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POSITIVE SCALAR CURVATURE, K-AREA AND ESSENTIALNESS
BERNHARD HANKE

ABSTRACT. The Lichnerowicz formula yields an index theoretic obstian to positive scalar cur-
vature metrics on closed spin manifolds. The most general & this obstruction is due to Rosen-
berg and takes values in thé-theory of the groupC*-algebra of the fundamental group of the
underlying manifold.

We give an overview of recent results clarifying the relataf the Rosenberg index to notions
from large scale geometry like enlargeability and esskm&s. One central topic will be the con-
cept of K-homology classes of infinit&-area. This notion, which in its original form is due to
Gromov, will be systematically used as a link between gedosity defined large scale properties
and index theoretic considerations. In particular, we pressentialness and the non-vanishing of
the Rosenberg index for manifolds of infinike-area.

1. INTRODUCTION AND SUMMARY

One of the fundamental problems in Riemannian geometry isviestigate the types of Rie-
mannian metrics that exist on a given closed smooth manifiblturns out that the signs of the
associated curvature invariants distinguish classesevh&nnian manifolds with considerably dif-
ferent geometric and topological properties. Usually tless of manifolds admitting metrics
with negative curvature is “big” and the one with positivevature is “small”. The general ex-
istence theorems for negative Ricci curvature metrics f2f] negative scalar curvature metrics
[45], the classical theorem of Bonnet-Myers on the finiter@the fundamental group for closed
Riemannian manifolds with positive Ricci curvature, GrarsdBetti number theorem for closed
manifolds of non-negative sectional curvature [17], theere classification of manifolds with pos-
itive curvature operators|[4] and the proof of the differeble sphere theorer![S, 6] are prominent
illustrations of this empirical fact.

In this context one may formulate two goals: The first is toadep methods to construct Rie-
mannian metrics with distinguished properties on gendaalses of smooth manifolds. Important
examples are the powerful tools in the theory of geometnitglalifferential equations, the surgery
method due to Gromov-Lawson [15] and Schoen-Yau [40] forcihrestruction of positive scalar
curvature metrics, and methods based on geometric flow ieqgatThe second deals with the
formulation of (computable) obstructions to the existenE&kiemannian metrics with specific
properties. Often this happens in connection with top@alginvariants associated to the given
manifold like homology and homotopy groups and related.d@tese two goals are usually not
completely seperate from each other in that they can rasokerlapping questions, concepts and
methods. For example the Ricci flow is used to produce maetrntsspecial properties, which a
posteriori determine the topological type of the undedymnanifold.
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Here we shall concentrate on the most elementary curvatuaeant associated to a Riemannian
manifold (A, g), the scalar curvaturecal, : M — R. This is usually defined by a twofold
contraction of the Riemannian curvature tenso(/df, ¢), but also has a geometric interpretation
in terms of the deviation of the volume growth of geodesitdial)M to geodesic balls in Euclidean
space:

vol(am gy (By(€)) scaly(p) 5 A
) = e (Bole)  Bla+2) O

Given a closed smooth manifold, we shall study whethet/ admits a Riemannian metricof
positive scalar curvature, i.e. satisfyingal,(p) > 0 for all p € M. In view of the preceding
description and the previous remarks it is on the one handsjllke that the resulting “inside
bending of M” at every point might put topological restrictions dd. On the other hand the
scalar curvature involves an averaging process over sattaurvatures ofl/ so that a certain
variability of the precise geometric shape and the topcklgiroperties of\/ can be expected.

In connection with the positive scalar curvature questiothlaspects, the obstructive and con-
structive side, play important roles and have led to a rictiybaf mathematical insight with con-
nections to index theory, geometric analysis, non-comtivaétgeometry, surgery theory, bordism
theory and stable homotopy theory. The papel [37] gives gcenensive survey of the subject.
As such it represents not only an interesting geometric Bélitls own, but serves as a unifying
link between several well established areas in geometg|ogy and analysis.

For metrics of positive scalar curvature there are two irtgodrobstructions, whose relation to
each other is still not completely understood. One is basg¢bdemethod of minimal hypersurfaces
[40] and the second one on the analysis of the Dirac operatbimalex theory! [2]7].

In some sense the first obstruction is more elementary tresdbond as it can be shown by
a direct calculation([40] that a nonsingular minimal hypeface in a positive scalar curvature
manifold admits itself a metric of positive scalar curvatum connection with results from geo-
metric measure theory that provide nonsingular minimalkngprfaces representing codimension
one homology classes in manifolds of dimension at most ¢#ftjt this can inductively be used
to exclude the existence of positive scalar curvature getm tori up to dimension eight, for in-
stance. In higher dimensions the discussion of singutgrdn minimal hypersurfaces representing
codimension one homology classes is a subtle topic and thjectwof recent work of Lohkamp
[8,130,/31]. This theme, which has important connectionfitogositive mass theorem in general
relativity, will not be pursued further in our paper.

The second, index theoretic, obstruction is both moreiotist as it requires a spin structure on
the underlying manifold (or at least its universal covenyl éess elementary as it is based on the
Atiyah-Singer index theorem. In its most basic form it sayet ttlosed spin manifolds with non-
vanishingA-genus do not admit metrics of positive scalar curvatum Attgenus being an integer
(in the spin case) which depends on the rational Pontrjdgsses of the underlying manifold and
its orientation class and hence only on its oriented homephism type.

This obstruction has been refined by Hitchin/[25] and Rosen[#5] and in its most general
form takes values ik O, (Cy ., m1(M)), the K-theory of the real maximal grou@™-algebra
of the fundamental group of the underlying manifold. It #fere touches important questions in
noncommutative geometry linked to the Baum-Connes andKdéowtonjectures. The Gromov-
Lawson-Rosenberg conjecture predicts that for closedrepimifolds of dimension at least five the
vanishing of this index obstruction is not only necessawy, diso sufficient for the existence of

a positive scalar curvature metric. Despite the fact thigt¢bnjecture is wrong in general [38],
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the index obstruction being surpassed by the minimal hypfrse obstruction in some cases, it
is a remarkable fact that it holds for simply connected n@dg [42] and - in a stable sense - for
all spin manifolds where the assembly map to ftieéheory of the real groug'*-algebra of the
fundamental group is injective [43], see Theofem 2.4 belbis.up to date unknown whether this
conjecture in its original, unstable, form is true for spiamfolds with finite fundamental groups,
although in this case the injectivity of the assembly mamisin. The index theoretic obstruction
to positive scalar curvature will be recalled in Secfion 2.

Gromov and Lawson used the index of the usual Dirac operatolosed spin manifolds twisted
with bundles of small curvature to prove that some manifalith vanishing A-genus do not
admit positive scalar curvature metrics. For this aim thegoduced different kinds of largeness
properties for Riemannian manifolds, the most importamsopeing the notion of enlargeability
[16, 18] and infinite/K-area [14]. These properties have an asymptotic charactdrat they
require, for eaclk > 0, the existence of certain geometric structures attachédetenderlying
manifold which are-small in an appropriate sense. Precise definitions willibergin Sectior P
below.

