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1. INTRODUCTION

The Green-Gfiiths conjecture from 1979 ([24]) states that every projeciilgebraic
variety X of general type contains a certain proper algebraic sustya¥ic X such that
all nonconstant entire holomorphic curves C — X necessarily lie irY.

This conjecture is related to the stronger concept of a ipgdervariety in the sense
of Kobayashi ([27]). A projective varietX is called Kobayashi-hyperbolic if there is
no nonconstant entire holomorphic curveXni.e any holomorphic map : C — X
must be constant. Hyperbolic algebraic varieties hava@td considerable attention,
in part because of their conjectured diophantine properker instance, Lang ([28] has
conjectured that any hyperbolic complex projective vagrmter a number field K can
contain only finitely many rational points over K.

A positive answer to the Green-@tiihs conjecture has been given for surfaces by
McQuillan [29] under the assumption that the second Segnebeuc? — c; is posi-
tive. More recently, Siu established in [40, 41] that thexists a integed, such that
generic hypersurfaceé c P™! of degree greater thaily are Kobayashi-hyperbolic. His
estimates fod, are, however, notfective. Following his strategy and using the alge-
braic Morse inequalities of Trapani, Diverio gave a shdeggant proof in[[14] for the
non-dfective Green-Gftiths conjecture for projective hypersurfaces. The key idea i
Diverio’s work is that the Morse inequalities ensure thestsace of global holomorphic
invariant jet diferentials onX if a certain intersection number of timeth projectivized
jet bundle oveiX—also called the Demailly-Semple tower—is positive.

The first dfective lower bounds for the degree of the hypersurface inGreen-
Griffiths conjecture was given recently by Diverio, Merker and $d@au in[[13]. They
prove that for a projective hypersurfagec P™! of degree> 2™ the Green-Gifiiths
conjecture holds. Their proof follows the strategy of Sidl &iverio combined with a
delicate, long calculation with the cohomology ring of therailly-Semple tower to
prove the positivity of Diverio’s intersection number.

In the first half of this paper we apply equivariant locali@aattechniques on the
Demailly-Semple tower to give a closed formula for Divesigitersection number (The-
orem[4.8). The key idea is to transform the Atiyah-Bott lazation into an iterated

The support of EPSRC is gratefully acknowledged.
1


http://arxiv.org/abs/1011.4710v1

2 GERGELY BERCZI MATHEMATICAL INSTITUTE, OXFORD

residue formula, which allows us to give a better lower boumthe Green-Gffiths
problem. We prove:

Theorem 1.1.Let X ¢ P™! be a generic smooth projective hypersurface of degree
deg(X) > 28"°9" Then there exists a proper algebraic subvariety X such that every
nonconstant entire holomorphic curve € — X has image contained in Y.

Let us give a short historical overview of the background gngoproof.

Jet diferentials of a complex manifold are, roughly speaking, fierential operators
acting on germs of holomorphic curves 1 The fundamental idea, that global jet
differentials vanishing on an ample divisor provide some algjelifferential equations
that every entire holomorphic curve: C — X should satisfy, first appeared in the
seminal paper of Bloch [8]. In_[24] Green and €&ths put these ideas in an algebraic
context by defining the bundli = J«(Tx) of k-jets at O of germs of holomorphic curves
f : C — XoverX, andEZ> = C[J], the bundle of algebraic fierential operators
whose elements are polynomial functia@éf’, . . ., f®) of weighted degree.

In [10] Demailly refined the theory by defining jetttérentials that are invariant under
reparametrization of the sourck also called the Demailly subbundi® ,, C Efjg Itis
acted on fiberwise by the grouf of k-jets of reparametrization germs,(0) — (C, 0)
at the origin, andp>_,Exm = O(J)° is the algebra if invariant jet ffierentials. This
bundle gives a better reflection of the geometry of entireesirsince it only takes care
of the image of such curves and not of the way they are paraeeéir However, it
also comes with a technicalfticulty, namely, the reparametrization groGp is non-
reductive, and the classical geometric invariant theorylofnford is not applicable to
describe the invariants and the quotiggGy.

In [10] Demailly overcomes this problem by describing a sthammpactification of
Jk/ Gy as a tower of projectivized bundles 8r—-the Demailly-Semple tower—endowed
with tautological bundles whose sections @jeinvariants. Diverio in[[14] then applies
the algebraic Morse inequalities to provide global invatriget differentials onX by
proving the positivity of a certain intersection numberlod tautological bundle on the
Demailly-Semple tower.

However, existence of global jetftirentials is not enough: they provide constraints
only on the jets of of holomorphic curvesiof a fix order. The final step of the strategy
— which was established by Siu based on earlier works of Wp@id then turned into a
final form in [13] — is the deformation of such jetfférentials by means of slanted vector
fields having low pole order to produce, by plaiftdrentiation, many new algebraically
independent invariant jet fierentials, which then force entire curves to lie in a proper
closed subvariety c X.

Recently, in[[33] Merker proves the existence of global jefedentials of ordek
suficiently bigger than the dimensiarof the hypersurfacX with degX) > n+ 3. De-
mailly in [12] generalizes this result proving the existerd global jet diferentials for
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projective varieties of general type, not just hyperswefad he results of the present pa-
per, however, focus on the= n case, where Siu’s deformation arguments gtiective
lower bounds for the Green-@iths conjecture wheiX is a hypersurface. Moreover,
we work with invariant jet dierentials instead of Green-@&iihs jet diferentials (i.e
non-invariant ones), in contrast {0 [33,/12].

In the second half of the present paper we describe a new aifigetion of J,/ Gy
and the invariant jet dierentials. This construction is motivated by the authcaidier
work in global singularity theory, where jetftierentials also play a very important role.

Consider a holomorphic majp: N — M between two complex manifolds, of dimen-
sionsn < m. We say thaip € N is asingularpoint of f (or f has a singularity ap)
if the rank of the diferentialdf, : T,N — T M is less tham. The topology of the
situation often forceg to be singular at some points Nf

To introduce a finer classification of singular points, cleotescal coordinates near
p e Nandf(p) € M, and consider the resulting map-gefpt (C", 0) — (C™, 0), which
may be thought of as a sequencergbower series im variables without constant terms.
Let Diff, denote the group of germs of local holomorphic reparansgtoss C", 0) —
(C",0). Then Dft, x Diff,, acts on the spacg(n, m) of all such map-germs. We will
call Diff, x Dift,-orbits or, more generally, Bi, x Diff,-invariant subset® c J(n, m)
singularities For a singularityO and holomorphid : N — M, we can define the set

Zo[f] = (peN; fy €O},

which is independent of any coordinate choices. Then, usal@e additional technical
assumptions, fol compact, appropriate clos€j andf suficiently genericZo|[ f]is an
analytic subvariety oN. The computation of the Poincaré dual clag$f] € H*(N, Z)
of this subvariety is one of the fundamental problems of gl@ingularity theory. This
is genuinely useful: for example, if we can prove thgf f] does not vanish, then we
can guarantee that the singular@occurs at some point of the mdp

This problem was first studied by René Thom (cf.| [45, 25]hi@ tategory of smooth
varieties and smooth maps; in this case cohomology &j2Z-codficients is used.
This study was later extended to the holomorphic categowyedis(cf. [26,(9,/37]. To
describe the classo[f] in more concrete terms, denote ByA4, 8] the space of
those polynomials in the variables,( . . A, ; . . . 6,) which are invariant under the per-
mutations of thel’'s and the permutations of tl#s. According to the structure theorem
of symmetric polynomialsC[A4, ]5™5n is itself a polynomial ring in the elementary
symmetric polynomials:

C[A, 6]5Sm = C[c1(A) . . . ca(A), C1(6) . . . Cm(0)].

Using the Chern-Weil map, any polynomtak C[4, §]5>Sn, and every pair of bundles
(E, F) overN of ranksn andm, respectively, produces a characteristic cla(&s F) €
H*(N, C). The following result is called Thom's principle in thedrature:

For appropriateDiff, x Diffy-invariant O of codimension j igf(n, m), there exists a
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homogeneous polynomidp, € C[4, 8]~ of degree j such that for an arbitrary,
syficiently generic map f: N — M, the cycle Z[O] c N is Poincaré dual to the
characteristic clas3 po(TN, f*T M).

A precise version of this statement is described in [4]. Tokmpomial TR, is called
the Thom polynomiabf O. The computation of these polynomials is a central problem
of singularity theory.

There is an important class of orbits which is relevant toGineen-Gritiths problem.
Define

Oc={f=(f% ... M e g m) : Cxy,...,x]/(fL ..., M ~ C[t]/t2).

These are called Morin singularities, and in a recent paj) the author with A.
Szenes gave a formula for their Thom polynomialg F0I'pg, .

The relevance of Morin singularities becomes clear fromatigebraic characteriza-
tion of Oy. This is called theest curve modedf T. Gatney (seel[23,14]), saying that an
elementf of (an open dense subset gfln, m) lies in O if and only if there exist a test
curvey € J«(1, n) such that thé-jet of f oy is 0. Reparametrization of the test curve is
again a test curve, and therefore we arrive the followingeoleion
Oy fibers over the quotieny(1, n)/Gy whereGy is the group ok-jets of reparametisa-
tions (C, 0) — (C,0). (In other word<Gy is the truncated Di, at degre&k + 1. )

Note that for an open dense subdg¥(1, n) c k(1. n) the geometric quotier (1, n)/Gy
exists and the fiber of the Demailly-Semple tower over aryX is a smooth compact-
ification of this quotient. In[[4] we developed afiirent construction of the quotient
J: (1, n)/Gy, and applied equivariant localization on this quotientrttegrate the so-
called equivariant Thom class, and then we transformeddirauia into an iterated
residue. We proved a vanishing property of this iteratedlues saying that only one
fixed point contributes to the sum, leaving us with a closkdytsformula for the Thom
polynomial:

k
(1) po_n(cl, - ) — B_GS(_l)k [Tma(Zm—2) Qu(z - .. Z) 1—[ C (%) Z:”n—n dz,
B 1=1

© [Tmir<i<k(Zm + 2z — 2)

where
1
C(—):l+%+2+...
Z Z

z
is the total Chern class @fN — f*T M, andQ(zi, . . ., ) is a homogeneous polynomial
defined as the dual of a Borel orbit in [4].
The codficients of the Thom-polynomials are therefore containedvanTthom gen-
erating function

[T (Zn—2) Q(ze. .. 7)
[Tmir<a<k(Zm+ 2z — 2)

(2) Tp(z,....2) =
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The polynomialQy in the formula is known fok < 6, but only sporadic results are
known in the generic case (see [2] for details). The preacgmition of this homoge-
neous polynomial is given in Remark (6.8). The total degre€m is 0, that is, the
homogeneous polynomials in its numerator and denominatae Bqual degree.

Itis conjectured in[37], (Conjecture 5.5) that all ééeents of the Thom polynomials
Tpe(Ci, Cp, . . .) expressed in terms of the relative Chern classes are nativegin [4]
we prove this folkk = 1,2, 3. The second part of the following conjecture is motivated
in §8.

Conjecture 1.2.Fori = (iy,...,ik) € ZK¥withiz+. . .+i, = Olet Tp, denote the cgficient
of 2! ...z in the Laurent expansion afp,(z, . . ., z) in the domainz| < --- < |z.
Then

(1) (Rimanyi,[37]) Tp, > 0 for anyi.

(2) Letl<mI <kandi+...+i=0andg = (0,...,1),...,0). Then e < |2

Tp;

In the second part of the paper we generalize and extend tadization method
developed inl]4] to produce a closed iterated residue faanfil intersection pairings
on the quotiend,/Gy. Detailed analysis of the formula accompanied with the micak
bounds coming from Siu‘s deformation arguments leads us to

Theorem 1.3.Let X c P™! be a generic smooth projective hypersurface of degree
deg(X) > n®. Then Conjecture_11.2 for & n implies the existence of a proper algebraic
subvariety Yc X such that every nonconstant entire holomorphic curveCf— X has
image f(C) contained in Y.

Acknowledgments| am indebted to Damiano Testa, who called my attention t® thi
beautiful problem and the relation to our earlier work on-neductive groups, and to
Frances Kirwan for useful discussions, hints, advice aird yoork on this project.

The author warmly thanks Andras Szenes, his former PhD sigoefor his patience
and the collaboration from which this paper has outgrown.

| would also like to thank Brent Doran for the helpful discoss.

2. FET DIFFERENTIALS

The central object of this paper is the algebra of invariahtdifferentials under
reparametrization of the source sp&ced~or more details see the survey paper [10].

2.1. Invariant jet di fferentials. Let X be a complex-dimensional manifold, and c
Tx a holomorphic subbundle of the tangent bundi&ofNote thatV is not necessarily
integrable.

Green and Gfiiths in [24] introduced a bundlgV — X, the bundle ofk-jets of
germs of parametrized curves ¥htangent toV; that is, the fibre ovexk € X is the set
of equivalence classes of holomorphic mdps(C, 0) — (X, X), such thatf’(t) € Vi
for all t in a neighbourhood of 0, with the equivalence relation- g if and only if
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all derivativesf()(0) = g’(0) equal for 0< j < k. If we choose local holomorphic
coordinates4, ..., z,) on an open neighbourhod c X aroundx, the elements of the
fibre Ji«V areC"-valued maps
f=(f,f,...,f):(C0) — (QX),
and two maps represent the same jet if their Taylor expassitin= 0
t2 tk

f(t)=x+tf'(t) + o f70)+...+ W f®(0) + O(tk+1)

coincide up to ordek. In these coordinates the fibre is

Jx = {(F0)...., F9(O))] = (€

which we identify withC"k,

Note thatJ,V is not a vector bundle, since the transition functions atemqmonial, but
not linear.

Let G¢ be the group ok-jets of biholomorphism germs

(C,0) - (C,0);
that is, thek-jets at the origin of local reparametrisations
t o) = ot + e’ + ...+ at’, a1 €Can, ..., €C,

in which the composition law is taken modulo tertisor j > k. This group acts
fibrewise onJcV by substitution. A short computation shows that this is adinaction
on the fibre:
f7(0)
2!
f(k)(O)
k!

fo‘P(t): f,(o)‘(a1t+a2t2+...+aktk)+ '(a1t+a2t2+--.+aktk)2+__,

(ant + at? + ...+ et =

f
(fra)t + (f'ap + 5a§)t2 +...

so the linear action ap on thek-jet (f’(0),. .., f®(0)) is given by the following matrix
multiplication:

a; d az PR > 1%
f(k)(O) 0 af 2a;a,
fog(0)=(O)....—3| 0 0 & ,

0 O 0 0

|—QJX'

where thefi( j)th entry of the matrix is

S a.a

Si+...+S=]
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There is an exact sequence of groups:
0-G,—>G—>C" -0,

whereGy — C* is the morphisny — ¢’(0) = a; with the notation used above, and

Gk =G = C"
is an extension of a unipotent group with. With the above identificatiorC* is the
subgroup of diagonal matrices satisfyiag = ... = a, = 0 andG, is the unipotent

radical of Gy, i.e witha; = 1. The action oft € C* onk-jets describes a grading by
A-(£(0), 7(0), ..., f9(0)) = (1f'(0), 22£”(0), ..., 2 ¥(0)),

so the weight off  isi.

The Green-Gftiths bundle, introduced by Green and fGtis in [24], is the bundle
EZSV* — X, whose fibers are polynomialftrential operatorQ(f’, f~,..., f®) on
the fibers ofJV of weighted degreen with respect to the fiberwisg* actlon onJ\V.
Note that this makes sense, since the transition functiepaynomial.

The action ofGy naturally induces an action (Efrﬁv fiberwise.

