
ar
X

iv
:1

01
1.

47
17

v1
  [

m
at

h.
D

G
] 

 2
2 

N
ov

 2
01

0

CR GEOMETRY AND CONFORMAL FOLIATIONS

PAUL BAIRD AND MICHAEL EASTWOOD

Abstract. We use the CR geometry of the standard hyperquadric
in CP3 to give a detailed twistor description of conformal foliations
in Euclidean 3-space.

1. Introduction

A foliation of a Riemannian manifold is said to be conformal if and
only if the corresponding locally defined submersion is conformal on
the orthogonal spaces to the leaves (precise definitions are given in §3).
Locally a conformal foliation induces R3 ⊇ openΩ

h→ C, defined up to
composition α ◦h for α conformal, with the property that the gradient
of h is null: (∇h)2 = 0. Such a mapping is said to be horizontally
conformal [5]. In [7] Nurowski showed how real-analytic horizontally
conformal mappings in R3 may be constructed from a holomorphic
function of two complex variables. The mappings obtained in this way
are certainly real-analytic. Otherwise they are generic but, as we shall
see, not completely general.
In this article we construct conformal foliations themselves starting

with a holomorphic function of two complex variables. The foliations
constructed in this way are real-analytic but are otherwise general, at
least locally. Our construction is one of twistor geometry, a viewpoint
which also allows us to identify the smooth conformal foliations with
local CR hypersurfaces in the standard Levi-indefinite hyperquadric
in CP3. Real-analyticity is a familiar distinguishing feature in CR
geometry. Our construction parallels the twistor interpretation of the
Kerr Theorem in special relativity as explained in [8] and, following [4],
the precise link is explained at the end of our paper in §10. Another
intimately related construction appears in [3] where twistor geometry
is used directly to describe horizontally conformal mappings in R3.
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2. CR geometry

The book [2] by Baouendi, Ebenfelt, and Rothschild provides a good
reference for CR geometry. Here, we provide an outline of the specific
results we shall need, referring to [2] for proofs and further detail.
We start with some linear algebra, presented in the dimensions where

it will be needed. Let us consider a real linear subspace T ⊆ C3 of real
codimension d. Let us denote by J the real linear endomorphism of C3

given by multiplication by i and let H = T ∩ JT . It is the maximal
complex-linear subspace of T .

• Case d = 1: it follows that dimCH = 2 and all such T are on
an equal footing. More precisely, GL(3,C) acts transitively on
Gr5(R

6), the Grassmannian of real hyperplanes in R6.
• Case d = 2: there are two cases according to whether T is a
complex subspace. If not, then dimCH = 1 and we shall refer
to T as generic. There are two orbits for the action of GL(3,C)
on Gr4(R

6), namely Gr2(C
3) and its complement.

• Case d = 3: again there are two orbits for the action of GL(3,C)
on the relevant Grassmannian. Generically H = 0 and we shall
refer to T as totally real . Otherwise dimCH = 1.

Now suppose Z is a complex manifold with dimC Z = 3 and M ⊂ Z
is smooth real submanifold of real codimension d. When d = 1, we may
apply the construction above in each tangent space, obtaining a smooth
subbundle H ⊂ TM equipped with an endomorphism J : H → H with
J2 = −Id. Additionally, the bundle

(1) H0,1M = {X ∈ CH s.t. JX = −iX}
is closed under Lie bracket. In abstraction, such a structure is called a
CR structure of hypersurface type.
When d = 2, we shall say that M is a CR submanifold if and only

if TxM ∩ JTxM is of constant dimension as x ∈ M varies. Again,
we obtain a subbundle H ⊂ TM equipped with a complex structure
J : H → H . When rankCH = 1 we shall say that M ⊂ Z is generic.
If rankCH = 2, then M is simply a complex submanifold of Z.
Finally, when d = 3 there are two cases corresponding infinitesimally

to the two orbits of GL(3,C) on Gr3(R
6) identified above. When H = 0

we shall say thatM is totally real . Otherwise rankCH = 1. In general,
rankCH is called the CR dimension of M .
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An abstract CR structure on a smooth manifoldM of CR dimension
m is defined by a smooth subbundle H ⊂ TM of real rank 2m equipped
with an endomorphism J with J2 = −Id and such that the bundle H0,1

defined by (1) is closed under Lie bracket. If the CR structure on M
is induced by an embedding M →֒ Z in a complex manifold Z and
f : Z → C is a holomorphic function on Z, then f |M satisfies the
partial differential equations

Xf = 0 for all X ∈ Γ(M,H0,1).

These are the remnants on M of the Cauchy-Riemann equations on Z
and solutions of these equations onM are called CR functions (whether
or not they arise by restriction of holomorphic functions on Z).
Suppose Q is a smooth CR manifold of hypersurface type and real

dimension 5 (hence of CR dimension 2). Suppose that f : Q → C is a
smooth CR function without critical points. Of course,

M ≡ {p ∈ Q s.t. f(p) = 0}
is a smooth submanifold and it is easy to check that the CR equations
on f imply that intrinsically M is a CR manifold of CR dimension 1.
This is the CR analogue of the statement that holomorphic functions
without critical points on complex manifolds implicitly define complex
submanifolds. Unlike the holomorphic case, however, there is no CR
implicit function theorem. As we shall see, it is not necessarily the case
that a CR submanifold of Q of real codimension 2 and CR dimension
1 need be locally defined as the zeroes of a CR function, even when

(2) Q = {[Z1, Z2, Z3, Z4] ∈ CP3 s.t. |Z1|2 + |Z2|2 = |Z3|2 + |Z4|2}
as we shall suppose henceforth. This particular CR manifold is known
as the hyperquadric (of CR dimension 2 and indefinite signature). The
following theorem follows from the classical Lewy extension theorem
as, for example, proved in [6, Theorem 2.6.13].