In light of the common index theoretic origin of these obstions it is reasonable to expect that
they are related to the Rosenberg index. In the papers [1212® is proved that the Rosenberg
obstruction indeed subsumes the enlargeability obstmudti the sense that the former is non-
zero for enlargeable spin manifolds. Moreover, it was showthe cited papers that enlargeable
manifolds areessentigli.e. the classifying maps of their universal covers maphtiheological
fundamental classes to non-zero classes in the homolodnedtihdamental groups. This notion
was introduced by Gromov in [13] in connection with the slistcnequality giving an upper
bound of the length of the shortest noncontractible loop Riemannian manifold\/ in terms
of the volume ofM. In particular it follows that enlargeable manifolds obeso@ov’s systolic
inequality.

The methods introduced in [20, 121] were appliedlinl [22] toyereome cases of the strong
Novikov conjecture. This is implied by the Baum-Connes eotyre and predicts that for discrete
groupsG the rational assembly map

K.(BG) ® Q = K.(C;,,,G) ® Q

is injective. In loc. cit. it is shown that this map is indeezhrzero on all classes iR, (BG) ® Q
which are detected by classes in the subring generated BYBG; Q). As a corollary higher
signatures associated to elements in this subring@BG; Q) are oriented homotopy invariants,
a fact which had been proven first by Mathai/[32].

It turns out that the methods df [20, 122] fit very nicely the cept of K-area introduced by
Gromov in [14]. It is one purpose of the paper at hand to ekaieoon this connection. Our main
result, Theorern 319, states tHathomology classes afffinite i -areain closed manifoldg/ map
nontrivially to K,(C},..m (M)) under the assembly map. Generalizing the original concept o
Gromov we call ak-homology class ainfinite K -areq, if it can be detected by bundles of finitely
generated Hilbertl-modules equipped with holonomy representations whiclagsgrarily close
to the identity, whered is someC*-algebra with unit. Precise definitions are given in Sed8on
below, see in particular Definitidn 3.5.

From Theorer 319, the main results of the pagers[19, 20,2)Bre derived fairly easily. More
generally we will show that closed spin manifolds whdsetheoretic fundamental classes are

of infinite K-area have non-vanishing Rosenberg index (Corollaryl 3ah@)oriented manifolds
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with fundamental classes of infinit€-area are essential (Theoréml|5.2). The first result solves a
problem stated in the introduction of [28].

In [7] essentialness is discussed from a purely homologigit of view. Among other things it
is proved that the property of being enlargeable dependsamihe image of the homological fun-
damental class of the underlying manifold in the rationahbtogy of its fundamental group. This
flexible formulation allows the construction of manifoldsieh are essential, but not enlargeable.
We will briefly review these results in Sectibh 5. We do notwrnwhether a proof of Theorem 5.2
is feasible which avoids the “infinite product constructitaid out in Sectiori B. Also, we do not
know an essential manifold whose fundamental class is niofiofte K -area, see Question b.6.

This paper is intended on the one hand as a report on receftisres the positive scalar cur-
vature question in the light of methods from index thedtytheory and asymptotic geometry as
obtained by the author and his coauthors. On the other hasdniéant to establish the point of
view that the notion of infinitd<-area may serve as a unifying principle for these resultsgtwh
sometimes allows short and conceptual proofs.

The author is grateful to the DFG Schwerpunkt “Globale Défdgialgeometrie” for financial
support during the last years. Special thanks go to ThombaglStor a very fruitful and pleas-
ant collaboration. Most of the material in these notes itdam ideas developped during this
collaboration.

2. INDEX OBSTRUCTION TO POSITIVE SCALAR CURVATURE

The Gaul3-Bonnet formula implies that closed surfaces watipositive Euler characteristic do
not admit positive scalar curvature metrics. These coraplsclosed surfaces apart from the
two sphere and the real projective plane. The mechanismmtde¢his obstruction is the fact that
a topological invariant, the Euler characteristic, may kgressed as an integral over a curvature
guantity, the Gaul3 curvature.

In higher dimensions obstructions to positive scalar duneametrics can be obtained in a more
indirect way by use of the Atiyah-Singer index theorem. Létbe a closed smooth oriented
manifold of dimension divisible by four. Thd-genusA(M) e Q of M is obtained by evaluating
the A-polynomial

p1(M) n —4pa(M) + Tpi(M)
24 27.32.5

in the Pontrjagin classes @f on the fundamental class 8f. This is an invariant of the homeo-

morphism type of\/ by the topological invariance of rational Pontrjagin csdt is an integer, if

M is equipped with a spin structure. This is implied by the thet in this case the Atiyah-Singer

index theorem gives an equation

AM)=1— ...

A(M) = ind(D;) = dimg(ker D) — dimc(coker D;")

where
Dy :T(S*) — I'(ST)

is the Dirac operator on the complex spinor bunélle- S* @ S~ — M of (M, g). Hereg is an
arbitrary Riemannian metric aiv. Due to the appearance @fn the definition ofD ", the Atiyah-
Singer index theorem relates topological to geometric @rigs of M/. Detailed information on

the definition of D} and spin geometry in genfral can be found.in [26].



The Bochner-Lichnerowicz-Weitzenbock formulal[27]
scalg
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implies that ifscal, (M) > 0, then the Dirac operatab is invertible and hencend (D) = 0.
From this we obtain the following fundamental result, se& [Pheoreme 2].

D;OD;:V*V+

Theorem 2.1.Let M be a closed spin manifold with(A1) # 0. ThenM does not admit a metric
of positive scalar curvature.

However, the vanishing of this obstruction is not sufficitartthe existence of positive scalar
curvature metrics. For example, thegenus of thetk-dimensional torug™* vanishes for all
k > 0, because these manifolds are parallelizable. The indexdtie approach explained above
can be refined by considering the twisted Dirac operator

Df:T(ST®E)—TI(S”®E)

where E — M is some finite dimensional Hermitian vector bundle equippétlt a Hermitian
connection, cf. [[26, Prop. 5.10]. The Atiyah-Singer indbgdrem computes the index of this
operator as

ind(D;E) = (A(M)Uch(F),[M]) € Z.
Due to the appearance of the Chern charadtéf’) € H'(M;Q) this number can be non-zero
even thoughd (M) vanishes. Unfortunately the nonvanishingiwod(D; ;) does not obstruct pos-
itive scalar curvature metrics aif as the following example shows.

Example 2.2.Let M" = S*+2, Because the Chern character defines an isomorphism
ch: K°(M)® Q= H*(M;Q),

there is a finite dimensional Hermitian bundie— M with chyy, 1 (E) # 0 € H™(M; Q). Hence,
for any connection o and any choice of Riemannian metgjoon M, we geﬁnd(D;E) #0
although) admits a metric of positive scalar curvature.

The reason for this is that the Bochner-Lichnerowicz-Watzck formula
_ . scal
D,poD/ =V V+Tg+RE
contains an additional operat®” : I'(S* @ E) — T'(S* @ E) of order0 which depends on the
curvature of the bundl&, cf. [26, Theorem 8.17], so that even in the case wheah, > 0, the
operatorD;fE may not be invertible.

