applying Lemma 4.11 again we get

(60) |Az−i−1hl−s(dh)n−l | <
∑

1≤m1<...<ml≤n
i+em1+...+eml ∈Λ

−

3−Defect(i)−(n+1−m1)−...−(n+1−ml )n3(Defect(il−i))+l−s ≤

≤
∑

1≤m1<...<ml≤n
i+em1+...+eml ∈Λ

−

3Defect(il−i)n3(Defect(il−i))+l−s

where, again,n+ 1−m1 + . . . + n+ 1−ml ≥ 1+ 2+ . . . + l = −Defect(i l).
Summing up these for all the possible (i, s) we can estimate the first sum in (55) as

follows.

|

l∑

s=0

∑

Σi=−s,i,il

BzihsAz−i−1hl−s(dh)n−l | <

l∑

s=0

∑

1≤m1<...<ml≤n
i+em1+...+eml ∈Λ

−

Σi=−s,i,il

3Defect(il−i)n−5Defect(il−i)+l−s|a|s−lBilhl <

<

l∑

s=0

∑

1≤m1<...<ml≤n
i+em1+...+eml ∈Λ

−

Σi=−s,i,il

n−4Defect(il−i)n(8n−1)(s−l)Bilhl(61)

Observe that forΣi = −l

i+em1+. . .+eml ∈ λ
− ⇒ Defect(i)+Defect(em1+. . .+eml ) = Defect(i)+(n+1−m1)+. . .+(n+1−ml) ≤ 0

⇒ Defect(i)+(n+1)l ≤ m1+. . .+ml ⇒ Defect(i−i l) ≤ (m1+l−n−1)+(m2+l−n−2)+. . .+(ml−n)

Therefore using the temporary notationr i = mi + l − n− i ≤ 0, we get
(62)
♯{1 ≤ m1 < . . . < ml : i+em1+. . .+eml ∈ Λ

−} < ♯{r1, . . . , r l ≤ 0 : r1+. . .+r l > Defect(i−i l)} < lDefect(il−i)

ForΣi = −s> −l, clearly

♯{1 ≤ m1 < . . . < ml ≤ n : i + em1 + . . . + eml ∈ Λ
−} ≤

< ♯{1 ≤ m1 < . . . < ml ≤ n : (i − en − . . . − en−l+s+1
︸                    ︷︷                    ︸

Σ=−l

)+em1+. . .+eml ∈ Λ
−} < lDefect(il−i)+1+...+l−s

Substituting this into (61) we get
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|

l∑

s=0

∑

Σi=−s,i,il

BzihsAz−i−1hl−s(dh)n−l | <

l∑

s=0

∑

Σi=−s,i,il

lDefect(il−i)+1+...+(l−s)n−4Defect(il−i)n(8n−1)(s−l) <

<

l∑

s=0

∞∑

m=1

∑

Σi=−s
Defect(il−i)=m

n−3m+(7n−1)(s−l)Bilhl <

l∑

s=0

∞∑

m=1

n−2m+(7n−1)(s−l)Bilhl <

l∑

s=0

1
8

n(7n−1)(s−l)Bilhl <
1
4

Bilhl

To summarize our results, sinceAz−il−1(dh)n−l = 1, we got

(63) |

l∑

s=0

∑

Σi=−s,i,il

BzihsAz−i−1hl−s(dh)n−l | <
1
4

Bilhl Az−il−1(dh)n−l

The analogous computation for the second sum in (55) shows that forδ = 1
n8n , ai = n8i

we have

(64) δ|a||
l+1∑

s=1

∑

Σi=−s−1

Bzihs(dh)Az−i−1hl−s(dh)n−l−1| <
1
4

Bilhl Az−il−1(dh)n−l

Then (63),(64) and (58) gives the desired Proposition 4.13:

|pn−l | <
3
2
|Bilhl Az−il−1(dh)n−l | <

3
2

n8ln|B0Az−1(dh)n | <
9
4

n8ln|pn|,

and Theorem 4.9 is proved. This proves Theorem 4.4 applying the Morse inequalities.
Theorem 4.2 and Theorem 4.4 together give Theorem 1.1.
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5. An other compactification of JkTX/Gk

In this section we give a detailed description of a new compactification of JkTXGk,
as a singular subvariety of some Grassmannian manifold. SinceGk acts onJkTX fiber-
wise, we construct the quotient (JkTX)x/Gk first. The idea comes from global singularity
theory, and originally was presented in [4].

If u, vare positive integers, letJk(u, v) denote the vector space ofk-jets of holomorphic
maps (Cu, 0) → (Cv, 0) at the origin; that is, the set of equivalence classes of maps
f : (Cu, 0)→ (Cv, 0), wheref ∼ g if and only if f ( j)(0) = g( j)(0) for all j = 1, . . . , k.

With this notation, the fibres ofJk are isomorphic toJk(1, n), and the groupGk is
simply Jk(1, 1) with the composition action on itself.

If we fix local coordinatesz1, . . . , zu at 0 ∈ Cu we can again identify thek-jet of f
with the set of derivatives at the origin, that is (f ′(0), f ′′(0), . . . , f (k)(0)), wheref ( j)(0) ∈
Hom(SymjCu,Cv). This way we get the equality

Jk(u, v) = ⊕k
j=1Hom(SymjCu,Cv)

One can compose map-jets via substitution and elimination of terms of degree greater
thank; this leads to the composition maps

(65) Jk(v,w) × Jk(u, v)→ Jk(u,w), (Ψ2,Ψ1) 7→ Ψ2 ◦ Ψ1modulo terms of degree> k .

Whenk = 1, J1(u, v) may be identified withu-by-v matrices, and (65) reduces to multi-
plication of matrices.

Thek-jet of a curve (C, 0) → (Cn, 0) is simply an element ofJk(1, n). We call such
a curveγ regular, if γ′(0) , 0; introduce the notationJreg

k (1, n) for the set of regular
curves:

Jreg
k (1, n) = {γ ∈ Jk(1, n); γ′(0) , 0}

Let N ≥ n be any integer and define

Θk =

{

Ψ ∈ Jk(n,N) : ∃γ ∈ Jreg
k (1, n) : Ψ ◦ γ = 0

}

In words:Θk is the set of thosek-jets of maps, which take at least one regular curve
to zero. By definition,Θk is the image of the closed subvariety ofJk(n,N) × Jreg

k (1, n)
defined by the algebraic equationsΨ ◦ γ = 0, under the projection to the first factor. If
Ψ◦γ = 0, we callγ a test curveofΘ. This term originally comes from global singularity
theory as explained below.

A basic but crucial observation is the following. Ifγ is a test curve ofΨ ∈ Θk, and
ϕ ∈ Jreg

k (1, 1) = Gk is a holomorphic reparametrisation ofC, thenγ ◦ ϕ is, again, a test
curve ofΨ:

C
ϕ

// C
γ

// Cn Ψ
// CN

Ψ ◦ γ = 0 ⇒ Ψ ◦ (γ ◦ ϕ) = 0

In fact, we get all test curves ofΨ in this way if the following open dense property
holds: the linear part ofΨ has 1-dimensional kernel. Before stating this in Proposition
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5.2 below, let us write down the equationΨ◦γ = 0 in coordinates in an illustrative case.
Let γ = (γ′, γ′′, . . . , γ(k)) ∈ Jreg

k (1, n) andΨ = (Ψ′,Ψ′′, . . . ,Ψ(k)) ∈ Jk(n,N) be thek-jets.
Using the chain rule and the notationvi = γ

(i)/i!, the equationΨ◦γ = 0 reads as follows
for k = 4:

Ψ
′(v1) = 0,(66)

Ψ
′(v2) + Ψ′′(v1, v1) = 0,

Ψ
′(v3) + 2Ψ′′(v1, v2) + Ψ′′′(v1, v1, v1) = 0,

Ψ
′(v4) + 2Ψ′′(v1, v3) + Ψ′′(v2, v2) + 3Ψ′′′(v1, v1, v2) + Ψ′′′′(v1, v1, v1, v1) = 0.

To simplify our formulas we introduce the following notations for a partitionτ =
[i1 . . . i l] of the integeri1 + . . . + i l:

• the length: |τ| = l,
• thesum:

∑

τ = i1 + . . . + i l,
• number of permutations: perm(τ), which is the number of different sequences

consisting of the numbersi1, . . . , i l; e.g. perm([1, 1, 1, 3]) = 4.
• γτ =

∏l
j=1 γ

(i j ) ∈ SymlCn and Ψ(γτ) = Ψl(γ(i1), . . . , γ(il )) ∈ CN.

Lemma 5.1. Letγ = (γ′, γ′′, . . . , γ(k)) ∈ Jreg
k (1, n) andΨ = (Ψ′,Ψ′′, . . . ,Ψ(k)) ∈ Jk(n,N)

be k-jets. Then substituting vi = γ
(i)/i!, the equationΨ ◦ γ is equivalent to the following

system of k linear equations with values inCN:

(67)
∑

τ∈Π[m]

perm(τ)Ψ(vτ) = 0, m= 1, 2, . . . , k,

whereΠ[m] denotes the set of all partitions of m.

For a givenγ ∈ Jreg
k (1, n) letSγ denote the set of solutions of (67), that is,

Sγ = {Ψ ∈ Jk(n,N);Ψ ◦ γ = 0}

The equations (67) are linear inΨ, hence

Sγ ⊂ Jk(n,N)

is a linear subspace of codimensionkN. Moreover, the following holds:

Proposition 5.2. ([4], Proposition 4.4)

(1) For γ ∈ Jreg
k (1, n), the set of solutionsSγ ⊂ Jk(n,N) is a linear subspace of

codimension kN.
(2) Set

Jo
k(n,N) = {Ψ ∈ Jk(n,N)| dim ker(Ψ′) = 1} .