Definition 2.1. Following Demailly (se¢10]), we define the vector bundle of invariant
jet differentials of order k and degree m as the bundig¥& c EGGV* over X, whose
fibers are invariant polynomial gierential operators on Y, that is for anyp € Gy they
satisfy

Qf o), (fog)”,....(Fop)®) = (O Q(f", £7,..., f¥).

Let E} = enEy,, denote the graded algebra of invariants. This algebra @ id
considerable attention for long time. In [5] the authorsegivgeometric description of
this invariant algebra.

2.2. Compactification of J\V/Gg. Given a space with a group action, intuitively we
think of the ring of invariant polynomial functions on a spaas polynomial functions
on the quotient of the space by the group. Informally, we wdike to think of the
Demailly algebra of invariant jet fferentials as sections of a line bundle over a GIT-
like quotientJV//Gy w.r.t a line bundle oV, that is,

& ExmV = C[XV]% = C[JV//Gy].

The question is, how can we interpret the quoti@//Gy to realise this principle.
Since Gy is not a reductive group, the arguments of Mumford‘s geoimétvariant
theory do not apply automatically here. However, we provibjrthat the algebra of
invariantsC[ JV]« is finitely generated, and therefore the categorical qabtie

JV//Gy = Spec(E[ XV )

exists.
A more detailed study of the GIT-like quotieditV//Gy can be found in [5].
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Demailly’s "projectivized jet bundle” construction pralés a smooth compactifica-
tion of the geometric quotienV/Gy of an open dense subsﬁ{fg(V) c J(V), con-
structed as an iterated tower of projectivized bundles ¢eWe will call this the
Demailly-Semple tower. It is also called the Semple jetddarnn the literature.

Let (X, V) be a directed manifold with' c Ty, dim(X) = n,rk(V) = r. With (X, V),
we associate another directed manifoll {) where X = P(V) is the projectivized
bundle,x : X — X is the natural projection and is the subbundle oT X defined
fiberwise as

V(Ma[vo]) ={¢e T>~((x0,[v0]) 7. (&) € C- Vol

for any xp € X andvy € TX,,\0. We also have a lifting operator which assigns to a
germ of holomorphic curvé : (C,0) — X tangent tov a germ of holomorphic curve
f : (C,0) » X tangent toV in such a way thaf(t) = (f(t), [f'(t)]).

Let X c P™! be a projective hypersurface. Following Demaillyl[10], wefide in-
ductively thek-jet bundleP, Tx = Xy and the associated subbuniflec Tx, as follows.

(X0, Vo) = (X, Tx), (X Vi) = (Ko, Vi)

In other words, X, Vi) is obtained fromX, Tx) by iteratingk-times the lifting construc-
tion (X, V) — (X, V). Therefore,

dimPTx =n+k(n-1), rank/x=n-1,

and the construction can be described inductively by tHedahg exat sequences:

()«
0 — Trmpeity — Vk —= Opy(-1) — 0

0—— Op,1y — MVic1 ® Opy(—1) — Tpry/pitx — 0

whereny : Py Tx — Px_1Tx is the natural projection anay). is its differential.
We also have natural projections

3) Mjk =TMjs10...0mg 0om - PTx = PTx,

and with this notatiomgy : PcTx — X = PoTx is a locally trivial holomorphic fiber
bundle oveiX, and the fibers «(P«Tx)x = 7o x(X) arek-stage towers aP™* bundles.

Theorem 2.2.([10]) Suppose that & 2. The quotient i;?gT X/Gy has the structure of a
locally trivial bundle over X, and there is a holomorphic ezdbling J*T X/Gy — X
which identifies J°T X/Gy with X9, that is the set of points inof the form {k](0) for
some non singular k-jet f. In other wordsg i a relative compactification of IT X/Gy
over X. Moreover, one has the direct image formula:

(701)-Ox, (M) = O(ExmTx).-
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3. LocALizATION ON THE DEMAILLY-SEMPLE TOWER

LetT = (C")" be then-dimensional torus, and suppose we are given a [beattion
on X near the poink € X. By the definition, this action induces an action on the Sempl
jet bundleP,Tx aroundx. Indeed, we saw in the previous chapter that it induces an
action onX andV, so by induction it defines an action &QTx.

Now fix a pointx € X. Take a locall -action onX nearx such thatx is a fixed point
of the action. To do so, we can take dfirge chart with origin ak, and define a linear
T-action on this ffine chart. This action induceslaaction onV = Txy, and sincexis
a fixed point, it also induces an action on the fibgy andVi|x,,.

We aim to apply equvivariant localization on the fib&g, w.r.t thisT-action. This is
a k-stage tower of projective fibrations, and to understandiieel point data and the
weights of the action at the fixed points we use the exact segsd(2.R), restricted to
the fibre overx. Note that[(2.P) restricted t&  is T-equivariant.

Fork = 1 we get

0 — Tp) —= Vilpy) — Opvy-1) —= 0,

Let{es,...,e,} be an eigenbasis for thie-action onV = Ty with weightsiy, ..., An.
Locally, Vilpn) = Tevy @ Opvy-1) @s al -module, and we can choose basis on the fibers
of V1, such that the induced action is diagonal.

In particular, at the fixed poingf[] =[0:...0:1:0:---: 0] the weights in a local
diagonal basis onMy)je; ared; — 4;,i # j,i = 1,...n (coming fromTpy) e), and;

(the weight orOpv)(-1)¢;7)- Therefore we say, that

4) the weights o1V |i,) are {/l,-,/li —Aj,1 # j}.
Now (2.2) restricted to the fibef, x gives us:

O - Txk,x/xk—l,x - = Vklxk,x - Oxk,x(_l) - O’ .

Locally, againVy is the direct sum of the two bundles on the ends. Fix a poiky,
and letVy_; .,y denote the fiber o¥,_; at the pointr.y € Xi_1x, wherer = m 1. If y
is a fixed point of thel'-action onXy«, thenz.,y is a fixed point orX_; x, and therefore
Vic1ry IS T-invariant, acting on byl with weightswy, ..., w, € Lin(4,,...,4,) in the
eigenbasisy, ..., e, ThenX,x = P(Vi_1), and sincey is a fixed pointy = [g;] for some
1 < j < n. The weight on Ty(Xix/Xk-1.x) = Tevic1ny) Aty are therefore

(5) w —w;jfori=1,...ni# |

The weight on the tautologiacal bundl, 1) aty € X« is wj, and by [(3) the weights
on (Vi) are

(6) w —w; fori=1,...n,i # j, andw;.
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To make reference to the fixed points and the weights eastantwoduce the follow-
ing notations. Recall thaf,  is ak-stage tower of projective fibrations

A

P —— Xix = P(Vi-1)

P! —— Xic1x = P(Vie2)

x1,x = P(TX, x)

If y € Xex is a fixed point, themro(y) = X, andny1(y) € P(Txy) is a fixed point,
corresponding to a weight o x, sayA;,. In generalmy s(y) € Xsx is a fixed point, and
Vidr(y) IS invariant under th@ action andX,_,, corresponds to one of the eigenbasis.

.....

Lin(Ag,...,4,),i = 1,..., kwith the following properties. For a s&c Lin(1y,..., 4,)
let S*O c S denote the nonzero elementsf

Wy € Sy ={A4,..., 44}
Wy € Sp(Wq) = {Wg, 4j — Wy i—wWy #0,1<i<n}
W3 € S3(W, Wo) = {Wo, W — Wy : W e So(Wq)}*0 = {4 — W1 — Wa, Wy — Wa, Ws © Aj — Wy # 0}7°
0
W € Si(Wa, . .., Wh1) = (Wi, W= Wig I W E Sicq(Wa, . .., Wiep) 0 =
={Ai—W;—...— W1, W —Wo — ... — Wiq, ..., Wk — W1, Wiq -
Ai—wWp #0,W —Wo #0,Wo — W5 #0, ..., Weo — W # 0}

Note, thatS; containsn weights fori = 1,...,k. The weights inS; are the weights
of the T action onVi_i|,, ,o)- More preciselyw; € S; is the weight ofOx; ,(1)lr ()
whereagw — w; : w € S;_;}*° are the weights of the tangent SPAGE ) P(Vi-1lx_1y)) at
the the pointr;(y).

Forn = k = 3 the following table contains the se&dsand the fixed points.
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(A1, A — 241, A3 = 24)
(A1, A2 — A1, A3 — A1) | (A1 — Ao, A2 — A1, A3 — A)
(241 — A3, Ao — A3, A3 — A4)
(A1 = A2, 245 — A1, A3 — Aq)
(8) (A1, A2, A3) | (A1 — A2, A2, A3 — A2) | (A1 — 242, A2, A3 — 24)
(A1 — 43,245 — A3, A3 — 1))
(A3, A1 — 243, Ao — 213)
(A3, A1 — A3, A2 — A3) | (243 — A1, A1 — A3, Ay — A1)
(213 — A2, A1 — Ap, A2 — A3)

The Atiyah-Bott localization on the Demailly-Semple jetolle reads as follows:

Proposition 3.1. Let X x be the fiber of the Demailly-Semple k-jet bundle over X. Then
dim(Xcx) = k(n — 1) and fora € Q<"I(X,,)

@pw...
0 [
Kix p(wa,...,Wk)EF Hj=1 HWESJ (\xlvib'\}:’wifl) (W - WJ)

J

whered denotes the set of fixed points ogyX.e the last column of our tabi@)

Proof. The equivariant Euler class of the tangent bundle at the faoaat p(wy, . . ., W)
is the product of the weights at that fixed point.

.....

and the weights ON/j_1/x, ;_; pw....w) @re collected irg;_;. O

3.1. Transforming the localization formula into iterated residue. In this section we
derive an iterated residue formula for the right hand sidéheflocalization[(P). The
geometric meaning of this residue formula is not entireyac| but its &ectiveness
enables us to avoid the lenghty and complicated computatoth the cohomology
ring of the Demailly-Semple tower and to handle thefiorents of the Green-Gfiths
polynomial. This section can therefore be considered ake¢he of our computations.
Assume that|yw,....w,) IS @ homogeneous polyomial of the Chern clasges ¢i(Opv,)(—1)),

at the fixed poinp(wa, ..., W), that is,

@ pwy,.m) = Q(Wa, ..., Wi)

with some homogeneous polynomi@lof degree dinX,x = k(n — 1). Note that the
Diverio-form satisfies this condition, since it is the firdt€en class of

& 177 O (&)
We explain the details in the next section.
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We aim to find an iterated residue formula for the general &tiBott localization
expression

(10) AB(Q, X) = Z : Qwy, . ..., W)

P(W4,.... W) EFt Hj:l Hwesj(wl,...,wj,l),W;twj (W - Wj)

To describe this formula, we will need the notion ofiterated residudcf. e.g. [43])
at infinity. Letws,...,wn be dfine linear forms orck; denoting the coordinates by
Zi, ..., Z, this means that we can write, = a1 + a}zl .+ a1 Zz.. We will use the
shorthandh(z) for a functionh(z, . . . z), and dz for the holomorphlcn -formdz A--- A
dz. Now, leth(z) be an entire function, and define therated residue at infinity:ts
follows:

(11) ResRes... Resh(z) dz dEf( ) f f h(z) dz
a=wz=e zew [N oy \200) Jpre T Jpier [Ty o1
where 1< Ry <... < R The torUS{IZmI Rn; m=1...k} is oriented in such a way

that Reg - . .. Resk:w dz/(z---z) = (1)K
We will also use the foIIowing simplified notation:

Resd:ef ResRes. .. Res.

Z=00 Z1=00 Zp=00 Z=00

In practice, the iterated residlel 11 may be computed usaéptlowing algorithm:
for eachi, use the expansion

(12) — = i ~1) (@+az+. .. +a" Zq(i)—l)",
=0 ( q(')Zq(i))“l

whereq(i) is the largest value ofm for which a” # 0, then multiply the product of
these expressions with {)h(z . . . z), and then take the cfizient of ...z in the
resulting Laurent series.

3.2. Warm-up: residues on projective spacesFirst we show how iterated residues
arise wherk = 1. In this caseX;x = P(T X), the projectivized tangent bundle ¥f €
P™1 and the fiber over any e X is P(T,X) = P(V).

Suppose we have a diagonal torus actioi 'dbn T, X with weightsAa,, A, ..., 4, as
before.

We have the following residue theorem.

Proposition 3.2. For a polynomial Q orC", we have

v QU es 2
(13) AB(Q, Xun) = ; Mol -1 - R, -2
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Proof. We compute the residue_(13) using the Residue Theorem orrdfecpve line
C U {o0}. This residue is a contour integral, whose value is minusstira of thez-
residues of the form i (13). These poles are at1;, j = 1...n, and after canceling
the signs that arise, we obtain the left hand sidé of (13). |

3.3. Residues on a projective bundle.Fork = 2 the Demailly-Semple toweX; is a
projective bundle over the projectivized bundleTaf. The fiberX,, overx € X is a
P"! bundle ove(T,X) = P"1. The fixed point data can be reaff rom the first two
columns of table[(8). The Atiyah-Bott localization form has the following form:

S Q. iy - Aj,)
(14) AB(Q %) = )
2 lezl j2=1,j2#j1 Hi;&jl(/li - /ljl) Hi#jl,jz((/li — /ljz) . (2/11.1 _ /ljz)
Y Q.. 4;,)
j1=1 Hi#jl(/li - /ljl) I_Ii;tjl(/li - 2/11'1)

Here the first sum corresponds to the fixed poimts- A;,, w, = 1;, — 1;, whereas the
second sum to the fixed pointgs = w, = 1,.

+

Proposition 3.3.

~2 Q(z1, z)dzdz
(13) AB(Q. Xan) 530852600521 -2 [T (4 — 22) [T (A — 21 - 22)
Proof. Again, as in the warm-up, we compute the iterated residUeudifig the Residue
Theorem on the projective lin@ U {co}. The first residue, which is taken with respect
to 2, is a contour integral, whose value is minus the sum ofzthesidues of the form
in (15). These polesareat= 1A, —z,i = 1...n, andz = z After canceling the signs
that arise, we obtain the following expression for the rigéd side of (15):
(16)

Re Nz - A, Q(z1, 4y, — z1) N -21Q(z1,21)
Z3=00 | 4 i 271 — /ljl Hin:]_(/li - Zl) Hi;ﬁjl(/li - /ljl) Hin:]_(/li - Zl) Hin:]_(/li - 221)

J1=

d 4

After cancellation and exchanging the sum and the residastipn, at the next step,
we have

(17)
n
Res —Q(z1, 1), — z)dz + Res— -2,Q(z1, il)dzl
gase (2zy — Aj) [Ty (A = 22) [Ty (4 = 2j) 2= [TiL1(A4 — z2) [TiZ1 (i — 222)
The first sum corresponds to the fixed poip{svi, w,) wherew, = 1;, — w;, and

the second to the ones witly, = w;. We denote these conributions By, and AB;,
respectively. Now we again apply the Residue Theorem seghar® AB; and AB,,
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transforming the residue into a sum over the poles. The @ilé®, arez; = A, 1 # |1
andz = 1,/2, giving us

\ Q4jz> 4j, — 4j,)
19 AB= D, ) o A Tt - ) @1
ABWy=1jp Wp=1j; )-W1
BANE: Q1),/2,4;,/2)
e 2T i, (i = 432/2) T, (i = A1)

AB(W:/ljl/Z,wF/ljl -wi)

(19)

The poles ofAB;, arez; = A; andz, = 1;/2 giving us

B & _/lsz(/ljz’ /liz)
(20) AB= ) ) G Tt~ 21

AB(W1=A4j,,Wp=W1)

LN -1;,/2Q(1;,/2, 4,/2
(21) +Z ~ 12/ Q( 12/ 12/ )
Hi:l(/li - /112/2) Hi;&jz(/li - /ljz)
AB(W1=4j, /2,Wp=W1)
SinceAB(Wy = 1},/2,W, = 2}, — W) = —AB(w; = 1j,/2, W, = wy) (note thatij,/2 in
the numerator cancels with, — 1;,/2 in the denominator) , we arrive at (14).

j1=1j2=1

j1=1j2=1

O
3.4. General case: iterated residues on the Demailly-Semple t@aw
Proposition 3.4.
(22)
<ti<to<k — + +...+ Z,...,
AB(Q, Xk) — ReSHZ,tl,tz,k (Z[j_ Ztl+1 2[2) - Q( 1 Zk) dZ
Z=00 H1551<525k(251 - 251+1 T e 252) I_Ij:l I_Ii:]_n(/li - Z]_ - 22 e T Z])

Note that the denominator is the product of the tangent weigha generic fixed
point (seel(I7)), and the factors in the numrator serve theatation of the zero elements
which we omitted when we formed the0 part of the sets at|7).