Gromov and Lawson observed [n [16] that this method doddesill to an effective obstruction
to positive scalar curvature metrics o in case that for alt there is a twisting bundl& — M
which satisfieg| R”|| < ¢ and whose Chern character contributes nontriviallintd D). If in
this case\/ carried a metrig satisfyingscal, > 0 we would find a twisting bundI&’ with

max,e s | scaly(p)]

4

and the Bochner-Lichnerowicz-Weitzenbock formula watllen imply thatind D;E =0, a con-
tradiction.
For example this reasoning can be used to show that thé"tadd not admit metrics of positive

scalar curvature_[16]. A general class of manifold wheresting bundles with the described
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property can be found asnlargeablananifolds, which were introduced in loc. cit., and mani®ld
of infinite K -area in the sense of [14]. We will discuss these notions anndhegm in a general
context in Sectiohl3.

The index theoretic point of view was refined by Rosenberg/B&). For any discrete group
G the groupC*-algebraC*G is constructed by completing the group algeby&| with respect
to some pre="*-norm coming from unitary representations®fon a Hilbert space and taking the
induced embedding @ |G| into the bounded operators on this Hilbert space. More &patty, if
one starts with the regular representatiorGodn the space of square summable functiéiisr)
this leads to theeduced groupC*-algebra C?, ,G and taking all unitary representations Gf
into account one arrives at tmeaximal groupC*-aIgebraC:me. For more details we refer to
[3,124,[44]. Thes&€ *-algebras and theik -theories are in general different [24, Exercise 12.7.7],
but the following construction works for both variants, aht is why we drop the subscript from
our notation. Note that the left translation action®®bn C[G] induces a lefG-action onC*G.

Let M be a closed spin manifold of even dimension. The Mishchdidkmenko bundlés — M
is defined as

E= M Xy (M) C*Wl(M) .

It is a locally trivial bundle of free right HilberC*m; (M )-modules of rank one in the sense of
[39,/44]. The fibreweise inner product is induced by the carainner product

C*ﬂ'l(M>XC*7T1(M) — C*’Tfl(M)
(z,y) — 2"-y.

By construction the bundl& —M can be equipped with a flat connection. Depending on the
choice of a metrigg on M we obtain a twisted Dirac operator

Dy :T(ST®E)=T(S"®E)
with an index
a(M) :=ind(D; 5) = “ker(D; )" — “coker (D} )" € Ko(C*m(M)).

The groupK,(C*m(M)) consists of formal differences of finitely generated proyeoC™m (M )-
modules, cf.[[3]. For the infinite dimensional twisting bimd’ the modulesker(D;E) and
coker (D ;) are not in this class in general, but this holds aftét*a, (A/)-compact perturbation
of DJr which makes this operator ta& (M )-Fredholm operator. For precise formulations and
more detalls on the involved theory we refer the reader th jB3articular to Theorem 3.4.

It follows again from the Bochner-Lichnerowicz-Weitzerdik formula (which does not contain
a curvature ternR” as F is flat) that the indexv(M) € Ko(C*mi(M)) vanishes, ifscal, > 0.
Moreover the Mishchenko-Fomenko index theorem [33] ingplieat - similar to the invariant
A(M) - the obstructionv(M) does not depend on the choice of a Riemannian metrit/omut
only on the oriented homeomorphism typeldt

There is an alternative construction@f)/) based on analytié&’-homology [3]24]. As before
let M be a closed spin manifold. We do no longer assumetihatdim M is even (this assumption
was used to simplify the index theoretic considerationsajpo

In this settinga(M) is defined as the image of th€-theoretic fundamental clagd/|, €
K, (M), which is induced by the given spin structure, under the cusitjon

K, (M) = KROD(M) — KPOD(Em (M) % K, (C*m(M)) .
6



Here the first map is induced by the(/)-equivariant classifying map/ — Em (M) from the
universal cover of\/ to the universal contractible (M )-space with finite isotropy groups and the
second map is the Baum-Connes assembly magp,/cf. [3].

There is a real analagg (M) of the index obstruction (A7) which, for simply connected mani-
folds, was introduced in the paper [25] and is defined as thg@&wof the/ O-theoretic fundamental
class|M|ko € KO, (M) under the composition

KOn(M) = KOmM (M) — KO™M (B (M) & KO, (C*mi(M)).

The invariantug (M) is more sensitive to differential topological propertiés\é thana(M). For
example it is different from zero on some exotic spheres.[26tefined variant of the Bochner-
Lichnerowicz-Weitzenbock argument shows that M) = 0, if M admits a metric of positive
scalar curvature.

In case we are dealing with the reduced gratipalgebraC’, m (M), the vanishing of the
a-0obstruction is closely linked to properties of the Baun@es assembly map

pr s KOZ(EG) = KO.(CryG)

and its complex analog
je t KE(BG) — K., (ClyG).
According to the Baum-Connes conjecture [3], a central ggeblem in noncommutative geom-
etry, these two maps are isomorphisms for all discrete group
The following conjecture has played a prominent role in thigect. It expresses the expectation

that the Rosenberg obstruction is in some sense optimal.

Conjecture 2.3 (Gromov-Lawson-Rosenberg conjecturegt M be a closed spin manifold of
dimension at least five and withx (/) = 0. Then) admits a metric of positive scalar curvature.

This is true, if M is simply connected [42], but wrong in general|[38]. In dirsiems two
and three analogs of the Gromov-Lawson-Rosenberg congeate truel[34], but in dimension
four there are additional obstructions coming from SeibAfigen theory. However, the following
stable version of the conjecture conditionally holds infihlwing sense.

Theorem 2.4([43]). Assume that the real Baum-Connes assembly map injective form, (M)
and thatag (M) = 0. Then some manifold of the forfi x B® x . . . x B® admits a metric of positive
scalar curvature, wherés® is an arbitrary eight dimensional spin manifold with(M) = 1.

This result is remarkable, because it is not understood h@an happen that a manifoldf
does not admit a positive scalar curvature metric,ut B® does. Notice that the vanishing or
non-vanishing ofvg (M) is not affected, whed/ is multiplied with copies of®. In this respect
Theoreni 2.4 establisheg (/) as the universal stable index theoretic obstruction tatjpescalar
curvature metrics.

If the assembly map for the complex grotip-algebra is injective, then also the rational assem-
bly map

KJ(EG)®Q = K.(BG) ® Q = K.(Cr,,,G) © Q
is injective. The strong Novikov conjecturel [3] states thate injectivity holds for all discrete
groupsG.

Therefore it makes sense to single out those manifbldshose fundamental classes map non-

trivially to K. (Bm(M)) ® Q. This motivates the next definition.
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Definition 2.5. A closedspin®-manifold M™ is called (rationally) K -theoretic essentiaif the
classifying map : M — B (M) for the universal cover ai/ satisfies

¢([M]x) # 0 € Kn(Bm(M))® Q,
where[M ]k € K, (M) is the K-theoretic fundamental class 61.

Conjecture 2.6. A K-theoretic essential spin manifold does not admit a metirjgasitive scalar
curvature.

It follows from the previous remarks that this conjecturédsoif the rational assembly map for
the associated fundamental group is injective. An impartansequence of Conjecture2.6 is the
following

Conjecture 2.7 ([16]). Let M be a closed aspherical spin manifold. Th&hdoes not admit a
metric of positive scalar curvature.