Theorem 1. Suppose Ωopen ⊆ Q ⊂ CP3 and f : Ω → C is a smooth

CR function. Then f automatically extends as a holomorphic function

to a neighbourhood of Ω in CP3. This extension is germ-unique.

It is immediate that the CR functions on the indefinite hyperquadric
Q are necessarily real-analytic.

Theorem 2. Suppose M ⊂ Ωopen ⊆ Q ⊂ CP3 is a real-analytic CR

submanifold of real dimension 3 and CR dimension 1. ThenM extends

into CP3 as a complex submanifold. This extension is germ-unique. In

particular, M can be locally defined by a CR function.
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Proof. Immediate from [2, Corollary 1.8.10]. An alternative argument
may be constructed from the holomorphic implicit function theorem in
the complexification. �

Later in this article, we shall find smooth 3-dimensional local CR
submanifolds of Q of CR dimension 1 that are not real-analytic.

3. Conformal foliations in R3

A unit vector field U on Ωopen ⊆ R3 induces a 1-dimensional foliation
of Ω as its integral curves. Conversely, all 1-dimensional foliations
arise in this way. We shall say that U is transversally conformal if
the Lie derivative LU preserves the conformal metric orthogonal to its
integral curves. In case the foliation is locally defined by a submersion
π : Ω → Σ then this is equivalent to saying that π is horizontally
conformal [5] (whence Σ is naturally a Riemann surface).
By writing the Lie derivative in terms of the flat connection ∇ on R3

it follows that a unit vector field U on R3 defines a conformal foliation
if and only if

〈U,∇XY +∇YX〉 = 0

for all vector fields X and Y with

〈U,X〉 = 0 〈U, Y 〉 = 0 〈X, Y 〉 = 0 ‖X‖ = ‖Y ‖.
As detailed in [5], it is equivalent to check for a particular non-zero
pair of such fields X, Y , that

〈U,∇XY +∇YX〉 = 0 and 〈U,∇XX −∇Y Y 〉 = 0.

We can write these conditions as partial differential equations on the
components of U . Specifically, let us write (q, r, s) for the standard
Euclidean coördinates on R3 and write

(3) U =















u
v
w















=















u(q, r, s)
v(q, r, s)
w(q, r, s)















.

We may suppose without loss of generality that

U =















1
0
0















X =















0
1
0















Y =















0
0
1















at the origin and take

X =















−v
u
0















and Y =















−uw
−vw
u2 + v2















=















0
0
1















− w















u
v
w
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nearby. Since u2 + v2 +w2 = 1, it follows that all partial derivatives of
u vanish at the origin and then we compute

〈U,∇XY +∇YX〉+ ∂w

∂r
+
∂v

∂s
= 0 = 〈U,∇XX −∇Y Y 〉+ ∂v

∂r
− ∂w

∂s
.

It follows that the conformality of U is captured by the equations

(4)
∂v

∂r
=
∂w

∂s
and

∂v

∂s
= −∂w

∂r

at points where (u, v, w) = (1, 0, 0).

4. Twistor fibrations

If we choose an identification C4 = H2, where H is the space of
quaternions, then we obtain a submersion

(5) τ : CP3 −→ HP1 = S4

by taking the quaternionic span. See [1] for details, where this fibration
is also realised as the bundle of orthogonal complex structures over the
round 4-sphere. In coördinates we have

(6) CP3 ∋ [Z]
τ7→ 1

‖Z‖2















|Z1|2 + |Z2|2 − |Z3|2 − |Z4|2
2(Z2Z̄3 + Z4Z̄1)
2(Z1Z̄3 − Z4Z̄2)















∈
R

⊕
C2

= R
5

and we observe that, when restricted to the hyperquadric Q, this gives
a submersion

(7) τ : Q→ S3.

We shall refer to both (5) and (7) as twistor fibrations . Both have
fibres intrinsically isomorphic to the Riemann sphere CP1 with its usual
complex structure.
As in [1], it is useful to view these fibrations as intrinsically attached

to the manifolds S4 and S3, regarded as flat conformal manifolds in the
usual manner. More specifically, we may use stereographic projection

Sn \ {∞} ≃−→ Rn to restrict these fibrations

CP3 \ I τ−→ R4

∪ ∪
Q \ I τ−→ R3

where I = τ−1(∞) = {[∗, ∗, 0, 0]} and rewrite them as follows.
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Suppose J ∈ SO(4) satisfies J2 = −Id. It follows that

(8) J =























0 −u −v −w
u 0 −w v
v w 0 −u
w −v u 0























for some (u, v, w) s.t. u2 + v2 + w2 = 1. In other words, the complex
structures on the vector space R4 preserving the standard metric and
orientation are parameterised by (u, v, w) ∈ S2. As in [1], we identify

(9)
CP3 \ I τ−→ R4

‖ ‖
(p, q, r, s, u, v, w) ∈ R4 × S2 π−→ R4

where π is projection onto the first factor and we may rewrite the
complex structure on CP3 as induced by the action of

(10) J =













































0 −u −v −w 0 0 0
u 0 −w v 0 0 0
v w 0 −u 0 0 0
w −v u 0 0 0 0
0 0 0 0 0 −w v
0 0 0 0 −v 0 −u
0 0 0 0 −v u 0













































on R4 × R3. Similarly, the CR structure on Q when viewed as

(11)
Q \ I τ−→ R3

‖ ‖
(q, r, s, u, v, w) ∈ R3 × S2 π−→ R3

comprises

• the contact structure defined by θ ≡ u dq + v dr + w ds,
• the endomorphism of H ≡ ker θ induced by J.

