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Abstract

Normal maps between discrete groups N → G were characterized[FS]
as those which induce a compatible topological group structure onG//N ≡

EN ×N G. Here we deal with topological group maps N → G being nor-
mal in the same sense as above and hence forming a homotopical analogue
to the inclusion of a normal subgroup in a reasonable way.

We characterize these maps by a compatible simplicial loop space
structure on Bar•(N,G), invariant under homotopy monoidal functors,
e.g. Localizations and Completions. In the course of characterizing ho-
motopy normality, we define a notion of a homotopy action similar to an
A∞ action on a space(as in [Now]), but phrased in terms of Segal’s ’special
∆−spaces’.
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1.1 Introduction

Following a usual path, a group property made homotopical is a property of the
corresponding classifying space. An inclusion of topological groups N →֒ G is
the inclusion of a normal subgroup iff it is the kernel inclusion of some group map
G → H . Since any map is up to homotopy an inclusion, one need to consider
all group maps N → G. Such a map should then be ’homotopy normal’ if
BN → BG is the inclusion of the homotopy fiber for some map BG → W .
There is another angle from which this notion makes sense. To every group
map N → G, one can associate the Borel construction EN ×N G ≡ G//N
which is the ’correct’ quotient in the homotopical world. We note that such
an extension BG 99K W induces a loop space structure G//N and a loop map
structure(up to map equivalence) on G → G//N , providing a second analogy
to the group theoretic notion: a group inclusion N →֒ G is the inclusion of a
normal subgroup iff G/N is a group and the natural quotient map G → G/N
is a group map w.r.t this group structure.
Note also that G//N ≃ hfib(BN → BG) making it simultaneously a homotopy

limit and a homotopy colimit. LetX
f
→ Y be a pointed map of connected spaces.

Consider the Nomura sequence[Nom]

ΩX → ΩY → ΩY//ΩX → X → Y
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where we denote ΩY//ΩX ≡ hfib(f).
The following is essentially taken from ([FS], §5).

Definition 1.1. A loop map ΩX
Ωf
→ ΩY is homotopy normal if there exist a

connected space W with a map Y
π // W so that X

f // Y
π // W is a

homotopy fibration. The map Y
π
→W is called a normal structure.

Remarks 1.2. (a) We see that a loop map ΩX
Ωf
→ ΩY is homotopy normal if

and only if X
f
→ Y is a homotopy principal fibration i.e. equivalent to a

principal fibration.

(b) When ΩX, ΩY are homotopicaly discrete, homotopy normality of Ωf is
the same as being part of a crossed module structure on the corresponding
groups. Whitehead showed (see. [WH])that crossed modules correspond to

connected 2-types and we note that in case ΩX
Ωf
−→ ΩY is homotopy normal

with Y →W its normal structure W is the corresponding connected 2-type.

Example 1. If F → E → B is a fibration sequence, the map π1F → π1E is
a homotopy normal map of discrete groups. It is also true that any homotopy
normal map of discrete groups is of this form.

Example 2. Any double loop map Ω2X
Ω2f
−→ Ω2Y is homotopy normal. This is

because ΩX
Ωϕ
→ ΩY is a principal fibration. We see that homotopy normality is

stronger than 1-fold loop maps but weaker than 2-fold loop maps.

1.2 Main results

Given a group map N → G, each level of the Bar Construction Bar•(N,G) =
{Nk × G}k≥0 admits an action of G namely the one induced from the group
inclusions s0 : G → N × G, s1s0 : G → N2 × G etc. More generally, in
any simplicial group Γ•, Γ0 acts on each level via degeneracies and endows a
structure of Γ0 −∆−space on Γ•.
The following is the main theorem in ([FS], §4), rephrased.

Theorem 1.3. A map of discrete groups N
f // G is homotopy normal iff

there exists a simplicial group Γ• with an isomorphism Γ0
∼= G which extends

to a G-equivariant isomorphism of simplicial sets

Bar•(N,G)→ Γ•

.

Thus, the Bar Construction is a convenient resolution for G//N while treat-
ing homotopy normal maps.

In §3 we define a homotopical analogue to the Bar Construction in the case
of loop maps ΩX → ΩY , Bar•(ΩX,ΩY ). In the degenerate case of ΩY ≃ ∗,
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Bar•(ΩX, ∗) ≡ Bar•(ΩX) is a ”special ∆-space” for ΩX .
The first step in characterizing homotopy normality is the assertion that for
homotopy normal map ΩX → ΩY , Bar•(ΩX,ΩY ) is equivalent to a simplicial
loop space Γ• where the later means a pointed ∆−space X• composed with
the loop functor Ω. The second step in the characterization is the following.

For every X
f
→ Y , the homotopy class of Ωf is determined by the homotopy

principal fibration sequence

(1) ΩY → ΩY//ΩX → X

which in turn can be resolved by a homotopy fibration sequence of ∆−spaces

(2) ΩY → Bar•(ΩX,ΩY )→ B•(ΩY )

The resolution is level-wise trivial ΩY → (ΩX)
n
× ΩY → (ΩX)n which

means that the group action related to (1) can be encoded via products and
homotopy equivalences.