The following is a variation of Definition 215 for singular immlogy.
Definition 2.8 ([13]). A closed oriented manifoldl/™ is called(rationally) essentiaif the classi-
fying map¢ : M — Bm (M) satisfies
¢ ([M]u) # 0 € Hy(Bm (M); Q)
where[M |y is the fundamental class of in singular homology.

Recall that the homological Chern character defines an igamsm
ch: Ky(M)® Q= H,y(M;Q),
where the brackets in the subscripts indicate that we rduattdtheories aZ /2-graded. Keeping
in mind that for a closedpin“-manifold A/™ we have
ch([M]g) = [M]u + ¢

wherec € H_,,(M; Q) we see that essentiglin®-manifolds are alsé -theoretic essential. Hence
it makes sense to formulate the following conjecture.

Conjecture 2.9. An essential manifold does not admit a metric of positivéesa@arvature.

This seems especially intriguing, if the universal covethe$ manifold is not spin (so that index
theoretic obstructions are not available). Evidence fercbnjecture in this case is provided by the
fact that sometimes essential manifolds satisfy a weak tfremlargeability [[11), 12].

3. K-AREA FORHILBERT MODULE BUNDLES

All manifolds in this section are closed, smooth and corectct¥We recall the following defini-
tion from [18].

Definition 3.1. Let (M™, g) be an orientable Riemannian manifold.

e We call M enlargeablgif for everye > 0 there is a Riemannian covén/, ) of (M, g)
together with are-Lipschitz mapf. : M — S™ which is constant outside of a compact
subset of\/ and of non-zero degree.

e We call (M, g) area-enlargeabléf for everye > 0 there is a Riemannian covén/,g)
of (M, g) together with a smooth mafy : M — S™ which ise-contracting on2-forms,
constant outside of a compact subselbfaind of nonzero degree.
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Becausel is compact, all Riemannian metric @i are in bi-Lipschitz correspondence and
hence both of the above properties are independent on tledismhoice of the metrig on M.
Enlargeability is therefore a purely topological propestyl/. Indeed, whetheh! is enlargeable
depends only on the image of the fundamental clagd @i the rational group homology af; (M)
under the classifying map, se€ [7, Corollary 3.5] and Thadbe3. We do not know, whether a
similiar result holds for the property of being area-endaigje.

Examples for enlargeable manifolds are manifolds whichiaBmemannian metrics of nonpos-
itive sectional curvature. This follows from the Cartaneldenard theorem.

Area-enlargeable spin manifolds allow the constructiofinie dimensional Hermitian twisting
bundles for the Dirac operator as described after ExamgleVBe remark that the index theoretic
setting explained there needs to be slightly generalizgdt{ve index theory on open manifolds,
see [18]), if infinite covers of\/ are involved (this case is not excluded in Definition 3.1)e3d
considerations lead to the following theorem.

Theorem 3.2([16,[18]). Let M be an area-enlargeable spin manifold. Thighdoes not admit a
metric of positive scalar curvature.

At this point one might ask whether the enlargeability albstion is reflected by the Rosenberg
obstruction. The twisting bundlds — M of arbitrarily small curvature going into the obstruction
expressed in Theorelm 8.2 motivate the notiokeérea seel[14].

In this section we will introduce a related property farhomology classes af/. Examples
of such K-homology classes ark&-theoretic fundamental classes of area-enlargeable spim m
ifolds, see Proposition 3.8. The main result in this segtibmeoreni 3.9, shows that classes in
Ky(M) ® Q of infinite K-area are mapped to non-zero classe&i(C, .71 (M)) under the as-

sembly map. Together with Proposition|3.8 this implies thatRosenberg obstruction subsumes
the enlargeability obstruction of Gromov and Lawson:

Theorem 3.3([20,/21]). Let M™ be an area-enlargeable spin manifold. Then the Rosenbdexin
a(M) € K, (C,..m(M)) is different from zero.

max

A convenient setting for our discussion is provided by Kaspa KK -theory, cf. [3], which
associates to any pair of separablealgebrass andT" an abelian grouxK (.S, 7). We work over
the field of complex numbers and will restrict attention te #pecial caseS = C'(M), T = C
andS = C, T = C(M) ® A for a seperable unital*-algebraA. Here we will work only with
ungradedKK -groups.

According to the analytic description &f-homology [24] we have a canonical identification

KEK(C(M),C) 22 Ko(M)

the 0-th K-homology of M which, for example, can be defined homotopy theoreticallyhas
homology theory dual to topologicél -theory [1].

Elements inKK (A, B) are represented byredholm triples(E, ¢, F') where E is a countably
generated graded Hilbe-module,¢ : A — B(FE) is a graded«-homomorphism B(FE) is
the graded”*-algebra of graded adjointable boundBemodule homomorphismg — FE) and
F € B(E) is an operator of degrelesuch that the commutat@F’, ¢(a)] and the operatorg? —
idg)o(a) and(F — F*)¢(a) are B-compact for allh € A. In our context we will be dealing with
Fredholm triples of very special forms which will be spedfi@ a moment. The reader who is
interested in more information on the notion of Hilbert miaduand the construction of Kasparov

KK-theory can consult the sources([3] 44].
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Atypical situation arises, it/ is a spin manifold of even dimension equipped with a Rienmamni
metricg. The Dirac operator from Sectibh 2

D, : I(S*) — I'(S¥)

is a symmetric graded first-order elliptic differential ogér of order one. It therefore gives rise
to an elemen{D,] € KK(C(M),C) represented by the Fredholm triplé*(S), ¢, F) where
L?(S) is the space of?-sections of the bundlé™ & S—, ¢ : C(M) — B(L?(S)) is the standard
representation as multiplication operators éhd B(F) is a bounded operator which is obtained
from D, by functional calculus.

The construction works more generally for symmetric graeldigtic differential operators on
graded smooth Hermitian vector bundles ovwér cf. [24, Theorem 10.6.5]. In this way we
may think of elements itlKK (C(M),C) = Ky(M) as a kind of generalized symmetric elliptic
differential operators ovebd/. In this picture, the index of a graded elliptic differemhtgoerator
translates to the image of théi-class represented by this operator under the map

Ko(M) = Ko(x) = Z

which is induced by the unique mag — x.

If £ — M is a (finite dimensional) Hermitian bundle with a Hermitiamnoection we obtain
the twisted Dirac operator

Dyp:T(ST®E)—=T(ST®E)

which is again a symmetric graded elliptic differential ogger and hence has an index #h
The index of the twisted operatd?,  has the following description ik -theory, cf. [3]. The
bundleE — M represents a clasg’] in topological K -theory K°( M), which can be canonically
identified with KK (C, C'(M)). The elementE] € KK (C,C(M)) is represented by the Fredholm
triple (I'(E), ¢,0) whereI'(E) is the C(M)-module of continuous sectiond — E equipped
with the C'(M)-valued inner product given by fibrewise application of theriditian inner product
on £ and¢ : C — B(I'(£)) is the standard embedding.

Under the Kasparov product map [3]

KK(C,C(M)) x KK(C(M),C) - KK(C,C) =2
which in this case corresponds to the usual Kronecker ptquhidng of K-homology and topo-
logical K-theory (i.e.-cohomology)
K°(M) x Ko(M)
(c, )

Z

%
— (¢, h)
the pair([E], [D,]) is senttond(D, ) € Z.