5. Integrable Hermitian structures

In §4 we saw that the almost Hermitian structures for the standard
Euclidean metric Ωopen ⊆ R4 are parameterised by smooth functions
U : R4 → S2 specifying matrices of the form (8). More generally, for
Ωopen ⊆ S4, the almost complex structures compatible with the flat
conformal structure correspond to sections of the twistor fibration. Let
us see what it means for such complex structures to be integrable.
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Lemma 1. At a point where (u, v, w) = (1, 0, 0), integrability of (8) is
captured by the equations

∂v

∂p
=
∂w

∂q

∂v

∂q
= −∂w

∂p

∂v

∂r
=
∂w

∂s

∂v

∂s
= −∂w

∂r

Proof. If we compute the Nijenhuis tensor

N(X, Y ) ≡ [X, Y ] + J [JX, Y ] + J [X, JY ]− [JX, JY ]

at such a point we find that

N
(

∂
∂p
, ∂
∂q

)

=























0
0
0
0























N
(

∂
∂p
, ∂
∂r

)

=























∂w/∂p + ∂v/∂q
∂w/∂q − ∂v/∂p
∂w/∂r + ∂v/∂s
∂w/∂s− ∂v/∂r























=N
(

∂
∂s
, ∂
∂q

)

N
(

∂
∂s
, ∂
∂p

)

=























∂v/∂p− ∂w/∂q
∂v/∂q + ∂w/∂p
∂v/∂r − ∂w/∂s
∂v/∂s + ∂w/∂r























=N
(

∂
∂r
, ∂
∂q

)

N
(

∂
∂r
, ∂
∂s

)

=























0
0
0
0























and the proof is complete. �

Theorem 3. If J is an integrable Hermitian structure on Ωopen ⊆ R4,

then U = J(∂/∂p) defines a conformal foliation on

Ω ∩ R
3 = {(p, q, r, s) ∈ Ω s.t. p = 0}.

Proof. From (8) we see that U = (u, v, w) and we are obliged to show
that the equations (4) hold at points where (u, v, w) = (1, 0, 0). But
these equations are just two of the four equations from Lemma 1. �

Of course, the conformal foliations obtained in this way are obliged
to be real-analytic. The following theorem is a well-known result in
twistor theory (see, e.g. [5, Proposition 7.1.3(iii)]). For completeness
we include a proof here based on our standard normalisation. We
regard an almost Hermitian structure J on Ωopen ⊆ S4 as a section of
the twistor fibration (5) and write S for its range.

Theorem 4. A smooth section J of π : CP3 → S4 defined on Ω is

integrable if and only if S ≡ J(Ω) is a complex submanifold of CP3.

Proof. Without loss of generality we may suppose that the value of J
at some point in Ω is given by (8) for (u, v, w) = (1, 0, 0) and check the
statement of the theorem above that point. The tangent space to S is
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given there in the local coördinates (9) by

spanR















































































1
0
0
0
0

∂v/∂p
∂w/∂p













































,













































0
1
0
0
0

∂v/∂q
∂w/∂q













































,













































0
0
1
0
0

∂v/∂r
∂w/∂r













































,













































0
0
0
1
0

∂v/∂s
∂w/∂s















































































and this is preserved by J (as in (10) with (u, v, w) = (1, 0, 0)) if and
only if the equations of Lemma 1 are satisfied. �

6. The twistor theory of conformal foliations

The following result is the direct analogue of Theorem 4 for conformal
foliations of Ωopen ⊆ S3 in which we regard a unit vector field on Ω as
a section of the twistor fibration (7).

Theorem 5. A smooth section U of π : Q → S3 over Ωopen ⊆ S3

defines a conformal foliation if and only if its range M ≡ U(Ω) is a

CR submanifold of Q of CR dimension 1.

Proof. Without loss of generality we may suppose that the value of U
at some point in Ω is given by (3) for (u, v, w) = (1, 0, 0) and check the
statement of the theorem above that point. The tangent space to M
is given there in the local coördinates (11) by

spanR































































1
0
0
0

∂v/∂q
∂w/∂q





































,





































0
1
0
0

∂v/∂r
∂w/∂r





































,





































0
0
1
0

∂v/∂s
∂w/∂s































































.

The contact form θ is simply dq when (u, v, w) = (1, 0, 0) whence H
intersects the tangent space to M as the span of the second and third
of these three vectors and then this span is preserved by J if and only if
the equations (4) characterising conformal foliations are satisfied. �

Corollary 1. Let U be a real-analytic unit vector field on Ωopen ⊆ S3.

The following conditions are equivalent.

• U defines a conformal foliation;

• U(Ω) ⊂ Q is locally defined by a CR function;

• U(Ω) = S ∩Q for some complex hypersurface S in CP3;

• U = J(∂/∂p) for some orthogonal complex structure J on S4,
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where the complex hypersurface S need only be defined and non-singular

near U(Ω) ⊂ Q and, similarly, the integrable Hermitian structure J
need only be defined near U ⊆ S3 ⊂ S4. In the fourth condition, S4 is

equipped with its round metric, an orientation induced by stereographic

projection, and a great subsphere S3 ⊂ S4 to which ∂/∂p denotes the

unit normal field.

Proof. In the real-analytic case, we may employ Theorem 2 to extend
CR data from Q to holomorphic data on CP3. All other equivalences
have already been discussed. �

7. An example—the Hopf fibration

To employ Corollary 1 in practise we need to be more specific about
the identifications (9) and (11). For (9) the convenient choice is

(12)























p+ iq
r + is
u

v + iw























=
1

|Z3|2 + |Z4|2























Z2Z̄3 + Z4Z̄1

Z1Z̄3 − Z4Z̄2

|Z3|2 − |Z4|2
2iZ4Z̄3























for which is it evident, from (6) and the formula

(13) R
5 =

R

⊕
C2

⊃ S5 ∋














t
ζ1
ζ2















σ7−→ 1

1− t









ζ1
ζ2








∈ C

2 = R
4

for stereographic projection, that (9) commutes. It is also routine to
check that (12) is holomorphic for the complex structure J given by
(10) on R4 × S2. More specifically, if we use