The sequence (2), induced by the loop map ΩX
Ωf
−→ ΩY , is called a homotopy

action of ΩY on ΩX . Since the maps sn...s1s0 (n ≥ 0) in Bar•(ΩX,ΩY )
are loop maps, they induce a homotopy action of ΩY on Barn(ΩX,ΩY ) and
thus define a homotopy action of ΩY on Bar•(ΩX,ΩY )[The precise notion is
defined in §5]]. If we require that the homotopy action of ΩY on Bar•(ΩX,ΩY )
is equivalent to that of Γ0 on Γ• we get a complete characterization of homotopy
normality. More precisely:

Theorem 1.4. Let ΩX
Ωf
−→ ΩY be a loop map. Then Ωf is homotopy normal iff

there exist a simplicial loop space Γ• with Γ0 ≃ ΩY and such that the canonical
homotopy actions(defined in §6) of ΩY on Γ• and Bar•(ΩX,ΩY ) are naturally
equivalent.

This is proved in §6. We devote §5 to define the meaning of a homotopy
action of a loop space on a space, study its basic properties and characterize it
’in terms of products’ i.e. invariant under homotopy monoidal functors, where

Definition 1.5. A functor L : Top→ Top is called a homotopy monoidal (HM)
functor if it preserves homotopy equivalences and for every X,Y ∈ Top, L(X ×
Y ) ≃ LX × LY by the canonical map.

Let L be a HM functor and Ωf : ΩX → ΩY a loop map. It is implicit in
the works of [Bo] and [Far](using the delooping theorem of [Seg]) that L(ΩX)
is always of the homotopy type of a loop space and L(Ωf) is always equivalent
to a loop map. In addition theorem 1.4 implies

Corollary 1.6. If in the above Ωf is homotopy normal, then L(Ωf) : L(ΩX)→
L(ΩY ) is a homotopy normal map.

This in turn gives a simple proof of a theorem due to Dwyer and Farjoun
([DF], §3), namely:
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Theorem 1.7. Let X
f
→ Y be a map of pointed connected spaces. If E

p
→ B

is a homotopy principle fibration of connected spaces. If LΣf is the localization

functor by Σf : ΣX → ΣY then LΣfE
LΣf (p)
−→ LΣfB is a homotopy principle

fibration.

Remark 1.8. In what follows, we use L to denote an arbitrary HM functor.
Thus L reflects the case of localization by a map.

To sum up, the main thrust of the present paper is to construct a Segal-like
recognition principle, made of products of the spaces involved that is easily seen
to be invariant under homotopy monoidal functors.

2 Preliminaries

Throughout this paper, topological spaces or simply spaces will mean topological
spaces of the homotopy type of CW complexes. We denote the corresponding
category by Top or {spaces}.
A loop space is understood to be a space ΩX where X is a pointed connected
space. We call two maps X → Y , Z →W equivalent if there exist a commuta-
tive square

X //

��

Y

��
Z // W

with vertical arrows being homotopy equivalences.
A map E → B is a fibration if it has the usual homotopy lifting property. A

sequence of the form F → E
p
→ B, where E

p
→ B is a fibration, F = p−1(b0)

and either (B, b0) is a pointed space or b0 ∈ B and B is connected is called
a fibration sequence. A sequence X → Y → Z is called a homotopy fibration
sequence if there is a commutative diagram

F //

��

E //

��

B

��
X // Y // Z

with vertical arrows being homotopy equivalences and the top being a fibration
sequence. Similarly, a sequence X → Y → Z is called a homotopy principal
fibration sequence if there is a principal fibration sequence G→ E → E/G and
a cummutative diagram

G //

��

E //

��

E/G

��
X // Y // Z
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As usual we denote by ∆ the category of finite non-empty ordered sets [n] =
(0, ..., n) with all non-decreasing maps between them.
Given a category C, we denote a simplicial object in C by X• and write Xn for
its value on [n]
Of special importance to this note are simplicial objects in {Spaces}, namely
simplicial spaces. We abbreviate these by ’∆−spaces’ and also use the term
’∆−maps’ for simplicial maps. If X is a space, we shall denote the constant
∆−space on it by X when there is no place for confusion. An equivalence

of ∆−spaces X•, Y• is a ∆−map X•
f
→ Y• such that Xn

fn
→ Yn is a homo-

topy equivalence for each n. Similarly, a (resp. homotopy)fibration sequence of
∆−spaces is a diagram of ∆−spaces F• → E• → B• which is level-wise (resp.
homotopy)fibration sequence.
We will often use a particular class of simplicial spaces introduced in [Seg](we
omit the word ’group-like’ since we don’t deal with other cases)

Definition 2.1. A special ∆−spaces is a ∆-space A• such that

1. A0 ≃ ∗

2. For each n ≥ 1, the maps pn : An → A1 × · · · ×A1(n− times) induced by
the maps

ik : [1]→ [n] 0 7→ k − 1 1 7→ k

are homotopy equivalences.

3. π0(A1) is a group.

We say that A• is a special ∆ space for X if X ≃ A1.

If a group G acts on a space X we denote by Bar•(G,X) the Bar Construc-

tion with X being a right G-space([May], §7). In the special case where N
f
→ G

is a group map, we denote by Bar•(f) ≡ Bar•(N,G) the Bar Construction for
the action n · g := f(n)g induced by f .

.