Proof. Recall that for the fixed point = p(ws, . .., W) € X x we have defined in.{7) the
sets

S (W]_, .. .VVi_]_), S;&O(Wl, ce Wi—l) C Lin(/ll, ce /ln),
such that the equivariant Euler class of the tangent buridbéna, . . ., wy), that is, the
product of the weights is equal to

k
(23) Euler (Tpwy....w Xix) = ]_[ ]_[ (W—w;).

j=1 WeSTO(Wl,...,wj,l),W;&Wj
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Note that by definition

. #0 —
{W—Wj TWE SJ. (W]_,...,Wj_l)} =
:{/li—Wl—...,—W,-,Wl—wz—...—Wj,wz—wg—...—Wj,...,wj_l—wj:1si3n}\

\{—(Wt+Wt+1+...+Wj)22StSj}.

Therefore,
(24)
1 3 K H2§t§j —(W + ...+ W)
Euler (Topw,...m X 51 TTrcoi(We = Wepz — ... — W) Ty (4 = Wa —Wp — ... — wj)’
where 5
yel"y - 1_[ Y
vell,y#0

denotes the product of the nonzero elements of the set we sam @he condition
w # wj; in (23) is equivalent to replacinf] by [T. The Atiyah-Bott localization reads as

Z Q(wa, ..., W)

(25) AB(Q. Xn) =

k
P(W1,.... W)€ Hi=1 HWESJ(W1v~-~’WJ—1)vW¢WJ (w—w))
[Tocti<ctpck =Wy + - - + W, )Q(W4, . . ., Wi)
= a—— .
P(W1,.... Wi )EFtn H1551<52SK(W51 —Wsp41 = - 'Wsz) Hj:l Hi:l(/li —Wp WL — Wj)

The iterated residue on the right hand side id (22) can be atedpusing the Residue
Theorem on the projective lin@ U {co}. The first residue, which is taken with respect
to z, is a contour integral, whose value is minus the sum ofzthesidues at the finite
poles. These poles are at

zket@kz{/li—zl—...—zk_l,zq—zq+1—...—zk_l,zk_l:i:1...n,q:1,...k—2}.
Note that by definition

’@k = Sk(Z]_, ey Zk—l),
and therefore after canceling the signs that arise we otitaifollowing expression for
the right hand side of (22):

(26)

Res Res HZStlstzsk—l _(Ztl +Zy1t+. th) |
Z1=00 Z 1= HlSS1<SQSk—l(Zsl - ZS1+1 — ... — ZSQ) Hlj(;i- Hinzl(/li - -2—...— Zj)
. [locta1 =@ + 2z + ... + Zea + W) (W) Q(Z1, - . -, Ze 1, Wh) &
] ~n
wer icsske1(Zs—Zsin — . =z — W) iyl -z -2 — ... — Zea — W)
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Now take the next residue, with respectzo,. The poles of[(26) coming from the
first factor are

(27) Py = Sk, - - -, Z).
The second term formally has poles at
(28) Zr1(W) = {Ai—z—. . . —Z 2—Wi, Zs—Zgp1—. . .—Zc2—Wk : 1 <i<n 1< s<k-2}.

More precisely:

(1) fwk = A, —z — ... — Z-; then the denominator is
@) [ [ @z W[ [ (-2~ ~ 2 -w) =
=[Jai-a) [] @+...+z1+22- 1),
i#ig 1<s<k-1
and
QW) =g~z —...—Z1) ={(@+...+Z2—4,)/2},
containing a single element.
(2) W =2Zg — Zggs1 — - .- — Zc1, lep < k-2, then the denominator is
BO) [ [us@ 2=z W[ [ (i -2~z ~ 2 -w) =
n
= l_[ (Zg=Zgs1— - -—Zgp-1—2Z,) l_[ (—Zgo+2Zgp+17+- - +Zg-1+22y) l_[(/li—zl—zz—. = Zg-1—22y,) =
1<0<sy Qo<q<k-2 i=1
and
DWWk = Zgy — Zgos1 — -+ — Z-1) = (Zgo — Zgo+1 — - - - — Z2)/ 2},

containing a single element again.
(3) Finally, forwy = z.; we have

(31) nlgqsk_l(zq —Zg1— o~ e — Wk)l_[izl(/li U == ... =1~ W) =
= 1_[ (Zq—2q+1—---—2k—2—22k—1)1_[(/1i ~Z— ...~ Lo — 2% 1),
1<q<k-2 i=1

and therefore

DWk = Z1) = {(Zg—Zge1—- - -~ Z2)/2, (Ai—z1—...=Z2)/2:1<q< k-2,1<i <n}
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Applying the Residue Theorem with respectzto, in (28), we get a sum over these
poles. We claim that the terms corresponding to the pole®in add up to O, that is,

(32)
C(Wi Wi_1) [ To<t, <ty<k-1 —(z, + 21+ ...+ 7))
> Wk=1)" k-1
WgE Pk Wi-1€2(Wi) I_I]-Ssl<52§k—1(251 R R ZSQ) Hj:1 Hinzl(/li AT T Zj)|2k_1‘_’Wk—1
- k-1 k) = \7VVk 1<t<k-1 Dy« o o9 £k—25 VWK1, VWK
(Wica + Wh) - (=wig) [T Q@ - - - Zca, Wic1, W) _0
[Ticscko1(Zs — Zsi1 — -+ Zp — Wie1 — Wk)l_[inzl(/li — U —Z— ... — Zep— Wie1 — W) ,

wherec(wg, Wi_1) is the codficient ofz._, in the corresponding term, see below.
We pair the terms if (32), such that each couple adds up to haWedescribed the
sets2(wg) above, and get

1)
(Wi, W-1) = (Dig~=2Z1—. . =21, (Za+. . +2Zc2—4i,)/2) = (za+. . +Z2—A,)/2, (2a+. . +Z2—4iy)/2)
Herec(wi, Wi_1) = —1/2.
(2)
(Wi, Wi-1) = (Zoy=Zggr1— - -—Z1, Zgg—Zggr1—- - = Z-2/2) = (Zgy=Zgo+1—- - =22/ 2, Zgy=Zgge1—- - =22/ 2)
Herec(w, W1 = —1/2.
3)
(Wi, Wi-1) = (Ze1, (Zg=Zgu1—- - = 2c-2)/2) = (Zg—Zgr1— - -—Z-2) /2, (Zg=Zgs1—- . .= Zc2)/2)
Herec(wy, Wy_1) = =1/2
(4)
(Wi, Wi-1) = (Z-1, (i—21—. .. = Z&2)/2) = (li—z—...—Z&2)/2,(li—z1—... = %-2)/2)
Herec(wi, W_1) = —1/2

We see that in(32) the terms under (1) cancel with the terrden(3), and the terms
under (2) cancel with the terms under (4).

Therefore taking the residue wz,t ; in (28), only the poles a&_; € £, contribute,
and we get the following expression for the iterated residue

(33)
Res . Res [Tocti<toek2 (2 + Zyr1 + .- + Z)) _
a=e A= [y g qono(Zeg = Zgs1— - — Zs)) Hlj(j [MTLAi-za-2-...-7)

_ Z Moo =@+ Zua + - + Zea + Wit + W)(Wier — W) (W)QZ - - Za Wit W)
were icseko(Zs = Zsir — -+ = Ze2 = Wi — Wh)(Wi-1 — Wk)Hin=1(/1i —Z3— ...~ Zeo — Wier — W)

Wi-1€ Py_1
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Now take the residue w.iz,_, and play the same game again to prove that the contri-
butions of the poles in the denominator of the second factdrugp to 0. The poles in
the second factor are formally at

(Wi, Wi-1) =
{Ai—711—. . - —Z3=Wic1—Wi, Zg—Zga1—- - -—Zke3—Whe1— Wi, W1 +Wi 0 1 <0 <n, 2 < g < k-3
Note thatwi_;, Wy depends om_,, but formally we have the following cases:

(1) z2 = Ai,— 21— ... — Z3 — W1 — Wi, then the denominator of the second factor
is
(34)
~ ~ N
l_llgssk—Z(Zs_Zs+l_' . -_Zk—2_Wk—l_Wk)(Wk—l_Wk)l—[izl(/li —Z—. .~ Z2— Wi — W) =

_ n(ﬂi ~ A,) 1_[ (Zi+ ...+ 21+ 22— A4,)

i#ig 1<s<k-2
and therefore
D (Wi, W) = {(di, —z1 — ... — Z3)/2},
independent ofvi_q, W.
(2) fzep =274 — ... — Zz — W1 — Wi, We get similarly that the only pole is at
Q(Wk—l’ Wk) = {(ch T T Zk—3)/2}’

independent ofvi_q, W.
(3) If z_» = Wi_1 + W, then the denominator of the second factor is

(35)
~ ~n
nlgsgk_z(zfzsﬂ" . -_Zk—2_Wk—l_Wk)(Wk—l_Wk)l_Lzl(/li 71— = Ze o= Wi 1 — W) =

n
= ]_[ (Zg— Zge1 — - - - — Z3 — 2% 2)(Wie1 — Wi)) ]_[(ﬂi ~Z— ...~ %3~ 2% 2),
1<q<k-3 i=1
and the linear fornw,_; — w, does not contaiz,_, if wx € Hy, W1 € P_1,
therefore the only poles fa_, are at

QW1 W) = {(Zg—Zp1—- - - —Z3)/2,(li—z1—...—%43)/2:1<q<k-3,1<i<n}

Again, the terms under (1) and (2) cancel out with the term@)nleaving us with
the poles forz_, in the first factor in[(3B)
Iterating this process we finally arive at {25), proving Rysiion[3.4.
mi

Remark 3.5. Changing the order of the variables in iterated residuesially, changes
the result. In this case, however, because all the poles armal crossing, formula
(3.4)remains true no matter in what order we take the iterateddess.
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4. Proofr oF THeorem [1.1

Let X ¢ P™! be a smooth hypersurface of degree Meg d, and letX, denote the
k-level Demailly-Semple tower oX.

To start with, we recall the classical result of Demailly alinconnects jet diierentials
to the Green-Gftiths Conjecture:

Theorem 4.1. ([24,(10,40) Assume that there exist integersrk> 0 and ample line
bundle A— X such that

HO(X, Ox (M) @ " A™Y) =~ HOX Exm T3 ® A1) £ 0

has non zero sections,...,on, and let Zc X, be the base locus of these sections.
Then every entire holomorphic curce: fC — X necessarily satisfiegq{C) c Z. In
other words, for every globdh-invariant diferential equation P vanishing on an ample
divisor, every entire holomorphic curve f must satisfy tlyehraic diferential equation
P(jf(t)) = 0.

Note, that by Theorem 1. df [14],

HO(X, ExmTx ® A1) =0

holds for allm > 1 if k < n, so we can restrict our attention to the raikge n.

To control the order of vanishing of thesdfdrential forms along the ample divisor

we chooseéA to be —as in[[13] — a proper twist of the canonical bundlXoRecall that
the canonical bundle of the smooth, degddeypersurface is

KX = Ox(d —-—nN-— 2),

which is ample as soon as> n + 3.

The crucial step which connects algebraic degeneracy ofig@ith the degeneracy
of the holomorphic curve is Siu’s strategy of constructilingaly independent jet dif-
ferentials using the bundle of vertical jets. The followihgorem is a reformulation of
the results o3 in [13].

Theorem 4.2. (Algebraic degeneracy of entire curvids3], §3)
Assume that & k, and there exist & = §(n) > 0 and D= D(n, ) such that

HO(Xn, Ox, (M) ® 7K™ = HO(X, EanTx ® K™ # 0

whenevedegX) > D(n, §) for some ms 0. Then the Green-Gfiiths conjecture holds
for

2
deg() > maxO(n, 5), " ;2”

Following [10], for (ay, ..., a) € ZX, we define the following line bundle oX:
(36) Ox (@) = 7, Ox,(a1) ® 15 Ox,(32) ® - - - ® Ox, (&)
The following theorem is from [10], and [14]

+Nn+2).
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Proposition 4.3. (1) ([10],Prop. 6.16)
Ifa; > 3ap,...,a 2 > 3a1, and a_; > 2a > 0, the line bundleDy, (a) is
relatively nef over X. If, moreover,

(37) a; >3a,...,a0 >3a.1and g1 > 2a,>0

holds, therOy, (a) is relatively ample over X.

(2) ([14], Prop. 3.2)
Let Ox(1) denote the hyperplane divisor on X. &%) holds, thenOyx (a) ®
m5, Ox(l) is nef, provided that & 2jal, wherela = a; + . .. + a&.

Theoreni 4.2 accompanied with the following theorem giveSheoren 1.11.

Theorem 4.4.Let X c P™! be a smooth complex hypersurface with ample canonical
bundle, that islegX > n+ 3. If & = n¥™1) 5 = = and d> D(n) = n® then

HO(X,, Ox, (1) ® 7K ") ~ HO(X, Eng Ty © K2 # 0,
nonzero.

To prove Theorem 414 we follow [13] using the algebraic Mdrssualities of De-
mailly and Trapani. Let. — X be a holomorphic line bundle over a compact Kahler
manifold of dimensiom andE — X a holomorphic vector bundle of ramk Suppose
thatL can be written as the fierence of two nef line bundlek,= F ® G, with F,G

numerically é€fective. Demailly proved in_[11] the following strong algelr Morse
inequalities.

Theorem 4.5. ([11,/44]) With this notation we have

k! - m" g In . .
Z(—l)q-lhl(x, L*MQE) < r— Z(—l)q-l( .)F”" .Gl + o(m).
- nl & J
j=0 j=0
In particular, = 1 asserts that £" ® E has a global section for m large as soon as
F"—nF™G > 0.

Ford > n + 3 the canonical bundlEy ~ Ox(d — n— 2) is ample, and therefore we
have the following expressions f6ky (a) andOx,(a) ® 75 K ** as a diference of two
nef line bundles ovexX:

o Ox(a) = (Ox(a) ® 75, Ox(2lal)) ® (m5,O0x(2a)) ™
o Ox () ® 1y, K% = (Ox, () ® 7, 0x(2a) ® (75, 0x(2lal) ® 7 K™

Applying the Morse algebraic inequalities, we need to prthes positivity of the

following intersection product:

[(X,n,k,a,6) = (Oxk(a) ® ﬂakax(2|a|))n+k(n—l)_
((k+1)(n - 1))(Ox,(8) ® 5, Ox(2al)) ™ - (5, Ox (2lal) ® 75, KSS).
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Let h = ¢;(Ox(1)) denote the first Chern class of the tautological linedbe®y (1),
¢ =0c(Tx)forl =1,...,n, andus = ¢1(Ox (1)) fors=1,...,s. Thenc,(Kx) = —¢; =
(d = n-2)h, and the intersection product we have to evaluate becomes

[(X,n,k,a,6) =

= (ayUr+. . .+a+2ah)™ M D_(k+1)(n-1)(aus +. . .+acuc+2lah)®V0-D(2)alh—slalc,) =

= (ayUr+. . .+au+2ah) 0D @u; + ...+ a + 2lalh — (k+ 1)(n - 1)lalh(2 + 6(d — n — 2)))
We look at this intersection product as a polynomial in thealdesus, ..., u,, and

also use the notatiolx nkas(Us, - - -, Ug)-

The following proposition presents the first iterated rasitbrmula for the Demailly
intersection number.