(x1 + iy1, x2 + iy2, x3 + iy3) = (z1, z2, z3) 7→ [z1, z2, z3, 1]

as local coördinates on CP3 then (12) becomes

(14)

p = (x2x3 + y2y3 + x1)/(x3
2 + y3

2 + 1)
q = (x3y2 − x2y3 − y1)/(x3

2 + y3
2 + 1)

r = (x1x3 + y1y3 − x2)/(x3
2 + y3

2 + 1)
s = (x3y1 − x1y3 + y2)/(x3

2 + y3
2 + 1)

u = (x3
2 + y3

2 − 1)/(x3
2 + y3

2 + 1)
v = 2y3/(x3

2 + y3
2 + 1)

w = 2x3/(x3
2 + y3

2 + 1)
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and it is straightforward to check that

J Jac = Jac















0 −1 0 0 0 0
1 0 0 0 0 0
0 0 0 −1 0 0
0 0 1 0 0 0
0 0 0 0 0 −1
0 0 0 0 1 0















where Jac is the Jacobian of the transformation (14).
For (11) it is convenient to change coördinates on CP3, writing

Q = {[Z1, Z2, Z3, Z4] ∈ CP3 s.t. Z1Z̄4 + Z2Z̄3 + Z3Z̄2 + Z4Z̄1 = 0}
instead of (2), for then it is clear that Q \ I is identified as {p = 0}
under (12).
To write out the conclusions of Corollary 1 more explicitly, let us

observe that (14) implies that

z1 = (r + is)z3 + (p− iq)
z2 = (p+ iq)z3 − (r − is)

and









u
v + iw








=

1

|z3|2 + 1









|z3|2 − 1
2iz̄3









and so if S is locally written as {z ∈ C3 s.t. f(z1, z2, z3) = 0} for some
holomorphic function f , then U = (u, v, w) is defined by

(15)









u
v + iw








=

1

|z3|2 + 1









|z3|2 − 1
2iz̄3









where z3 is the smooth function of (q, r, s) implicitly defined by

(16) f((r + is)z3 − iq, iqz3 − (r − is), z3) = 0.

Corollary 1 says that the unit vector fields U(q, r, s) obtained in this
way define real-analytic conformal foliations and that locally all real-
analytic conformal foliations arise in this way.
As an example, if we take f(z1, z2, z3) = z1 − 1, then (16) reads

(r + is)z3 − iq − 1 = 0 whence z3 =
(1 + iq)(r − is)

r2 + s2

and so

(17) U =















u
v
w















=
1

1 + q2 + r2 + s2















1 + q2 − r2 − s2

2(qr − s)
2(qs+ r)















.

Integrating this vector field gives the mapping














q
r
s















7−→ 1

r2 + s2









(1− q2 − r2 − s2)r + 2qs
(1− q2 − r2 − s2)s− 2qr








,
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which is the Hopf fibration S3 → S2, when viewed in stereographic
coördinates.
In this particular case there is also a global viewpoint as follows.

The zero locus of the function f(z1, z2, z3) = z1 − 1 has a non-singular
closure in CP3, namely

(18) S ≡ {[Z1, Z2, Z3, Z4] ∈ CP3 s.t. Z1 = Z4},
which we may identify as CP2 via the mapping

CP2 ∋ [W1,W2,W3] 7→ [W1,W2 +W3,W2 −W3,W1] ∈ CP3.

If we restrict τ to S viewed in this way, then (6) yields

[W ]
τ7→ 1

‖W‖2















W2W̄3 +W3W̄2

|W1|2 + |W2|2 − |W3|2 −W2W̄3 +W3W̄2

−2W1W̄3















∈
R

⊕
C2

,

which we may, by an elementary SO(5) change of coördinates, rewrite
as

(19) [W ]
τ7→ 1

‖W‖2















|W1|2 + |W2|2 − |W3|2
2W1W̄3

2W2W̄3















∈
R

⊕
C2

= R
5.

From this viewpoint we see that there is a particular line

CP1
∼= {[W1,W2,W3] ∈ CP2 s.t. W3 = 0},

which is sent to (1, 0, 0, 0, 0) ∈ S4, whilst on the affine coördinate chart
complementary to this line, following τ with stereographic projection
(13) gives

[w1, w2, 1]
τ7→ 1

|w1|2 + |w2|2 + 1















|w1|2 + |w2|2 − 1
2w1

2w2















σ7→








w1

w2








.

In accordance with Theorem 4, we see that the holomorphic structure
on R4 defined by (18) is just the standard identification R4 = C2. To
see the consequences of Corollary 1 in this case, note that

S ∩Q =

{

[Z] ∈ CP3 s.t.
Z1Z̄4 + Z2Z̄3 + Z3Z̄2 + Z4Z̄1 = 0
Z1 = Z4

}

∼=
{

[W ] ∈ CP2 s.t. |W1|2 + |W2|2 = |W3|2
}

,

namely the standard hyperquadric in CP2, whereupon (19) reduces to

[W ]
τ7→ 1

2|W3|2








2W1W̄3

2W2W̄3








=









W1/W3

W2/W3








∈ S3 ⊂ C

2,

which induces the usual identification of this hyperquadric with the
round three-sphere. Since τ : S ∩ Q → S3 is an isomorphism in this
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case, Corollary 1 yields a global conformal foliation on S3. We have
already seen in local coördinates (17) that it is the Clifford foliation
whose integral curves define the Hopf fibration S3 → S2.

8. Explicit constructions and comparisons

The conclusions of Corollary 1 may be written out more explicitly as
follows. In §7 we saw that the real-analytic conformal foliations were
generated from a holomorphic function f(z1, z2, z3) by solving (16) for
z3 as a smooth function of (q, r, s) and then using (15) to define the
unit vector field U(q, r, s). Noting that the z3-axis {(0, 0, z3)} is the
fibre of the mapping

C3 →֒ CP3 \ I τ−→ C2 = R4

(z1, z2, z3) 7→ [z1, z2, z3, 1] 7→

























z2z̄3 + z̄1
z3z̄3 + 1

z1z̄3 − z̄2
z3z̄3 + 1

























=













p + iq

r + is













over the origin, if we seek conformal foliations near the origin in R3,
then we may take the complex surface S in Corollary 1 to be the graph
{z3 = Φ(z1, z2)} for a holomorphic function Φ = Φ(z1, z2) defined near
the origin in C2. In other words, we may take

f(z1, z2, z3) = z3 − Φ(z1, z2).