For anyγ ∈ Jreg
k (1, n), the subsetSγ ∩ Jo

k(n,N) ofSγ is dense.
(3) If Ψ ∈ Jo

k(n,N), thenΨ belongs to at most one of the spacesSγ. More precisely,

if γ1, γ2 ∈ Jreg
k (1, n), Ψ ∈ Jo

k(n,N) andΨ ◦ γ1 = Ψ ◦ γ2 = 0,

then there existsϕ ∈ Jreg
k (1, 1) such thatγ1 = γ2 ◦ ϕ.
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(4) Givenγ1, γ2 ∈ Jreg
k (1, n), we haveSγ1 = Sγ2 if and only if there is someϕ ∈

Jreg
k (1, 1) such thatγ1 = γ2 ◦ ϕ.

By the second part of Proposition 5.2 we have a well-defined map φ : Jreg
k (1, n) →

Grass(codim= kN, Jk(n,N)), γ 7→ Sγ to the Grassmannian of codimension-kN sub-
spaces inJk(n,N). From the last part of Proposition 5.2 it follows that:

Corollary 5.3. ([4]) φ is invariant on the Jreg
k (1, 1)-orbits, and the induced map on the

orbits is injective:

(68) φ : Jreg
k (1, n)/Gk ֒→ Grass(codim= kN, Jk(n,N))

Let us rewrite the linear systemΨ ◦ γ = 0 associated toγ ∈ Jreg
k (1, n) in a dual form.

The system is based on the standard composition map (65):

Jk(n,N) × Jk(1, n) −→ Jk(1,N),

which, via the identificationJk(n,N) = Jk(n, 1)⊗ CN, is derived from the map

Jk(n, 1)× Jk(1, n) −→ Jk(1, 1)

via tensoring withCN. Observing that composition is linear in its first argument,and
passing to linear duals, we may rewrite this correspondencein the form

(69) φ : Jk(1, n) −→ Hom (Jk(1, 1)∗, Jk(n, 1)∗).

If γ = (γ′, γ′′, . . . , γ(k)) ∈ Jk(1, n) = (Cn)k is thek-jet of a curve, we can putvi =

γ(i)/i! ∈ Cn into the jth column of ann× k matrix, and
• identify Jk(1, n) with Hom (Ck,Cn);
• identify Jk(n, 1)∗ with Sym≤kCn

= ⊕k
l=1 SymlCn;

• identify Jk(1, 1)∗ with Ck;
Using these identifications, we can recast the mapφ in (69) as

(70) φk : Hom (Ck,Cn) −→ Hom (Ck,Sym≤kCn),

which may be written out explicitly as follows

(v1, v2, . . . , vk) 7−→




v1, v2 + v2

1, . . . ,
∑

τ∈Π[d]

perm(τ)vτ




.

The set of solutionsSγ is the linear subspace orthogonal to the image ofφk(γ′, . . . , γ(k)/k!)
tensored byCN, that is

Sγ = im(φk(γ
′, . . . , γ(k)/k!))⊥ ⊗ CN ⊂ Jk(n,N)

Consequently, it is straightforward to takeN = 1 and define

(71) Sγ = im(φk(γ
′, . . . , γ(k)/k!)) ∈ Grass(k,Sym≤kCn)

Moreover, letBk ⊂ GL(k) denote the maximal Borel of upper triangulars and

Flagk(C
n) = Hom (Ck,Sym≤kCn)/Bk = {0 = F0 ⊂ F1 ⊂ · · · ⊂ Fk ⊂ C

n, dimFl = l} .
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denote the full flag ofk-dimensional subspaces of Sym≤kCn.
In addition to (71) we can analogously define

(72)
Fγ = (im(φ1(γ

′)) ⊂ im(φ2(γ
′, γ′′/2)) ⊂ . . . ⊂ im(φk(γ

′, . . . , γ(k))/k!)) ∈ Flagk(Sym≤kCn)

where we think of Sym≤iCn ⊂ Sym≤ jCn as a subspace fori < j.
Using these definitions Proposition 5.2 implies the following version of Corollary 5.3,

which does not contain the parameterN.

Proposition 5.4. The mapφ in (70) is aGk-invariant algebraic morphism

φ : Jreg
k (1, n)→ Hom (Ck,Sym≤kCn),

which induces

(1) an injective map on theGk-orbits to the Grassmannian:

φGr : Jreg
k (1, n)/Gk ֒→ Grass(k,Sym≤kCn)

defined byφGr(γ) = Sγ.
(2) an injective map on theGk-orbits to the Flag manifold:

φFlag : Jreg
k (1, n)/Gk ֒→ Flagk(Sym≤kCn)

defined byφFlag(γ) = Fγ.
(3) In addition,

φGr
= φFlag ◦ πk

whereπk : Flag(k,Sym≤kCn) → Grassk(Sym≤kCn) is the projection to the k-
dimensional subspace.

Moreover, all these maps are GL(n)-equivariant with respect to the standard action of
GL(n) on Jreg

k (1, n) ⊂ Hom (Ck,Cn) and the induced action onGrassk(Sym≤kCn).

ComposingφGr with the Plucker embedding

Grass(k,Sym≤kCn) ֒→ P(∧kSym≤kCn)

we get an embedding

(73) φProj : Jreg
k (1, n)/Gk ֒→ P(∧

k(Sym≤kCn))

SinceφGrass, φFlag areGL(n)-equivariant, fork ≤ n the imageφGr(Jreg
k (1, n)/Gk) ⊂

Grass(k,Sym≤kCn) is a GL(n)-orbit in Grass(k,Sym≤kCn), and therefore a nonsingular
quasiprojective variety. Its closure, however, is highly singular, and a finite union of
GL(n) orbits, with a nice orbit structure. The boundary orbits have codimension at least
two, which allows us to describe a generating set for Demailly’s algebra of invariant jet
differentials as the Plucker coordinates on this Grassmannian.For the details see [5].

In this paper, however, we are rather interested in the imageof φFlag in Flagk(Sym≤kCn).
This will substitute the Demailly-Semple tower in our computation in the next section.
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We introduce the following notations

Xk = φFlag(Jreg
k (1, n)) ⊂ Flagk(Sym≤kCn)

In the next section, following [4], we develop a double-localization method onXk

allowing us to compute its intersection numbers. The process leads us to an iterated
residue formula.

6. Localization on Xk- the Snowman Model

6.1. Equivariant Poincaré duals, Multidegrees.Denote the weight lattice ofT =
(C∗)r byΛ; this is the lattice in Lie(T)∗ = Cr generated by the standard weights (the co-
ordinate vectors)λ1, . . . , λr . LetW be anN-dimensional complex vector space endowed
with an action ofT. This action is diagonalizable, hence one can choose coordinates
y1, . . . , yN on W in such a way that the action in the dual basis is diagonal; denote the
respective weights byη1 . . . ηN.

Let Σ be a closedT-invariant algebraic subvariety ofW, and denote byI (Σ) ⊂ S the
ideal of polynomials vanishing onΣ. This ideal isreduced, i.e. has the property that
f n ∈ I (Σ) ⇒ f ∈ I (Σ). Our plan is to define an extended invariant:I 7→ mdeg[I ,S],
called themultidegreeof I , whereI is an arbitraryT-invariant ideal inS = C[y1 . . . yN].
Then we can simply define the equivariant Poincaré of a variety as the the multidegree
of the corresponding ideal (cf. Definition 6.1 below). Now wesketch an explicit and an
axiomatic definition of the multidegree.

For the construction, letD be the codimension of the variety defined by the ideal
I ⊂ S, and consider a finite,T-graded resolution ofS/I by freeS-modules:

⊕
j[M]
i=1 S wi[M] → · · · → ⊕ j[m]

i=1 S wi[m] → · · · → ⊕ j[1]
i=1 S wi[1] → S→ S/I → 0;

wherewi[m] is a free generator of degreeηi[m] ∈ Λ for i = 1, . . . j[m], m = 1 . . .M.
Then

(74) mdeg[I ,S] =
1
D!

M∑

m=1

j[m]∑

i=1

(−1)D−mηi[m]D.

Definition 6.1. LetΣ ⊂ W be T-invariant closed subvariety as in§6.1. Then we define
the T-equivariant Poincaré dual ofΣ in W by

eP[Σ,W]T = mdeg[I (Σ),C[y1 . . . yN]] .

We will usually omit the lower indexT when this does not cause confusion. Note that
the multidegree, and hence the equivariant Poincaré dual,is manifestly a homogeneous
polynomial of degreeD.

While (74) is explicit, its meaning is not transparent, and we note that, usually, it is
rather difficult to write down free resolutions of ideals. Hence we turn to an axiomatic
description, which is more intuitive, and provides us with amore algorithmic under-
standing of the invariant as well.
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6.2. Axiomatic definition. We follow the treatment of [34] to give the axiomatic def-
inition: we describe 3 characterizing properties of the multidegree, and then we prove
that these properties indeed determine the polynomial.

The monomialsya
=

∏N
i=1 yai

i ∈ S = C[y1, . . . , yN] are parametrized by the integer
vectorsa = (a1 . . .aN) ∈ ZN

+
. A monomial order< onS is a total order of the monomials

in S such that for any three monomialsm1,m2, n satisfyingm1 > m2, we havenm1 >
nm2 > m2 (see [17,§15.2] ).

An ordering of the coordinatesy1, . . . , yN induces the so-calledlexicographicmono-
mial order of the monomials, that is,ya > yb if and only if ai > bi for the first indexi
with ai , bi. We will use this lexicographic monomial order throughout this paper.