Proposition 4.6.
(38)
HZStJ_Stsz(Ztl + Ztl+l +...+ th) IX,n,k,a,&(Zl, B Zk)

(X, n,k, a,6) = (—1) f Res
f);k X Z=00 Hlssl<52§k(_251 +Zg1t ...+ 252) Hlj(:l Hi:l“(/li +Z+2+...+ ZJ)

Proof. Integrating first along the fibers we get

fl(X,n,k,a,é):ff [(X,n, k, &, 0)
Xk X J Xix

We apply the ABBV localization on the fibéf, , with respect to thd" action onXy x
described in the previous section, and get that (s€e (25))

az

f [ n, Kk, a,6) = AB(Ixnkas(—Us, . .., —U)).
Xk

To see this, recall that in formuld_(25), stands for the weight of th€" action on the
tautological line bundl&@y (—1), which is by definitioru;. Now Propositiori 314 gives
the result, noticing that we made the substitutions —z, resulting the sign{1)<. o

We can get rid of tha;’s on the right hand side of (88) with a small trick. To do it,
we use the following well-known fact

Remark 4.7. The Chern classes of X are expressible with da the following identity:
(1+ h)™2 = (1 + degX)h)c(X),

where ¢X) = c(Tx) is the total Chern class of X. After expansion we getlferj < n

j
(39) 6(X) = (-1)h Z(—l)‘(” : Z)di—i
i=0
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Therefore we have

n n

/l.
40 Ai+z—...+z)=(@+...+z)"| [Q+ ———) =
(40) [y. ) )= (@ 011( 7
h n+2
1 I+ 5
:(zl+...+zj)”-c(—):(zl+...+z,-)”( Zl+;f‘)
Z+...+Z 1+ 0

and we arrive to the main formula of the first half of this paper

Theorem 4.8.

(a1) quxmka®=
Xk
dh
21 +...+Zj

_ (_1)k Res [Toct<tyk(Zy + Zye1 + .o + Z)Ixnkas(Zes - - -5 Z) +

k1
- kK 2
X 2= Hlssl<525k(_251 251t ZSQ) Hj:l(zl ...t Zj)n j=1 (l + 3 +h+z )n+
1+...+Zj

dz

This formula has the pleasant feature that it expressesniedantersection number
directly in terms oin, k, d, 6. Indeed, the result of the iterated residue is a polynomial i
n, k, 6 andh", and integrating oveX simply means a substitutiah= h".

4.1. Computations with the iterated residue forn = k. From now on we assume that
n = k, focusing on Theorern_4.4. Before we start the explicit asialpf our formula
(41), we carry out a simplification to get a formula which isieato handle. Multiplying
the terms in the denominator we get the following expresfiothe R.H.S of[(411)

(42)

n
Z,+%,+...+ 2% (z+...+Z)z+...+z+dh
-1)" | Res CR— 2 I Z,...,2Z,)dz
( )fx 1—[ l;l (zZ+...+z+hm? xnas(Z, > Z0)

= ctictysn At T A T+ 4

The iterated residue is formally a contour integral, but aswave explained i§3.1,
it simply means an expansion of the fraction respecting therdl « |z < ... < |z{.
The terms in[(42) then have the following expansions

(1)

1 1 L zZ+...z.1+h (z+...z.1+h)?

=—|1- + -...
z+...+z+h z Z; Z;

()

2
%, +Zya+...+ 17, :1+Zt1_1(1+2[1—1_2[1—...—2[2—1(Ztl—l_ztl—...—ztz—l) +)
_z(]_—l+z(1 + "'+Z|22 Ztg Ztg 2(2
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3)
Ixndsa = (8121 + . .. + 8nZ, + 2alh)™ 2 (a1zs + ... + anzy + 2lalh — (N - 1)}alh(2 + 6(d - n - 2))) =
= (a1zy + . ..+ anZy + 2lalh)™? (alzl +...+anZ +lalh(4 - 2n% + 5(n + 2)) - 5|a|dh)
Substituting these int@_(41) we arrive at

fl(x,n,d,a,é):

Xn

at... +z z z dh
:(_1)nfx|z:i§osﬂ Zy+Zyat... .+ l_l(l"" 11)1—[(1 1+ ...+ Za+ ).

2<ti<to<n A1t Ayt T 2 j=2 Z

n n+2

( z1+...z1+h (zl+...zj_1+h)2 )
1_[ 1- + - ...
Z; Z;

j=2

(uz1 + ... + anZy + 2Jajh)™? (alzl + ...+ anZ +lalh(4 = 2n% + 5(n + 2)) - 5|a|dh)
(z1...2z)"
Notation 4.1. (1) For amonomial = 2z} ...Z}, is € Z we call
Defect{) = niy + (n— 1)ip... +1,

z

the defectof i. Moreover, we define the set of positive roots as the senpgrou
generated by the simple positive roots

A =77%0,...,1,...,-1,...,0),(0,...,-1,...,0): 1<i< j < n).

The negative roots ard~ = —A™.
(2) We say that > b if there isac € A* withb + ¢ =

Theorem 4.9. With g = n¥™!) ands = & we havefx I(X,n,d,a é) > 0ford > n.

We devote the rest of this section to the proof of ThedremMPo®the sake of keeping
our formulas under control, we introduce

Z,+Zya+...+ 7, +zjl
43) A(2) = 1
43) A= |] _Ztl_l+ztl+___+ztzl_[( ).

2<ti<to<n

Al pe
- Z+...Zia+h (zi+...z_1+h)? e z1+...+2z_1+dh
(1_ l z-Jl +(l Z_Jl ) —) l_[(l+ 1 z-Jl ),
a : : j=2 j
A3 20
and
(44) B(2) = (a1zs+...+apzy + 2|a|h)n2_1 (a121 + ...+ anz, + S(n,d)lah - 6|a|dh)

(z.. zn)”



24 GERGELY BEERCZI MATHEMATICAL INSTITUTE, OXFORD
whereS(n, 8) = (4 — 2n? + 6(n + 2)).
Observation 4.10. A;igrym = CO€l,(gymA(Z) = Ounlessa € A~, for any m> 0.

Let's have a short break and step back a bit looking at forfd®. The residue
is by definition the coficient of = in the appropriate Laurent expansion of the big
rational expression i, ..., z,, n,d,h ands, multiplied by 1)". We can therefore
omit the (1) factor and simply compute the correspondingfiioent. The result
is a polynomial inn,d, h, ¢, and in fact, a relatively easy argument shows that it is a
polynomial inn, d, § multiplied by h"

Indeed, giving degree 1, ...,Z,,hand 0 ton, d, §, the rational expression in the
residue has total degree 0. Therefore thefodent of 21.].-.% has degree@, so it has the
form h"p(n, d, §) with a polynomialp. Sinced appears only as a linear factor nextto
the degree opindisn.

Moreover,fx h" = d, so the integration oveX is simply a substitutioh” = d, result-
ing the equation

I(X,d,n,a,6) =dp(nd,a,od),
where
p(n,d,a,é) = pa(n,a,6)d" + ...+ pi(n,a 6)d + po(n, a, o)
is a polynomial ind of degreen.

4.2. Estimation of the leading codficent. The next goal is to compute the leading
codficient p,(n, a, 6). From [43)[(44)

(45) pn = Z BziAz—i—l(dh)n - 6|a| Z Bzi(dh)A —i—l(dh)n—l
%i=0 Si=-1
wherel = (1,...,1). Note that — according to Observat[on 4.10 — some termb@®n t
r.h.sis 0, since we have not made any restrictions on theaelafi to A*.
There is a dominant term on the r.h.s, corresponding=¢o, . . ., 0) in the first sum:

n2
— n = "
BO_BzoA% (al"'an)(n,...,n)

We show that the absolute sum of the remaining terms is lesstths dominant term,
implying a lower bound fop, wheng, a as in Theorern 419.
First observe that foki = 0

n? : . . ,
(46) B, = (| on - n)alll+n LA < alll ...a"By = pBDefect) B,
1 e .5 ln
On the other hand
(47) Az—i—l(dh)n = Z A111 A|22 A133 < 3—DefECt()n—3Defect(),

i1+i2+i3:—i

according to the following two lemmas, which will be repetaused:
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Lemma4.11.LetXi =0,i € A*. Then
B(i1,...,i) e (A 1ig+...+is=i} < gPefect()

Proof. Leti = j; + ... + jpefecty D€ the sum of simple roots. This decomposition is
unique, which can be seen eadily by induction. Then any tembe put into any of the
smultiindicesiy, . .., is, and this gives us the desired upper bound. O

Lemma 4.12.LetXi = 0. Then

Aila A|2’A|3 < n3Defect()

Note that this means th& = A? = A? = 0 for Defect{) > 0, as expected, since all
these cofficients are O unlegss A~.

Proof.

(48)

2
41 Ly 1~ 2y — ...~ Dy (L1 — Ly — .~ Dy
A} = E | |C0€Tit,t (1+ : (1+ ! ! ( ) +...D<
A Jiltytp) % % %

1<ti<tr<n fty,to
< D, | [eombe o)),

Lty by 1(t1,12)=i
i(ty,t2) [ERP)

Dty ty 1t t2)=i

wherei(ty, to) = i*(ty, tp) — i~(t1, to) for somei*,i- > 0, and comk) = (“f ”") is the

number of diferent orders of the elementsjof (11,...nin). Following the proof of
Lemmd4.11,
n)DefeCt()

Z 1< (
itLt) 2
Lyt it t)=i

Moreover,

Comb(+(t1,t2)) < ")l o ppefect(tit) gq 1—[ comb(*(tl, t)) < pPefect()
tit

and therefore
1 n Defectf)
A < e
Similarly, forXi = 0
(49) |A12| < 2Defect()
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and finally, similarly as foA!:

Zi+...Zi+h (zi+...Z_1+h? 2
(50) |A|-3|< Z HCOdei(j)(l— ! i1 +(1 i1 )—) <

e Z; Z;
it)=i ) )

< > > |1 combgiy

20 i()=i sa(D)+-+sne2(D)=i()) 12<J<n

<m<n+2
and again
1< ((n—1)(n+ 2))Perectd,

T2 i()=i s1(i)+..+sne2(1)=i())

and
combg’(j)) < nPefectn(i)
giving us
IAY < ((n - 1)n(n + 2))Pefectd,
which proves Lemma4.12. O
Substituting inequalitie$ (46) and (47) inta[45) we get

(51)

n? 3 i n? 3 i
Z BZiAZ—i—l(dh)n < Z Z (E) By = Z (E) Z 1< Z( ) n By < - BO
i#0 i=1 i#0,Zi=0,ieA~ i=1 i#0,XZi=0,ieA™
Zi=0 Defectf)=—i Defect{)=-i

We can handle the second sum of the r.h.§ ih (46) in a simitnida. Forzi = -1,
ande; = (0,...,1,...,0)

(52) Agicignn1 = Z Z Z AillAizzArSs’

j2=2 j1<]2 i1+i2+i3=—i—ej:L
i1,i0,igeAT
because we have to sum over all terms coming faghin (43). So applying Lemma
412 again, we get

n
Az—i—l(dh)n—l < Z Z 3-Defect()-n-1+j; y-3(Defect(n+1-j1)

j2=2 1<)
—i— ejleA

< Z 3-Defect)-n-1+] -3(Defect{)+n+1-])+1

1<j<n
—i—gj eAt

Similarly to (46), forZi = -1,i + ej € A~

-1 ,
53 B. = —Jla ) I1+n . in+n < n8Defect()B .
(53) Zidh) = —O| |(I i n)31 .ay 0
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and therefore witlé =

(54) Z Bzi(dh)A gyt < dlal Z :_;,’—Defect()—n—l+jI,]5Defect()—3n+3j+4B0 <

Yi=-1 1<j<n
i+ejeA”
no(Defect)+1) n? 1
—4i —3i
ST R sm—— e B0 < Z D, N*Bo<By) n¥ <By< By
ieA” i=1 ieA” i=1
i= efectf)=—i
%i-0 Defect()

4.3. Estimation of the the codficientsp,_1(n, 6). In this section we give a formula and
an upper bound for the cfigientsp,_(n, §) = codtg1-11x(n, d, §) in general. Using the
notations introduced in(43),(44) we get

1+1
(55) Pn- |(n 5) = Z Z Bz'hSAz i~1p-s(dr)n-! — 5|a| Z Z BZ'hS(dh)A -i-1hl-s(dhyn-1-1.
s=0 Xi=-s s=1 Xi=—-s—
where forXi = —
(56)
Bre = " (2lal)as™ ...y +(S(n, 6)-2) "1 (2lal) e
20 " \s i +n,. .., i +N ’ s—1i;+n,...,in+nN o

and therefore

2

(57) |&M<2¥( )mm ay ™.

With the choiceg; = n®™1), 5 = &, the dominant term iri(§5) is (note that many of
the terms vanish, because #Wgi-1y-sgr = 0 unless-i — 1 € A™. ) the one with

Sit+n,...,ih+nN

Szlandll :(in:...:in_|+1:_l,in_| :in_|_1:...:i1:O)
that is
B,y Az—i|—l it | < 2 " (Zlal)la ann .. ann—l <
ZH ! Ln-1,....,n=1,n,..., 1o AniBnoiin -

=1 | ol

< 2n*(2lal)' DBy < N BoA, 1 ghyn

The goal is to show that the sum of the rest of the term$_ih (§3¢ss than this
dominant term, proving the following

Proposition 4.13. For & = n¥™1) and¢ = &,

8in

|pn—l| <n |pn|

.ainn+n
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Theoreni 4.0 is a straightforward consequence of this Prdgosapplying the fol-
lowing elementary statement

Observation 4.14.1f p(d) = p,d" + po1d™t + ... + pid + po € R[d] satisfies the
inequalities

Pn > 0; Ipnal < D'lpalforl=0,...n,
then dd) > Oford > D.

We now prove that the term corresponding'tis indeed dominant. Note first that by

(%))
n2 . . il .
(58)  |Byipsl < 2n2(s’ Len - n)(2|a|)sa'11+” _..arth < ettt gy,
se++5 N

Since Defeci() > Defect{) when—i —1 € A*, the exponent afi is nonpositive, since
the other termA,i-1y-sgrymt = 0if =i — 1 ¢ A™.
On the other hand, f&¢i = —s

(59) Az-i-ih-shyn-1 = Z Z Z ALRA

1<ji<..<jigsnm<j,..m<j) i1+i2+i3=—i—eml—...—em
i1,i0,izeA™

where in the summation we ha¥e = Xi, = 0, Xiz = s—1, otherwise the correspond-
ing codficients are zero.

