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Universitat de Barcelona, Diagonal 647, 08028 Barcelona, Spain

(Dated: November 16, 2010)

The magnetic properties and critical behavior of both ferromagnetic pure and metallic nanopar-
ticles having concurrently atomic disorder, dilution and competing interactions, are studied in the
framework of an Ising model. We have used both the free energy variational principle based on
the Bogoliubov inequality and Monte Carlo simulation. As a case of study for random diluted
nanoparticles we have considered the Fe0.5Mn0.1Al0.4 alloy characterized for exhibiting, under bulk
conditions, low temperature reentrant spin glass (RSG) behavior and for which experimental and
simulation results are available. Our results allow concluding that the variational model is suc-
cessful in reproducing features of the particle size dependence of the Curie temperature for both
pure and random diluted particles. In this last case, low temperature magnetization reduction was
consistent with the same type of RSG behavior observed in bulk in accordance with the Almeida-
Thouless line at low fields. A linear dependence of the freezing temperature with the reciprocal of
the particle diameter was also obtained. Computation of the correlation length critical exponent for
random diluted nanoparticles yielded the values ν=0.926±0.004 via Bogoliubov and ν=0.71±0.04
via Monte Carlo. Differences are attributed to the so-called pairs-approximation in the variational
model. From both approaches, differences in the ν exponent of Fe0.5Mn0.1Al0.4 nanoparticles with
respect to that of the pure Ising model agree with Harris and Fisher arguments.

PACS numbers: 75.10.-b, 75.50.Lk, 75.40.Cx, 75.40.Mg, 75.50.Bb,75.50.Tt

I. INTRODUCTION

The magnetic properties of bulk metallic systems hav-
ing concurrently atomic disorder, dilution, competing
interactions and characterized for exhibiting spin glass
(SG) behavior have been widely studied from different
points of view: experiment, theory and numerical simula-
tion [1–3]. Among the systems with such characteristics,
we can mention for instance CuMn [4], FeAu [5], FeAl
[6–9], FeNiMn [10, 11] and FeMnAl [11–15] alloys. These
alloys are interesting due to the richness of magnetic
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phases that can be found such as ferromagnetic, anti-
ferromagnetic, superparamagnetic, cluster glass, SG and
RSG depending on stoichiometry, microstructure, degree
of dilution, atomic disorder, magnetic field and tempera-
ture. Typical Ising spin glass systems like those based on
FeMnTiO3 [16, 17], Fe(Cu,Al)Dy [18], LiHoYF [19], FeAl
[6, 7, 9, 20] and FeMnAl [11, 12, 15] are good candidates
to study SG and RSG related properties through Ising-
based theoretical models where good agreement with ex-
perimental results has been achieved. In particular, pure
SG and RSG behaviors, in ternary FeMnAl alloys, arise
from several ingredients including random atomic distri-
bution of the alloy constituent elements in the crystalline
structure, dilution provided by Al atoms giving rise to
bond randomness and, finally, competition among the
different exchange integrals involved. On this last re-
spect, competition is given, essentially, by the difference
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in sign and magnitude of the JFe-Fe, JFe-Mn and JMn-Mn

exchange integrals. For high enough iron contents, a RSG
behavior within the ferromagnetic phase governed by the
Fe matrix can arise [13].
Up to date, works reported on these kind of alloys deal
with magnetic properties under bulk conditions. How-
ever, to our knowledge, and despite of all the literature
related with the so-called surface spin glass-like behav-
ior in nanoparticles, no studies on metallic nanoparti-
cles having concurrently bond competition, magnetic di-
lution and atomic disorder within the entire volume of
the nanoparticles have been reported. This fact has led
us to consider the interplay between these effects and
those arising from finite size when considering nanopar-
ticles having such ingredients. The purpose of this article
is to characterize from the magnetic standpoint, how the
SG behaviors, found in systems like FeMnAl alloys under
bulk conditions, become revealed in nanoparticles where
the surface to volume ratio becomes increasingly impor-
tant. Both the free energy variational method based on
the Bogoliubov inequality and a Metropolis Monte Carlo
simulation in the framework of a nearest neighbor Ising
model were considered. The former, as energy minimiza-
tion tool, has been already successfully employed in de-
scribing the magnetic properties of this kind of systems
where theoretical magnetic phase diagrams are in good
agreement with the experimental ones [11, 12, 15]. The
layout of the paper is as follows. In Sec. II we describe
the theoretical model and we emphasize the importance
of a relationship for the average nearest neighbor coor-
dination number as function of the particle size. In Sec.
III we present our numerical results. This section pro-
vides finite-size scaling analysis of both pure ferromag-
netic nanoparticles, with an application to Ni nanostruc-
tures, and Fe0.5Mn0.1Al0.4 nanoparticles from both ap-
proaches. Conclusions are finally presented in Sec. IV.