Notice from (15) that precisely (1, 0, 0) is excluded from the possible
values of U at the origin (since in our formula (13) for stereographic
projection, we have chosen to project from the north pole). Instead, we
may insist that U(0, 0, 0) = (−1, 0, 0) and obtain the following recasting
of the equivalence of the first and third conditions in Corollary 1.

Theorem 6. There is a 1–1 correspondence between

• germs of holomorphic functions Φ = Φ(z1, z2) defined near and

vanishing at the origin in C2;

• germs of real-analytic unit vector fields U = U(q, r, s) defined

near and taking on the value (−1, 0, 0) at the origin in R3 with

the property that the foliation defined by U is conformal.

This correspondence is induced by the equations

(20)









u
v + iw








=

1

|z|2 + 1









|z|2 − 1
2iz̄









and

(21) z = Φ((r + is)z − iq, iqz − (r − is)),

where U = (u, v, w) = (u(q, r, s), v(q, r, s), w(q, r, s)).
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An alternative proof in one direction may be obtained by implicit
differentiation of the equation (21). Since Φ is holomorphic, the chain
rule gives

∂z/∂q =
(

− i+ (r + is)∂z/∂q
)

∂Φ/∂z1 +
(

iz + iq∂z/∂q
)

∂Φ/∂z2
∂z/∂r =

(

z + (r + is)∂z/∂r
)

∂Φ/∂z1 +
(

− 1 + iq∂z/∂r
)

∂Φ/∂z2
∂z/∂s =

(

iz + (r + is)∂z/∂s
)

∂Φ/∂z1 +
(

i+ iq∂z/∂s
)

∂Φ/∂z2

from which ∂Φ/∂z1 and ∂Φ/∂z2 may be eliminated to obtain

(22) 2z
∂z

∂q
+ i(1 + z2)

∂z

∂r
+ (1− z2)

∂z

∂s
= 0

and it may be verified that this equation is precisely the condition that
the unit vector field U = (u, v, w) defined by (20) generate a conformal
foliation (e.g., at z = 0 we obtain (4) as expected). It is interesting
to note that the unit vector field defined by (20) is characterised, up
to sign, as orthogonal to the real and imaginary parts of the complex-
valued field

Z ≡














2z
i(1 + z2)
(1− z2)















.

Letting ω denote the equivalent 1-form

(23) ω ≡ 2z dq + i(1 + z2) dr + (1− z2) ds,

we find that

(24) ω ∧ dω = 2i

(

2z
∂z

∂q
+ i(1 + z2)

∂z

∂r
+ (1− z2)

∂z

∂s

)

dq ∧ dr ∧ ds

and hence obtain a compact way of rewriting the equations (22). It
leads to an alternative geometric interpretation of (22) as follows.

Lemma 2. A non-zero complex-valued real-analytic 1-form ω satisfies

ω∧dω = 0 if and only if ω can be rescaled to be closed, i.e. if and only

if there is a smooth function ψ such that d(eψω) = 0.

Proof. If ω is real-valued (and then need only be smooth), this criterion
is well-known. Specifically, ω ∧ dω is the obstruction to Frobenius
integrability of the two-dimensional distribution defined by ω and the
conclusion is evident. In the complex-valued case it is clear from

ω ∧ d(eψω) = ω ∧ eψ(dψ ∧ ω + dω) = eψω ∧ dω
that the vanishing of ω ∧ dω is necessary. When ω is real-analytic, the
argument via Frobenius integrability applies in the complexification
(and the function ψ is necessarily real-analytic back on R3). �
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Having chosen a real-analytic ψ such that the rescaled 1-form eψω
is closed, the Poincaré lemma implies that locally we may find a real-

analytic function R3 ⊇ openΩ
h→ C with dh = eψω. In particular, since

ω is null, the same is true of dh, i.e. (dh)2 = 0. Writing f and g for the
real and imaginary parts of h, we conclude that

‖∇f‖ = ‖∇g‖ and 〈∇f,∇g〉 = 0.

In other words, since in addition dh is nowhere vanishing, we see that
h : Ω → C is a horizontally conformal mapping [5] and we have shown
in Theorem 6 and Lemma 2 that locally all real-analytic horizontally
conformal mappings arise in this way.
Inspired by these formulæ, we now present a direct construction of

closed null complex-valued 1-forms on R3 avoiding the use of Frobenius
integrability. Firstly, let us observe that the implicit derivation leading
to (22) and (24) may be easily accomplished as follows. On the space
C× R3 with coördinates (z, q, r, s) let us write

z1 ≡ (r + is)z − iq and z2 = iqz − (r − is)

and consider the 1-form ω defined by (23). One easily verifies that

ω ∧ dω = 2 dz ∧ dz1 ∧ dz2.
Therefore, if z = z(q, r, s) is defined implicitly by

z = Φ(z1, z2)

for some holomorphic function Φ of two variables, then

dz = dΦ =
∂Φ

∂z1
dz1 +

∂Φ

∂z2
dz2

and it follows immediately that ω ∧ dω = 0, as required.
Now on C2 × R3 with coördinates (w, z, q, r, s) let us write

(25) z1 ≡ (r + is)z − iqw and z2 ≡ iqz − (r − is)w

and consider the 1-form

(26) ω ≡ 2wz dq + i(w2 + z2) dr + (w2 − z2) ds.

One easily verifies that

(27) dω = 2i(dz ∧ dz1 − dw ∧ dz2) = 2i d(z dz1 − w dz2).