Now let I ⊂ S be aT-invariant ideal. Define theinitial ideal in<(I ) ⊂ S to be the
ideal generated by the monomials{in<(p) : p ∈ I }, where in<(p) is the largest monomial
of p w.r.t <. There is a flat deformation ofI into in<(I ) ([17], Theorem 15.17.), and the
first axiom says that mdeg[I ] does not change under this deformation:
1. Deformation invariance: mdeg[I ,S] = mdeg[in<(I ),S].

To describe the second axiom, we define the multiplicity of a maximal-dimensional
component of a non-reduced variety. LetI ⊂ S be an ideal, and denoteΣ(I ) the variety
of common zeros of the polynomials inI :

Σ(I ) = {p ∈W; f (p) = 0 ∀ f ∈ I }.

Denote byΣ1,Σ2, . . . ,Σm the maximal-dimensional irreducible components ofΣ(I ). Then
eachΣi corresponds to a prime idealpi ⊂ S, and one can define a positive integer
mult(pi , I ), the multiplicity of Σi with respect toI , as the length of the largest finite-
lengthSpi -submodule in (S/I )pi , whereSpi (resp. (S/I )pi ) is the localization ofS (resp.
S/I ) atpi (see section II.3.3 in [18]). Then we have
2. Additivity:

(75) mdeg[I ,S] =
m∑

i=1

mult(pi , I ) ·mdeg[pi ,S].

The last axiom describes the multidegree for the case of coordinate subspaces:
3. Normalization: for every subseti ⊂ {1 . . .N} we have

(76) mdeg
[

〈yi , i ∈ i〉 ,S
]

=

∏

i∈i

ηi ,

where〈·〉 stands for the ideal generated by the polynomials listed in the angle brackets.
A special case of the normalization axiom is the caseΣ = {0}. We will often use the

notation eulerT(W) for eP[{0},W], since, indeed, this is the equivariant Euler class ofW
thought of as aT-vector bundle over a point. We have thus

(77) eP[{0},W]T = eulerT(W) =
N∏

i=1

ηi .
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Remark 6.2. Using this notation, the normalization axiom may be recast in a geometric
form as follows: given a surjective equivariant linear mapγ : W → E from W to
another T-module E, we have

(78) eP[γ−1(0),W] = eulerT(E).

Consider the following three examples:

(1) SetN = 4, and consider the idealI = 〈y2
1, y

3
2, y3〉 in S = C[y1, y2, y3, y4]. This is

the line{y1 = y2 = y3 = 0} with multiplicity 6, so its multidegree is

mdeg[I ,S] = 6η1η2η3.

(2) The idealI = 〈y2
1y

3
2y3〉 in S = C[y1, y2, y3] corresponds to the union of the hy-

perplanesy1 = 0, y2 = 0, y3 = 0 with multiplicities 2, 3, 1, respectively. By the
normalization and additivity properties

mdeg[I ,S] = 2η1 + 3η2 + η3

(3) The idealI = 〈y1y2, y2y3, y1y3〉 = 〈y1, y2〉 ∩ 〈y2, y3〉 ∩ 〈y1, y3〉 in S = C[y1, y2, y3]
has three components with multiplicity 1, corresponding tothe given decompo-
sition, so

mdeg[I ,S] = η1η2 + η2η3 + η1η3

Following [34]§8.5, now we sketch an algorithm for computing mdeg[I ,S], proving
that the axioms determine this invariant.

An ideal M ⊂ S generated by a set of monomials iny1, . . . , yN is called amonomial
ideal. Since in<(I ) is such an ideal, by the deformation invariance it is enoughto com-
pute mdeg[M] for monomial idealsM. If the codimension ofΣ(M) in W is s, then the
maximal dimensional components ofΣ(M) are codimension-s coordinate subspaces of
W. Such subspaces are indexed by subsetsi ∈ {1 . . .N} of cardinalitys; the correspond-
ing associated primesp[i] = 〈yi : i ∈ i〉.

It is not difficult to check that

(79) mult(p[i],M) =
∣
∣
∣
∣

{

a ∈ Z[i]
+ ; ya+b

< M for all b ∈ Z[ î]
+

}∣∣
∣
∣ ,

whereZ[i]
+ = {a ∈ ZN

+
; ai = 0 for i < i}, î = {1 . . .N} \ i, and| · |, as usual, stands for the

number of elements of a finite set.
Then by the normalization and additivity axiom we have

(80) mdeg[M,S] =
∑

|i|=s

mult(p[i],M)
∏

i∈i

ηi .

By definition, the weightsη1, . . . ηN on W are linear forms ofλ1, . . . λr , the basis of
(C∗)r , and we denote the coefficient of λ j in ηi by coeff(ηi , j, 1 ≤ i ≤ N, 1 ≤ j ≤ r.
Introduce also the following notation:

deg(η1, . . . , ηN; m) = #{i; coeff(ηi ,m) , 0}}.
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It is clear from the formula (80) that

(81) degλm
mdeg[I ,S] ≤ deg(η1, . . . , ηN; m)

holds for any 1≤ m≤ r. We need a slightly stronger result in the next section whichwe
formulate and prove here.

Proposition 6.3. Let W be an N-dimensional complex vector space endowed with an
diagonal action of(C∗)r , with coordinates y1, . . . , yN and respective weightsη1 . . . ηN.
Let I ⊂ S be a(C∗)r-invariant ideal. Then

(1) mdeg[I ,S] ∈ C[λ1, . . . , λr ] is a polynomial ofη1, . . . , ηN.
(2)

(82) degλm
mdeg[I ,S] ≤ deg(η1, . . . , ηN; m) − 1

Proof. The first part is obvious from (80). Let

coeff(ηi ,m) , 0 for 1≤ i ≤ s; coeff(ηs+1,m) = . . . = coeff(ηN,m) = 0.

The idea of the proof is to choose an appropriate monomial order on the polynomial ring
S = C[y1, . . . , yN] to ensure thaty1 does not appear in the corresponding initial ideal.

To that end recall, that a weight function is a linear mapρ : ZN → Z. This defines
a partial order>ρ on the monomials ofS, called the weight order associated toρ, by
the rulem = ya >ρ n = yb iff ρ(a) > ρ(b). Herea = (a1, . . . , aN), b = (b1, . . . , bN) are
arbitrary multiindices. Any weight order can be extended toa compatible monomial
order> (see [17], Ch 15.2), which means thatm>ρ n impliesm> n.

For our purposes define

(83) ρ(y1) = −1, ρ(y2) = . . . = ρ(yN) = 0

and let> denote arbitrary compatible monomial order onS. By definition for a mono-
mial m ∈ S

(84) ρ(m) < 0⇐⇒ y1|m

Let p ∈ I , and assume that not all monomials ofp are divisible byy1. If they all did,
y1|p, and thereforein>(p/y1)|in>(p) would hold, and thereforep would not be among
the generators of thein>(I ). Thereforey1 does not dividep.

Then there is a monomial ofp not containingy1, and by (84) the weight of this
monomial is strictly bigger to the weight of any other containing y1. Consequently,
y1 does not divide any of the generators ofin>(I ), and by (80) mdeg[I ,S] does not
depend onη1. The only possible variables containingλm are thereforeη2, . . . , ηs, giving
a maximum total degres− 1. �
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6.3. Localization on Xk. In this subsection we sketch the localization procedure devel-
oped in [4] onXk. We also refer this later as the Snowman Model, due to the figure in
§6 of [4], which summarizes the process.

Let Jnondeg
k (1, n) ⊂ Jreg

k (1, n) be the set of test curves withγ′, . . . , γ(k) linearly inde-
pendent. These correspond to the regularn × k matrices under the identification of§
5.

According to our construction, we have the following picture:

(85) Jnondeg
k (1, n)/Gk

φFlag
//

π

��

Flagk(Sym≤kCn)
Pluck

// P(∧k(Sym≤kCn))

Jnondeg
k (1, n)/Bk = Flagk(C

n)

Let τ be the restriction of the tautological line bundle onP(∧k(Sym≤kCn)) to Xk. To
proceed a similar computation as on the Demailly-Semple tower, we have to compute
the intersection number ∫

Xk

c1(τ)
k(n−1)

We will explain this in more detail in the next section.
Note that the fibrationπ and the embeddingφFlag areGLn-equivariant with respect to

the inducedGL(n) action from the standard action onCn. Let λ1, . . . , λn be the weights
of this action with eigenbasise1, . . . , en ∈ C

n. Let

f = {〈e1〉 ⊂ 〈e1, e2〉 ⊂ . . . ⊂ C
n}

denote the standard flag inCn Applying the ABBV localization formula on Flagk(C
n)

we get

(86)
∫

Xk

c1(τ)
k(n−1)

=

∑

σ∈Sn/Sn−k

Qf (λσ·1 . . . λσ·k)
∏

1≤m≤k
∏n

i=m+1(λσ·i − λσ·m)
,

where

(87) Qf (λ1, . . . , λn) =
∫

φFlag(π−1(f ))
(λ1 + . . . + λn)

k(n−1)

Similarly to the localization on the Demailly-Semple tower, we can derive an efficient
residue formula for the right hand side of (86). While the geometric meaning of this for-
mula is not entirely clear, our summation procedure yields an effective, “truly” localized
formula; by this we mean that for its evaluation one only needs to know the behavior of
a certain function at a single point, rather than at a large, albeit finite number of points.