II. THEORETICAL MODEL

Several features lead us to consider an Ising model: i)
magnetic frustration can be better resolved with an Ising
model than, for instance, with continuous spin models [1],
ii) it is in agreement with the framework we are interested
in, which consists of iron-based nanoparticles with a very
high effective magnetocrystalline anisotropy and where,
despite of having cubic structure, a single easy axis can
be experimentally induced [21–23], iii) it has been al-
ready used in similar systems and quite good agreement
with experimental data (magnetometric measurements
and hyperfine fields from Mössbauer spectroscopy) has
been achieved [7, 11, 12, 15], and finally iv) it allows to
keep computational requirements under reasonable lim-
its. Thus, our model is based on the following N spins
Ising Hamiltonian:

H = −
∑

〈i,j〉

Jijσiσj − h
N
∑

i=1

σi. (1)

The first sum runs over nearest neighbors 〈i, j〉, and σi

takes on the values ±1 or 0 depending on whether the
ith site is occupied by a magnetic atom (Fe,Mn) or an
aluminum one, respectively. The exchange integral Jij
obeys the following probability distribution function ac-
counting for disorder and the different couplings involved
[12]:

P (Jij) = p2δ(Jij − JFe-Fe) + 2pxδ(Jij − JFe-Mn) (2)

+ x2δ(Jij − JMn-Mn) + (q2 + 2xq + 2pq)δ(Jij),

where p, x and q, with p + x + q = 1, are the frac-
tional concentrations of Fe, Mn and Al atoms, respec-
tively. The terms p2, 2px and x2 are the probabilities
of having nearest neighbors Fe-Fe, Fe-Mn and Mn-Mn
bonds, respectively, and interacting through the corre-
sponding exchange integrals JFe-Fe, JFe-Mn and JMn-Mn.
Here, JFe-Fe, hereafter simply J , was set to 12.846 meV
only for pure iron nanoparticles with body-centered cu-
bic (bcc) structure, and was set to 16.872 meV for
Fe0.5Mn0.1Al0.4 nanoparticles having the same structure.
These values reproduce the Curie critical temperatures
of the corresponding systems under bulk conditions and
the difference among them is attributed to the presence
of both Mn and Al atoms and to the fact that Fe and
Fe0.5Mn0.1Al0.4 have different lattice parameters [14].
Additionally, for the alloy, the remaining exchange in-
tegrals were set to JFe-Mn=−αJ and JMn-Mn=−λJ with
α=0.005 and λ =0.03, [12] and they correspond to the so-
called competitive parameters. In this work, such values
are kept fixed regardless the size of the nanoparticles to
be considered. The last coefficient q2 +2xq+ 2pq stands
for diluted bonds, with Jij=0, corresponding to nearest
neighbors Al-Al, Al-Mn and Al-Fe pairs. Finally, the
second term in Eq.(1) is the Zeeman contribution deal-
ing with the coupling of the spins with a uniform external
applied magnetic field h.
Following the ideas proposed by Ferreira et al. [24], in the
pairs-approximation, the system is considered as formed
by n1 single spins (S) and n2 linked pairs (P) of spins with
a total number of spins N = n1 +2n2. Additionally, it is
assumed that the magnetization can be obtained either
from single spins or spins belonging to a pair. Thus, the
trial Hamiltonian can be written as:

H0 = −γs
∑

i∈S

σi −
∑

j,k∈P

[Jikσjσk + γp (σj + σk)] , (3)

where γs and γp are variational parameters which can
be interpreted as molecular fields to be determined from
energy minimization conditions. Here, the first sum
runs over single spins and the second sum runs over
pairs. Both Hamiltonians, Eqs.(1) and (3), can be re-
lated through the variational approach based on the Bo-
goliubov inequality:

[F ] ≤ [F0] + [〈H −H0〉0] ≡ [Φ] , (4)

where F is the Helmholtz free energy defined by H, F0

is the free energy defined by H0; 〈...〉0 refers to the ther-
mal average in the ensemble defined by H0, whereas [...]
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represents a configurational average in which atomic dis-
order is considered. According to the way as the system
has been figured out we have:

F0 = −kBT lnZ0 = −kBT ln(Z
N−2n2

s Zn2

p ), (5)

where

Zs = 2cosh(βγs), (6)

Zp = 2eβJijcosh(2βγp) + 2e−βJij , (7)

are the trial partition functions for single and pair spins,
respectively. The configurational average of any observ-
able A is obtained from:

[A] =

∫

{Jij}

AP (Jij)dJij . (8)

Calculation of the quantities [F0], [〈H −H0〉0] and [Φ],
following the same procedure as it has been described
elsewhere [12, 24], leads to the following expression for
energy minimization:

∂ [Φ]

∂m
= − 2 (n′ − n2) (p

2 − 2pxα− λx2)Jm

− Nh+ (N − 2n2) γs + 2n2γp = 0, (9)

where n′ is the number of nearest neighbors, which de-
pends on the crystalline structure, the type of boundary
conditions and the system size. As concerns to nanopar-
ticles we consider free boundary conditions. Since [Φ]
diminishes as n2 increases, we take n2 as large as physi-
cally possible, i.e. n′ = n2. Thus, the number of linked
pairs is maximized. Hence we obtain the following rela-
tionship between the variational parameters or molecular
fields γs and γp:

γs =
(2γpn

′/N)− h

(2n′/N)− 1
. (10)

Our system is a spherical nanoparticle composed by N
atoms arranged in a bcc structure with core coordination
number z=8 and interatomic spacing a, which in the case
of pure iron is around 2.86Å whereas for Fe0.5Mn0.1Al0.4
is around 2.96Å[14]. On the basis of such representation
and in order to get an expression for the maximum num-
ber of pairs divided by the total number of atoms, i.e.
n′/N , or, analogously an effective coordination number
zeff = 2n′/N , we have simulated particles with bcc struc-
ture and different diameters D, in units of the lattice
parameter a, and have counted the number of nearest
neighbors pairs. Figure 1 shows the size dependence of
zeff from which the following relationship is fulfilled for
D ≥ 3.4:

zeff =
2n′

N
= z −

b

D
, (11)

where z=8 and the best fit yields b = 10.13± 0.04 for a
bcc lattice. In the case of a face-centered cubic (fcc)
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FIG. 1: Size dependence of the effective (Eq.(11)) and the av-
erage (Eq.(17)) coordination number for nanoparticles having
bcc structure. Particle diameter D is given in units of the lat-
tice parameter a.

lattice, the following values must be used, z=12 and
b = 12.65 ± 0.06. In principle, zeff can be interpreted
as an effective coordination number for nanoparticles of
diameter D whose core coordination number is z. Thus,
the relationship between the molecular fields γs and γp
can be rewritten as:

γs =
γpzeff − h

zeff − 1
(12)

Magnetization can be computed either from single spins
or from spins linked to a pair, and it must be the same:

m =
1

β

∂lnZs

∂γs
=

1

2β

∂lnZp

∂γp
. (13)

After calculating the derivatives and performing the con-
figurational averages using the bonds probability distri-
bution function given by Eq.(2), we obtain the following
transcendental equation for the magnetization:

m = tanh(βγs)

= sinh(2βγp)

[

p2

cosh(2βγp) + e−2βJ

+
2px

cosh(2βγp) + e2αβJ

+
x2

cosh(2βγp) + e2λβJ
+

q2 + 2pq + 2qx

cosh(2βγp) + 1

]

.(14)