3 The Homotopy Power of a Map

Given a fibration E
p
→ B, one can define a ∆−space called the power of p

Pow•(E,B) by Pown(E,B) = E ×B E · · · ×B E (n + 1 times) with face and
degeneracies being the obvious projections and diagonals. In [Lod], it is shown
that for(E non-empty and) B connected, |Pow•(E,B)| ≃ B. We note that
for a general space B, |Pow•(E,B)| is homotopy equivalent to the connected
components of B of the image of p.

Here, we wish to construct such a space for an arbitrary map X
f // B

by means of homotopy pullbacks, thus turning it to a homotopically invariant
construction.
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We define the n-th homotopy power of X → B to be

Powhn(X,B) = map

( ∆[n]0 X
,

∆[n] B

ι �� f
��

)

= holim

( X X · · · X

B
��?

??
??

��/
//

/

����
��

)

with ∆[n]0
ι
→ ∆[n] being the inclusion of the 0−skeleton to the topological

n−simplex.
This clearly yields a functorial construction over ∆op and we define

Definition 3.1. Given a mapX → B, its homotopy power, denoted Powh•(X,B),
is the ∆−space with Powhn(X,B) on level n and face and degeneracies given
by the above functorial construction.

Note that for a fibrationE
p
→ B one gets equivalence of ∆−spaces Powh•(E,B) ≃

Pow•(E,B).
We shall use homotopy powers to replace ’rigid’ constructions.

Consider a topological group G acting on a space X and the corresponding
(homotopy)principal fibration G → X → X//G. One has the ’usual’ bar con-
struction Bar•(G,X) = {Gk×X}k≥0 and |Bar•(G,X)| = X//G. On the other

hand, we can resolve X//G by taking homotopy powers of the map X
q
→ X//G.

Proposition 3.2. LetG act onX as above. Then there are simplicial equivalences

Bar•(G,X)
//
Powh•(X,X//G)oo

Proof. Replacing X
q
→ EG ×G X by the fibration EG × X

p
→ EG ×G X and

taking pullback we get Powh1(X,X//G) = (EG × X) ×X//G (EG × X) ∼=
EG×G×X since EG×X is a free G−space. In general,

Powhn(X,X//G) = (EG×X)×X//G · · · (EG×X) ∼= EG×Gn ×X

and the obvious map EG×Gn ×X → Gn ×X defines a simplicial equivalence
Powh•(X,X//G)→ Bar•(G,X). Taking (for example) Milnor’s join construc-
tion for EG we have a natural base point for EG and hence a canonical map
Gn×X → EG×Gn×X which in turn defines another simplicial equivalence.

In light of the last proposition, we define

Definition 3.3. Given a (homotopy) principal fibration sequence, ΩY → X
q
→ Q

the homotopy bar construction, Bar•(ΩY,X) is the homotopy power Powh•(X,Q).

Remark 3.4. In the case of a loop map Ωf : ΩY → ΩZ, Bar•(ΩY,ΩZ) is

the homotopy power of the map ΩZ
q
→ ΩZ//ΩY ≡ hfib(f). If ΩZ =≃ ∗,

Bar•(ΩY, ∗) becomes the power of the map PY → Y which a is special ∆−space
for ΩY . Put differently, one can recover Segal’s loop machine by using homotopy
powers.

It is also useful to have the following property
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Proposition 3.5. LetX
f
→ B be any pointed map and denote by Ω(Powh•(X,B))

the composition of Ω : {Spaces}∗ → {Spaces} and Powh•(X,B). Then the
canonical map induces an equivalence of ∆−spaces Ω(Powh•(X,B)) ≃ Powh•(ΩX,ΩB)

The proof is based on the fact that given a pointed diagram, A→ X ← Y ,
Ωholim(A→ X ← Y ) ≃ holim(ΩA→ ΩX ← ΩY ).

4 From homotopy normality to a simplicial loop
space structure on the (homotopy)Bar con-

struction

Let ΩX
Ωf
−→ ΩY be a homotopy normal map. We form the Nomura sequence:

ΩX
Ωf // ΩY

q // ΩY//ΩX // X // Y
π // W

Then by [Nom] there is a commutative triangle in which the vertical arrow is a
homotopy equivalence

ΩY
q //

Ωπ

$$JJJJ
JJJ

JJJ
ΩY//ΩX

��
ΩW

Passing to (homotopy)powers, we get an equivalence of ∆−spaces Powh•(ΩY,ΩW ) ≃
Powh•(ΩY,ΩY//ΩX) and by proposition 3.5 an equivalence of ∆−spaces Ω(Powh•(Y,W )) ≃
Powh•(ΩY,ΩY//ΩX). More precisely, we have just shown

Theorem 4.1. Let ΩX
Ωf // ΩY be homotopy normal. Then there are nat-

ural simplicial equivalences Bar•(ΩX,ΩY )
//
Ω(Powh•(Y,W ))oo

Notation 4.2. 1. For a homotopy normal map Ωf : ΩX → ΩY and a given
normal structure Y

π
→ W , we denote by Γ• the simplicial loop space

Ω(Powh•(Y,W )).

2. The equivalences given in theorem 4.1 will be denoted as

ǫ : Bar•(ΩX,ΩY )
//
Γ• : ηoo

Using the machinery of special ∆−spaces one can easily see that applying
an HM functor on a simplicial loop space in every level yields a ∆−space sim-
plicially equivalent to a simplicial loop space.