Proposition 6.4. ([4],Proposition 6.4) For a polynomial Q(z) onCk, we have

(88)
∑

σ∈Sn/Sn−k

Q(λσ·1 . . . λσ·k)
∏

1≤m≤k
∏n

i=m+1(λσ·i − λσ·m)
= Res

z=∞

∏

1≤m<l≤k(zm− zl) Q(z) dz
∏k

l=1

∏n
i=1(λi − zl)
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Following [4], we proceed a second localization on the fiberXf = φ f lag(π−1(f )) to
computeQf (z). SinceXf is invariant under the (C∗)n ⊂ GLn action on Flagk(Sym≤kCn),
we want apply Rossmann’s integration formula, which is explained in§3.3 of [4]. The
rough idea is the following.

Let Z be a complex manifold with a holomorphicT-action, and letM ⊂ Z be aT-
invariant analytic subvariety with an isolated fixed pointp ∈ MT . Then one can find
local analytic coordinates nearp, in which the action is linear and diagonal. Using these
coordinates, one can identify a neighborhood of the origin in TpZ with a neighborhood
of p in Z. We denote byT̂pM the part of TpZ which corresponds toM under this
identification; informally, we will callT̂pM the T-invariant tangent coneof M at p.
This tangent cone is not quite canonical: it depends on the choice of coordinates; the
multidegree ofΣ = T̂pM in W = TpZ, however, does not. Rossmann named this the
equivariant multiplicity of M in Z at p:

(89) emultp[M,Z]
def
= mdeg[T̂pM,TpZ].

Remark 6.5. In the algebraic framework one might need to pass to thetangent scheme
of M at p (cf.[22]). This is canonically defined, but we will not use this notion.

Rossmann’s localization formula [38] reads then as follows.
Let µ ∈ H∗T(Z) be an equivariant class represented by a holomorphic equivariant map

Lie(T)→ Ω•(Z). Then

(90)
∫

M
µ =

∑

p∈MT

emultp[M,Z]

EulerT(TpZ)
· µ[0](p),

whereµ[0](p) is the differential-form-degree-zero component ofµ evaluated atp.
In [4] we apply this formula withM = Xf ,Z = Flag∗k(Sym≤kCn) andα = Thom(Flag∗k),

the equivariant Thom class of Flag∗k where

Flag∗k = {V1 ⊂ . . .Vk ⊂ Sym≤k
C

n : dim(Vi) = i,Vi ⊂ C〈eτ : sum(τ) ≤ i〉} ⊂ Flagk(Sym≤k
C

n).

The fixed points on Flagk(Sym≤kCn) are parametrized by admissible sequences of
partitionsπ = (π1, . . . , πk). We call a sequence of partitionsπ = (π1 . . . πk) ∈ Π×d

admissible if

(1) sum(πl) ≤ l
(2) πl , πm for 1 ≤ l , m≤ k.

We will denote the set of admissible sequences of lengthk byΠk.
Following [4] we arrive to the following formula withk ≤ n
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Proposition 6.6.

(91)
∫

Xk

c1(τ)
k(n−1)

=

∑

π∈Πk

Res
z=∞

Qπ(z)
∏

m<l

(zm − zl)(zπ1 + . . . + zπk)
k(n−1)

k∏

l=1

τ,π1...πl∏

τ≤l

(zτ − zπl)
k∏

l=1

n∏

i=1

(λi − zl)

dz.

where Qπ(z) = emultπ[Xf ,Flag∗k] and zπ =
∑

i∈π zi.

The total degree of the rational expression in (91) is−k, and the iterated residue gives
a number.

The following theorem is a stronger version of the vanishingtheorem in [4]. We
devote the next subsection to the proof.

Theorem 6.7.The Residue Vanishing Theorem

(1) All terms but the one corresponding toπ = (1, 2, . . . , k) vanish in(91) leaving
us with

(92)
∫

Xk

c1(τ)
k(n−1)

= Res
z=∞

Q[1],...,[k](z)
∏

m<l

(zm − zl)(z1 + . . . + zk)
k(n−1)

∏

sum(τ)≤l≤k

(zτ − zl)
k∏

l=1

n∏

i=1

(λi − zl)

dz.

(2) If |τ| ≥ 3 then Q[1],...,[k](z) is divisible by zτ − zl for all l ≥ sum(τ), so we arrive at
the simplified formula

(93)
∫

Xk

c1(τ)
k(n−1)

= Res
z=∞

Q(z)
∏

m<l

(zm− zl)(z1 + . . . + zk)
k(n−1)

∏

m+r≤l≤k

(zm+ zr − zl)
k∏

l=1

n∏

i=1

(λi − zl)

dz.

Remark 6.8. The geometric meaning of Q(z) in (93) is the following, see[4]. Let
Tk ⊂ Bk ⊂ GL(k) be the subgroups of invertible diagonal and upper-triangular matrices,
respectively; denote the diagonal weights of Tk by z1, . . . , zk. Consider the GL(k)-module
of 3-tensorsHom (Ck,Sym2Ck); identifying the weight-(zm+zr−zl) symbols qmr

l and qrm
l ,

we can write a basis for this space as follows:

Hom (Ck,Sym2Ck) =
⊕

Cqmr
l , 1 ≤ m, r, l ≤ k.

Consider the reference element

ǫ =

k∑

m=1

k−m∑

r=1

qm+r
mr ,
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in the Bk-invariant subspace

(94) Nk =

⊕

1≤m+r≤l≤k

Cqmr
l ⊂ Hom (Ck,Sym2Ck).

Set the notationOk for the orbit closureBkǫ ⊂ Nk, then Q(z) is the Tk-equivariant
Poincaré dual

Q(z1, . . . , zk) = eP[Ok,Nk]Tk,

which is a homogeneous polynomial of degreedim(Nk) − dim(Ok).

6.4. The vanishing of residues.In this paragraph, we describe the conditions under
which iterated residues of the type appearing in the sum in (91) vanish.

We start with the 1-dimensional case, where the residue at infinity is defined by (11)
with d = 1. By bounding the integral representation along a contour|z| = Rwith R large,
one can easily prove

Lemma 6.9. Let p(z), q(z) be polynomials of one variable. Then

Res
z=∞

p(z) dz
q(z)

= 0 if deg(p(z)) + 1 < deg(q).

Consider now the multidimensional situation. Letp(z), q(z) be polynomials in thed
variablesz1 . . . zd, and assume thatq(z) is the product of linear factorsq =

∏N
i=1 Li, as

in (91). We continue to use the notationdz = dz1 . . .dzk. We would like to formulate
conditions under which the iterated residue

(95) Res
z1=∞

Res
z2=∞
. . .Res

zk=∞

p(z) dz
q(z)

vanishes. Introduce the following notation:

• For a set of indicesS ⊂ {1 . . .k}, denote by deg(p(z); S) the degree of the one-

variable polynomialpS(t) obtained frompvia the substitutionzm→






t if m∈ S,

1 if m < S.
• For a nonzero linear functionL = a0 + a1z1 + . . . + akzk, denote by coeff(L, zl)

the coefficiental;
• finally, for 1 ≤ m≤ k, set

lead(q(z); m) = #{i; max{l; coeff(Li , zl) , 0} = m},

which is the number of those factorsLi in which the coefficient ofzm does not
vanish, but the coefficients ofzm+1, . . . , zk are 0.

Thus we group theN linear factors ofq(z) according to the nonvanishing coefficient
with the largest index; in particular, for 1≤ m≤ k we have

deg(q(z); m) ≥ lead(q(z); m), and
k∑

m=1

lead(q(z); m) = N.
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Now applying Lemma 6.9 to the first residue in (95), we see that

Res
zk=∞

p(z1, . . . , zk−1, zk) dz
q(z1, . . . , zk−1, zk)

= 0

whenever deg(p(z); k) + 1 < deg(q(z), k); in this case, of course, the entire iterated
residue (95) vanishes.

Now we suppose the residue with respect tozk does not vanish, and we look for
conditions of vanishing of the next residue:

(96) Res
zk−1=∞

Res
zk=∞

p(z1, . . . , zk−2, zk−1, zk) dz
q(z1, . . . , zk−2, zk−1, zk)

.

Now the condition deg(p(z); k − 1)+ 1 < deg(q(z), k− 1) will insufficient; for example,

(97) Res
zk−1=∞

Res
zk=∞

kzk−1kzk

zk−1(zk−1 + zk)
= Res

zk−1=∞
Res
zk=∞

kzk−1kzk

zk−1zk

(

1−
zk−1

zk
+ . . .

)

= 1.

After performing the expansions (12) to 1/q(z), we obtain a Laurent series with terms
z−i1

1 . . . z
−ik
k such thatik−1 + ik ≥ deg(q(z); k− 1, k), hence the condition

(98) deg(p(z); k− 1, k) + 2 < deg(q(z); k− 1, k)

will suffice for the vanishing of (96).
There is another way to ensure the vanishing of (96): supposethat for i = 1 . . .N,

every time we have coeff(Li , zk−1) , 0, we also have coeff(Li , zk) = 0, which is equivalent
to the condition deg(q(z), k − 1) = lead(q(z); k − 1). Now the Laurent series expansion
of 1/q(z) will have termsz−i1

1 . . . z
−ik
k satisfyingik−1 ≥ deg(q(z), k − 1) = lead(q(z); k −

1), hence, in this case the vanishing of (96) is guaranteed bydeg(p(z), k − 1) + 1 <
deg(q(z), k − 1). This argument easily generalizes to the following statement.