Roots of this equation were obtained by using the Find-
Root tool of MathematicaTM. It must be stressed that
such magnetization, according to the bonds distribution
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function in Eq.(2), corresponds to an average magnetiza-
tion per bond whereas for the pure case (p=1) becomes
a magnetization per site. The presence of crossed terms
involving the atomic concentrations of the constituent
elements p, x and q in Eq.(14) reflects the average over
all possible nearest neighbors pairs as well as the random
atomic distribution feature. Zero field magnetic suscepti-
bility was obtained according to χ = (∂m/∂h)

0
, yielding:

χ =

(

∂m

∂h

)

0

=
{

(1− zeff)
(

βsech2(βγs)
)−1

+
zeff
2β

[tanh(βγs)coth(2βγp)

− sinh2(2βγp)

(

p2

(cosh(2βγp) + e−2βJ)2

+
2px

(cosh(2βγp) + e2αβJ)2
+

x2

(cosh(2βγp) + e2λβJ)2

+
q2 + 2pq + 2qx

(cosh(2βγp) + 1)2

)]−1
}−1

(15)

The calculation of the Curie temperature TC from Eq.
(14), for which m=0, is performed by taking the limits
γp →0 and γs →0. This yields the following expression
for the magnetic phase diagram:

zeff
2(zeff − 1)

=
p2

1 + e−2βCJ
+

2px

1 + e2αβCJ
+

x2

1 + e2λβCJ
+

q2 + 2pq + 2qx

2
(16)

Here, βC = (kBTC)
−1.

III. RESULTS AND DISCUSSION

A. Coordination number

From the particle size dependence of zeff plotted in
Fig. 1, particles with diameter D=10 (around 3 nm) al-
ready exhibit an effective coordination number around 7,
which corresponds roughly to 88% of that of the bulk.
Above D=10, the effective coordination number resem-
bles that of the system under bulk conditions. Below
that value, coordination number decreases rapidly and,
therefore, strong modifications on the magnetic proper-
ties are expected to occur in this range, i.e. below around
3 nm. In order to gain a deeper insight on the interpreta-
tion of zeff, we have computed the coordination number
per particle zi by counting the number of nearest neigh-
bors surrounding the atom at the ith position, i.e. within
the first coordination shell, and an average coordination
number was computed according to:

〈z〉 =
1

N

N
∑

i=1

nizi, (17)

where ni is the number of atoms having coordination
number zi (see Fig. 2). Hence, by comparing the results
derived from Eqs. (11) and (17) in Fig.1, we conclude
that what we have called an effective coordination num-
ber can indeed be considered as an average coordination
number, i.e. zeff = 〈z〉. For diameters below around
3.4a the average coordination number is characterized
by jumps for which the discrete character of the system
becomes more evident. A typical particle with D=10 is
illustrated in Fig. 2, where surface atoms with differ-
ent coordinations are depicted with different colors. Our
results are in agreement with those reported in metal
Pt nanoparticles with different diameters where coordi-
nation numbers for the first through fifth coordination
shells were obtained by extended X-ray absorption fine
structure (EXAFS) spectroscopy [25].

FIG. 2: (Color online) Particle with diameter D=10 having
1067 atoms, bcc structure, and an average coordination num-
ber 〈z〉=6.96. Surface atoms with 4, 5, 6 and 7 nearest neigh-
bors are colored green, blue, red, and yellow, respectively.

B. Pure nanoparticles

The particular case of pure ferromagnetic nanoparti-
cles is easily obtained by setting p=1, q=0 and x=0 in
Eq.(16):

kBTC(D) =
2J

ln [zeff/ (zeff − 2)]
, (18)

which gives the particle size dependence of the Curie
temperature for nanoparticles with core coordination z,
diameter D and a nearest neighbors exchange integral
J . We want to stress that these results are not exclu-
sively applicable to pure α-Fe nanoparticles and they
can be, in principle, employed for other pure ferromag-
netic nanoparticles like Ni or Co. We can also relate
this critical temperature with that of the system under
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bulk conditions [12] in order to obtain a reduced critical
temperature:

TC(D)

TC(∞)
=

J(D)ln [z/(z − 2)]

J(∞)ln [zeff/(zeff − 2)]
, (19)

where we have assumed that the exchange integral (J =
J(D)) in the nanoparticle can be different from that un-
der bulk conditions (J(∞)). In a first order of approx-
imation, and by assuming the same exchange integral
value, which could be reasonable for high enough parti-
cle sizes, we have:

TC(D)

TC(∞)
≈

zeff
z

, (20)

if we assume that no structural transition occurs as a
consequence of reducing the size. Otherwise, different
core coordination numbers should be considered and the
model is still applicable. Figure 3 shows the reduced
critical temperature for different diameters according to
our model. A comparison between Eq.(19) for bcc (z=8)
and fcc (z=12) lattice structures and the approximate
expression given by Eq.(20) is included.