5 Homotopy action

By remark 1 in 1.2 a homotopy normal map is a loop map with its underlying
map being a principal fibration. Hence, invariance of homotopy normal maps
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under HM functors, should include invariance of group actions to some extent.
Given an action of a topological group G on a space X and an HM functor
L : Top → Top, one would like to construct an ’action’ of LG (not a group,
not a loop space) on LX . In other words, we would like to have a homotopical
notion of an action of (a space of the homotopy type of) a loop space on a space,
invariant under HM functors. One approach we wish to refer the reader to is
that of A∞ actions[Now]. The main difference between the two approaches is
that the one we develop here is based on Segal’s work while the one in [Now] is
based on Stasheff’s work.

In [DFK] Dwyer, Farjoun and Kan proved the following:

Theorem 5.1. Let G be a topological group. Denote by TopBG the category of
fibrations over BG with maps being the usual commuting triangles.
Call a map in TopBg a homotopy equivalence if its underlying map in Top

is a homotopy equivalence. Denote by TopG the category of G − spaces and
equivariant maps. Call a map X → X ′ in TopG a homotopy equivalence if the
corresponding map in Top is a homotopy equivalence.
Then there is an equivalence of categories:

Ho(TopBG) ≃ Ho(TopG)

Remark 5.2. The equivalence of the homotopy categories comes form a Quillen
equivalence of appropriate model structures. See [Hol] for a general treatment.

The above theorem treats the homotopy category of G− spaces so in a way,
actions up to homotopy. Another treatment can be found in [Cooke].

5.1 Construction

If a topological groupG acts on a spaceX , one has a simplicial fibration sequence
of the form X → Bar•(G,X) → B•G where the maps X → Barn(G,X) and
Barn(G,X)→ BnG are given by sn...s0 and projection respectively.

Under realization this becomes a (homotopy)fibration sequenceX → X//G→
BG with a connected base space i.e. an ’action up to homotopy’ in the sense
of [DFK]. The above simplicial fibration sequence is trivial in each level X →
Gn ×X → Gn and hence constitutes a useful resolution. We note also that for
all n the map d1d2...dn : Bar(G,X)n → Bar(G,X)0 is the projection on X. As
we saw, the ∆−spaces Bar•(G,X), B•G can be relaxed to their ’homotopy
versions’ namely Bar•(ΩY,X) and Bar•(ΩY, ∗) (which is a special ∆-space for
ΩY when BG ≃ Y ).

Definition 5.3. We say that a space S of the homotopy type of a loop space
homotopy acts on a space X if there exist a ∆−map

A•
π // B•

such that:
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1. A0 ≃ X

2. B• is a special ∆-space for S.

3. For every n, the map An
πn×d1...dn // Bn ×A0 is a homotopy equiva-

lence.

Definition 5.4. Given a homotopy action as above, the map d0 : A1 → A0 will
be called the homotopy action map. The terminology should be understood
from theorem 5.12.

Remark 5.5. If S and S′ are of the homotopy type of ΩY and S homotopy acts
on X then S′ homotopy acts on X since a special ∆-space for S is also a special
∆-space for S′(see definition 2.1).

We will need a generalization of the last definition as follows

Definition 5.6. A homotopy action of ΩY on a ∆−space X• is a map of bisim-
plicial spaces A•• → B•• such that for each n, A•n → B•n is a homotopy action
of ΩY on Xn.

Maps and equivalences are defined in the usual way

Definition 5.7. 1. Given two homotopy actions of ΩY on X and of Ω(Y ′) on

X ′, represented by A•
// B• and A′

•
// B′

• a map between them

is a commutative square of simplicial spaces

A•
//

��

B•

��
A′

•
// B′

•

Such a map will be called an equivalence, if both of the vertical maps are
simplicial equivalences.

2. Given two homotopy actions of ΩY on X• and of Ω(Y ′) on X
′

•, repre-

sented by A••
// B•• and A′

••
// B′

•• a map between them is a

commutative square of bisimplicial spaces

A••
//

��

B••

��
A

′

••
// B

′

••

Such a map will be called an equivalence if there is a square of bisimplicial
spaces with vertical arrows being bisimplicial equivalences.

It is commonly said that in every fibration sequence, the loop space of the
base ’acts’ on the fiber. We wish to demonstrate how a homotopy action inter-
prets this case.
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Theorem 5.8. Given a fibration sequence F
i
→ E

p
→ B with B pointed con-

nected, there is a homotopy action of ΩB on F , represented by A•
π
→ B• such

that the map |π| : |A•| → |B•| is equivalent to p : E → B.