Therefore, if z = z(q, r, s) and w = w(q, r, s) are defined implicitly by

(28) z dz1 − w dz2 = d(Ξ(z1, z2)) =
∂Ξ

∂z1
dz1 +

∂Ξ

∂z2
dz2
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for some holomorphic function Ξ of two variables, then dω = 0 is
manifest. The formula (26) for ω ensures that ω2 = 0 (and also that ω
is non-zero wherever w is non-zero).
Postponing for the moment the precise relationship between these

two constructions, we note that this second construction is extremely
similar to Nurowski’s method [7], which is as follows. With the same
notation he rewrites (27) as

dω = 2i(dz ∧ dz1 − dw ∧ dz2) = 2i d(z2 dw − z1 dz),

concluding that if w and z are implicitly defined by

(29) z2 dw − z1 dz = d(F (z, w)) =
∂F

∂z
dz +

∂F

∂w
dw

for some holomorphic function F of two variables, then dω = 0.
The relationship between these two methods is clear. In (28) we give

(z,−w) in terms of (z1, z2) whereas in (29) it is the other way round:

z = ∂Ξ
∂z1

(z1, z2)

w̃ = ∂Ξ
∂z2

(z1, z2)
versus

z1 = −∂F

∂z
(z, w) = ∂F̃

∂z
(z, w̃)

z2 = ∂F

∂w
(z, w) = ∂F̃

∂w̃
(z, w̃),

where w̃ ≡ −w and F̃ (z, w̃) ≡ −F (z,−w̃) = −F (z, w). In either case,
the key point is that the Jacobian of the transformation is symmetric

(30)
∂(z, w̃)

∂(z1, z2)
=

(

Ξz1z1 Ξz1z2
Ξz1z2 Ξz2z2

)

v
∂(z1, z2)

∂(z, w̃)
=

(

F̃zz F̃zw̃
F̃zw̃ F̃w̃w̃

)

.

Since the inverse of an invertible symmetric 2× 2 matrix is necessarily
symmetric, we may obtain one prescription from the other by inverting
the relationship between (z,−w) and (z1, z2). This assumes, of course,
that this relationship is indeed invertible: we shall come back to this
point shortly.
Firstly, we shall explain the precise link between Theorem 6 and the

construction determined by formulæ (25), (26), and (28). Recall that
Theorem 6 may be viewed as generating all real-analytic null 1-forms
ω near the origin in R3 satisfying

ω|(0,0,0) = i dr + ds and ω ∧ dω = 0.

Hence, to compare with (26) we should suppose that w and z are given
as general holomorphic functions of (z1, z2), say

(31) z = Ξ1(z1, z2) w = −Ξ2(z1, z2)

but insist that Ξ1(0, 0) = 0 and Ξ2(0, 0) = −1 for then, assuming that
our construction makes sense, it will certainly create a real-analytic null
1-form near the origin in R3 with ω|(0,0,0) = i dr + ds and it remains
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to explain the geometric origin of the equation dω = 0 and the precise
link with Theorem 6. Regard (z1, z2, z, w) as coördinates on C4 and let

η ≡ dz ∧ dz1 − dw ∧ dz2,
be a non-degenerate closed symplectic form on C4 \ {0}. Let S̃ denote
the complex surface through the point (0, 0, 0, 1) ∈ C4 defined by (31).

Lemma 3. There is a holomorphic function Ξ(z1, z2) such that locally

Ξj = ∂Ξ/∂zj if and only if η|S̃ = 0, i.e. if and only if S̃ is Lagrangian.

Proof. We compute

η|S̃ =
(

∂Ξ1

∂z1
dz1 +

∂Ξ1

∂z2
dz2

)

∧ dz1 +
(

∂Ξ2

∂z1
dz1 +

∂Ξ2

∂z2
dz2

)

∧ dz2

=
∂Ξ1

∂z2
dz2 ∧ dz1 + ∂Ξ2

∂z1
dz1 ∧ dz2 =

(

∂Ξ2

∂z1
− ∂Ξ1

∂z2

)

dz1 ∧ dz2,

which vanishes if and only if the holomorphic 1-form Ξ1 dz1 +Ξ2 dz2 is
closed. This is the case if and only if this 1-form is locally of the form
dΞ for some holomorphic function Ξ, as required. �

By construction (31), the surface S̃ passes through the point (0, 0, 0, 1)
and is transverse to the (z, w)-plane there. It follows that the image of

a sufficiently small open subset of S̃ around (0, 0, 0, 1) under the natural
projection C4 \ {0} → CP3 is a complex surface S ⊂ CP3 containing
the point [0, 0, 0, 1] and in the local coördinates

C
3 ∋ (z1, z2, z) 7→ [z1, z2, z, 1] ∈ CP3

is transverse to the z-axis. We may write such a surface S as a graph

S = {(z1, z2, z) ∈ C
3 s.t. z = Φ(z1, z2)}

for some uniquely determined holomorphic function Φ(z1, z2) defined
near and vanishing at the origin. More explicitly, there is a holomorphic
function Φ(z1, z2) so that

z = (∂Ξ/∂z1)(z1, z2)
−w = (∂Ξ/∂z2)(z1, z2)

}

=⇒ z

w
= Φ

(z1
w
,
z2
w

)

.

If we now substitute for (z1, z2) according to (25) and write z/w as ζ ,
then we find that

(28) =⇒ ζ = Φ((r + is)ζ − iq, iqζ − (r − is)) ,

which coincides with (21) with ζ substituted for z. Moreover, we may
rescale the 1-form (26) as

ω̂ ≡ 1

w2
ω = 2ζ dq + i(1 + ζ2) dr + (1− ζ2) ds,
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which coincides with (23) save that again ζ is substituted for z. This
is exactly as expected from Theorem 6 and Lemma 2 with eψ = w2. In
other words, we have found the precise geometric link between

• the equivalence of the first and third conditions of Corollary 1,
as recast in Theorem 6, and then rewritten in terms of a null
1-form ω via equations (23) and (24);

• the direct construction of real-analytic closed null 1-forms given
by formulæ (25), (26), and (28).