This point of view may be generalized by allowing twistingidiles~ — M which are locally
trivial bundles of finitely generated right HilbedA-modules wherel is a unitalC*-algebra.

We recall [39] 44] that each finitely generated Hilbérmodule bundleZ — M is isomorphic
to an orthogonal direct summand of a trividdmodule bundleV/ x A™ — M where A™ carries

the canonical-valued inner product
(a1, ... an), (by,...,by)) — aiby + ...+ a,by,.

We can take this description as definition of finitely genedldtlilbert A-module bundles.
Let £ — M be a finitely generated Hilber-module bundle. We associate to — M a

KK-class[E] € KK(C,C(M) ® A) as follows. First note that the spat¢E) of continuous
10



sections in¥ is a finitely generated HilbefC' (1/) ® A)-module and the identity(£) — I'(E) is
a(C(M)® A)-compact (indeed finite rank) operator by a partition of yiaitgument. Therefore
the triple(T'(E), ¢,0), where¢ : C — B(I'(E)) is the standard embedding, defines an element in
KK(C,C(M)® A).

Using the Kasparov-product (which we again interprete asoaé&cker product pairing)

KK(C,C(M)® A) x KK(C(M),C) — KK(C,A)=KyA)
(c,h) — {c,h)

we have a pairing of generalized elliptic differential ogters on)/ and finitely generated Hilbert
A-module bundles.

If M is a spin manifold of even dimension, then the element’itA) obtained by evaluating
the pair([E], [D,]) can be interpreted as the index of the Dirac oper&pitwisted with the bundle
E, cf. [3]. Hence, for the special case whéh— M is the Mishchenko-Fomenko bundle, this
class

([E], [Dg]) € Ko(C™m (M)

coincides with the Rosenberg index)\/) defined in Sectiohl2.

We will now, for generalM, single out thosé<-homology classes € Ky(M) which can be
detected by finitely generated Hilbettmodule bundles of arbitrary small curvature. In order to
avoid the discussion of smooth bundles and curvature retinexpress this condition in terms
of holonomy representations of the path groupoidaf

Recall that thepath groupoidP; (M) of M has as objects the points M and as morphisms
Mor Py (M)(z,y) the set of piecewise smooth patlisl] — A connectinge andy. This is a
topological category.

Let A be a unitalC*-algebra and let — M be a finitely generated Hilbert-module bundle.
Thetransport category (E — M) has as objects the points M and as set of morphisms

T(E — M)(x,y) :=Isoa(E,, Ey).

This is again a topological category where the set of morpsis topologized by choosing lo-
cal trivializations in order to identify nearby fibres &f — A and the set of Hilbertd-module
isomorphismdso4(E,, £,) is topologized as a subset of the Banach spaae(E,, £,).

A holonomy representatioon £ — M is a continous functor

H o PUM) — T(E — M).

It is called e-close to the identityif for eachx € M and each closed contractible logp e
Mor(P;(M)) based at: € M we have

[H(v) —idg, || <e-L(7).

Here we use the operator norm on the left hand side and deydte pthe length ofy.
The following proposition establishes a link to the notionparallel transport in differential
geometry.

Proposition 3.4. For eachn > 0, there is a real constant’'(n) > 0, which depends only om =

dim M, with the following property. Lek — M be a finite dimensional smooth Hermitian bundle

of rank d equipped with a smooth Hermitian connectiornwhose curvature) € Q*(M;u(d)) is

norm bounded by. Then the parallel transport with respectYois (C(n) - €)-close to the identity.
11



Proof. We only sketch the argument, for more details seé [20]. Ihaaugh to prove the assertion,
if v:[0,1] — M is a piecewise smooth loop which is contained in a closed rchioate neigh-
bourhoodD C M which is diffeomorphic to the:-dimensional cubé™ C R”™. Furthermore we
can assume that the lengtfry) of v is bounded above by a fixed constdnt- 0. We construct
trivialization inductively into each of the coordinate directions by parallel transport. We denote
the induced connection one form with respect to this trizélon byw € Q' (D;u(d)). Now [20,
Lemma 2.3] shows the following bound for the normuwotmeasured with respect to the operator
norm onu(d) and the maximum norms on the unit sphere bundlég*af andA?M) :

lwll < nlinll -

Let¢ : [0,1] — E be a parallel vector field along Using the above trivialization we consider
as a smooth map : [0, 1] — C. It satisfies the differential equation

¢'(t) + (wyn (V' (1)) - B(t) = 0
and it follows that

[6(1) = B(0)]] < exp(2L()lw]]) - [2(O)] -

Becausexp : C? — C?is uniformly Lipschitz continuous on each bounded neigithoad of0,
the claim follows. O

Definition 3.5. Leth € Ky(M) ® Q. We say that hasinfinite K-area if for eache > 0 there is
a unital C*-algebraA and a finitely generated Hilberd-module bundléZ — M which carries a
holonomy representation whichdsclose to the identity and satisfies

([E],h) #0 € Ko(A) ®Q

where[E] € KK(C,C(M) ® A) is the element represented By — M. If h is not of infinite
K-area, we say that it isf finite K-area

A classh € H,,(M;Q) is defined to be of infinit&-area, if the classh™*(h) € Ko(M) ® Q
is of infinite K -area.

The notion of finitely generated Hilber-module bundles can be generalized tb-algebras
without a unit. However, in the context of Definitign B.5 thises not lead to a wider class of
K-homology classes of infinit& -area, since any finitely generated Hilbdrmodule bundle is in
a trivial way also a finitely generated Hilbe#t'-module bundle over the unitalizatiofrt of A.
This procedure does not change the property Bf, 1) being zero or not (in the rationalization of
the K-homology ofA and A" respectively).

Our Definition[3.5 is inspired by the preprint [28] where thregerty of finite K -area is inves-
tigated from a homological perspective. In contrast to {yigr@ach in loc. cit. and in the original
source([14] we do not further quantify classes of firfifearea, since we will be concentrating on
the property of infinite/{-area as one instance of a largeness property besideseatidity and
essentialness. The discussion[in/[28] and other previoperpas restricted to finite dimensional
smooth Hermitian vector bundles as twisting bundies> M occuring in our Definition 315. Our
more general setting is needed in connection with enlaitjiyadpuestions and applications to the
strong Novikov conjecture, see Sectidn 4.

By a suspension procedure we can also define classesink; (M) @ Q of infinite K-area
by requiring that the class x [S!]x € Ko(M x S*) @ Q be of infinite K-area, with an arbitrary

choice of aK-theoretic fundamental clags']; € K;(S'). Note that with this definition the
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class[S']x € K;(S') ® Q is of infinite K-area. The following discussion can be extended to
K-homology classes of odd degree, but we restrict our expaodiv classes in<,(M) ® Q for
simplicity.

The following two facts are similiar to Propositions 2 anah328], cf. also Proposition 3.4. and
Theorem 3.6 in[7].

Proposition 3.6. The elements of finit& -area in Ky (M) ® Q form a rational vector subspace.