Proof. Consider the commutative square

F //

��

E

��
∗ // B

Taking homotopy powers in each row produces a simplicial map

π : A• ≡ Powh•(F → E)→ Powh•(∗ → B) ≡ B•

By remark 3.4, B• is a special ∆−space and thus |B•| ≃ B. Since B is con-
nected, it follows from § 3.1, that |A•| ≃ E. To see that π : A• → B• is a
homotopy action, we first replace i : F → E and ∗ → B by equivalent fibrations
ev1 : Fi → E and ev1 : PB → B where PB is the path space and Fi ⊆ F ×B

I

is the space {(f, α)|α(0) = i(f)}. Taking π1 : Fi → PB to be π1(f, α) = p ◦ α
we obtain the commutative square

Fi
ev1 //

π1

��

E

p

��
PB

ev1 // B

(∗)

and taking powers(i.e. fiber products) of the rows we obtain a simplicial map
which by abuse of notation we denote as π : A• → B•. Let us show that π1×d1 :
A1 → B1 × A0 is a homotopy equivalence. We have B1 = {(β, β′)|β, β′ : I →
B, β(0) = ∗ = β′(0) and β(1) = β′(1)} ≃ ΩB and A1 = {(f, α, f ′, α′)|α(0) =
i(f), α′(0) = i(f ′) and α(1) = α′(1)}. Thus, the map π1 × d1 sends (f, α, f ′, α′)
to (p ◦ α, p ◦ α′, f, α) and since p : E → B is a fibration, one can define w :
B1×A0 → A1 being a homotopy inverse to π1× d1 by applying the path lifting
property on the path β ∗ β′ and the point i(f) coming from an arbitrary triple
(β, β′, α, f) ∈ B1 × A0. The fact that in general πn × d1...dn : An → Bn × A0

follows by a similar argument. Thus, π : A• → B• is a homotopy action.
Lastly since the equivalences |Pow•(Fi → E)| ≃ E and |Pow•(PB → B)| ≃ B
are natural and in view of (∗) the map |π| : |A•| → |B•| is equivalent to p : E →
B.

5.2 Connection with group actions and invariance

We start with the following well-known fact, which is essentially contained in
[Kan] and [Mil].
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Theorem 5.9. Let X be a pointed connected space. Then there is a topological

group G, with X
≃
→ BG. Moreover, one can construct G functorially in X, i.e.

if ΩX
Ωf
→ ΩY is a loop map, there is a commutative diagram

ΩX //

��

ΩY

��
G // H

with vertical arrows homotopy equivalences, and the bottom arrow being a topo-
logical group map.

To get a sense of where homotopy actions arise in our case, we start with a
simple

Lemma 5.10. If ΩX
Ωf
−→ ΩY is a loop map, then there is a canonical homotopy

action of ΩX on ΩY , natural in f .

Proof. This follows from theorem 5.8 if we consider the homotopy fibration
sequence ΩY → ΩY//ΩX → X . Alternatively, if we (functorially) rigidify

ΩX
Ωf
−→ ΩY to a topological group map G → H as in 5.9, then as we saw,

Bar•(G,H)→ B•G is a homotopy action.

The following theorem establishes the precise way in which homotopy actions
and group actions interact. We need

Definition 5.11. Maps X
f
→ Y and X ′ f

′

→ Y ′ are called weakly equivalent if there
is a zig-zag of commutative squares with all horizontal arrows being homotopy
equivalences

X

f

��

≃ // X1

��

...≃oo ≃ // Xn

��

X ′≃oo

f ′

��
Y

≃ // Y1 ...≃oo ≃ // Yn Y ′≃oo

The number of squares involved in such a zig-zag is said to be its length. In
particular, maps are called equivalent if they are weakly equivalent via a zig-zag
of length 1.

Theorem 5.12. Let ΩY be a loop space and G a topological group with Y ≃ BG.

1. If G acts strictly on X, then G homotopy acts on X with homotopy action
map being equal to the action map G×X → X.

In particular, |A•| ≃ X//G
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2. If ΩY homotopy acts on X ′ then there exist a space X ≃ X ′ and a strict
action of G on X such that

A0
//

≃

��

|A•| //

≃

��

|B•|

≃

��
X // X//G // BG

commutes and the map A1
d0→ A0 is weakly equivalent to the action map

G×X
a
→ X.

Proof. 1. A group action give rise to a simplicial map Bar•(G,X)
π
→ B•G

(defined for each n by the projection Gn × X → Gn). To see that π is
indeed a homotopy action, note first that B•G is a special ∆−space(with
Segal maps being the identity 1Gn : Gn → Gn). As we discussed in 5.1, for
each n, the map d1 · · · dn : Barn(G,X)→ Bar0(G,X) is the projection on
X and hence the map πn × (d1 · · · dn) : Barn(G,X)→ Bn ×Bar0(G,X)
is the identity as well. We see also that the map d0 equals to the action
map.

2. Let A•
π
→ B• be a homotopy action of ΩY on X ′. Define a ∆−map

A0
i
→ A• by in = sn−1...s0. Choose b0 ∈ B0 or and endow Bn with a base

point sn−1...s0(b0). By definition, the map πn × (d1 · · · dn)An → Bn×A0

is a homotopy equivalence and hence the map An
πn→ Bn is equivalent to

the trivial fibration Bn × A0 → Bn. We now claim that A0
in→ An

πn→ Bn
is a homotopy fibration sequence. To see this, note that by simplicial

identities, the composition A0
π◦in→ Bn × A0 equals (πn ◦ in) × 1A0

and
since B0 is contractible πn ◦ in = sn−1...s0 ◦ π0 is null-homotopic. Hence,
in is equivalent to the inclusion of the fiber A0 → Bn ×A0.