Specifically, the complex surface S appearing in the third condition of
Corollary 1 is obtained as the image under the canonical projection
C4 \ {0} → CP3 of the Lagrangian surface S̃ defined by (28), namely

S̃ =

{

(z1, z2, z, w) ∈ C
4 s.t. z =

∂Ξ

∂z1
(z1, z2) and w = − ∂Ξ

∂z2
(z1, z2)

}

.

In fact, all real-analytic closed null 1-forms are locally so obtained as
follows.

Theorem 7. There is a 1–1 correspondence between

• germs of complex Lagrangian submanifolds S̃ ⊂ C4 with respect

to the symplectic form η ≡ dz ∧ dz1 − dw ∧ dz2 passing through

(0, 0, 0, 1) and transverse to the (z, w)-plane there;

• germs of real-analytic closed null 1-forms ω at the origin in R3

taking on the value i dr + ds there.

This correspondence is induced by writing S̃ locally as a graph

z = Ξ1(z1, z2) w = −Ξ2(z1, z2)

for holomorphic functions Ξ1(z1, z2) and Ξ2(z1, z2), using the equations

z = Ξ1((r + is)z + (p− iq)w, (p+ iq)z − (r − is)w)
w = −Ξ2((r + is)z + (p− iq)w, (p+ iq)z − (r − is)w)

implicitly to define z = z(p, q, r, s) and w = w(p, q, r, s), restricting the

real-analytic functions z and w to {p = 0}, and finally setting

(32) ω = 2wz dq + i(w2 + z2) dr + (w2 − z2) ds.

Proof. Let us firstly establish a 1–1 correspondence, induced by exactly
the same procedure between

• germs of complex submanifolds S̃ ⊂ C4 through (0, 0, 0, 1) and
transverse to the (z, w)-plane there;

• germs of real-analytic null 1-forms ω at the origin in R3 taking
on the value i dr + ds there and satisfying

(33) σ ∧ dω = 0 ∀ 1-forms σ s.t. σω = 0.
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For this, let us note that (32) is the general form of a null 1-form on R3

and that near the origin z = z(q, r, s) and w = w(q, r, s) are uniquely
determined by z(0, 0, 0) = 0, w(0, 0, 0) = 1, and continuity. Then, the
1-forms complex-orthogonal to ω are spanned by

σ1 ≡ z dq + iw dr + w ds and σ2 ≡ w dq + iz dr − z ds

so one easily computes that (33) holds if and only if the operator

(34) 2wz
∂

∂q
+ i(w2 + z2)

∂

∂r
+ (w2 − z2)

∂

∂s

annihilates both z(q, r, s) and w(q, r, s). Now let us ask what it means

for a surface S̃ through (0, 0, 0, 1) in C4 to be complex in terms of
the local coördinates (α, β, z, w) defined in terms of (z1, z2, z, w) by the
relations

z1 = αz + β̄w and z2 = βz − ᾱw,

which are obtained by substituting

α ≡ r + is β ≡ p+ iq z1 ≡ Z1 z2 ≡ Z2 z ≡ Z3 w ≡ Z4

into (12). Certainly, we may write S̃ locally as a smooth graph

z = z(α, β) w = w(α, β).

We may then verify, using the chain rule to change coördinates, that
S̃ is complex if and only if z(α, β) and w(α, β) are annihilated by the
operators

(35) w
∂

∂α
− z

∂

∂β̄
and w

∂

∂β
+ z

∂

∂ᾱ
.

Recall that, with the conventions of §7, the hyperquadric Q ⊂ CP3 is
covered by

Q̃ ≡ {(z1, z2, z, w) ∈ C
4 s.t. z1w̄ + z2z̄ + zz̄2 + wz̄1 = 0},

a CR hypersurface in C4 \ {0} of Levi-signature (+, 0,−). Sitting over

Theorem 2 and similarly proved, suppose M̃ ⊂ Ω̃open ⊆ Q̃ ⊂ C4 is
a real-analytic submanifold of real dimension 3 and CR dimension 1.
Then M̃ extends into C4 as a complex submanifold S̃ and this extension
is germ-unique. Since,

z1w̄ + z2z̄ + zz̄2 + wz̄1 = 2(|z|2 + |w|2)p
we conclude that Q̃ is defined as the zero locus of p in a neighbourhood
of (0, 0, 0, 1). Writing (35) more fully, we see that S̃ is complex if and
only if the operators

w
∂

∂r
− iw

∂

∂s
− z

∂

∂p
− iz

∂

∂q
and w

∂

∂p
− iw

∂

∂q
+ z

∂

∂r
+ iz

∂

∂s
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annihilate both z(p, q, r, s) and w(p, q, r, s). On Q̃ = {p = 0} it follows
that the operator (34) annihilates both z(0, q, r, s) and w(0, q, r, s). We
have shown that the complex submanifold S̃ gives rise to a real-analytic
null 1-form ω satisfying (33). Conversely, it is readily verified that being
annihilated by (34) is exactly the condition that the functions z(q, r, s)
and w(q, r, s) define a CR submanifold M̃ of Q̃. (Warning: this is not
to say that the defining functions

(q, r, s, z, w) 7→ z − z(q, r, s) and (q, r, s, z, w) 7→ w − w(q, r, s)

are CR functions on Q̃ but only that the tangent space defined by them
intersects the contact distribution defined by

(|w|2 − |z|2) dq + i(zw̄ − wz̄) dr − (zw̄ + wz̄) ds

in a complex subspace.) When z(q, r, s) and z(q, r, s) are real-analytic

this CR submanifold M̃ extends germ-uniquely into C4 as S̃, a complex
surface: we have now shown the equivalence of the two entities claimed
to be equivalent at the beginning of this proof.
To finish the proof it remains to show that dω = 0 if and only

if S̃ is Lagrangian. Since η is a holomorphic form of type (2, 0) its
pullback η|S̃ is a holomorphic section of the canonical bundle of S̃.