0 1 2 3 4 5 6 7 8 9 10
0.0

0.2

0.4

0.6

0.8

1.0

T C
(D

)/T
C
(

)

D

 Eq.(19) z=8
 Eq.(19) z=12
 Eq.(20) z=8
 Eq.(20) z=12

FIG. 3: Particle size dependence of the reduced critical tem-
perature for pure ferromagnetic nanoparticles with z=8 and
z=12, according to Eqs. (19) and (20).

As is observed, Curie temperature (TC) decreases as
the particle becomes smaller due basically to the decrease
in the magnetic bonds density. Therefore, the energy cost
to carry out the transition is lower, and thus the critical
temperature is also smaller. As D increases the critical
temperature TC tends to its bulk value. Other models
have been already proposed to understand the mecha-
nisms lying on the effect of the breaking of exchange
bonds upon the TC(D) function for nanoparticles. On

this respect, the following expression has been proposed
[32]:

TC(D)

TC(∞)
= 1−

3∆L

2D
, (21)

where ∆L is the thickness of surface layer, and it has
been considered as a parameter to characterize the de-
ficiency in the number of exchange bonds for atoms at
the surface region of a nanoparticle. However, this model
can not reproduce successfully experimental data of mag-
netite nanoparticles of different size with a constant ∆L,
and hence, it has been suggested that ∆L should vary
with the particle size, but such dependence has not been
yet established [32]. Another model, based on the energy-
equilibrium criterion between the spin-spin exchange in-
teractions and the thermal vibration energy of atoms at
the transition temperature and a size-dependent Debye
temperature function, was developed in order to obtain
both TC(D) and TN(D) of ferromagnetic ad antiferro-
magnetic nanocrystals. Such model yielded the following
expression for nanoparticles [27]:

TC(D)

TC(∞)
= exp [−(α− 1)/(D/D0 − 1)] , (22)

where α is a measure of the root-mean-square (rms) ther-
mal average amplitude of surface atoms vibration relative
to the core and D0 denotes a critical size at which all
atoms of the nanocrystal are located on its surface. Dif-
ferently, our model contains just one adjustable parame-
ter (J). Concerning a comparison with experimental re-
sults, we want to stress that, in general, is rather difficult
to obtain a diameter dependence of the Curie tempera-
ture due to several factors like shape inhomogeneities,
size distribution, and, in some cases like Fe nanoparti-
cles, surface oxidation [26]. Despite of that, our results
are, qualitatively, in good agreement with some others
reported for nanostructures [27–30]. In order to evalu-
ate the reliability of our model, we have carried out a
comparison with some experimental data available for
Ni nanostructures [28, 31]. To do this, we have employed
Eq.(19) with z=12 corresponding to a fcc lattice accord-
ing to the crystalline structure of Ni, TC(∞)=631 K, a
lattice parameter a=3.52 Å, and we have also assumed
that J=J(∞). Results are shown in Fig. 4 where we have
also included the results from the models cited above.
As observed, the agreement is rather good despite

of the simplicity of our model and without considering
any adjustable free parameter. Discrepancies can be at-
tributed to the fact that, firstly, we have considered a
simple nearest neighbors Ising model. Second, experi-
mental data correspond to Ni nanostructures that are
not spherical at all, whereas our model has been devel-
oped for spherical nanoparticles. Third, for real nanos-
tructures, the average lattice parameter is certainly dif-
ferent from bulk, mainly for very small particles of some
few nanometers of diameter and, therefore, exchange in-
tegral should undergo changes. Such changes can also
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FIG. 4: Semi-log plots of the dependence of the Curie tem-
perature on diameter for Ni nanostructures. Comparison be-
tween our model predictions (black solid line) without ad-
justable parameters according to Eq.(19), available experi-
mental results for Ni nanoparticles (circles, Refs.[27, 28]), Ni
nanorods (squares, Refs.[27, 31]) and the theoretical mod-
els described in the text with ∆L=0.8084 nm (dashed line,
Eq.(21), Refs. [27, 32]) and D0=1.4952 nm, α=1.811 (dotted
line, Eq.(22), Ref.[27]). Gray line stands for our model using
Eq.(23) with α=0.6.