Proof. If h € Ko(M) ® Q is of infinite K-area, then the same is true for any nonzero rational
multiple of . This implies that the set of elements of fintearea is closed under scalar multipli-
cation. Now assume that+ 7’ is of infinite K-area. It follows from Definitiof 315 that eithéror

h’ are of infinite K-area (choose := % with £ = 1,2,...). This shows that the set of elements of
finite K -area is closed under addition. O

Proposition 3.7.If f : M — M’ is a continuous map, thefi : Ko(M) ® Q — Ky(M') @ Q
restricts to a map between vector subspaces consistinguifegits of finitd(-area. In particular,
the vector subspace of elements of fiditearea in Ky(M) ® Q is an invariant of the homotopy
type of M.

We will return to homological aspects of largeness propsiiti Sectiofi/5. The notion of infinite
K-area is illustrated by the following examples.

Assume that)V/ is an oriented manifold of even dimensi@n which has infiniteK-area in
the sense of_ [14]. By definition this means that for eack 0 there is a finite dimensional
smooth Hermitian vector bundlé — M with a Hermitian connection whose curvature form in
Q?(M;u(d)) (hered = rk V') has norm smaller thanand with at least one nonvanishing Chern
number.

Using linear combinations of tensor products and extemodpcts ofl” one can show that there
is a Hermitian bundlds — M with Hermitian connection whose curvature has norm sm#iken
C - ¢ (whereC'is a bound which depends only dim M) and which satisfies

(ch(E), PD(A(M))) # 0 € Ho(M; Q).

wherePD(A(M)) is the Poincaré dual of thd-polynomial of M in H.,(M; Q).

The precise argument is carried out(in/[10] where the follkmyfact is shown: There is a number
N depending only onlim M with the following property: Assume that — M is a complex
vector bundle and assume that all bundlés— M which may be constructed out bfbe at most
N operations of the form direct sum, tensor product and exterioduct satisfy

(ch(V'), PD(A(M))) = 0 € Ho(M; Q).

Then all Chern numbers &f — M are zero.

Considering Hermitian vector bundles as finitely generategective HilbertC-module bundles
this means in the language of Definition]3.5 that the cRIS$.A(M)) € H.,(M;Q) has infinite
K-area (here we use that the Chern character is compatidietivgtKronecker pairing). I\ is
equipped with apin®-structure, this element is equal to tRetheoretic fundamental clag¥/| x of
M and hence we have shown that under the stated assumptiatasisg/ | has infinite/{ -area
in our sense.

By a similar argument one shows thatlif has infinite/X'-area in the sense of Gromov, then

[M]H c H2n(M§ Q)

has infiniteK -area wheréM |, € H,,(M; Q) is the homological fundamental class/af.
13



As a second example, cf. [20, Section 4], assumethad area-enlargeable and that the covers
M — M in Definition[3.1 can always be assumed to be finite. By pultiagk a suitable Hermitian
bundleV — S?" with connection to these covers along the mgps M — S?" and wrapping
these bundles up to get finite dimensional Hermitian bunfélles- M with small curvature, one
can show that the classé¥/|y € H,,(M;Q) and [M]x € Ko(M) @ Q (if M is spin®) have
infinite K -area.

More generally assume thaf>" is area-enlargeable with no restriction on the covdrs- M.
Then [21, Proposition 1.5] implies that the clas§®g and [M] (if M is spin®) have infinite
K-area. In this case we get infinite dimensional bundfes> M which shows the usefulness of
Definition[3.5 in the general context of Hilbettmodule bundles wherg is aC*-algebra different
from C.

For later reference we state the last observation sepgratel

Proposition 3.8. Let M/ be area-enlargeable and of even dimension. Thertraea of[M |y is
infinite. If A/ is spin® then also the{-area of[ M|k is infinite.

We are now ready to state our main result. We denote by
o Ko(M) = Ko(Br (M) & Ko(Cr 7 (M))

max

the composition of the map induced by the classifying map- B (M) and the assembly map.
If M is a spin manifold of even dimension, note the equations

a(M) = o([M]k) .
(the left hand side is the Rosenberg index) and
a(h) = ([E],h) € Ko(Cpp,m(M)) @ Q

max

forall h € Ko(M) ® Q whereE — M is the Mishchenko-Fomenko bundle 6, (M).
The following is our main result.

Theorem 3.9.Let M be a closed connected smooth manifold and let K(M) ® Q be of infinite
K-area. Then

alh) #0 € Ko(Ch.m(X)) @ Q.
We note the following implication for the Rosenberg index.

Corollary 3.10. Let M be a closed spin manifold of even dimension whosheoretic fundamen-
tal class has infinitg<-area. Then

a(M) # 0 € Ko(Cpppm(M)) .

max

In particular, closed even-dimensional spin manifoldsrdinite /A -area in the sense of Gromov
[14] have nonvanishing Rosenberg index. (A similar result holdd is odd dimensional.)

The proof of Theorern 319 is based on the construction of ‘irgfiproduct bundles” from [20].
We shall explain how this construction fits the setting ofplaper at hand.

Let (Ey)ren be a sequence of finitely generated Hilbets,)-module bundles oved/, where
(Ak)r=12,... is a sequence of unitdl*-algebras. We assume that the fibreH)f is isomorphic
(as a HilbertA,-module) tog, Ax, Whereq, € Ay is a (self adjoint) projection. This assumption
is important for our construction. In general the fibreffis of the formg - (Ax)™ for somen

with a projectiong € Mat(Ag,n). In this case we use the same transition functions a&fao
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construct a HilberMat( Ay, n)-module bundle of the required form. By Morita equivalentelp
andMat(Ag, n) this does not affect th& -theoretic considerations relevant for our discussion.
We consider the unital™-algebraA consisting of norm bounded sequences

(ar)ren € J ] A

k=1

and wish to construct a Hilbert-module bundleZ — M with fibre ¢ A, whereq = (gy) is the
product of the projectiong,, by taking the “infinite product” of the bundl€s,. However, when
taking the infinite product of the transition functions foetbundles?,,, this does not result in a
continuous bundle oveY! in general. The following example indeed shows that an it&iproduct
construction of this kind may be obstructed by topologicalperties of the bundles,.

Example 3.11.Let £, — S? be the Hermitian line bundle with Chern number Assume we
have a HilbertA-module bundleZ — S? over theC*-algebraA = [, C (which is equal to the
standard seperable Hilbert space) with typical fibife= | [, C and Lipschitz continous transition
functions in diagonal form so that thieh component of this bundle is isomorphic i as a
complex line bundle.

Restricting the transition functions df to the single factors leads to trivializations for the
bundlesE;, — S? whose transition functions have uniformly @i bounded Lipschitz constants.
This implies that the Euler numbers of the bundizsare bounded, contrary to our assumption.

This example indicates that we need to be able to choosehitpgadvializations of the bundles
E). so that the resulting transition functions have uniformyibded Lipschitz constants. This can
be achieved as follows.

Proposition 3.12. Assume that each bundi&, — M is equipped with a holonomy representation
‘H,. so thatH,, is e-close to the identity for a constaatwhich is independent df. Then there is
a finitely generated Hilbert-module bundlé” — M with transition functions in diagonal form
and so that thé:th component of this bundle is isomorphiciHp as anA,-Hilbert module bundle.