Hence η|S̃ vanishes near M̃ if and only if η|M̃ = 0. However, as we

have already implicitly noticed in (27), writing τ : M̃ → R3 for the
canonical projection,

τ ∗(dω) = 2iη|M̃
whence η|M̃ = 0 if and only if ω is closed. �

As an example of Theorem 7 in action, let us consider the 1-form

(36) ω ≡ (1 + ir + s)(i dr + ds)

on R3. Evidently, it is closed, null, and real-analytic. Near the origin, it
is of the form (32) for z(q, r, s) ≡ 0 and w(q, r, s) =

√
1 + ir + s where√

is a branch of square root with
√
1 = 1. Theorem 7 says firstly that

there are holomorphic functions Ξ1(z1, z2) and Ξ2(z1, z2) such that

0 = Ξ1((p− iq)
√
1 + ir + s,−(r − is)

√
1 + ir + s)√

1 + ir + s = −Ξ2((p− iq)
√
1 + ir + s,−(r − is)

√
1 + ir + s)

and this is clear by taking Ξ1 ≡ 0 and Ξ2(z1, z2) = −g(z2) where g(z2)
is implicitly defined near z2 = 0 by

ζ = g(i(ζ2 − 1)ζ) near ζ = 1.

Additionally, in conjunction with Lemma 3, Theorem 7 says that we
can find a function Ξ(z1, z2) such that Ξj = ∂Ξ/∂zj and in this example
we may take Ξ(z1, z2) = −f(z2) where f is any primitive for g.
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Returning now to the relationship between our construction, now
formulated in Theorem 7, and Nurowski’s construction in [7], we see
that [7] provides an alternative way of writing a real-analytic closed
null 1-form ω near the origin if and only if the left hand matrix from
(30) is invertible. From (26) and (28), however, one easily computes
that

dz ∧ dw = ω ∧ (Ξ11Ξ22 − Ξ12
2)dq at the origin.

It follows that [7] pertains if and only if dz ∧ dw is non-vanishing at
the origin (a requirement independent of choice of coördinates on R3).
Generically, this is true but not so for (36) nor for

ω =
i dr + ds

(1 + (ir + s))2
,

(which gives the Hopf fibration in another guise). To repair Nurowski’s
construction one can treat the case dz ∧ dw = 0 separately or one
can view his construction as giving all real-analytic null 1-forms in a
neighbourhood of ∞ ∈ S3.
In [3, Example 2.6] it is explained how to use special holomorphic

coördinates on the surface S →֒ CP3 from Corollary 1 to produce the
general real-analytic horizontally conformal submersion on R3. These
special coördinates are adapted to the contact structure on CP3 induced
by our symplectic form η. It is unclear whether one can use the lifted
Lagrangian surface S̃ →֒ C4 from Theorem 7 to generate such adapted
coördinates directly.

9. A counterexample—the eikonal equation

At the end of §2 we mentioned that there are smooth 3-dimensional
CR submanifolds M ⊂ Q of CR dimension 1 that are not real-analytic.
In view of Theorem 5, to find such an M it suffices to find a smooth
conformal foliation of Ωopen ⊆ R3 that is not real-analytic. To construct
such a foliation, let φ : R2 → R be any smooth function, let

Γ ≡ {(r, s) ∈ R
2 s.t. s = φ(r)}

denote its graph, and define

ρ(r, s) =
{

distance from (r, s) to Γ, if s ≥ φ(r)
− distance from (r, s) to Γ, if s ≤ φ(r).

Evidently, the function ρ is a smooth solution of the eikonal equation
‖∇ρ‖ = 1 in a suitable neighbourhood N of Γ. It follows that

Ω = R×N π−→ R
2 given by π(q, r, s) = (q, ρ(r, s))
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is a horizontally conformal submersion. The corresponding conformal
foliation is real-analytic if and only if the same is true for our original
function φ.

10. Further equivalences—the Kerr Theorem

In this section we relate the notions of conformal foliation and shear-
free ray congruence from relativity. In [4] this relationship was used to
derive the twistor description of conformal foliations, i.e. Corollary 1.
We may regard Euclidean space R3 as the slice {t = 0} in Minkowski

space R3,1 equipped with coördinates (q, r, s, t) and pseudo-metric

dq2 + dr2 + ds2 − dt2

in the usual way. If U is a smooth unit vector field on Ωopen ⊆ R3,
then U + ∂/∂t is a null direction in R3,1 defined and smoothly varying
along U ⊂ R3,1. We consider the region swept out in R3,1 by the null
rays emanating from Ω in the direction given by U + ∂/∂t. For a
suitable neighbourhood Ω̃ of Ω in R3,1, this construction gives what
is called a ‘ray congruence’ in the relativity literature. It is a smooth
family of null geodesics with one such geodesic passing through each
point. Locally all such congruences near the slice {t = 0} arise in this
way and the vector field U defines a conformal foliation if and only if
the corresponding ray congruence is ‘shear-free’ [8] (the ‘shear’ being a
measure of the distortion of circles to ellipses in the normal bundle to
the foliation of Ω defined by U).
From Corollary 1 we conclude that the real-analytic shear-free ray

congruences defined near {t = 0} are locally in 1–1 correspondence
with complex hypersurfaces S ⊂ CP3 meeting Q ⊂ CP3 as discussed
in §6. This is the Kerr Theorem [8, Theorem 7.4.8]. Furthermore, the
smooth shear-free ray congruences correspond to CR submanifolds of
Q of CR dimension 1 as in Theorem 5. This fact is also observed on
pages 220–222 of [8]. As detailed in [8], the Kerr Theorem was highly
instrumental in Penrose’s development of twistor theory.
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