Lemma 4.15.LetXi = —s. Then
|A§ |< n3Defect()+s
IhS

Proof. The proof is analogous to the proof of Lemma 4.12: we first sesdactors in
the denominator af' and pair them withh®, and then repeat the same argumentso

Applying Lemmd 4.1P and Lemnia 4]15 we get the following ugpmimd:

IA —i—lhl—s(dh)n—l| < Z Z Z - 3(Defect)+(n+1-my)+.+(n+1-m))+l-s _

1<j1<..<jign m<jg,...,m<j) i1+i2+i3:—i—eml—...—em|
i]_,iz,igEbA+
_ _ 1_ _
< Z Z (N+1-m)(N-m_y)-. . -(n=1+2—-my)n 3(Defect()+(n+1-my)+...+(n'-m))+-s _

1<m<..<m<n i1+i2+i3:—i—aﬂl—...—emI
i1,in,ize A"

< Z Z -3Defect(-i)+1-s

1<m<..<m<n i1+i2+i3:—i—eml—...—emI
il,iz,i3€A+

where we used that fact that for<lmy < ... <m <n

N+1-m)(n-m_y)...(n=1+2- ml)n—(n+1—ml)—...—(n+1—m) < nH0-D--1 nDefect(').
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Applying Lemmé& 4.1l again we get

(60) 1A —i—lhl—s(dh)n—l| < Z 3—Defect()—(n+l—m1)—...—(n+1—m)n3(Defect('—i))+|—s <

1<m<..<m<n
i+em1+...+em eA”
< Z 3Defect('—i)n3(Defect('—i))+|—s
1<m<..<m<n
i+em1+---+em| eAN”
where, agaim+1—-my+...+n+1-m>1+2+...+| = —Defect{').

Summing up these for all the possibled) we can estimate the first sum n{55) as
follows.

| |
Iy | i)tl—s) 15—
|Z Z BaitsAr--iti-siany | < Z Z 3Defect{’ ~i) ~5Defect{~i)+| E IBiIhI <

$=0 Zi=—sizi s=0 l<m<..<m<n
i+em1+...+em eAN”
Si=—gji#i
I
(61) < Z Z p-4Defect( ~i) (Bn-1)(s-1) Bin
s=0 l<m<..<m<n
i+em1+---+em| eA”
Ti=—sizi
Observe that foEi = —I

i+€m,+...+6n € A~ = Defectf)+Defectey, +. . .+€y) = Defectf)+(n+1-my)+...+(n+1-m) <0
= Defect{)+(n+1)l < m+...+m = Defect{-i') < (m+l-n-1)+(Mp+l-n-2)+.. .+(m-n)

Therefore using the temporary notatigr=m +1 —n—i < 0, we get
(62) _
Ml<mg<...<m:i+€n+...+6m € A} <Hlre,....1 <0 :ri+.. .41 > Defect{—i')} < |Pefectt-D

ForZi = —s> I, clearly

Hl<m<...<m<snii+ep+...+6 €A} <

<Hl<mi<...<m<n:(i—6—...— € jrer1)+Em+. . +6m € A7} < [Defectl-Diletlos
S

Substituting this into[(61) we get
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| |
fectf! i (-9 4 fect(! i — |
|Z Z B,isA ap-sany] < Z Z | Defect(!~i)+1+...+(1-s) -4Defect{ ~i) y@n-1)(s-1)

=0 Zi=-sji=i' =0 Ti=-sji=i!
| o | o [
_ _ _ 1)(s- 1 .. 1
< Z Z Z - 3m+(n l)(S_I)Bi'h' < Z Z - 2m+H(n=1)(s-1) Biy < Z §n(7n 1)(S_I)Bi'h' < ZBi'h'
s=0 m=1 Yi=-s s=0 m=1 s=0
Defect{'-i)=m

To summarize our results, sinée.i_, 4. = 1, we got

|
1
(63) | Z Z Bzi hsA —i—1hl—s(dh)n—l| < Z Bilhl AZ‘il‘l(dh)”‘l

$=0 Ti=-sii'
The analogous computation for the second surfiih (55) shawédhs = =, a = n®
we have

I1+1
1
(64) olal| Bains(anAz--th-sahyn--2l < = Biin Ayt 1 gy
Z (dh)

s=1 Si=-s-1

Then [63)[(64) and (58) gives the desired Proposition 4.13:

8in

3 3 9
1Pl < SIBin A i-sayna | < 507" 1BoAg-sean| < 20|y,

and Theorern 419 is proved. This proves Theorerm 4.4 applyieditorse inequalities.
Theoreni 4.2 and Theorém #.4 together give Thedrem 1.1.
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5. AN OTHER COMPACTIFICATION OF Ji Tx /Gy

In this section we give a detailed description of a new cortifpation of J, TG,
as a singular subvariety of some Grassmannian manifolace&ipacts onJ, T fiber-
wise, we construct the quotienk{x)x/ Gy first. The idea comes from global singularity
theory, and originally was presented|in [4].

If u, vare positive integers, I8k(u, v) denote the vector spacelofets of holomorphic
maps €CY,0) — (CY,0) at the origin; that is, the set of equivalence classes gisma
f : (CY,0) — (C",0), wheref ~ gif and only if f(0) = g®(0) forall j = 1,...,k.

With this notation, the fibres ol are isomorphic talc(1, n), and the groufGy is
simply J«(1, 1) with the composition action on itself.

If we fix local coordinates, ..., z, at 0 € C" we can again identify thk-jet of f
with the set of derivatives at the origin, that i(Q), f(0),. .., f®(0)), wheref()(0) e
Hom(SymiC, CY). This way we get the equality

Jd(u,v) = &_;Hom(Synic", ")

One can compose map-jets via substitution and eliminafiterms of degree greater
thank; this leads to the compaosition maps

(65) Jk(v,w) x J(u,v) = J(u,w), (¥, ¥1) — ¥, 0¥ moduloterms of degree k.

Whenk = 1, J;(u, v) may be identified withu-by-v matrices, and (65) reduces to multi-
plication of matrices.
Thek-jet of a curve C,0) — (C",0) is simply an element aii(1, n). We call such
a curvey regular, if y'(0) # 0; introduce the notatiod, (1, n) for the set of regular
curves:
J XL n) = {y € (1, n);¥'(0) # O}
LetN > n be any integer and define

O = {¥ € J(n.N) : y € J%Ln): Woy =0

In words: Oy is the set of thos&-jets of maps, which take at least one regular curve
to zero. By definition@y is the image of the closed subvariety fn, N) x J,"%(1, n)
defined by the algebraic equatioffs v = 0, under the projection to the first factor. If
Yoy = 0, we cally atest curveof ®. This term originally comes from global singularity
theory as explained below.

A basic but crucial observation is the following. jfis a test curve o € ©y, and
¢ € 3.%1, 1) = Gy is a holomorphic reparametrisation©f theny o ¢ is, again, a test

curve of¥:
'3 Y v

C C c" cN
Yoy=0 = WYo(yey)=0
In fact, we get all test curves &f in this way if the following open dense property
holds: the linear part o¥ has 1-dimensional kernel. Before stating this in Propositi
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below, let us write down the equatitfr y = 0 in coordinates in an illustrative case.
Lety = (¥,7”,....7%) € J(1,n) and¥ = (¥, ¥",..., ¥¥) € J(n, N) be thek-jets.
Using the chain rule and the notatian= ¥ /i!, the equationt oy = 0 reads as follows
fork = 4:
(66) ¥(v1) =0,
W (v2) + ¥ (vi,v1) = 0,
Y(V3) + 297 (v, Vo) + W7 (V1, V1, V1) = 0,

3 (V4) + ZIPN(V]_, V3) T (V2, Vz) + B\P,’,(Vl, V1, V2) + (Vl, V1, V1, Vl) =0.

To simplify our formulas we introduce the following notat® for a partitionr =
[i1...j] of the integeli; +... +i:

e thelength |7 =1,

e thesum Yt =i1+...+1,

e number of permutationgperm(), which is the number of dierent sequences

consisting of the numbers, ..., i;; e.g. perm([11, 1, 3]) = 4.

o y: = [y Y™ € Sym'C" and ¥(y,) = ¥y, ...,yW) e CN.
Lemmab5.1.Lety = (v/,y”,...,y®) € 3L n) and¥ = (¥, ¥”,...,¥¥) € J(n,N)
be k-jets. Then substitutingx y"/i!, the equation¥ o y is equivalent to the following
system of k linear equations with valuesdi:

(67) Z perm@)¥(v,) =0, m=12 ...k
rel[m]
wherell[m] denotes the set of all partitions of m.
For a giveny € J,"(1, n) let S, denote the set of solutions ¢f(67), that is,
S, ={¥YeXk(nN);¥oy=0}
The equationg (67) are linearih hence
S, € k(n,N)
is a linear subspace of codimensiad. Moreover, the following holds:

Proposition 5.2. ([4], Proposition 4.4)

(1) For y € J7%(1,n), the set of solutions, c J(n, N) is a linear subspace of
codimension kN.

(2) Set

J(n,N) = {¥ € J(n,N)|dimker@’) = 1}.

For anyy € J,"(1, n), the subses, n J2(n, N) of S, is dense.

(3) If ¥ € J2(n, N), then¥ belongs to at most one of the spacgs More precisely,

if y1,72 € J&eg(l, n), ¥YeJ(nN)and¥ oy, =¥oy, =0,

then there existg € J (1, 1) such thaty; =y, o ¢.
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(4) Givenys,y, € J (L n), we haveS,, = S,, if and only if there is some ¢
J&eg(l, 1) such thaty; = y, o ¢.

By the second part of Propositibn b.2 we have a well-definep ¢gna J,"%(1,n) —
Grass(codim= kN, Ji(n,N)), ¥ — S, to the Grassmannian of codimensikN-sub-
spaces ir(n, N). From the last part of Propositién 5.2 it follows that:

Corollary 5.3. ([4]) ¢ is invariant on the [J9(1, 1)-orbits, and the induced map on the
orbits is injective:
(68) ¢ 3.%(1,n)/Gy — Grass(codim= kN, Jc(n, N))
Let us rewrite the linear syste¥io y = 0 associated tg € J %1, n) in a dual form.
The system is based on the standard composition map (65):
Jk(n, N) x J(1,n) — J(1,N),
which, via the identificatiod(n, N) = Ji(n, 1) ® CN, is derived from the map
Jk(n, 1) x J(1,n) — J(1,1)
via tensoring withCN. Observing that composition is linear in its first argumeamtd
passing to linear duals, we may rewrite this correspondenites form
(69) ¢ (1,n) — Hom (J(L, 1), J(n, 1)").
Ify=@.y".....7Y%) € J(Ln) = (C")*is thek-jet of a curve, we can put =
Yy /it € C"into the jth column of am x k matrix, and
e identify J(1, n) with Hom (CX, C");
e identify Ji(n, 1) with Sym*C" = &l | Sym'C";
e identify J (1, 1)* with C¥;
Using these identifications, we can recast the gmap(69) as
(70) # . Hom (C*,C") — Hom (C¥, Sym<c"),
which may be written out explicitly as follows

(V1,Va, ..o Vi) = |V, Vo + V2, L., Z perm@)v. |.
re[d]

The set of solutions,, is the linear subspace orthogonal to the imaga6f . . . .,y /k!)
tensored byCV, that is

S, = im(g(y's ..., Y97kt @ CN c J(n, N)
Consequently, it is straightforward to take= 1 and define
(71) S, = im(g(y/s ..., Y9 /KY) € Grassk, Syn“C")
Moreover, letB, c GL(k) denote the maximal Borel of upper triangulars and
Flag(C") = Hom (C*, Sym™*C")/By={0=Foc F; c---c F, c C", dimF, =1}.
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denote the full flag ok-dimensional subspaces of S§/iG".

In addition to [(71) we can analogously define
(72)
Fy = (iM($2(y)) € im(ga(y',y"/2)) € ... cim(du(y’, .., ¥)/KY) € Flag(Sym™C")
where we think of SyfiC" c Syn/C" as a subspace fox j.

Using these definitions Proposition 5.2 implies the follogwersion of Corollariy 513,
which does not contain the parameléer

Proposition 5.4. The mapp in (70) is a Gy-invariant algebraic morphism
¢ 3°%1,n) —» Hom (C, Symi<cM),

which induces
(1) an injective map on th&-orbits to the Grassmannian:

¢°" 1 31, n)/Gy — Grassk, SymsC")

defined bys®'(y) = S,.
(2) an injective map on th&y-orbits to the Flag manifold:

¢™29 = 3%9(1, n) /Gy — Flag(SymC")
defined by™9(y) = F,.
(3) In addition,
¢Gr — ¢Flag o 7y
wheren, : Flagk, Synt“C") — Grasg(Synt“C") is the projection to the k-
dimensional subspace.

Moreover, all these maps are @i)-equivariant with respect to the standard action of
GL(n) on J*%(1,n) ¢ Hom (Ck, C") and the induced action oBrass(Sym=C").

Composings®" with the Plucker embedding
Grassk, SymC") «— P(AKSym<c")
we get an embedding
(73) o7 (1, n) /Gy — P(AK(SymkC™)

Since ¢©'3S ¢F1a are GL(n)-equivariant, fork < n the imageg®'(J,"%(1,n)/Gy) c
Grassk, SyntCn) is aGL(n)-orbit in Grassk, Syn“C"), and therefore a nonsingular
guasiprojective variety. Its closure, however, is highlygsilar, and a finite union of
GL(n) orbits, with a nice orbit structure. The boundary orbiteheodimension at least
two, which allows us to describe a generating set for Degisidllgebra of invariant jet
differentials as the Plucker coordinates on this Grassmarfaoauthe details see[S].

In this paper, however, we are rather interested in the iro&giéadin Flag (Syn<Cn).
This will substitute the Demailly-Semple tower in our cortgdion in the next section.
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We introduce the following notations
Xk = ¢F29(J°9(1, n)) c Flag (SymC")

In the next section, following [4], we develop a double-llicaion method onXy
allowing us to compute its intersection numbers. The pdesds us to an iterated
residue formula.

6. LOCALIZATION ON Xy- THE SNOwWMAN MODEL

6.1. Equivariant Poincaré duals, Multidegrees. Denote the weight lattice of =
(C)" by A; this is the lattice in Lie[)* = C" generated by the standard weights (the co-
ordinate vectors)y, ..., 4,. LetW be anN-dimensional complex vector space endowed
with an action ofT. This action is diagonalizable, hence one can choose cuaiss
Yi,...,¥Yn ONW in such a way that the action in the dual basis is diagonaloidetine
respective weights by; ... 7.

Let X be a closed -invariant algebraic subvariety 8¥, and denote by(X) c S the
ideal of polynomials vanishing oB. This ideal isreduced i.e. has the property that
fPeI(X) = f € I(X). Our plan is to define an extended invariaht— mdeg|, S],
called themultidegreeof |, wherel is an arbitraryT -invariant ideal inS = C[y; ... yn].
Then we can simply define the equivariant Poincaré of a tyasie the the multidegree
of the corresponding ideal (cf. Definition 6.1 below). Now sketch an explicit and an
axiomatic definition of the multidegree.

For the construction, leD be the codimension of the variety defined by the ideal
| ¢ S, and consider a finitdl;-graded resolution db/1 by freeS-modules:

eMswiM] - - - @Mswm - - - elsw(1] - S - S/I - 0;
wherew;[m] is a free generator of degregm] € Afori = 1,...j[m], m=1...M.
Then

1 g D-m D
(74) mdegl. S] = 7 >, ) (-1 "ni[m°.
m=1 i=1
Definition 6.1. LetX c W be T -invariant closed subvariety as§f.1. Then we define
the T-equivariant Poincaré dual @fin W by

ePE, W]t = mdegl (%), Cly: ... ]l

We will usually omit the lower indeX when this does not cause confusion. Note that
the multidegree, and hence the equivariant Poincaré dualanifestly a homogeneous
polynomial of degre®.