We thus have a homotopy fibration sequence of simplicial spaces A0 →
A• → B• and by [Puppe] we have a homotopy fibration sequence upon
realization

A0 → |A•|
σ
→ |B•| (1)

. By [DFK] there exist a topological group G and a space X such that

|B•| ≃ BG, G acts freely on X , say by G × X
a
→ X and there exist an

equivalence of homotopy fibration sequences

A0
//

≃

��

|A•| //

≃

��

|B•|

≃

��
X // X/G // BG

.
From the homotopy commutative square
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A1
d0 //

d1

��

A0

σ

��
A0

σ // |A•|

(2)

. one derives the diagram

A1 ϕ
&&NNN

N
d1

''

d0

��

A0 ×
h
|A•|

A0
f

))TTTTTT

g
��>

>>
>>

>>
>

��

// A0

σ

��

≃

w}}{{

A′
0

σ′

��3
33

33
33

A′
0

σ′ ((QQQQQQQ

A0 σ
//

≃

w

77oooooo
|A•|

(3)

In which the (not unique)map A1
ϕ
→ A0×

h
|A•|

A0 comes from the defining

property of homotopy pullbacks and A0 → A′
0
σ′

→ |A•| a factorization of
σ into a homotopy equivalence followed by a fibration. Thus, the inner
rhombus is a strict pullback(and hence commutative) the two triangles
representing the factorization of σ are commutative as well but all other
triangles and squares are homotopy commutative. Precomposing f and g
with ϕ produces a commutative square

A1
//

��

A′
0

��
A′

0
// |A•|

(4)

It follows from (1) that hfib(σ) = Ω|B1| and since A• → B• is a homotopy
action, hfib(d1) = B1. Since B• is a special ∆-space, the map B1 →
Ω|B•| is a homotopy equivalence. Now, f ◦ ϕ ≃ w ◦ d1 which imply
hfib(f ◦ ϕ) ≃ B1 and we conclude that (4) is homotopy cartesian. Thus,

the map A1
ϕ
→ A0 ×

h
|A•|

A0 is a homotopy equivalence. The (homotopy)
pullback square

G×X
a //

pr

��

X

��
X // X/G

is equivalent via a commutative cube to the rhombus of diagram (3) and
therefore there is a homotopy commutative square with vertical arrows
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being homotopy equivalences

A1

d0

��

≃ // G×X

a

��
A0

≃ // X

(5)

To the end, one can break (5) to a zig-zag (of length 3) of commutative
squares with horizontal arrows being homotopy equivalences. In view of

definition 5.11, A1
d0→ A0 is weakly equivalent to G×X

a
→ X .

Part [2] of the last theorem establishes a ’rigidification theorem’ which we
wish to state separately

Theorem 5.13. A map ΩY ×X ′ µ
→ X ′ is weakly equivalent to an action map

G×X → X iff there is a homotopy action A• → B• of ΩY on X ′ such that µ

is equivalent to A1
d0→ A0.

Since a homotopy action is essentially a level-wise trivial fibration we natu-
rally get:

Proposition 5.14. If A• → B• is a homotopy action of ΩY on X, and L :
Top → Top is a HM functor then LA• → LB• is a homotopy action of LΩY
on LX.

Proof. LB• is a special ∆−space for LB1. In particular, LB1 is of the homotopy
type of a loop space. Applying L on the structure maps of the homotopy
action yields the structure maps for LA• → LB• and L preserves homotopy
equivalences.

6 An invariant characterization of Normality

Theorem 1.3 characterize homotopy normal maps of discrete groups in terms of
a simplicial group, equivariantly equivalent to the bar construction. By analogy,
the mere fact that the bar construction Bar•(ΩX,ΩY ) is simplicialy equivalent
to a simplicial loop space Γ• with Γ0 = ΩY is a necessary but not sufficient
condition for a loop map Ωf : ΩX → ΩY to be homotopy normal.

In both ∆−spaces Bar•(ΩX,ΩY ),Γ•(see notation 4.2), the map sn−1...s0
is a loop map and therefore induces a homotopy action of ΩY on Γn and
Barn(ΩX,ΩY )(see lemma 5.10).
We begin with

Proposition 6.1. Let Ωf : ΩX → ΩY be a homotopy normal map. For
each n, the homotopy actions induced by the loop maps Γ0 → Γn and ΩY →
Barn(ΩX,ΩY ) are equivalent via the map η : Γ• → Bar•(ΩX,ΩY ) defined in
4.2.

14



Proof. We only do the case n = 1 since other cases are similar. Denote σ ≡
s0 : Γ0 → Γ1 and s ≡ s0 : Bar0(ΩX,ΩY ) →֒ Bar1(ΩX,ΩY ). The simplicial
equivalence η : Γ• → Bar•(ΩX,ΩY )(see 4.2) induces a commutative square
with vertical arrows being homotopy equivalences and with the left vertical
arrow being a loop map

Γ0

η0

��

σ // Γ1

η1

��
ΩY

s // ΩX × ΩY

Both σ and s are homotopy principal fibrations and hence have classifying maps
γ, c(resp.). Now finding the dashed arrow

Γ1
γ //

η1

��

Γ1//Γ0

d1

���
�
�

ΩX × ΩY c
// ΩX

will end the proof because the first(resp. second) homotopy action is built
out of homotopy powers of γ(resp. c) with itself. Since σ and s are (homo-
topy)principal fibrations, finding the dashed arrow amounts showing the equiv-
alence between their homotopy fibers F ≡ hfib(σ)→ hfib(s) ≃ Ω2X is a loop
map. To prove the last statement we use the path-space to model the homotopy
fiber. On the one hand, we have the pullback square

Ω2X //

��

P (ΩX × ΩY )

��
ΩY

s // ΩX × ΩY

and on the other hand the pullback square

F //

��

P (Γ1)

��
Γ0

σ // Γ1

with all maps being of the homotopy type of loop maps. The compositions
F → Γ0 → ΩY and F → P (Γ1)→ P (ΩX×ΩY ) are both of the homotopy type
of loop maps and thus the universal map they induce F → Ω2X is itself (of the
homotopy type of) a loop map.