be induced by other facts like volume magnetostriction
of Ni. Regarding a particle size dependence of an effec-
tive nearest neighbors exchange coupling, it is interesting
to notice that better agreement with experimental data
can be achieved by proposing a simple dependence of the
form:

J(D) = J(∞)eα/D, (23)

in Eq.(19). This proposal is based on the experimen-
tal fact that the lattice parameter of metallic nanopar-
ticles contracts with decreasing particle size in such a
way that the lattice parameter contraction (∆a/a) is an
inverse function of the diameter of nanoparticles [25, 33–
36]. Such a lattice contraction is attributed to reduction
of surface bonds length as a response to surface stress.
Contraction factors may vary with material and crystal
orientation. It has been observed experimentally that
the lattice parameter contracts by 2.4% in 5 nm Ni par-
ticles [37]. On the other hand, fcc Ni is considered as
a strong ferromagnet characterized by a less pronounced
RKKY behavior, exponentially damped, and a faster de-
cay of the exchange integral with the interatomic dis-
tance. More concretely, Ni remains ferromagnetic up to
the 5th nearest neighbors, and within this range of dis-
tance the exchange integral is essentially a decreasing
exponential function of interatomic spacing [38, 39].
Concerning finite size scaling (FSS) properties, Fig. 5

shows a log-log plot of the reduced temperature (TC(∞)−
TC(D))/TC(∞) versus particle diameter D, illustrating
that the data obtained from Eq.(19) follow the finite-size
scaling relation [40–44]:

TC(∞)− TC(D)

TC(∞)
= aD−1/ν , (24)

from which our best estimate for the critical exponent as-
sociated to the correlation length is ν = 1.0001± 0.0001
for both bcc and fcc lattices. The observed exponent
is slightly lower than the reported experimentally for
Ni nanostructures (ν=1.064)[31], and very similar to
that of a two-dimensional (2D) Ising model (ν=1) but
much greater than the observed in the three-dimensional
(3D) Ising model (ν=0.6289)[45] and mean field theory
(ν=0.5), suggesting a 3D→2D dimensionality crossover.

10 100

0.01

0.1

(T
C
(

)-
T C

(D
))
/T

C
(

)

D

 Eq.(19) z=8
 Eq.(19) z=12
 Eq.(24) FSS

500

FIG. 5: Log-log plot of the size dependence of the reduced
temperature for pure nanoparticles having core coordination
numbers z=8 (bcc) (black solid line) and z=12 (fcc) (dashed
line). Gray lines corresponds to the log-log fitting process
using finite size scaling (FSS) theory (Eq.(24)).

Regarding thermal properties, Fig. 6 shows the tem-
perature dependence of both the magnetization per site
and the magnetic susceptibility for pure iron (x=0, q=0
and p=1) nanoparticles and for some selected diameters.
Results for bulk iron are also included for comparison. A
well-behaved thermal driven ferromagnetic to paramag-
netic phase transition is observed as well as the shift of
the critical temperature to low values as the system size
decreases. The location of the maximum susceptibility
coincides with that derived from Eq.(16).
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FIG. 6: Temperature dependence of both the magnetization
per site and magnetic susceptibility for α-Fe nanoparticles
and bulk iron.