While (74) is explicit, its meaning is not transparent, arelwote that, usually, it is
rather dfficult to write down free resolutions of ideals. Hence we turian axiomatic
description, which is more intuitive, and provides us witimare algorithmic under-
standing of the invariant as well.
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6.2. Axiomatic definition. We follow the treatment of [34] to give the axiomatic def-
inition: we describe 3 characterizing properties of thetidagree, and then we prove
that these properties indeed determine the polynomial.

The monomialg/? = Hi'\z'lyf“ € S = Clyy,...,yn] are parametrized by the integer
vectorsa = (a; ...ay) € ZY. A monomial ordek onS is a total order of the monomials
in S such that for any three monomiatsg, m,, n satisfyingm, > m,, we havenm, >
nm > M, (seel[17§15.2]).

An ordering of the coordinateg, .. ., yy induces the so-calleléxicographicmono-
mial order of the monomials, that ig? > y® if and only if a; > b; for the first index
with g # b;. We will use this lexicographic monomial order throughdus tpaper.

Now letl c S be aT-invariant ideal. Define thanitial ideal in.(I) c S to be the
ideal generated by the monomigitls.(p) : p € I}, where in(p) is the largest monomial
of pw.r.t<. There is a flat deformation définto in_(1) ([17], Theorem 15.17.), and the
first axiom says that mdeld[does not change under this deformation:

1. Deformation invariance mdeg|, S] = mdeg[in.(1), S].

To describe the second axiom, we define the multiplicity ofaximal-dimensional
component of a non-reduced variety. llet S be an ideal, and denok]l) the variety
of common zeros of the polynomialsin

X)) ={peW; f(pp=0Vfel}

Denote by&,, X, . . ., X, the maximal-dimensional irreducible components@). Then
each; corresponds to a prime ideal c S, and one can define a positive integer
mult(p;, 1), the multiplicity of ¥; with respect tol, as the length of the largest finite-
lengthS,,-submodule in$/1),,, whereS, (resp. &/1),,) is the localization ofS (resp.
S/1) atp; (see section 11.3.3 in[18]). Then we have

2. Additivity:

(75) mdeg|[, S] = Zm: mult(p;, 1) - mdegp, S].

i=1
The last axiom describes the multidegree for the case ofiowate subspaces:
3. Normalization: for every subsetc {1...N} we have

(76) mded(y;, i €i),S] = [ | m,

where(-) stands for the ideal generated by the polynomials listederangle brackets.

A special case of the normalization axiom is the case {0}. We will often use the
notation eulef(W) for eP[0}, W], since, indeed, this is the equivariant Euler clasgof
thought of as & -vector bundle over a point. We have thus

(77) eP[0}, W] = eulel (W) = ]_[ .
i=1
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Remark 6.2. Using this notation, the normalization axiom may be recast geometric
form as follows: given a surjective equivariant linear mgp. W — E from W to
another T-module E, we have

(78) ePy~1(0), W] = eulef (E).

Consider the following three examples:

(1) SetN = 4, and consider the ideal= (y,y3,ys) in S = C[y1, Y2, Y3, Y. This is
the line{y; = y» = y3 = 0} with multiplicity 6, so its multidegree is

mdeg|, S] = 611727

(2) The ideall = (y3y3ys) in S = C[y1, Y2, ys] corresponds to the union of the hy-
perplanes; = 0,y, = 0,y; = 0 with multiplicities 2 3, 1, respectively. By the
normalization and additivity properties

mdeg|, S] = 21 + 32 + 13

(3) The ideall = (y1Y2, Y23, Y1¥3) = (Y1, Y2) N (Y2, Y3) N (Y1, ¥3) IN S = Cly1, Y2, Y3]
has three components with multiplicity 1, correspondinthegiven decompo-
sition, so

mdegl, S] = mn2 + 12173 + MN3

Following [34] §8.5, now we sketch an algorithm for computing mde§], proving
that the axioms determine this invariant.

An idealM c S generated by a set of monomialsyy) ..., yy is called amonomial
ideal. Since in(l) is such an ideal, by the deformation invariance it is encigtom-
pute mdegM] for monomial idealsM. If the codimension oE(M) in W is s, then the
maximal dimensional components fM) are codimensiors-coordinate subspaces of
W. Such subspaces are indexed by sulisetd . .. N} of cardinalitys; the correspond-
ing associated primegi] = (y; : i €i).

It is not difficult to check that

(79) mult@[i], M) = ‘{a e 7l y*® ¢ Mforall b e 21}

b

whereZ!! = {a e ZN;a = 0fori ¢ i},i = {1...N}\i, and| - |, as usual, stands for the
number of elements of a finite set.
Then by the normalization and additivity axiom we have

(80) mdegM, S] = Z mult(p[i], M) ﬂ .
lil=s ici

By definition, the weightg),,...ny on W are linear forms ofty, ... A;, the basis of
(C*)", and we denote the cfiient of 2; in i by coef(yi, j, 1 <i < N1 < j <.
Introduce also the following notation:

deg@i, - - -, n; M) = #i; codt(n, m) # O}}.
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It is clear from the formuld (80) that

holds for any 1< m < r. We need a slightly stronger result in the next section whieh
formulate and prove here.

Proposition 6.3. Let W be an N-dimensional complex vector space endowed with a
diagonal action of(C*)", with coordinates y,...,yn and respective weights . .. 7.
Letl c S be a(C")"-invariant ideal. Then

(1) mdeg|, S] € C[A4,..., 4] is a polynomial ofyy, . .., nn.
2)

(82) deg_mdeg], S] < deg@,....nn;m) -1
Proof. The first part is obvious froni_(80). Let
codf(n,m) # 0for1<i <s;, codt(ns1,m) = ... = codlf(yy, m) = 0.

The idea of the proof is to choose an appropriate monomialrand the polynomial ring
S =Cl[ys,...,Yn] to ensure thay; does not appear in the corresponding initial ideal.

To that end recall, that a weight function is a linear npapZN — Z. This defines
a partial order>, on the monomials o8, called the weight order associatedgtioby
the rulem = y2 >, n = y° iff p(@) > p(b). Herea = (ay,...,an),b = (by,...,by) are
arbitrary multiindices. Any weight order can be extendec tcompatible monomial
order> (see([17], Ch 15.2), which means tmat>, nimpliesm > n.

For our purposes define

(83) p(y1) = -1p(y2) =...=p(yn) =0

and let> denote arbitrary compatible monomial order®nBy definition for a mono-
mialme S

(84) p(M) <0 < yim

Let p € I, and assume that not all monomialspére divisible byy;. If they all did,
yalp, and thereforen. (p/y1)lin.(p) would hold, and therefore would not be among
the generators of the.(l). Thereforey; does not dividep.

Then there is a monomial gf not containingy;, and by [84) the weight of this
monomial is strictly bigger to the weight of any other contag y;. Consequently,
y; does not divide any of the generatorsinf(l), and by [(80) mded[ S] does not
depend om;. The only possible variables containing are thereforey,, . . ., ns, giving
a maximum total degre— 1. O
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6.3. Localization on X,. In this subsection we sketch the localization procedureldev
oped in [4] onX,. We also refer this later as the Snowman Model, due to thedigur
§6 of [4], which summarizes the process.

Let 37°"*Y1,n) c J®%(1,n) be the set of test curves with, ...,y® linearly inde-
pendent. These correspond to the regualark matrices under the identification §f
5.

According to our construction, we have the following pietur

Flag

(85) JON9YD 1) /Gy Flag (Synm<Cr) 2 p(ak(Symkcn))

lﬂ

Jr°"*q1, n)/By = Flag(C")

Let 7 be the restriction of the tautological line bundle BaX(Syn“C")) to X,. To
proceed a similar computation as on the Demailly-Sempletowe have to compute
the intersection number

[ e
Xk

We will explain this in more detail in the next section.

Note that the fibratiom and the embedding™9 areGL,-equivariant with respect to
the inducedsL(n) action from the standard action @f. Let A4, ..., 1, be the weights
of this action with eigenbasks, ..., e, € C". Let

f={e)c(e,e)c...cC

denote the standard flag @' Applying the ABBV localization formula on FlggC")
we get

(86) fx sy = Y Qi(Aot .- Arid)

€80/ Sn-k Hlﬁmﬁk H|n=m+1(/10'| - /lo—m) ’

where
(87) Qi(A1,...,An) :f (A + ...+ A<D
¢FaY(n=1(f))

Similarly to the localization on the Demailly-Semple toywse can derive anfgcient
residue formula for the right hand side bf {86). While themetric meaning of this for-
mula is not entirely clear, our summation procedure yietdd®ective, “truly” localized
formula; by this we mean that for its evaluation one only rsgecknow the behavior of
a certain function at a single point, rather than at a laripeitfinite number of points.

Proposition 6.4. ([4],Proposition 6.4) For a polynomial Q) on Ck, we have

Z Q(/lo“l e /l(rk) - R Sl_[lsm<|5k(zm - Zl) Q(Z) dz
0€Sn/Snk Hlsmsk Hin=m+1(/10'-i - /l(rm) Z=00 H:(:l I_Iin:]_(/li - ZI)

(88)
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Following [4], we proceed a second localization on the fiker= ¢29(x-1(f)) to
computeQ;(z). SinceX; is invariant under thed*)" c GL, action on Flag(Syn<CM),
we want apply Rossmann’s integration formula, which is ax@d in§3.3 of [4]. The
rough idea is the following.

Let Z be a complex manifold with a holomorphicaction, and leM c Z be aT-
invariant analytic subvariety with an isolated fixed pgmt MT. Then one can find
local analytic coordinates neprin which the action is linear and diagonal. Using these
coordinates, one can identify a neighborhood of the origif,Z with a neighborhood
of pin Z. We denote bypr the part of T,Z which corresponds td1 under this
identification; informally, we will callpr the T-invarianttangent coneof M at p.
This tangent cone is not quite canonical: it depends on tbe&etof coordinates; the
multidegree o2 = T,M in W = T,Z, however, does not. Rossmann named this the
equivariant multiplicity of M in Z at p

(89) emult[M, Z] £ mdeg[f,M, T,Z].

Remark 6.5. In the algebraic framework one might need to pass tadngent scheme
of M at p (cf.[22]). This is canonically defined, but we will not use this notion

Rossmann’s localization formula [38] reads then as follows
Letu € H3(Z) be an equivariant class represented by a holomorphic agant map
Lie(T) — Q*(Z). Then

emultp[M Z] 0
(50) f Z Euler (T,2) (P,

whereu®(p) is the diferential-form-degree-zero componenjagvaluated ap.
In [4] we apply this formula witiM = X;, Z = Flag(Synt*C") anda = Thom(Flag),
the equivariant Thom class of Flaghere

Flag, = (V1 C ...V, c Syn¥*C" : dim(V;) = i, V; c C(e, : sumf) < i)} c Flag (Sym“C").

The fixed points on FlagSym“C") are parametrized by admissible sequences of
partitionsx = (r,...,m). We call a sequence of partitioms = (ry...m) € I
admissible if

(1) sumfr) < |
2)m £#anforl<l#m<k

We will denote the set of admissible sequences of lekdpIl,.
Following [4] we arrive to the following formula witk < n
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Proposition 6.6.
Q@ [ [@n—2)(z0, + ...+ 2) Y

(91) f a(@)D = Y Res -l dz.
X i Z=00 k t#mr1..m k n
[T e-2]]w-2
=1 =<l =1 i=1

where Q(z) = emult[X;, Flag] and z = Y., Z.

The total degree of the rational expressiori i (9Bksand the iterated residue gives
a number.

The following theorem is a stronger version of the vanishimgorem in[[4]. We
devote the next subsection to the proof.

Theorem 6.7. The Residue Vanishing Theorem

(1) All terms but the one corresponding4o= (1, 2,...,k) vanish in(@1) leaving
us with

dz.

(92) f ci ()Y = Res
Z=00

k n
" [T @-2[]]]a-2

sumfr)<l<k I=1 i=1

.....

the simplified formula

QD) | [@n-2)@+...+2)Y
m<|

k n
[T @+z-a]]] -2

m+r <l<k =1 i=1

Remark 6.8. The geometric meaning of (€ in (93) is the following, sed4]. Let
Ty c Bx c GL(K) be the subgroups of invertible diagonal and upper-triaguahatrices,
respectively; denote the diagonal weights pby z, . . ., z.. Consider the G(k)-module
of 3-tensorsHom (CX, SyntC¥); identifying the weigh{zy,+2z —z) symbols ff" and g™,

we can write a basis for this space as follows:

Hom (C*, synfc*) = (B cg™, 1<mr.l<k

Consider the reference element

dz.

(93) f ci(0)" Y = Res
Xk

=00



42 GERGELY BERCZI MATHEMATICAL INSTITUTE, OXFORD

in the B-invariant subspace
(94) Ne= €D Cq™c Hom (C¥, Synfc).

1<m+r<i<k

Set the notatiorO, for the orbit closureBe c Ny, then Qz) is the T-equivariant
Poincaré dual

Q(Z]_, ceey Zk) = eppk, Nk]Tka
which is a homogeneous polynomial of degiea(Ny) — dim(Oy).

6.4. The vanishing of residues.In this paragraph, we describe the conditions under
which iterated residues of the type appearing in the suinlih\@nish.

We start with the 1-dimensional case, where the residudiattinis defined by[(1l1)
with d = 1. By bounding the integral representation along a congurR with Rlarge,
one can easily prove

Lemma 6.9. Let p(2), q(2) be polynomials of one variable. Then

p(z) dz
es
= (2)
Consider now the multidimensional situation. L¥¥), q(z) be polynomials in thel
variablesz . ..z, and assume thafz) is the product of linear factorg = [T\, L;, as

in (@1). We continue to use the notati@z = dz ...dz. We would like to formulate
conditions under which the iterated residue

=0 if degp(2) + 1 < deg@).

(95) ResRes... Resp(z) dz
A

vanishes. Introduce the following notation:

e For a set of indice$ c {1...k}, denote by deg{(z); S) the degree of the one-
tifmeS,
lifmegsS.

e For a nonzero linear functiobh = ag + a1z, + ... + az, denote by co&(L, z)

the codficienta;
o finally, for 1 < m<k, set

lead@(z); m) = #{i; maxl; codf(Li,z) # 0} = mj},
which is the number of those factorsin which the coficient of z,, does not
vanish, but the cd&cients ofz,.1, ...,z are 0.

Thus we group theN linear factors ofg(z) according to the nonvanishing déeient
with the largest index; in particular, ford m < k we have

variable polynomiaps(t) obtained fromp via the substitutioa,, —

k
deg@(z); m) > lead@(z); m), and Z lead@(z); m) = N.



THOM POLYNOMIALS AND THE GREEN-GRIFFITHS CONJECTURE 43

Now applying Lemma6]9 to the first residue inl(95), we see that

recP@ A1 2)dz
A=00 Q(Z]_, ceos -1, Zk)
whenever deg{(z); k) + 1 < deg@(z),k); in this case, of course, the entire iterated
residue((9b) vanishes.
Now we suppose the residue with respectztaloes not vanish, and we look for
conditions of vanishing of the next residue:

(96) ReSReSp(Zl, ooy L2y Zk-1, Zk) dZ
1700 Ze=00 Q(Zl, ooy L2y L1, Zk)
Now the condition deg{(z); k — 1) + 1 < deg@(z), k — 1) will insyficient for example,

kz_1kz kz_1kz ( Z 1 ) _q

(97) ResRes—————— = ResRes 1-—+

gea=e0 a0 Z 1(Z1 + Z)  AermoaEe Z % Z
After performing the expansions (12) tgd(z), we obtain a Laurent series with terms
z"...Z " such thaf,_; + iy > deg@(2); k - 1, k), hence the condition

(98) degp(2); k— 1,k) + 2 < deg@(2); k— 1,Kk)

will suffice for the vanishing of (96).