Starting with a homotopy normal map ΩX → ΩY we first got(4.1) a sim-
plicial loop space Γ•, equivalent to the Bar construction which is a necessary
condition for homotopy normality. The loop maps sn−1...s0 : Γ0 → Γn (n = 0
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understood as the identity map) induce homotopy actions of Γ0 on Γn. We
can pack all the maps in one simplicial map Γ0 → Γ• which will then induce a
simplicial object in the category of homotopy actions. Recalling definition 5.6
this is a homotopy action of Γ0 on Γ•. Similarly, one has a homotopy action of
ΩY on Bar•(ΩX,ΩY ) and the equivalence Γ0 ≃ ΩY as loop spaces, makes the
first homotopy action to be one of ΩY on Γ•(see 5.10). We call these actions the
canonical homotopy actions of ΩY on Γ• and Bar•(ΩX,ΩY ). The additional
condition for a characterization of normality is that the two are equivalent.

Theorem 6.2. Let ΩX
Ωf
−→ ΩY be a loop map. Then Ωf is homotopy normal iff

there exist a simplicial loop space Γ• with Γ0 ≃ ΩY and such that the canonical
homotopy actions of ΩY on Γ• and Bar•(ΩX,ΩY ) are equivalent.

Proof. Assume Ωf is homotopy normal. We have a commutative square of
∆−spaces

ΩY
σ //

1

��

Γ•

ϕ

��

// Γ•//Γ0

d

���
�
�

ΩY
s// Bar•(ΩX,ΩY ) // Bar•(ΩX,ΩY )//ΩY

with ϕ the simplicial equivalence of theorem ?? and the dashed arrow d with
d1(of proposition 6.1) as its first component and with the analogues dn as its
n-th component. This gives the desired equivalence of the canonical actions.
On the other hand, if we have an equivalence of homotopy actions(see 5.7)

Γ•
//

��

B•

��
Bar•(ΩX,ΩY ) // B•(ΩX)

then we have equivalent principal fibrations upon realization

Γ0
//

��

|Γ•| //

��

|B•|

��
ΩY // ΩY//ΩX // X

but the operation of taking loop commutes with that of realization and hence
|Γ•| ≃ ΩW for some connected space W . The map Γ0 → |Γ•| is the realization
of a simplicial loop map Γ0 → Γ• hence a loop map itself and delooping it gives
the desired extension Y 99KW .

Let A• → B• be a homotopy action. From the proof of theorem 5.2, [2], it

follows that there is a homotopy fibration sequence A0
σ
→ |A•| → |B•| where σ

is the realization of the simplicial map A0 → A• which has its nth component
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the map sn−1...s0. Since B• is a special ∆−space, Ω|B•| ≃ B1. We denote by

B1
ψ
→ A0 the inclusion of the homotopy fiber of A0

σ
→ |A•| and endow A0 with

a base-point via ψ. Denote by B1
i
→ B1 × A0 the natural inclusion. We shall

need the following technical lemma.

Lemma 6.3. For any choice of homotopy inverse, B1 ×A0
e
→ A1 for A1

π1×d1→

B1 ×A0, the composition B1
i
→ B1 ×A0

e
→ A1

d0→ A0 is homotopic to ψ.

Proof. As was noted in the proof of theorem 5.2 [2], the square

(∗) A1
d1 //

d0

��

A0

��
A0

// |A•|

is homotopy commutative. We thus obtain a homotopy commutative diagram
of solid arrows

B1
i // B1 ×A0

pr //

e

		

)
�

�

A0

B1
//

≃c1

��

≃c2

OO

A1
d1 //

d0

��

π1×d1

OO

A0

σ

��

1

OO

B1
ψ // A0

σ // |A•|

where the map B1 → A1 is the inclusion of homotopy fiber, the map c1 is the
comparison map between homotopy fibers of d1 and σ which is a homotopy
equivalence as was mentioned in 5.2 [2] and the map c2 is the comparison map
between homotopy fibers of d1 and pr which is again a a homotopy equivalence.
The lemma now follows from inverting c2.

We can now prove:

Theorem 6.4. Let ΩX
Ωf // ΩY be a homotopy normal map.

If L : Top → Top is an HM functor, then LΩX
Lf // LΩY is a homotopy

normal map.

Proof. We shall construct an extension BLΩY →W with W a connected space,
thus providing a normal structure for LΩX → LΩY (see 1.1). Given homotopy
normality of Ωf we have from theorem 1.4 a simplicial loop space Γ• and an
equivalence of homotopy actions of ΩX on ΩY (horizontal arrows below)

Γ•
//

��

Bar•(ΩX, ∗)

��
Bar•(ΩX,ΩY )

π // Bar•(ΩX, ∗)
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Apply L on each term to get a homotopy action LΓ• → LB•

of LΩX on LΩY . Since LΩY → |LBar•(ΩX,ΩY )| → |LBar•(ΩX, ∗)| is a
homotopy fibration sequence(being the realization of a simplicial fibration se-
quence), and since |LBar•(ΩX, ∗)| ≃ B(LΩX) ( LBar•(ΩX, ∗) is a special

∆−space for LΩX), there is a map LΩX
ϕ
→ LΩY which is the inclusion of

homotopy fiber of LΩY → |LBar•(ΩX,ΩY )|.