C. FeMnAl nanoparticles

In the case of FeMnAl nanoparticles, we have cho-
sen the stoichiometry Fe0.5Mn0.1Al0.4, which, under bulk
conditions, has been studied by using Mössbauer spec-
troscopy and magneometric techniques [14] as well as
from theory [12] and Monte Carlo simulation [13]. As
is known, the bulk alloy has a TC close to room temper-
ature (≈ 300K) in addition to the occurrence of a RSG
behavior in the low temperature regime. The critical line
TC(D) is given by Eq.(16), and the corresponding log-log
plot is shown in Fig. 7. Data have been fitted using finite
size scaling theory (Eq.(24)). Our best estimate for the
correlation length critical exponent is ν = 0.926± 0.004.
This exponent is still quite similar to that of a 2D Ising
model, but slightly different from our previous exponent
for the pure case. This feature is consistent with the Har-
ris’s criterion [46–48] for which a different set of critical
exponents may be expected for diluted and random sys-
tems having a distribution of exchange integrals. In our
case, dilution is provided by Al atoms and randomness
is provided by the random distribution of the atomic el-
ements in the alloy within the crystalline structure and
over the entire volume of the nanoparticles. The expo-
nent is also greater than the computed via Monte Carlo
simulation (ν = 0.79 ± 0.03) of Fe0.5Mn0.1Al0.4 alloys
under bulk conditions [13]. This fact agrees also with
Fisher’s theory for which critical behavior is modified
when free-edge boundary conditions are considered giv-
ing rise to a new set of critical exponents different from
those of the bulk [40, 49].
In Fig. 8, we show the temperature dependence of mag-
netization per bond and magnetic susceptibility as ob-

tained from Eqs.(14) and (15) respectively. As is ob-
served, our model predicts a magnetization reduction
in the low temperature regime, below around 70 K, in
agreement with zero field cooling measurements for the
bulk case [12]. According to our model, such a reduc-
tion, which has been attributed to a RSG phenomenol-
ogy within the ferromagnetic matrix, is still observed for
nanoparticles. Moreover, the onset of the reentrant phase
is supported by the low temperature peaks of the mag-
netic susceptibility. Results reveal also the expected shift
to lower temperature values of TC(D) as the particle size
decreases, in agreement with the critical line obtained
from Eq.(16).

1 10
0.01
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1

(T
C
(
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T C

(a
D
))
/T

C
(

)

aD (nm)

 Eq.(16)
 Eq.(24) FSS

30

Fe0.5Mn0.1Al0.4

FIG. 7: Log-log plot of the size dependence of the reduced
temperature for Fe0.5Mn0.1Al0.4 nanoparticles having core co-
ordination numbers z=8 (bcc) (circles) using Eq.(16). Solid
line corresponds to the log-log fitting process for z=8 using
finite size scaling (FSS) theory (Eq.(24)).

It is well established that Ising spin-glass transitions
should follow the so-called Almeida-Thouless (AT) line
[50] from which is expected a field dependence of the
peak temperature (Tp), obtained from the maximum of
the magnetization, of the form:

h ∝ (1− Tp/Tf)
3/2. (25)

The extrapolation of the AT line at h=0 gives the freez-
ing SG transition temperature Tf . Agreement of the data
with the AT line is usually considered as evidence of the
occurrence of a SG phase, although not concluding [51].
Thus, in order to evaluate the properties of the RSG
phase, we have solved Eq.(14) for different low field val-
ues in Eq.(12) from which Tp was extracted with an un-
certainty of ± 1 K. Results are summarized in Fig. 9
where we plot h2/3 vs. Tp. Two remarkable features are
observed in this figure. First, our data are in accordance
with the AT line as one expects for a SG transition at
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least at low field values. The large plateau observed in the
magnetization at around Tp has been already observed to
occur experimentally from SQUID and ac susceptibility
measurements [14]. Additionally, for large field values, a
deviation from the A-T line was observed. These results
are in agreement with those reported by Young et al. [52]
and references therein where the difficulty of having an
A-T line for short-range Ising spin glasses at large fields
was evident. In fact, the existence of a SG ordering in a
magnetic field is still an open question [53]. Second, the
freezing temperature is clearly size dependent, i.e. it di-
minishes as the particle size decreases. This fact implies
that the SG region in the magnetic phase diagram be-
comes smaller for nanoparticles exhibiting SG behavior
within their entire volume and not as a consequence of a
merely surface effect as it has been proposed in nanopar-
ticles exhibiting the so-called surface spin-glass-like be-
havior. These results suggest that SG behavior observed
in bulk systems is reduced when finite size effects be-
come important, which could be attributed to a reduc-
tion in the total number of frustrated spins as the particle
size becomes smaller. Moreover, in the framework of the
mean-field approximation, and taking into account that
the low temperature transition occurs within the ordered
Fe ferromagnetic matrix, the particle size dependence of
the freezing temperature can be understood by writing
Tf = zeffxJMn-Mn+ zeffpJFe-Mn, which means that Tf (D)
should become proportional to zeff, or at least as 1/D
according to Eq.(11). Inset in Fig. 9 reveals that such a
trend is fulfilled.