There is another way to ensure the vanishing of (96): suppaddori = 1...N,
every time we have ct¥L,;, z._,) # O, we also have cd¥L,, z) = 0, which is equivalent
to the condition deg@{(z), k — 1) = lead(i(2); k — 1). Now the Laurent series expansion
of 1/q(z) will have termsz;"* ...z * satisfyingix_1 > deg@(z).k — 1) = lead(2); k -

1), hence, in this case the vanishing bf1(96) is guaranteedelgyp(z),.k — 1) + 1 <
deg@(2), k — 1). This argument easily generalizes to the following steet.

Proposition 6.10.Let p(z) and (z) be polynomials in the variables z . z, and assume
that q(z) is a product of linear factors: @) = [1%, Li; set &z = dz...dz. Then

ResRes. .. Res p(z) dz =0
Z1=00 Zp=00 Z=00 Q(Z)
if for some I< k, either of the following two options hold:
e degp(2); k. k—-1,...,)+k-1+1<degQ(@;k k-1,...,1),
or
e degp(2);1) + 1 < deg@(2);!) = lead@(2); ).
Note that for the second option, the equality dggy; |) = lead(z);|) means that
(99) foreach =1...Nandm> |, codf(L;,z) # O implies co&(L;, z,) = 0.

Recall that our goal is to show that all the terms of the suf@1) yanish except for the
one corresponding tags: = ([1] ...[K]). Let us apply our new-found tool, Proposition
[6.10, to the terms of this sum, and see what happens.
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Fix a sequence = (1, ..., 7nx) € Ik, and consider the iterated residue corresponding
to it on the right hand side of_(91). The expression under ¢is&ue is the product of
two fractions:

P@ _ p(@  P(2)
92 ®u@ %@’

where
Q:(2) | [(zn—2)
pu(2) lm_J P2)  (Zo ... +2) Y
(100) = and = :
ql(z) k t#m1..m qz(z) k n
[TT]] @-20 [ 1] [ci-=
=1 sum)<l =1 i=1

Note thatp(z) is a polynomial, whileg(z) is a product of linear forms.

Proof of Theoreri 6.10

As a warm-up, we show that if the last element of the sequemnecmi the trivial
partition, i.e. ifm, # [K], then already the first residue in the corresponding terrthen
right hand side ofi(91) — the one with respectte- vanishes. Indeed, i # [k], then
deg@:(2); k) = n, while z. does not appear ipx(2).

On the other hand, degy(z); k) = 1, because the only term wiif is the one corre-
sponding td = k, 7 = [K] # nx. If deg(Q,(2), k) = 0 held, we would be ready, as

(101) degp(z); k) = k-1 and degf(z);k) =n+1
andk < n.

Lemma 6.11.For zr # ([1],[2],..., [K])

(102) degQx(2); k) = 0.

Proof. Recall from Proposition 616 thad,(z) is the multidegree of ad*)*-invariant
coneX; in the tangent space of the flag manifold Flagthe fixed poinir. The weights
of the (C*)-action on this tangent space are exactly the factocs,afamely
Z -2, : Tiﬂl,ﬂz,...ﬂk;ZTS <2
and therefore the only weight containingis
Z]rk — &
Applying Propositiorn 6.3 withn = k we arrive at[(102). O
We can thus assume that = [K], and proceed to the study of the next residue, the

one taken with respect iy_;. Again, assume that,_; # [k — 1]. As in the case 0%
above,

deg@(2), k — 1) = n,deg(p.(2); k- 1) = 0.
In g; the linear terms containing_; are

(103) Ze1—Z6Z+ Zer— Zo Ze1 — Zn
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The first term here cancels with the identical term in the \énbnde inp;. The
second term divide®,, according to the following proposition froml[4] appliedttvi
| =k-1:

Proposition 6.12. ([4], Proposition 7.4)

Letl > 1, and letr be an admissible sequence of partitions of the ferm(ry, ..., m, [I+
1],...,[K]), wheremr; # [I]. Then for m> |, and every partitionr such that l€ ,
sumg) < m, and|7| > 1, we have

(104) @ — Zm)|Qx.

Therefore, after cancellation, all linear factors frap{z) which have nonzero co-
efficients in front of bothz,_; andz vanish, and we can apply the second option in
Propositior 6.10, leaving us with checking the degreex of the new numerator and
denominator of the fractiofi?.

Note that% is the multidegree of the same cone in a smaller vector space,
namely, the cone sits in the subspace

S= {y21+2k_1—2k =0} c TpﬂFlaqz,
wherey,, ., , 2 IS eigencoordinate corresponding to the weghtz,_; —z. The weights
with nonzero cofficient ofz._1 in S are
L1~ Ly gs -1 — Lo
and by Lemmasl3
degP'(2;k-1)<k-2+1=k-1
On the other hand,
deg@'(2);k-1)=n+1,
so we can apply the second part of Proposition|6.10.
In general, assume that

w=(my,mo,...,m, [l +1],...,[K]),m #[l],

and embark to the study of the residue with repea.td he weights containing in g,
are

(105) Z~2,%~ %21, 4~ 21
(106) z.—-zwithler,7#,l+1<s<ksumf) <s
(107) A

The weights in[(105) cancel out with the identical termifiz). By Propostition
[6.12, the cone, whose multidegreeQs(z) sits in the subspac8, orthogonal to the
coordinates corresponding to the weights in (106), ancéfbezQ, is divisible by these.
Using Lemma6.3, after cancellation we are left with

degP’(2);) =1-1+degQ'(2),l) <l -1+k—-1=k-1;degf/(2) =n+1,
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again. Sinceé < n, by applying the second option of Proposition 6.10 we artivéhe
vanishing of the residue, forcing to be [].

7. Proor oF TuroreMm [1.3

7.1. The Flag Manifold Model for the Jet differentials. Let X ¢ P™?! be a smooth
projective hypersurface of degreée Using the embedding™™ fiberwise, we get the
following analog of Theorem 2.1 in[13]. Note, that the Pleckoordinate functions in
the Plucker embedding GraksBymit“C") «— P(A*SymiC") have weighted degree

k+1
5 )

Proposition 7.1. The quotient JTy)/Gy has the structure of a locally trivial bundle
over X, and there is a holomorphic embedding

¢Proj t J(T5)/Gy > P(/\k(T; ® Ser‘F(T;) b...0 Syfﬁ‘(T;))

1+2+...+k:(

into the projectivisation ohX(T; @ ... ® Syrri‘(T;)) over X. The fiberwise closupg =
PP J(Ty)) of the image is a relative compactification @{Dy) /TGy over X.
Following our notations ig5, we introduce
SyniTy = Ty @ Syn?(Ty) & ... ® Synt(Ty).

Note thatXy c P(AX(SymF*T})) is a closed subvariety, and we can define the tauto-
logical line bundle oveXy as the restriction

OXk(l) = OP(AK(SyrrFkT;))(l)|Xk'
Proposition 7.2. The following direct image formula holds:
(108) 1,.0x.(m) C O(Ek,m(kzl)T;)

wherer : P(AK(SymF*T;) — X is the projection.

Proof. By definition, the sections of the tautological bundle puthk to Gy-invariant
functions onJ,T;. O

Remark 7.3. Note that
7,.0x.(m) C O(Ek’m(kzl)T)*()

is enough to proceed with the strategy[®B]. We produce a nonzero global section
of the smaller sheaf, which gives a global section of the Diyrjat bundle. A more
detailed study oy shows in[5] that its boundary components have codimension at
least two, and therefore all the invariants are stored in thetological bundle, and in

(108) equality holds.
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We now replace the Demailly-Semple towy constructed in[[10] as a tower of
k projective fibrations with our new contructioX, and follow the strategy of [13]
using this. We define and give an iterated residue formulahf@ranalog of Diverio’s
intersection number in [1.3], and prove the positivity to tiet stronger result Theorem
1.3

The starting point is, again, Theoréml4.1 which connectifigrentials to the Green-
Griffiths Conjecture.

Note, that by Theorem 1 of [14],

HO(X, Epm(<n) Tx ® AhH=0

holds fork < n, so we can again restrict our attention to the rakgen. However, for
k > n, the flag manifold Horf?9(Ck, C")/GL(K) is not defined in the snowman-model,
and therefore our residue formula does not hold.

This forces us to study tHe= n case.

Similarly to §4, to control the order of vanishing of thesdfdrential forms along the
ample divisor we choosa to be —as in[[13] — a proper twist of the canonical bundle of
X, which is ample as soon &@s> n + 3.

Theoreni 4.2 on degeneracy of entire curves with Propoéfftdensures that we have
to prove the existence of nonzero global sections of

_sfn+l
O, (M) @ 'K ("
for somes > 0,m> 0 andd > 0. The precise statement is the following

Theorem 7.4.Let X c P! be a smooth complex hypersurface with ample canonical
bundle, that islegX > n+ 3. If § = == and d> D(n) = n® then

n3(n+1)

_ofn+1 ol
HO(Xna OXn(m) ® JT*KX(S( 2 )m) ~ HO(X, E nzl)T; ® KX6( 2 )m) +0,

n, m(

n+1
2

Theoreni 1B follows from Theorem 4.2 and Theofem 7.4.

The technical tool for proving Theordm 7.4 is again the Manggualities of Trapani
given in Theorem 415. In order to apply this, we have to expebg(1) as a diference
of nef bundles.

nonzero, provided tha( )m is integer and Conjectufe1.2 holds.

Proposition 7.5. Let d > n + 3 and therefore l ample. The following line bundles are
nef on X:

(1) Ox, (1) ® 7 Ox(2?)
(2) 70x(2r?) @ 7* Kf((nzl) for anys > 0 ands(";') integer.
Proof. Let O(m) denote then-twisted tautological bundle o™, ThenT;,, ®0(2) is
globally generated, and there is a surjective bundle map
(Tena ® O™ — T ® Ox(2)™,
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thereforeT; ® Ox(2) is globally generated. Consequently, the left hand sidthe
following surjective bundle map is globally generated,
(109) A"(Tx ®Ox(2)® SynfT; ® Ox(4)® ... ® Synl'Tx ® Ox(2n)) -
A" ((Tx @ SyntT; ®... @ SynT'Ty) ® Ox(2n)) = A" (Tx @ ... & Synf'T;) ® Ox(2n?),
and therefore the right hand side is also globally gener&ed

Op(an(syminTyy) (1) ® 1°0x(2n°)
is nef, the first part of Propositidn 7.5 is proved. The secpad follows from the
standard fact that the pull-back of an ample line bundle is ne m|

_ofn+1
Consequently, we can expreSg, (1) ® =" KX5( 2) as the following diference of two
nef line bundles:

(110)  Ox (W)oK () = (0x.(1) @ 7'Ox(2M) ® (1" Ox(2n?) ® 7K )) 2.

In order to prove Theorem 4.4, by the Morse inequalities wedn® evaluate the
intersection product

(111)
Ix(d, n,6) = (Ox, (1)@ Ox (2M)) ™ —(n2) (Ox. (L)er" Ox(2n2) ™V Ox (2@ K L)),
and to prove that it is positive d > n®.

7.2. Plan of the computation. Let us introduce the cohomological claskes ¢;(Ox(1)),u =
c1(Ox, (1)), andc; = ¢;(X). Thency(Kx) = —c;, and the intersection form (I111) is the
integral of the top fornRx(d, n, §) € H™(X,,)

Ix(d,n, 8) = f Rx(d, n, ),
Xn

where

(112)  Ry(d,n,8) = (u+ 2n?x"h)™ — n?(u + 2nPx*h)™L(2nr*h - 5(” er 1)7r*c1)

The Chern classes of are expressible with, h via the following identity:
(1+h)™2 = (1 + dh)c(X),
wherec(X) = ¢(T X) is the total Chern class &f. After expansion we get the identities

39).

In particular, this gives us
¢ =—-(d-n-2)h.
To apply the iterated residue formula of Theoten 6.7, werasshain = k and simplify
our notation by usindgpinstead ofr*h. We define
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(113) R(d,n,6,z1,....z)=(-z1—...— z, + 2n2h)”2—
(21— ... -z + 20?h)"L(2nth + 5(” N 1)(d “n-2)h)
Theoreni 6.7 gives the desired formula fot k as follows

Proposition 7.6.

QD) [ [@n-2)RA.n.6,2...2)
(114) Ix(d,n,6) = | Res——™ dz.

T enra- zl)]—[]_[(ﬁ. 2)

m+r<l<n =1 i=1

Changing the coordinates— —z and applying the identities of Remark 4.7 we have

1 B 1 1 ~ 1 1 )
MLaLGi+2) - @2 A+ ) @2 T C0/2)

1 n 1+da—h 1 n dh n h h2 n+2
- (21...zn)”l_[ L+ D2 (zl..,zn)nn(“;)n(l—f;—---)

1=1 1=1 1=1
and therefore after substitutifig (113) info (1114) we artive

(115)

(116)
(-1"Q@) | |@n-2)
m<l

Ix(d,n,6) = | Res
X fx2=°° 1—[ Zm+z—-2)z0...Z)" It

m+r<i<n

(z1+. . +2,+2n2h)" 1 (zl Fo 42— 6n2(n JZF 1)dh— (2n4 n%s(n + 2)( * 1) 2n 2) h) dz.

n n 2 n+2
(1+d_h) (1-3+%-] -
I 4 =1 4 ZI2

Let's take a short break again, and step back a bit lookingisfarmula. The residue
is by definition the coicient of—Zn in the appropriate Laurent expansion of the big
rational expression im, . . ., z,, n, d, hands, multiplied by 1)". We can therefore omit
the (-1)" factor from the numerator and simply compute the correspgncbeficient.
The result is therefore a polynomial md, h, §, and in fact, a relatively easy argument
shows that it is a polynomial in, d, § multiplied by h"

Indeed, giving degree 1, ...,Z,,hand 0 ton, d, §, the rational expression in the
residue has total degree 0. Therefore thefoment of 1 has degre@, so it has the
form h"p(n, d, §) with a polynomialp.
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SincefX h" = d, integration overX is simply a substitutioh” = d, resulting the
equation
Ix(d,n,é6) = dp(n,d, ).
To overcome the diiculties in handling the rational expression, we introduaseful
notation.

Notation 7.1. For = (is....ir) € 2"
Q(Z) l_l(zm - ZI)(Zl +...+ zr.l)nz+i1+...+in
mkl

(117) 0() = 02! ... 2" = Coeffys 1—[ (Zn+z —-2)(z...2)"
- 1.

m+r<l<n

and

(118) Os,....i = > 0c(in).....o(0)

oeperm(y,....in)

Note that we will usually omit the zero components afi¢o shorten the notation, for
instance write®(1) = ©(1,0,...,0).

The total degree of the rational expression on the r.h.§ Bfl)(isi, + ... + i, and
therefore the cdéicient ofZ! ...z} can be nonzero.
The following proposition describd¢n, d, ) in more detail.

Proposition 7.7. (1) I(n,d,¢) is a polynomial in d of degree-n 1 without constant
term:

I(n, d, ) = an,1(n, 6)d™ + an(n, 6)d" + ... + ay(n, 5)d

where the coficients are linear in, polynomial in n.
(2) The leading cofcient of I(n, d, 6) is

an1(n, 6) = (1 - nz(n JZF 1)6) 0(o,...,0).