Proof. Let (U;) be a finite open cover a¥/ where eacli/; is diffeomorphic to the:-dimensional
cubeD™. Over eachl; we choose a trivialization of;, by an inductive application of parallel
transport (prescribed by the holonomy representati@hin the n coordinate directions, cf. the
proof of Propositio_3]4. This leads to local trivializat®of all the bundleds;, whose transi-
tion maps have uniformly bounded (irand k) Lipschitz constants. Hence the product of these
transition maps can be used to define the Hilberhodule bundld” — M as required. O

We remark that the product bundle— M is a bundle of finitely generated Hilbeftmodules
isomorphic tag A by our assumption that,, has typical fibrey, Ay.

For the proof of Theorem 3.9 we assume that K,(M) ® Q and that(E}) is a sequence
of Hilbert A;,-module bundles with fibreg, A, so that([Ex],h) # 0 € Ky(Ax) ® Q for all k.
Furthermore we assume thaj, is equipped with a holonomy representatitin which is 1/k-
close to the identity.

We consider the Hilberti-module bundld” — M constructed in Propositidn 312.

Starting fromV we can construct various other Hilbert module bundles aveas follows.
There are canonicdl*-algebra morphisms

’(/JkA—>Ak
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given by projecting onto theth component. Moreover we set

A=A cA,
k=1
the closed two sided ideal consisting of sequencest@nding to zero and
Q=A/A,

the quotienC*-algebra. We denote by
v:A—=Q

the quotient map.
We obtain canonical Hilbert,-bundle isomorphism

E, =2V ®A;

and a Hilbert))-module bundle
W =V®Q
with typical fibreq@, where we identify; € A and its image irQ).
The following fact is crucial

Proposition 3.13. The bundldV has local trivializations with locally constant transitianaps.
More precisely, it can be written as an associated bundle

W =M X1 (M) Q
for some unitary representation (1) — Homg(¢@, ¢@Q).

Proof. The holonomy representatiofts, induce a holonomy representation Bhwhich is equal
to the identity on each closed contractible looplih This follows because the holonomy repre-
sentatiornt{,, is 1/k-close to the identity. Using this holonomy representatioii¥ we construct
the desired local trivializations d#/. O

These facts in combination with naturality properties obgarovK K -theory allow us to show
thata(h) # 0 € Ko(C!,,.m(M)) ® Q. The holonomy representation for the buntlfeinduces
an involutive map

m (M) — Homg(qQ, Q) = qQq

with values in the unitaries of thé*-algebrayq. Hence, by the universal property@f,,,m (M)
we get an induced map 6f*-algebras

¢ : C;:maxﬂ-l(M) - qu — Q
Note that this step is not possible in general, if we usedetiaced_"-algebraC7, ;1 (M) instead.
Let E = M X ) Craem (M) — M be the Mishchenko-Fomenko bundle.

max

We study the commutative diagram

Ko (M) 2 Ky (o m (M) —2- Ko(Q)

: ¢

Ko(M) Ko(Q)

Ko(A)
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The composition

Ko(M) 57 Ko(A) " Ko(A)

sends the elemerit to ([Ex], h) € Ky(Ax) which is different from zero by assumption. This
implies that under the map

X Ko(4) = ] Ko(Ar)

z = (Pr)«(2))k=12...

the element := ([V], h) is sent to a sequence all of whose components are differemt Zero.
We will conclude from this that alsg. (z) # 0 finishing the proof of Theorein 3.9.
Consider the long exact sequencdirtheory induced by the short exact sequence

0—-A —-A—-Q—0.

Using the fact thaf-theory commutes with direct limits we have a canonical isgrhism
Ko(A') = @D Ko(Ar).-
k

Assume that),(z) = 0. This implies thaty mapsz to a sequencéz;) € [], Ko(Ax) with
only finitely many nonzero entries. But this contradicts calculation carried out before. Hence

¥u(2) #0.

4. THE STRONGNOVIKOV CONJECTURE

The method presented in the previous paragraph can be uggdue a special case of the
strong Novikov conjecture. L&t be a discrete group and l&t(G) C H*(BG; Q) be the subring
generated by7=?(BG; Q)

Theorem 4.1([22]). Leth € Ky(BG) ® Q be aK-homology class with the following property:
There is a clasg € A*(G) so that(c,ch(h)) # 0 € Hy(BG;Q) = Q. Then under the assembly
map

KO(‘BG) ® @ — K0<C:namG) X Q

the element is sent to a a non-zero class.
As a corollary one obtains the following special case of fhssical Novikov conjecture.

Corollary 4.2 ([9,/32]). Let M be a connected closed oriented manifoldddbe a discrete group
and letf : M — BG be a continuous map. Then for ale A*(c) the higher signaturéL (M) U
f*(c), [M]) is an oriented homotopy invariant, whef¢\/ ) denotes the Hirzebruch-polynomial.

We will establish Theorernh 4.1 as a fairly straightforwardeguence of Theorem 8.9. It il-
lustrates again the flexibility of the notion of infinit€-area in Definitior_3)5 based on Hilbert
module bundles. For simplicity we restrict to the case thatd is a class € H?*(BG; Q) with
(c,ch(h)) # 0.

Using the description ok’-homology due to Baum and Douglas [2] there is a closed spm ma
ifold M of even dimension together with a finite dimensional compksotor bundled” — M and
a continuous map : M — BG so that

L(VIN[M]k) = h.
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Here we regard agaivi — M as an element i&x (M) and use the cap product pairing
N: K°(M) x Ko(M) — Ko(M).

We can assume thgtinduced an isomorphism of fundamental groups. In view oforem[3.9
we need to show that the claid3g) N [M]x € Ky(M) is of infinite K -area.

Let L — M be the complex line bundle classified hyWe pick a Hermitian connection ah
and denote by € Q*(M;iR) the associated curvature form. Because the universal cove:

is contractible, the pull back*(L) — M of L to the universal cover : M — M is trivial. We fix
a trivialization and denote thieform associated to the pull back connectionuoy: Ql(]T/f JiR).
The curvature formr*(n) is equal tadw, sinceU(1) is abelian. However, the connectid+form w
is in general not invariant under the action of the deck fiansation group onV/, because in this
case the curvature df would be trivial and hencé — M would be the trivial line bundle.

The assumption oaimplies

(IL],[V]N[M]k) # 0 € Ko(C) = Z.

So it remains to “flatten” the bundle — M by scaling its curvature by a constahic ¢ < 1.
Unfortunately this is impossible, because the first Cheas<bfZ, would no longer be integral.