Proposition 6.10.Let p(z) and q(z) be polynomials in the variables z1 . . . zk, and assume
that q(z) is a product of linear factors: q(z) =

∏N
i=1 Li; set dz = dz1 . . .dzk. Then

Res
z1=∞

Res
z2=∞
. . .Res

zk=∞

p(z) dz
q(z)

= 0

if for some l≤ k, either of the following two options hold:

• deg(p(z); k, k− 1, . . . , l) + k− l + 1 < deg(q(z); k, k− 1, . . . , l),
or
• deg(p(z); l) + 1 < deg(q(z); l) = lead(q(z); l).

Note that for the second option, the equality deg(q(z); l) = lead(q(z); l) means that

(99) for eachi = 1 . . .N andm> l, coeff(Li , zl) , 0 implies coeff(Li , zm) = 0.

Recall that our goal is to show that all the terms of the sum in (91) vanish except for the
one corresponding toπdst = ([1] . . . [k]). Let us apply our new-found tool, Proposition
6.10, to the terms of this sum, and see what happens.
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Fix a sequenceπ = (π1, . . . , πk) ∈ Πk, and consider the iterated residue corresponding
to it on the right hand side of (91). The expression under the residue is the product of
two fractions:

p(z)
q(z)

=
p1(z)
q1(z)

·
p2(z)
q2(z)

,

where

(100)
p1(z)
q1(z)

=

Qπ(z)
∏

m<l

(zm − zl)

k∏

l=1

τ,π1...πl∏

sum(τ)≤l

(zτ − zπl )

and
p2(z)
q2(z)

=
(zπ1 + . . . + zπk)

k(n−1)

k∏

l=1

n∏

i=1

(λi − zl)

.

Note thatp(z) is a polynomial, whileq(z) is a product of linear forms.
Proof of Theorem 6.10
As a warm-up, we show that if the last element of the sequence is not the trivial

partition, i.e. ifπk , [k], then already the first residue in the corresponding term onthe
right hand side of (91) – the one with respect tozk – vanishes. Indeed, ifπk , [k], then
deg(q2(z); k) = n, while zk does not appear inp2(z).

On the other hand, deg(q1(z); k) = 1, because the only term withzk is the one corre-
sponding tol = k, τ = [k] , πk. If deg(Qπ(z), k) = 0 held, we would be ready, as

(101) deg(p(z); k) = k− 1 and deg(q(z); k) = n+ 1

andk ≤ n.

Lemma 6.11.For π , ([1], [2], . . . , [k])

(102) deg(Qπ(z); k) = 0.

Proof. Recall from Proposition 6.6 thatQπ(z) is the multidegree of a (C∗)k-invariant
coneXf in the tangent space of the flag manifold Flag∗

k at the fixed pointπ. The weights
of the (C∗)k-action on this tangent space are exactly the factors ofq1, namely

zτ − zπl : τ , π1, π2, . . . πk;
∑

τ ≤ l, |τ| ≤ 2

and therefore the only weight containingzk is

zπk − zk

Applying Proposition 6.3 withm= k we arrive at (102). �

We can thus assume thatπk = [k], and proceed to the study of the next residue, the
one taken with respect tozk−1. Again, assume thatπk−1 , [k − 1]. As in the case ofzk

above,
deg(q2(z), k − 1) = n, deg(p2(z); k− 1) = 0.

In q1 the linear terms containingzk−1 are

(103) zk−1 − zk, z1 + zk−1 − zk, zk−1 − zπk−1
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The first term here cancels with the identical term in the Vandermonde inp1. The
second term dividesQπ, according to the following proposition from [4] applied with
l = k− 1:

Proposition 6.12. ([4], Proposition 7.4)
Let l ≥ 1, and letπ be an admissible sequence of partitions of the formπ = (π1, . . . , πl , [l+
1], . . . , [k]), whereπl , [l]. Then for m> l, and every partitionτ such that l∈ τ,
sum(τ) ≤ m, and|τ| > 1, we have

(104) (zτ − zm)|Qπ.

Therefore, after cancellation, all linear factors fromq1(z) which have nonzero co-
efficients in front of bothzk−1 andzk vanish, and we can apply the second option in
Proposition 6.10, leaving us with checking the degrees ofzk in the new numerator and
denominator of the fractionp

′(z)
q′(z) .

Note that Qπ(z)
z1+zk−1−zk

is the multidegree of the same cone in a smaller vector space,
namely, the cone sits in the subspace

S = {yz1+zk−1−zk = 0} ⊂ TpπFlag∗k,

whereyz1+zk−1−zk is eigencoordinate corresponding to the weightz1+zk−1−zk. The weights
with nonzero coefficient ofzk−1 in S are

zk−1 − zπk−1, zk−1 − zk,

and by Lemma 6.3
deg(p′(z); k− 1) ≤ k− 2+ 1 = k− 1

On the other hand,
deg(q′(z); k− 1) = n+ 1,

so we can apply the second part of Proposition 6.10.
In general, assume that

π = (π1, π2, . . . , πl, [l + 1], . . . , [k]), πl , [l],

and embark to the study of the residue with repect tozl. The weights containingzl in q1

are

zl − zk, zl − zk−1, . . . , zl − zl+1(105)

zτ − zs with l ∈ τ, τ , l, l + 1 ≤ s≤ k, sum(τ) ≤ s(106)

zl − zπl(107)

The weights in (105) cancel out with the identical terms inp1(z). By Propostition
6.12, the cone, whose multidegree isQπ(z) sits in the subspaceS, orthogonal to the
coordinates corresponding to the weights in (106), and thereforeQπ is divisible by these.
Using Lemma 6.3, after cancellation we are left with

deg(p′(z); l) = l − 1+ deg(Q′(z), l) ≤ l − 1+ k− l = k− 1; deg(q′(z)) = n+ 1,
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again. Sincek ≤ n, by applying the second option of Proposition 6.10 we arriveto the
vanishing of the residue, forcingπl to be [l].

7. Proof of Theorem 1.3

7.1. The Flag Manifold Model for the Jet differentials. Let X ⊂ Pn+1 be a smooth
projective hypersurface of degreed. Using the embeddingφProj fiberwise, we get the
following analog of Theorem 2.1 in [13]. Note, that the Plucker coordinate functions in
the Plucker embedding Grass(k,Sym≤kCn) ֒→ P(∧kSym≤kCn) have weighted degree

1+ 2+ . . . + k =

(

k+ 1
2

)

.

Proposition 7.1. The quotient Jk(T∗X)/Gk has the structure of a locally trivial bundle
over X, and there is a holomorphic embedding

φProj : Jk(T
∗
X)/Gk ֒→ P(∧

k(T∗X ⊕ Sym2(T∗X) ⊕ . . . ⊕ Symk(T∗X))

into the projectivisation of∧k(T∗X ⊕ . . . ⊕ Symk(T∗X)) over X. The fiberwise closureXk =

φProj(Jk(T∗X)) of the image is a relative compactification of Jk(T∗X)/ΓGk over X.

Following our notations in§5, we introduce

Sym≤kT∗X = T∗X ⊕ Sym2(T∗X) ⊕ . . . ⊕ Symk(T∗X).

Note thatXk ⊂ P(∧k(Sym≤kT∗X)) is a closed subvariety, and we can define the tauto-
logical line bundle overXk as the restriction

OXk(1) = OP(∧k(Sym≤kT∗X))(1)|Xk.

Proposition 7.2. The following direct image formula holds:

(108) π∗OXk(m) ⊂ O(Ek,m(k+1
2 )T

∗
X)

whereπ : P(∧k(Sym≤kT∗X)→ X is the projection.

Proof. By definition, the sections of the tautological bundle pull back toGk-invariant
functions onJkT∗X. �

Remark 7.3. Note that

π∗OXk(m) ⊂ O(Ek,m(k+1
2 )T

∗
X)

is enough to proceed with the strategy of[13]. We produce a nonzero global section
of the smaller sheaf, which gives a global section of the Demailly jet bundle. A more
detailed study ofXk shows in[5] that its boundary components have codimension at
least two, and therefore all the invariants are stored in thetautological bundle, and in
(108)equality holds.
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We now replace the Demailly-Semple towerXk constructed in [10] as a tower of
k projective fibrations with our new contructionXk, and follow the strategy of [13]
using this. We define and give an iterated residue formula forthe analog of Diverio’s
intersection number in [13], and prove the positivity to getthe stronger result Theorem
1.3.

The starting point is, again, Theorem 4.1 which connects jetdifferentials to the Green-
Griffiths Conjecture.

Note, that by Theorem 1 of [14],

H0(X,Ek,m(k+1
2 )T

∗
X ⊗ A−1) = 0

holds fork < n, so we can again restrict our attention to the rangek ≥ n. However, for
k > n, the flag manifold Homreg(Ck,Cn)/GL(k) is not defined in the snowman-model,
and therefore our residue formula does not hold.

This forces us to study thek = n case.
Similarly to§4, to control the order of vanishing of these differential forms along the

ample divisor we chooseA to be –as in [13] – a proper twist of the canonical bundle of
X, which is ample as soon asd ≥ n+ 3.

Theorem 4.2 on degeneracy of entire curves with Proposition7.2 ensures that we have
to prove the existence of nonzero global sections of

OXn(m) ⊗ π∗K
−δ(n+1

2 )m
X

for someδ > 0,m≫ 0 andd≫ 0. The precise statement is the following

Theorem 7.4. Let X ⊂ Pn+1 be a smooth complex hypersurface with ample canonical
bundle, that isdegX ≥ n+ 3. If δ = 1

n3(n+1) and d> D(n) = n6 then

H0(Xn,OXn(m) ⊗ π∗K
−δ(n+1

2 )m
X ) ≃ H0(X,En,m(n+1

2 )T
∗
X ⊗ K

−δ(n+1
2 )m

X ) , 0,

nonzero, provided thatδ
(
n+1

2

)

m is integer and Conjecture 1.2 holds.