Proof. The first part follows from the previous remarks. The secoquiaon comes
from (118), and the fact that in order to g¥t* we either have to choose all t%@terms
in the producf]}, (1 + %‘) or we need to pick up th§? term in

Q@) | |@n-2)R@ ..., 20,6,h)

m<|

[T @+z-2)@...2)

m+r<i<n

and pair up with the term%j, | # sin the producf]., (1 + ‘;—h) This argument gives us

n+1)

n
S
) 5§ 60,...,-1%...,0)

s=1

(119) an1(n, 6) = ©(0,...,0) - n2(
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By definiton,
(120)
; Q) | [@m-2)@+...+z)"

ane(o,...,—ls,...,O):@(—1): codf 1 ! =
S ¢ || @rz-2a@.2)

m+r<l<n

. QD) [ [@n-2)zz+... + 2™

=) coef -] = 0(0,...,0).
2, 0ot [] @G+z-2)z...2)

m+r<l<n

O
Lemma 7.8.
0(,...,0)> 0.
Proof. This is the leading cd&cient of the intersection number
(Ox, (1) ® 1" Ox(2n))"™ .
Since this is a nef line bundle, this is positive, and thexretbe leading caécient is
also positive. |

Corollary 7.9. For § < n3(n+1) the leading cogicient of I(n, d, §) is positive, and there-

fore I(n,d, 6) > Oford > 0.

According to Proposition 717, we cannot expect better tr@yprmmmial bound for the
Green-Grffiths conjecture from this model.

7.3. Estimation of the codficients. Before we proceed, and fling ourselves into the
computation of the further c@igcients, let's have a look dt (1116) again. Introduce

qarwmamquham

(121) ANz, ...,Z,,06,Nn) =
]_[ (Zn+2 - 2)z...2)"

m+r<i<n

and with abuse of this notation we often omit the parametedsmaite A.
If the degree ofz,...,z, andh is 1, then the denominator and numerator\chre
homogeneous polynomials of the same degree, and thereftine Laurent expansion

we have terms
(d h)fh’“z"lil L
2B
withe=0orl,e+m+a;+...+a,=by +...+ b, andab, = 0. Let
n(e,m, a,b)
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denote the ca&cient of this term inA. Using our previously introduced notations we
have

(122) i1.ma.b) = otz ore(" 1)(”2; oy

and
(0, m+1,a b) = 6(2) ((rr‘; N i)(znz)m+l - (2n4 —n5(n + 2)(n ; 1) - 2n2) (”Zr; l)(2n2)m)

From these expressions we clearly have
Fors = —~

n(n+1)
(123) In(0.m+ 1,a,b)| < n*in(1,m a,b)
If n(m, &, b) denotes the cdicient of ™z in A, then
n(m,a,b) = dp(1,m-1,a b) +»(0,mab),
and we arrive at

Lemma 7.10.For § = m and d> n°

1
In(0,m, a,b)| < ﬁln(m, a, b)l,

and therefore forn» 1
. 1 1
(124) n(ma,b) = Chapdn(l, m-1,a b) with1 - - <Chap <1+ -

Next, to handle the remaining part 6f (116) we introduce
n n n+2
dh h h?
A= (1+—) (1——+——...)
e
and fora = (a,...,a,) witha; >0
v(a) = coe[fh_z;A,

Letl=(1,...,1) denote the multindex of all 1s. Then

(125) Ix(d,n,8) =d Z n(m a,b)v(1+b - a)
be{0,1}",ma
Indeed, the left hand side is by definition is the ffi@gent ofﬁ modified by the

substitutionh” = d. b € [0, 1]" means that® is square-free, which is necessary to get
Z1 ...Z, in the denominator.
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If § < =+ andd > n°, then Lemm& 7.10 leads us to

n3(n+1)
(126) Ixdno)=d )~ nmabyl-b+a)=
be{0,1}",mXa=Xb-m

= Z ICmabn(L, M1, a, b)v(1-b+a)|+d Z 7(0, 0, &, b)v(1-b+a)|

be{0,1}",m>1,Za=Xb-m be{0,1}",za=%b
From now on to simplify our formulas, we fix the value®fo be

3 1
m(n+1)

Then [122) can be rewritten fon > 1 as
1> -1
- — _p(72 b= 2ym-1
n(l,m-1ab) = -6(z )2( ] 1)(2n )

On the other hand, by definition
17(0,0, a,b) = 6(22P).
A short computation shows that using the notation
n h h2 n+2
IV OO
e
and assuming thdit c {0, 1}" (and thereford — b + a > 0) we have

(127) v(1-b+a) = "= 2(d"*coaf 3 Ay + A" ) coef 5 Ar+

Za+s
sel-b

+dn-2Eb Z codf_ 1 Aj+...4)

TS5

s1,9€1-b

wherea+s=a+(0,...,0,1%0...,0). Putting these together we arrive at the following
formulas:

2 LM =1\ o
(128) Ix(d,n,s) = —d Z Crmanf(Z )E(m— 1)(2n) :

be(0,1)",m>1
Ya=xb-m

Zars 2At$1+5

sel-b s1,9€l1-b

[dn_ZbCOd:f?l&Al + dn—l—Zb Z codf 1+ A; + dn_z_Zb Z codf_ 1+ Ai+.. ) +

+d Z 0(z%P)

be{0,1)"
Ya=%b

AT+

d”‘Zbcoeﬁ‘Z%Al + g1 Z coef_s A + dn-2-b Z codf_ 1 Aq+.. ]

sel-b s1,59€1-b



54 GERGELY BERCZI MATHEMATICAL INSTITUTE, OXFORD

After arranging this expression as a polynomiatliwe get

1 n
(129) (9(1)codf1A1 -5 Z C10e0(ZY) Al] dmt 4
s=1
+(9(1)Zcoeﬂ-‘ Ar+ ZH L coeff 1 A _n-d ZH( coef, 1A, —
1\ z, 1/\q N Z, M
S1#S 97
_(n - )2n Z C20e51+e529((zs1252) l)(-:Odi:ll\l ~ 5 Z Cles,1 e51+e52+e%9( ZSl )COdfzgllAl)dn +
(130) +(.)d"t +

The codficient ofd™1 ! is

le Z Z 9(za‘b)coelfza_1+sA1—

r=0 be{0,1)}" scl-b
Ya=Xb=r,ab=0Zs=I-r

1n°-1
(131) - 5(m 1)(2n2)m-1 E (:mbe(za—b)coeﬂfZa%Al
r=1 m=1 be{0,4" B sc1-b
Sa=r—mzb-=r, Ys=|-r

Lemma7.11.Foriy,...,ih €N

coef_1 Aq=( 1)‘1+-..+in(n+i1+1)(n+i2+1) (n+in+1)
1 N =(— ) ) _

B iy i in

Proof. By definition
h h? w2 n+s+1
1A = 1 ([1-—+=—... = (-1)° 1=(-1)°
coeﬂf;sg 1 coeﬁfgsg( zs+z§ ) (-1) Z ( )( )
and the lemma follows. O

Corollary 7.12. Foriy,...,ipe N

coef _1_Aj < (=1)1+-*in(n 4 2)1++in
.

Lemma 7.13.
6(z%°) < n*=Mg(1)
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Proof. By definiton we have

(132)
QD) | [@n-2)
0(z*°) = coef, s —(z1+.. +24)™ M 2>79)
be(0)" (Zn+z -2)(z1...2) be(0.)"
Za:;—brl%b:r, mer<l<n Za:ra—ri%b:r,
Fori, + ... +i, = n> we have
coety ozt 4z)" (Y 2= Y (n* —m)! <
1 Zn - i _ I...(j — |
Ta=r—-mxb=r, Ta=r-mxb=r,
ab=0 ab=0,i+a-b>0
n®)!
< . () __
ol Tlagolis +85)! [Tsewo(is = 1) [Tocqmpauty Is
Ya=r—-mxb=r,
ab=0,i+a-b>0
= Z codf an(zy + ...+ zn)nz
be{0,1)"
Ta=r—-mb=r-m,
ab=0,i+a-b>0

Introduce the notation

Q@) [ |@n-2)
m<|

Tpn(z) =
[T @+z-2)@...2)

m+r<l<n

Here Tp stands for Thom polynomial, since thefticeents of the Laurent expansion are
the codficients of the Thom polynomials, see [4]. By (132) and Rim&mgonjecture
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(see the first part of ConjectureL.2) we arrive at

Z H(Za_b) = Z sziilu-z,;i" . COdfzill...iﬁ” (Zl +...+ Zn)nz—m( Z Zb—a) <

be{0,1)" i1+...+in=n? be{0,1)"
Ta=r—-mxb=r, Ya=r—-mxb=r,
ab=0 ab=0
2
< Z Tp,-i - Z codlyian(zy +...+2)" =
Ti=n? be{0,1)"
Ya=Xb=r-m,
ab=0,i+a—b>0

codf,iwas(zs + ... +2)"
codf,(zs + ...+ )%

2
= Z Z Tp,-i - codf,i(zg + ... +z)" -
Ti=n2 _ be(0,1)"
i>0 Xa=Zb=r-m,
ab=0,i+a-b>0
2
+ Z Z “TP,i40-aCOETirab(zy + ...+ Z,)" -
Yi=n2 be{0,1)}"
ds)is<0 Ta=Xb=r-m,
ab=0,i+a—b>0

To estimate the first sum, notice that

2
COéfziJra—b(Zl +...+ Zn)n < nm’
codt,i(zy + ... + )"

Moreover,

(133) b€ {0,1}"za=Xb=r-mab=0,i+a-b >0} < (an)'(n B Z;; Za) < n%®

As for the second sum, we need to estimate the rai#e—. We devote the next

—i+a-b
subsection to explain the following
Conjecture 7.14. Leti # 0 be a multiindex with negative elements, &id= n?>. Then
fora,b > 0, Xa = Xb, ab = Owe have
sz-i
sz—i+a—b

>b

(134) <n

Finally, similarly to [1338), the number of ways we can get @egi multindexj >
. . . . — b
0,3 = n? in the formi +a - biis less thar(znb) : (” 22;2"") < nZb
Applying this conjecture in our case results

(135) Z 0(z%) < n*-m Z Tp,.COeT, (21 + ... +2,)" = n*-Mg(1)
Zagrei?{é}gi %i=n2,i>0
ab=0
and Lemma 7.13 is proved. |

Using (124), the same proof gives us
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Lemma 7.15.

D1 Cranf(@®) < nfMg(1)

be{0,1)"
Ta=r-mxb=r,
ab=0

Next, we substitute Lemnia 7]13 and Corollary 7.12 in the esgion[(1311) for the
codficient ofd™!"'. The first term in[(131) can be estimated as

(136) Z Z Z H(Za b)codf a1+SA1 < 2 (: : rl.)(n + 2)' n4r9(1),
r=0

r=0 be{0,1)" scl-b
Ya=Xb=r,ab=0Zs=I-r

and the second term as
I+1 r 1

(137) ZZ Z é(r:l: i)(an)m‘l Z 0z P)coelf 1 Aq <

r=1 m=1 be{0,1)" scl-b

Ya=r— mZb r, Ys=l-r
ab=0
I+1 r 1 n—r
2n2 m-1["" n+ 2 I—mn4(r—m)9 1
<Zl]mz ( 1)( ) (n—l)( +2) (1)

Recall, that the leading céiient is cof g11x(n, d) = %9(1). Therefore we arrive at

| I+1 r
codfgna1lx(d, n) < (Z (: )Z(n +2)n* + Z Z( )(2 Z)m—l( )(n 1 2) M- m))_

r=0 r=1 m=1
- coefgnily(n, d) < n . coefgnilx(n, d)
So we have proved the following
Proposition 7.16.For § = m

lcoefgn1-11x(d, n)| < n® - coefgne|lx(n, d)|
Theoreni 7.4 now follows from Proposition 7116 and Obseoved. 10.

8. Ov ConsecTure[1.2

Finally, we motivate Conjectufe 1.2 with some observations

8.1. The convergence offp,. The Laurent expansion of [{z,, ..., z) is convergent
whenz + z; < z fori + j <| < k. Indeed, in this case

1 -1 z+z (z+7z)?
— =—|1+ +
z+z-2 % / z
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is convergent. The cdigcients Tp are positive by Rimanyi’s conjecture, so for=
(i,...,0K), i1+ ... +ix=0and 1< |,m < k the series

Z Tpi+S(Q _%)ZHS(Q ~€m)
s=0

is convergent with the substitutian= j?, that is

Tp . (1i122i2 k2ik) i M (l)ZS o
| s=0 Tpi m

o1
But o =%, S0
Tpi+s(a o) _ n2s
Tp

"in average”, suggesting the second part of Conjedture 1.2.
8.2. Checking the known case®1 = m, k < 7. In [37] (Theorem 5.1) Rimanyi com-

putes the Thom polynomials Tp'(cy, Cy,...) in (M) form = n,k < 8. The list is as
follows:

TP =¢

TPy =C+Cp

Tps = C + 3C1C; + 2C3

Tp; = C} + 6C2C, + 22 + 9¢1C3 + 6C4

Tp2 = ¢ + 10c3c, + 25¢2C3 + 10c1C2 + 38C1C4 + 12C,C3 + 24Cs

Tpg = c§ + 15¢7c, + 55¢3¢3 + 30c2C5 + 141c2c, + 79¢1CoC3 + 5C3 + 2021Cs + 55,4
+17c5 + 120cq

TpY = ¢ + 21c3c, + 105cic; + 70c3cs + 3993, + 301c3c,C3 + 35¢,C3 + 960c2Cs+
+467c1CoCq + 13931C§ + 58(3%C3 + 1284,¢c + 326,65 + 154c3¢c4 + 720c;

Tpg = & + 28c8c, + 14Qchcs + 140c3C + 14c; + 182X2c; + 868c3¢,c5 + 501c:Cacs+
+6422¢5 + 202,C5 + 952]Cq + 222F5C,Cq + 364C5Cs + 155%1C5C + 335+
+33833§C5 + 3455¢,C,C5 + 954c3C5 + 75523§C6 + 2314,¢C6 + 9468&,¢; + 50404

All coefficients are positive in the table, suggesting Rimanyi'yectare. Moreover the
residue formulal{l) fom= ntellsusthatfor1<i; <i, <...<is<kjip+...+is=KkK

(138) coéfqlqz._qupﬁ: Z COéI:(Zl.“Zk)flz—il i s TP(Zas -+ -5 Z),

()% (2) (9

0€Sg Kk

where the right hand side is the sum of theficeents in the Laurent expansion on the
contourz; < ... < z. HereSg i is the set of injective mapq, ..., s} — {1,...,Kk}. In
particular, using the notation of Conjectlirel1.2:

.....

1<a<bz<k
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Coecfc'f%g-rpg = Z TpZea—eo—ec; COd:fc‘f“chp(lz = Z Tpea+eo—ec—ed;
1<ab,c<kb<c 1<ab,c,d<kb<c
etc. So some of the quotients in Conjecturd 1.2 can be ddtesiag the table above.
For example,
TPe,_a,  COBT2,, TP
< )
TP, coef s Tpy
and from the table we see that theseaie for k < 8. In general
Tp| COﬁCil+1Ci2+1...Cik+1Tp(k)

<
TP, coeff«Tpg

which is, again, less thegf*s's>% in the listed cases.

8.3. Checking k = 3 for any value of m— n. SinceQz(z, 2, z3) = 1, the Thom series
for k = 3 is given as
(139)

Tps(z1, 22, 23) = (22 — 721)(zs — 2)(2s — 7n) _ L-4h  B- -4 _
(-22)Z-2-72)2Z-221) 2-221 Zz-2-71 Zz3—27
z 2z 22,)? Z 4+ 2z U+ 2)? y2 2z 22,)?
—1(1+—1+( 1) +...)-—1(1+ 172 + ( 1+2 2) +...)-—1(1+—1+( 1) +)
Z> Z Z% Z3 Z3 Z3 Z3 Z%
We leave as an exercise to the reader to show that in this Md,% < 3%

i+5( —em

holds.

Z3
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