Abbreviate A• ≡ Bar•(ΩX,ΩY ) and B• ≡ Bar(ΩX, ∗). If B1 × A0
e
→ is

a homotopy inverse to π1 × d1 then Le is a homotopy inverse to L(π1 × d1)
which is equivalent to L(π1) × L(d1). By lemma 6.3, Ωf is homotopic to the

composition B1
i
→ B1 × A0

e
→ A1

d0→ A0 and so LΩf is homotopic to the com-
position Ld0 ◦ Le ◦ Li. The last composition is equivalent to the composition

LB1 →֒ LB1×LA0
Lπ1×Ld0−→ LA1

Ld0→ A0 which is homotopic to ϕ by lemma 6.3.
It follows that LΩf is equivalent to ϕ

Upon realization, we have equivalent homotopy fibration sequences

|LΩY | //

��

|LΓ•| //

��

|LB•|

��
|LΩY | // |LBar•(ΩX,ΩY )| // |LBar•(ΩX, ∗)|

in which the bottom one is equivalent to LΩY → LΩY//LΩX → BLΩX (gotten
from LΩf : LΩX → LΩY ).
But now, ΩY → Γ• is a simplicial loop map and so LΩY → LΓ• is a simplicial
loop map making

LΩY → |LΓ•|

a loop map and delooping it gives the desired extension BLΩY → W , proving
homotopy normality of LΩf

Let us demonstrate a use of theorem 6.4 by proving with it the following
theorem, originally appeared in [DF].

Theorem 6.5. Let E
p
→ B be a principal fibration with B connected, f : X → Y

a map of pointed connected spaces and LΣf the localization with respect to its
suspension. Then LΣfE → LΣfB is equivalent to a principal fibration.

Remark 6.6. Note that if G is the structure group of E → B, LΣfG need not
be the structure group of LΣfE → LΣfB

Proof. Note that ΩE → ΩB is homotopy normal. Hence,  LfΩE → LfΩB is
homotopy normal. Since for any pointed space A, there is a natural equivalence
LfΩA ≃ ΩLΣfA we get that ΩLΣfE → ΩLΣfB is homotopy normal and thus
LΣfE → LΣfB is equivalent to a principal fibration.
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7 k-Normality

As mentioned in example 2 , any double loop map is automatically homotopy
normal. However, it is natural to ask when the homotopy quotient admits a
natural 2-fold loop space structure.

Definition 7.1. A 0−homotopy normal map is a principal fibration of connected
spaces. For k ≥ 1, define inductively a k−fold loop map Ωkf : ΩkX → ΩkY to
be k-homotopy normal if Ωk−1f is k − 1-homotopy normal.

Remark 7.2. One may wonder about the definition of ’∞-homotopy normality’.
However, any ∞−loop map induces a principal fibration sequence of ∞−loop
spaces X → Y → Y//X .

We begin with an extension of 1.4

Theorem 7.3. A k-fold loop map ΩkX
Ωkf
−→ ΩkY is k−homotopy normal iff

there exists a k−fold simplicial loop space Γ• with Γ• = ΩkY and such that the
canonical homotopy actions of ΩkY on Bar•(ΩkX,ΩkY ) and Γ• are naturally
equivalent.

Proof. This is analogous to the proof of 1.4. If Ωkf is k−homotopy normal,
then Ωf is homotopy normal and looping down its extension Y → W k−times
gives a k−fold loop map equivalent to ΩkY → ΩkY//ΩkX . Taking (homo-
topy)power of that map gives the desired k−fold loop space. Conversely, such
a k−fold loop space gives a (homotopy)principal fibration sequence of k−fold
loop spaces ΩkX → ΩkY → |Γ•| equivalent to the Borel construction, and hence
k−homotopy normality.

We wish to use the same methods as before to prove invariance of k−homotopy
normal maps under HM functors. For that, we need to know that k−fold loop
spaces are invariant under these functors. A slight generalization of ’grouplike
special ∆−spaces’ is the tool needed. The following is taken from [BFSV]

Definition 7.4. A (∆)k−space X•···• is grouplike special if

1. X0,...,0 ≃ ∗.

2. π0(X1,...,1) is a group.

3. The Segal maps induces homotopy equivalencesXp1,...,pk
≃
→ (X1,...,1)

p1···pk .

There is then an analogous theorem for k−fold loop spaces

Theorem 7.5. A space X is of the homotopy type of a k−fold loop space iff
there exist a grouplike special (∆)k−space X•,...,• with X1,...,1 ≃ X.

Corollary 7.6. Homotopy monoidal functors preserve k−fold loop spaces.

Using exactly the same arguments of theorem 6.4, we deduce from theorem
7.3

Theorem 7.7. If Ωkf : ΩkX → ΩkY is k−homotopy normal and L : Top →
Top an HM functor, then L(Ωkf) is k−homotopy normal.
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