Theorem 1.3 follows from Theorem 4.2 and Theorem 7.4.
The technical tool for proving Theorem 7.4 is again the Morseinequalities of Trapani

given in Theorem 4.5. In order to apply this, we have to expressOXn(1) as a difference
of nef bundles.

Proposition 7.5. Let d≥ n+ 3 and therefore KX ample. The following line bundles are
nef on X:

(1) OXn(1)⊗ π∗OX(2n2)

(2) π∗OX(2n2) ⊗ π∗K
δ(n+1

2 )
X for anyδ > 0 andδ

(
n+1

2

)

integer.

Proof. LetO(m) denote them-twisted tautological bundle onPn+1. ThenT∗
Pn+1 ⊗ O(2) is

globally generated, and there is a surjective bundle map

(T∗
Pn+1 ⊗ O(2))|⊗m

X → T∗X ⊗ OX(2)⊗m,
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thereforeT∗X ⊗ OX(2) is globally generated. Consequently, the left hand sideof the
following surjective bundle map is globally generated,

(109) ∧n
(

T∗X ⊗ OX(2)⊕ Sym2T∗X ⊗ OX(4)⊕ . . . ⊕ SymnT∗X ⊗ OX(2n)
)

→

∧n
(

(T∗X ⊕ Sym2T∗X ⊕ . . . ⊕ SymnT∗X) ⊗ OX(2n)
)

= ∧n (

T∗X ⊕ . . . ⊕ SymnT∗X
)

⊗ OX(2n2),

and therefore the right hand side is also globally generated. So

OP(∧n(Sym≤nT∗X))(1)⊗ π∗OX(2n2)

is nef, the first part of Proposition 7.5 is proved. The secondpart follows from the
standard fact that the pull-back of an ample line bundle is nef. �

Consequently, we can expressOXn(1)⊗ π∗K
−δ(n+1

2 )
X as the following difference of two

nef line bundles:

(110) OXn(1)⊗ π∗K
−δ(n+1

2 )
X = (OXn(1)⊗ π∗OX(2n2)) ⊗ (π∗OX(2n2) ⊗ π∗K

δ(n+1
2 )

X )−1.

In order to prove Theorem 4.4, by the Morse inequalities we need to evaluate the
intersection product

(111)

IX(d, n, δ) = (OXn(1)⊗π∗OX(2n2))n2)−(n2)(OXn(1)⊗π∗OX(2n2))(n2−1)(π∗OX(2n2)⊗π∗K
δ(n+1

2 )
X ),

and to prove that it is positive ifd > n6.

7.2. Plan of the computation. Let us introduce the cohomological classesh = c1(OX(1)), u =
c1(OXn(1)), andc1 = c1(X). Thenc1(KX) = −c1, and the intersection form (111) is the
integral of the top formRX(d, n, δ) ∈ Hn2

(Xn)

IX(d, n, δ) =
∫

Xn

RX(d, n, δ),

where

(112) RX(d, n, δ) = (u+ 2n2π∗h)n2
− n2(u+ 2n2π∗h)n2−1(2n2π∗h− δ

(

n+ 1
2

)

π∗c1)

The Chern classes ofX are expressible withd, h via the following identity:

(1+ h)n+2
= (1+ dh)c(X),

wherec(X) = c(TX) is the total Chern class ofX. After expansion we get the identities
(39).

In particular, this gives us
c1 = −(d − n− 2)h.

To apply the iterated residue formula of Theorem 6.7, we assume thatn = k and simplify
our notation by usingh instead ofπ∗h. We define
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(113) R(d, n, δ, z1, . . . , zn) = (−z1 − . . . − zn + 2n2h)n2
−

− n2(−z1 − . . . − zn + 2n2h)n2−1(2n2h+ δ

(

n+ 1
2

)

(d − n− 2)h)

Theorem 6.7 gives the desired formula forn = k as follows

Proposition 7.6.

(114) IX(d, n, δ) =
∫

X
Res
z=∞

Q(z)
∏

m<l

(zm− zl)R(d, n, δ, z1 . . . zn)

∏

m+r≤l≤n

(zm+ zr − zl)
n∏

l=1

n∏

i=1

(λi − zl)

dz.

Changing the coordinateszi → −zi and applying the identities of Remark 4.7 we have

(115)
1

∏n
l=1

∏n
i=1(λi + zl)

=
1

(z1 . . . zn)n

1
∏n

i,l=1(1+
λi

zl
)
=

1
(z1 . . . zn)n

1
∏n

l=1 C(X)(1/zl)
=

=
1

(z1 . . . zn)n

n∏

l=1

1+ dh
zl

(1+ h
zl
)n+2
=

1
(z1 . . . zn)n

n∏

l=1

(

1+
dh
zl

) n∏

l=1

(

1−
h
zl
+

h2

z2
l

− . . .

)n+2

and therefore after substituting (113) into (114) we arriveto

(116)

IX(d, n, δ) =
∫

X
Res
z=∞

(−1)nQ(z)
∏

m<l

(zm− zl)

∏

m+r≤l≤n

(zm+ zr − zl)(z1 . . . zn)
n

n∏

l=1

(

1+
dh
zl

) n∏

l=1

(

1−
h
zl
+

h2

z2
l

− . . .

)n+2

·

(z1+. . .+zn+2n2h)n2−1

(

z1 + . . . + zn − δn
2

(

n+ 1
2

)

dh−

(

2n4 − n2δ(n+ 2)

(

n+ 1
2

)

− 2n2

)

h

)

dz.

Let’s take a short break again, and step back a bit looking at this formula. The residue
is by definition the coefficient of 1

z1...zn
in the appropriate Laurent expansion of the big

rational expression inz1, . . . , zn, n, d, handδ, multiplied by (−1)n. We can therefore omit
the (−1)n factor from the numerator and simply compute the corresponding coefficient.
The result is therefore a polynomial inn, d, h, δ, and in fact, a relatively easy argument
shows that it is a polynomial inn, d, δmultiplied byhn

Indeed, giving degree 1 toz1, . . . , zn, h and 0 ton, d, δ, the rational expression in the
residue has total degree 0. Therefore the coefficient of 1

z1...zn
has degreen, so it has the

form hnp(n, d, δ) with a polynomialp.
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Since
∫

X
hn
= d, integration overX is simply a substitutionhn

= d, resulting the
equation

IX(d, n, δ) = dp(n, d, δ).
To overcome the difficulties in handling the rational expression, we introduce auseful

notation.

Notation 7.1. For i = (i1, . . . in) ∈ Zn

(117) θ(i) = θ(zi1
1 . . . z

in
n ) = coeff

z
i1
1 ...z

in
n

Q(z)
∏

m<l

(zm− zl)(z1 + . . . + zn)
n2
+i1+...+in

∏

m+r≤l≤n

(zm+ zr − zl)(z1 . . . zn)
n

and

(118) Θ(i1, . . . , in) =
∑

σ∈perm(i1,...,in)

θ(σ(i1), . . . , σ(in))

Note that we will usually omit the zero components afterΘ to shorten the notation, for
instance writeΘ(1) = Θ(1, 0, . . . , 0).

The total degree of the rational expression on the r.h.s of (117) is i1 + . . . + in and
therefore the coefficient ofzi1

1 . . . z
in
n can be nonzero.

The following proposition describesI (n, d, δ) in more detail.

Proposition 7.7. (1) I (n, d, δ) is a polynomial in d of degree n+ 1 without constant
term:

I (n, d, δ) = an+1(n, δ)d
n+1
+ an(n, δ)d

n
+ . . . + a1(n, δ)d

where the coefficients are linear inδ, polynomial in n.
(2) The leading coefficient of I(n, d, δ) is

an+1(n, δ) =

(

1− n2

(

n+ 1
2

)

δ

)

Θ(0, . . . , 0).

Proof. The first part follows from the previous remarks. The second equation comes
from (116), and the fact that in order to getdn+1 we either have to choose all thedh

zl
terms

in the product
∏n

l=1

(

1+ dh
zl

)

, or we need to pick up thedh
zs

term in

Q(z)
∏

m<l

(zm− zl)R(z1, . . . , zn, δ, h)

∏

m+r≤l≤n

(zm+ zr − zl)(z1 . . . zn)
n
,

and pair up with the termsdh
zl

, l , s in the product
∏n

l=1

(

1+ dh
zl

)

. This argument gives us

(119) an+1(n, δ) = Θ(0, . . . , 0)− n2

(

n+ 1
2

)

δ

n∑

s=1

θ(0, . . . ,−1s, . . . , 0)
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By definiton,

(120)

n∑

s=1

θ(0, . . . ,−1s, . . . , 0) = Θ(−1) =
n∑

s=1

coeff 1
zs

Q(z)
∏

m<l

(zm− zl)(z1 + . . . + zn)
n2−1

∏

m+r≤l≤n

(zm + zr − zl)(z1 . . . zn)
n
=

=

n∑

s=1

coeff1

Q(z)
∏

m<l

(zm− zl)zs(z1 + . . . + zn)
n2−1

∏

m+r≤l≤n

(zm+ zr − zl)(z1 . . . zn)
n

= Θ(0, . . . , 0).

�

Lemma 7.8.
Θ(0, . . . , 0) > 0.

Proof. This is the leading coefficient of the intersection number

(OXn(1)⊗ π∗OX(2n2))n2
.

Since this is a nef line bundle, this is positive, and therefore the leading coefficient is
also positive. �

Corollary 7.9. For δ < 2
n3(n+1) the leading coefficient of I(n, d, δ) is positive, and there-

fore I(n, d, δ) > 0 for d≫ 0.