The following construction originating from [22] gives alstion to this problem by considering
infinite dimensional bundles. First we consider the Hillsgrice bundle

E=MxglG)—C

wherel?(G) is the set of square summable complex valued function§ andG acts on the left
of (@) by the formula

(Y¥)(x) = ¢(z7)
and on theA[ight of\/ by (z,g) — g 'z. Let0 < t < 1. We consider th&-invariant connection
1-form on M x [?(G) which on the subbundle

MxC-1,C M x *(G)

concides with(g~1)*(tw). Herel, € [*(G) is the characteristic function @f € G. Because this
one form isG-invariant, we obtain an induced connectighon the Hilbert space bundlé whose
curvature form is norm bounded by ||n||. Now we have a Hilbert space bundle with holonomy
representations which are arbitrarily close to the idgraibd it remains to show that it detects the
K-homology class$V] N [M]x. Because, by Kuiper’s theorem, any Hilbert space bundiévisit
we shall at first reduce the structure groupfof This will result in finitely generated Hilberd,-
module bundleds; — M with appropriate unital”*-algebras4,, wheret € (0, 1]. The algebras
A; will depend ory.

We fix a base point € M and choose a poigte M abovep. The fibre ovep is then identified
with the Hilbert spacé?(G). Now we define

A, C BIA(@))

as the norm-linear closure of all mafi$G) — (?(G) aring from parallel transport with respect
to V* along piecewise smooth loops i based ap. We furthermore define a bundle — M
whose fibre over: € M is given by the norm-linear closure lom(E|,, £|,,) of all Hilbert space
isomorphisms?|, — E|, aring from parallel transport with respect¥ along piecewise smooth

curves connecting with z. In this way we obtain, for eache (0, 1], a free Hilbert4;-module
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bundle of rankl where theA;-module structure on each fibre is induced by precomposititin
parallel transport along piecewise smooth loops basgd at

Now, on the one hand, parallel transport with respedtanduces a holonomy representation
on E; — M which, for small enough, is arbitrarily closed to the identity.

On the other hand, each of the algebfasarries a canonical trace

no A= Com() = (1), Le)

wherel, € [?(G) is the characteristic function of the neutral element G and (—, —) is the
inner product or?(G). For details we refer td [22, Lemma 2.2]. Using the Chern Waltulus
from [39] we obtain

m(({[E], [V] N [M]k)) = (exp(tc), ch(h)) € R[]
See also [22]. In particular, for infinitely maiye N we have
([Eryel, [VIN[M]g) #0 € Ko(Aijr) @ Q

This implies thatV’] N [M]k is a class of infinitek-area and together with TheorémI3.9 finishes
the proof of Theorern 41 1.

5. HOMOLOGICAL INVARIANCE OF ESSENTIALNESS

Recall from Definitiol 2.8 that a closed oriented maniféldt is calledessentialif the classi-
fying map¢ : M — B (M) satisfies

¢([M]u) # 0 € Hy(Bmi(M); Q).
Essential manifolds obey Gromov’s systolic inequality:

Theorem 5.1([13]). Let M be an essential Riemannian manifold of dimensioithen there is a
noncontracible loopy : [0, 1] — M satisfying

0() < C(n) - vol(M)/"
where the constar'(n) depends only on.
We show the following implication.

Theorem 5.2.Let M be an oriented manifold of even dimension If the clas§M |y € Ho,(M; Q)
has infiniteK -area, then)M is essential.

Proof. Let E — M be the Mishchenko-Fomenko bundle. The proof of Thedreinsstased on
the commutative diagram

Ko(M) ® Q Sk Ko(Chpemi (M) ® Q
Ko(M) ® Q 2= Ko(Bm (M) @ Q — Ko(C*,. m (M) ® Q

mazx
l ch l ch

HGU(M; @) L HeU(Bﬂ-l(M)u Q)

Indeed, by Theorein 3.9 the imagedaf ' ([M]) under the map in the first line is non-zero.CJ

This theorem implies
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e Closed manifolds of infinitd{-area in the sense of Gromov are essential.
e ([20,/21]) Area-enlargeable manifolds are essential (uepd3itiorn 3.8).

The second implication can be obtained without referen&asparov theory. This is carried out
in the paperi[7], where several largeness properties of &wmn manifolds are investigated from
a purely homological point of view. The best results can beiolked for enlargeable manifolds
where we have the following homological invariance result.

Theorem 5.3([[7]). LetG be a finitely presented group. Then there is a rational vestdrspace
H™(BG;Q) C H.(BG;Q)

with the following property: LetM be a closed oriented manifold of dimension ThenM is
enlargeable, if and only if under the classifying map M — Bm (M) we have

¢-([M]) ¢ H" (Bm (M); Q)

This resultindeed implies that enlargeable manifolds ssewtial, becausec H,, (Bm (M); Q)
is contained in every vector subspacebf( Bmy (M ); Q).

Theorem 5.8 can be seen as a form of homological invarianemlafgeability. The proof is
based on the following definition of enlargeable homolo@gssks in simplicial complexes.

Definition 5.4 ([7]). LetC be a connected simplicial complex with finitely generated&mental
group. A homology class € H,(C; Q) is calledenlargeablgif the following holds: LetS C C
be a finite subcomplex carryinfgand inducing a surjection on;. Then, for every > 0, there is
a coverC — C and ane-Lipschitz mapS — S™ which is constant outside a compact subsef of
and sends the transfer(h) € HY(S; Q) in the locally finite homology of to a nonzero class in

the reduced homologh,,(S™; Q). HereS is the preimage of under the covering ma@ — C.

It is shown in [7] that the condition far described in this definition is independent of the finite
subcomplexs C C' carryinge and inducing a surjection an . Using this property it is not difficult
to prove the following fact, seél[7, Prop. 3.4.].

Proposition 5.5. Let f : ¢ — D be a continuous map inducing an isomorphism of (finitely
generated) fundamental groups. Then a class H,.(C; Q) is enlargeable, if and only if the class
f«(h) € H.(D;Q) is enlargeable.

From this Theorern 513 follows, if we defié:™ (BG; Q) as the subset consisting of all homol-
ogy classes which are not enlargeable.

Theoreni 5.8 transforms the problem of determining enldrigeaanifolds to a problem in group
homology: Given a finitely generated groGpdeterminef:™( BG; Q), the “small” group homol-
ogy ofG. In light of Theoreni 5.3 and the fact that the fundamentasga of enlargeable manifolds
(of even dimension) are of infinit&-area (see Propositidn B.8) it is desirable to decide winethe
H™(BG;Q) can be non-zero. This is answered in the positivelin [7, Témot.8] by use of the
Higman4-group [23]. Together with Theoreim 5.3 this implies thatréhare essential manifolds
which are not enlargeable, séé [7, Theorem 1.5].

In contrast to these positive results we do not know, whettere are essential manifolds which
are not area-enlargeable. These manifolds would existe ifdllowing question had an affirmative
answer.

Question 5.6.1s there an essential manifold whose fundamental classyusar homology M|,
is of finite K -area?
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6. ROSENBERG INDEX FOR THE REDUCED GROUP*-ALGEBRA

Let M™ be a closed spin manifold. The method of Sedtion 2 can be wgedlg well to construct
an index obstruction to positive scalar curvature

a(M) € Kn(Clogm (M))

T

The reduced group’*-algebra does not share the universal property of the maxjroap C*-
algebra which we used in the proof of Theorem 3.9.
Exploiting the connection of*, ;71 (M) to coarse geometry [24] we have

Theorem 6.1([19]). Let M™ be an enlargeable spin manifold. Then
a(M) # 0 € Ky(Creqm (M)).
Question 6.2.Does Theorermn 3.9 remain true for the reduced grétipalgebra?
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