According to Proposition 7.7, we cannot expect better than polynomial bound for the
Green-Griffiths conjecture from this model.

7.3. Estimation of the coefficients. Before we proceed, and fling ourselves into the
computation of the further coefficients, let’s have a look at (116) again. Introduce

(121) ∆(z1, . . . , zn, δ, n) =

Q(z)
∏

m<l

(zm− zl)R(z1, . . . , zn, δ, h)

∏

m+r≤l≤n

(zm+ zr − zl)(z1 . . . zn)
n
,

and with abuse of this notation we often omit the parameters and write∆.
If the degree ofz1, . . . , zn andh is 1, then the denominator and numerator of∆ are

homogeneous polynomials of the same degree, and therefore in the Laurent expansion
we have terms

(dh)ǫhmza1
1 . . . z

an
n

zb1
1 . . . z

bn
n

,

with ǫ = 0 or 1,ǫ +m+ a1 + . . . + an = b1 + . . . + bn, andaibi = 0. Let

η(ǫ,m, a, b)
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denote the coefficient of this term in∆. Using our previously introduced notations we
have

(122) η(1,m, a, b) = −θ(za−b)δn2

(

n+ 1
2

)(

n2 − 1
m

)

(2n2)m

and

η(0,m+1, a, b) = θ(za−b)

((

n2 − 1
m+ 1

)

(2n2)m+1 −

(

2n4 − n2δ(n+ 2)

(

n+ 1
2

)

− 2n2

) (

n2 − 1
m

)

(2n2)m

)

From these expressions we clearly have
Forδ = 1

n3(n+1)

(123) |η(0,m+ 1, a, b)| < n4|η(1,m, a, b)|

If η(m, a, b) denotes the coefficient ofhmza−b in ∆, then

η(m, a, b) = dη(1,m− 1, a, b) + η(0,m, a, b),

and we arrive at

Lemma 7.10.For δ = 1
n3(n+1) and d> n5

|η(0,m, a, b)| <
1
n
|η(m, a, b)|,

and therefore for m≥ 1

(124) η(m, a, b) = Cm,a,bdη(1,m− 1, a, b) with 1−
1
n
< Cm,a,b < 1+

1
n

Next, to handle the remaining part of (116) we introduce

Λ =

n∏

l=1

(

1+
dh
zl

) n∏

l=1

(

1−
h
zl
+

h2

z2
l

− . . .

)n+2

and fora = (a1, . . . , an) with a1 ≥ 0

ν(a) = coeff hΣa
za
Λ,

Let 1 = (1, . . . , 1) denote the multiindex of all 1s. Then

(125) IX(d, n, δ) = d
∑

b∈{0,1}n,m,a

η(m, a, b)ν(1+ b − a)

Indeed, the left hand side is by definition is the coefficient of 1
z1...zn

modified by the
substitutionhn

= d. b ∈ [0, 1]n means thatzb is square-free, which is necessary to get
z1 . . . zn in the denominator.
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If δ < 1
n3(n+1) andd > n5, then Lemma 7.10 leads us to

(126) IX(d, n, δ) = d
∑

b∈{0,1}n,m,Σa=Σb−m

η(m, a, b)ν(1− b + a) =

= d2
∑

b∈{0,1}n,m>1,Σa=Σb−m

|Cm,a,bη(1,m−1, a, b)ν(1−b+a)|+d
∑

b∈{0,1}n,Σa=Σb

|η(0, 0, a, b)ν(1−b+a)|

From now on to simplify our formulas, we fix the value ofδ to be

δ =
1

n3(n+ 1)
.

Then (122) can be rewritten form≥ 1 as

η(1,m− 1, a, b) = −θ(za−b)
1
2

(

n2 − 1
m− 1

)

(2n2)m−1

On the other hand, by definition

η(0, 0, a, b) = θ(za−b).

A short computation shows that using the notation

Λ1 =

n∏

l=1

(

1−
h
zl
+

h2

z2
l

− . . .

)n+2

,

and assuming thatb ⊂ {0, 1}n (and therefore1− b + a ≥ 0) we have

(127) ν(1− b + a) = hn+Σa−Σb(dn−Σbcoeff 1
za
Λ1 + dn−1−Σb

∑

s∈1−b

coeff 1
za+s
Λ1+

+ dn−2−Σb
∑

s1,s2∈1−b

coeff 1
za+s1+s2

Λ1 + . . .+)

wherea+ s= a+ (0, . . . , 0, 1s, 0 . . . , 0). Putting these together we arrive at the following
formulas:

(128) IX(d, n, δ) = −d2
∑

b∈{0,1}n,m≥1
Σa=Σb−m

Cm,a,bθ(za−b)
1
2

(

n2 − 1
m− 1

)

(2n2)m−1·




dn−Σbcoeff 1

za
Λ1 + dn−1−Σb

∑

s∈1−b

coeff 1
za+s
Λ1 + dn−2−Σb

∑

s1,s2∈1−b

coeff 1
za+s1+s2

Λ1 + . . .




+

+d
∑

b∈{0,1}n
Σa=Σb

θ(za−b)




dn−Σbcoeff 1

za
Λ1 + dn−1−Σb

∑

s∈1−b

coeff 1
za+s
Λ1 + dn−2−Σb

∑

s1,s2∈1−b

coeff 1
za+s1+s2

Λ1 + . . .




.
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After arranging this expression as a polynomial ind we get


θ(1)coeff1Λ1 −
1
2

n∑

s=1

C1,0,esθ(z
−1
s )Λ1



 dn+1
+(129)

+(θ(1)
n∑

s=1

coeffz−1
s
Λ1 +

∑

s1,s2

θ

(

zs1

zs2

)

coeffz−1
s1
Λ1 −

n− 1
2n

∑

s1,s2

θ(z−1
s1

)coeffz−1
s2
Λ1 −

−

(

n2 − 1
1

)

2n
∑

s1,s2

C2,0,es1+es2
θ((zs1zs2)

−1)coeff1Λ1 −
1
2

∑

s1,s2,s3
s1,s2,s3

C1,es1 ,es1+es2+es3
θ

(

zs1

zs2zs3

)

coeffz−1
s1
Λ1)d

n
+

+(...)dn−1
+ . . .(130)

The coefficient ofdn+1−l is

l∑

r=0

∑

b∈{0,1}n
Σa=Σb=r,ab=0

∑

s⊂1−b
Σs=l−r

θ(za−b)coeff 1
za+s
Λ1 −

−

l+1∑

r=1

r∑

m=1

∑

b∈{0,1}n
Σa=r−mΣb=r,

ab=0

1
2

(

n2 − 1
m− 1

)

(2n2)m−1
∑

s⊂1−b
Σs=l−r

Cm,a,bθ(za−b)coeff 1
za+s
Λ1(131)

Lemma 7.11.For i1, . . . , in ∈ N

coeff 1

z
i1
1 ...z

in
n

Λ1 = (−1)i1+...+in

(

n+ i1 + 1
i1

)(

n+ i2 + 1
i2

)

· · ·

(

n+ in + 1
in

)

Proof. By definition

coeff 1

ziss

Λ1 = coeff 1

ziss

(

1−
h
zs
+

h2

z2
s

− . . .

)n+2

= (−1)s
∑

m1+...mn+2=s

1 = (−1)s

(

n+ s+ 1
s

)

and the lemma follows. �

Corollary 7.12. For i1, . . . , in ∈ N

coeff 1

z
i1
1 ...z

in
n

Λ1 ≤ (−1)i1+...+in(n+ 2)i1+...+in

Lemma 7.13.
∑

b∈{0,1}n
Σa=r−mΣb=r,

ab=0

θ(za−b) < n4(r−m)θ(1)
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Proof. By definiton we have
(132)

∑

b∈{0,1}n
Σa=r−mΣb=r,

ab=0

θ(za−b) = coeffz1

Q(z)
∏

m<l

(zm− zl)

∏

m+r≤l≤n

(zm + zr − zl)(z1 . . . zn)
n
·(z1+. . .+zn)

n2−m(
∑

b∈{0,1}n
Σa=r−mΣb=r,

ab=0

zb−a)

For i1 + . . . + in = n2 we have

coeffz
i1
1 ...z

in
n
(z1+. . .+zn)

n2−m(
∑

b∈{0,1}n
Σa=r−mΣb=r,

ab=0

zb−a) =
∑

b∈{0,1}n
Σa=r−mΣb=r,
ab=0,i+a−b≥0

(n2 −m)!
(i1 + a1 − b1)! · · · (in + an − bn)!

<

<
∑

b∈{0,1}n
Σa=r−mΣb=r,
ab=0,i+a−b≥0

(n2)!
∏

as>0(is + as)!
∏

s∈b0(is− 1)
∏

s∈[n]\(a∪b) is
<

=

∑

b∈{0,1}n
Σa=r−mΣb=r−m,
ab=0,i+a−b≥0

coeffzi+a−b(z1 + . . . + zn)
n2

Introduce the notation

Tpn(z) =

Q(z)
∏

m<l

(zm− zl)

∏

m+r≤l≤n

(zm+ zr − zl)(z1 . . . zn)
n

Here Tp stands for Thom polynomial, since the coefficients of the Laurent expansion are
the coefficients of the Thom polynomials, see [4]. By (132) and Rimányi’s conjecture
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(see the first part of Conjecture 1.2) we arrive at
∑

b∈{0,1}n
Σa=r−mΣb=r,

ab=0

θ(za−b) =
∑

i1+...+in=n2

Tp
z
−i1
1 ···z

−in
n
· coeff

z
i1
1 ...z

in
n
(z1+ . . .+ zn)

n2−m(
∑

b∈{0,1}n
Σa=r−mΣb=r,

ab=0

zb−a) <

<
∑

Σi=n2

Tpz−i ·
∑

b∈{0,1}n
Σa=Σb=r−m,

ab=0,i+a−b≥0

coeffzi+a−b(z1 + . . . + zn)
n2
=

=

∑

Σi=n2

i≥0

∑

b∈{0,1}n
Σa=Σb=r−m,

ab=0,i+a−b≥0

·Tpz−i · coeffzi (z1 + . . . + zn)
n2
·

coeffzi+a−b(z1 + . . . + zn)n2

coeffzi (z1 + . . . + zn)n2 +

+

∑

Σi=n2

∃s,is<0

∑

b∈{0,1}n
Σa=Σb=r−m,

ab=0,i+a−b≥0

·Tpz−i+b−acoeffzi+a−b(z1 + . . . + zn)
n2
·

Tpz−i

Tpz−i+b−a

To estimate the first sum, notice that

coeffzi+a−b(z1 + . . . + zn)n2

coeffzi (z1 + . . . + zn)n2
< n2Σb

Moreover,

(133) ♯{b ∈ {0, 1}nΣa = Σb = r−m, ab = 0, i+a−b ≥ 0} ≤

(

n
Σb

)

·

(

n− Σb + Σa
Σa

)

< n2Σb

As for the second sum, we need to estimate the ratio
Tpz−i

Tpz−i+a−b
. We devote the next

subsection to explain the following

Conjecture 7.14.Let i � 0 be a multiindex with negative elements, andΣi = n2. Then
for a, b ≥ 0, Σa = Σb, ab = 0 we have

(134)
Tpz−i

Tpz−i+a−b

< nΣb

Finally, similarly to (133), the number of ways we can get a given multiindexj ≥
0,Σj = n2 in the formi + a− b is less than

(
n
Σb

)

·
(
n−Σb+Σa
Σa

)

< n2Σb

Applying this conjecture in our case results

(135)
∑

b∈{0,1}n
Σa=r−mΣb=r,

ab=0

θ(za−b) < n4(r−m)
∑

Σi=n2,i≥0

Tpz−i coeffzi (z1 + . . . + zn)
n2
= n4(r−m)θ(1)

and Lemma 7.13 is proved. �

Using (124), the same proof gives us
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Lemma 7.15.
∑

b∈{0,1}n
Σa=r−mΣb=r,

ab=0

Cm,a,bθ(za−b) < n4(r−m)θ(1)

Next, we substitute Lemma 7.13 and Corollary 7.12 in the expression (131) for the
coefficient ofdn+1−l. The first term in (131) can be estimated as

(136)
l∑

r=0

∑

b∈{0,1}n
Σa=Σb=r,ab=0

∑

s⊂1−b
Σs=l−r

θ(za−b)coeff 1
za+s
Λ1 <

l∑

r=0

(

n− r
n− l

)

(n+ 2)ln4rθ(1),

and the second term as
l+1∑

r=1

r∑

m=1

∑

b∈{0,1}n
Σa=r−mΣb=r,

ab=0

1
2

(

n2 − 1
m− 1

)

(2n2)m−1
∑

s⊂1−b
Σs=l−r

θ(za−b)coeff 1
za+s
Λ1 <(137)

<

l+1∑

r=1

r∑

m=1

1
2

(

n2 − 1
m− 1

)

(2n2)m−1

(

n− r
n− l

)

(n+ 2)l−mn4(r−m)θ(1)

Recall, that the leading coefficient is coeffdn+1IX(n, d) = 1
2θ(1). Therefore we arrive at

coeffdn+1−l IX(d, n) <





l∑

r=0

(

n− r
n− l

)

2(n+ 2)ln4r
+

l+1∑

r=1

r∑

m=1

(

n2 − 1
m− 1

)

(2n2)m−1

(

n− r
n− l

)

(n+ 2)l−mn4(r−m)



 ·

· coeffdn+1IX(n, d) < n6l · coeffdn+1IX(n, d)

So we have proved the following

Proposition 7.16.For δ = 1
n3(n+1)

|coeffdn+1−l IX(d, n)| < n6l · coeffdn+1|IX(n, d)|

Theorem 7.4 now follows from Proposition 7.16 and Observation 4.10.

8. On Conjecture 1.2

Finally, we motivate Conjecture 1.2 with some observations.

8.1. The convergence ofTpk. The Laurent expansion of Tpk(z1, . . . , zk) is convergent
whenzi + zj < zl for i + j ≤ l ≤ k. Indeed, in this case

1
zi + zj − zl

=
−1
zl

(

1+
zi + zj

zl
+

(zi + zj)2

z2
l

)
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is convergent. The coefficients Tpi are positive by Rimányi’s conjecture, so fori =
(i1, . . . , ik), i1 + . . . + ik = 0 and 1≤ l,m≤ k the series

∞∑

s=0

Tpi+s(el−em)z
i+s(el−em)

is convergent with the substitutionzj = j2, that is

Tpi · (1
i122i2 . . . k2ik)

∞∑

s=0

Tpi+s(el−em)

Tpi

(

l
m

)2s

< ∞

But l
m ≥

1
n, so

Tpi+s(el−em)

Tpi
< n2s

”in average”, suggesting the second part of Conjecture 1.2.

8.2. Checking the known casesn = m, k ≤ 7. In [37] (Theorem 5.1) Rimányi com-
putes the Thom polynomials Tpm−n

k (c1, c2, . . .) in (1) for m = n, k ≤ 8. The list is as
follows:

Tp0
1 = c1

Tp0
2 = c2

1 + c2

Tp0
3 = c3

1 + 3c1c2 + 2c3

Tp0
4 = c4

1 + 6c2
1c2 + 2c2

2 + 9c1c3 + 6c4

Tp0
5 = c5

1 + 10c3
1c2 + 25c2

1c3 + 10c1c2
2 + 38c1c4 + 12c2c3 + 24c5

Tp0
6 = c6

1 + 15c4
1c2 + 55c3

1c3 + 30c2
1c

2
2 + 141c2

1c4 + 79c1c2c3 + 5c3
2 + 202c1c5 + 55c2c4

+17c2
3 + 120c6

Tp0
7 = c7

1 + 21c5
1c2 + 105c4

1c3 + 70c3
1c

2
2 + 399c3

1c4 + 301c2
1c2c3 + 35c1c3

2 + 960c2
1c5+

+467c1c2c4 + 139c1c2
3 + 58c2

2c3 + 1284c1c6 + 326c2c5 + 154c3c4 + 720c7

Tp0
8 = c8

1 + 28c6
1c2 + 140c4

1c
2
2 + 140c2

1c
3
2 + 14c4

2 + 182c5
1c3 + 868c3

1c2c3 + 501c1c2
2c3+

+642c2
1c

2
3 + 202c2c2

3 + 952c4
1c4 + 2229c2

1c2c4 + 364c2
2c4 + 1559c1c3c4 + 332c2

4+

+3383c3
1c5 + 3455c1c2c5 + 954c3c5 + 7552c2

1c6 + 2314c2c6 + 9468c1c7 + 5040c8

All coefficients are positive in the table, suggesting Rimányi’s conjecture. Moreover the
residue formula (1) form= n tells us that for 1≤ i1 ≤ i2 ≤ . . . ≤ is ≤ k, i1 + . . . + is = k

(138) coeffci1ci2 ...cis
Tp0

k =

∑

σ∈Ss→k

coeff(z1...zk)−1z
−i1
σ(1)z

−i2
σ(2)...z

−is
σ(s)

Tpk(z1, . . . , zk),

where the right hand side is the sum of the coefficients in the Laurent expansion on the
contourz1 ≪ . . .≪ zk. HereSs→k is the set of injective maps{1, . . . , s} → {1, . . . , k}. In
particular, using the notation of Conjecture 1.2:

coeffck
1
Tp0

k = Tp(0,...,0) = θ(0); coeffck−2
1 c2

Tp0
k =

∑

1≤a<b≤k

Tpea−eb
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coeffck−3
1 c3

Tp0
k =

∑

1≤a,b,c≤k,b<c

Tp2ea−eb−ec
; coeffck−4

1 c2
2
Tp0

k =

∑

1≤a,b,c,d≤k,b<c

Tpea+eb−ec−ed
;

etc. So some of the quotients in Conjecture 1.2 can be detected using the table above.
For example,

Tpea−ab

Tp0
<

coeffck−2
1 c2

Tp0
k

coeffck
1
Tp0

k

,

and from the table we see that these are≤ k2 for k ≤ 8. In general

Tpi

Tp0
<

coeffci1+1ci2+1...cik+1Tp0
k

coeffck
1
Tp0

k

,

which is, again, less thenk2♯{s:is>0} in the listed cases.

8.3. Checking k = 3 for any value of m− n. SinceQ3(z1, z2, z3) = 1, the Thom series
for k = 3 is given as

(139)

Tp3(z1, z2, z3) =
(z2 − z1)(z3 − z2)(z3 − z1)

(z2 − 2z1)(z3 − z2 − z1)(z3 − 2z1)
=

z2 − z1

z2 − 2z1
·

z3 − z2

z3 − z2 − z1
·

z3 − z1

z3 − 2z1
=

z1

z2

(

1+
2z1

z2
+

(2z1)2

z2
2

+ . . .

)

·
z1

z3

(

1+
z1 + z2

z3
+

(z1 + z2)2

z2
3

+ . . .

)

·
z1

z3

(

1+
2z1

z3
+

(2z1)2

z2
3

+ . . .

)

We leave as an exercise to the reader to show that in this case,indeed, Tpi
Tpi+s(el−em)

< 32s

holds.
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