In order to interpret how such a low-temperature
magnetization reduction takes place, we have performed
a single-spin flip Metropolis Monte Carlo simulation
[41, 54] of Fe0.5Mn0.1Al0.4 nanoparticles in the frame-
work of a nearest-neighbor Ising model. We have used
free boundary conditions, a maximum of 1×105 Monte
Carlo steps per spin (MCS) and discarded the first 6×104

MCS for equilibration. Configurational averages over five
different random atomic realizations were performed. We
have also employed the same set of competitive parame-
ters used in the variational approach and numerical val-
ues of JFe-Fe [55] reproducing the critical temperatures
under bulk conditions. An example of the simulation re-
sults for a particle size D=10 is shown in Fig. 10. In
addition to the total magnetization per site, the corre-
sponding Fe and Mn contributions are shown separately.
Both approaches, variational and simulational, predict a
low temperature magnetization reduction. Monte Carlo
results allow to conclude that such reduction arises from
Mn moments for which an increase in the absolute value
of the corresponding magnetization contribution was ob-
served. These moments tend to align antiparallel with
respect to the total magnetization direction ruled by the
iron matrix according to the negative values of JFe-Mn

and JMn-Mn. Moreover, such moments are not compen-
sated and some of them are frustrated.

0 100 200 300
0

4

8

12

16

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
ag

ne
tic

 S
us

ce
pt

ib
ili

ty
 (a

.u
.)

Temperature (K)

M
ag

ne
tiz

at
io

n 
pe

r b
on

d

D = 4
D = 5
 D= 10
 D= 20

 Bulk (z=8)

FIG. 8: Temperature dependence of magnetization per bond
and magnetic susceptibility for Fe0.5Mn0.1Al0.4 nanoparticles
and for some selected particle sizes. Data corresponding to
the bulk case are also included for comparison.

One of the difficulties of the variational approach is
that the magnetization obtained in the random diluted
case is a magnetization per effective bond and not per
atomic site. This fact gives rise to different values of the
maximum magnetization (see Fig. 8) in contrast to the
observed via Monte Carlo, where the maximum value
of the overall magnetization is close to 0.5 accordingly
with the Fe atomic concentration, which is practically
the same independent of the particle size. Finally, re-
garding the critical behavior along the TC line, we have
determined the correlation length critical exponent from
the maxima of the logarithmic derivative of the magne-
tization in the vicinity of TC by assuming the following
ansatz [45]:

(

∂lnm

∂T−1

)

max

= aD1/ν . (26)
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FIG. 9: Low field A-T line. Freezing temperature goes down
as the particle size diminishes. The Tf value for bulk at
around 62.5 K is relatively close to that reported experimen-
tally at around 78 K from ac susceptibility measurements for
Fe0.5Mn0.1Al0.4 bulk alloys [14]. Inset shows that a Tf versus
1/D linear dependence is followed.

The log-log plot of the size dependence of the maxi-
mum values of these derivatives is shown in Fig. 11
from which our best estimate for the exponent was
ν=0.71±0.04, very different from that found from the
variational approach. Our value is however somewhat
greater than the ν=0.6289±0.0008 value obtained by Fer-
renberg and Landau [45] for a 3D Ising model, where
a high-resolution Monte Carlo study was carried out,
and somewhat smaller than the ν=0.79±0.03 value ob-
tained for the same system under bulk conditions [13].
These comparisons suggest, contrary to the variational
approach, that the 3D→2D dimensionality crossover does
not take place, at least for the range of D values we have
considered in the present study. The difference between
the correlation length critical exponents, obtained via the
variational approach and Monte Carlo, is attributed to
the, so-called, pairs approximation in the variational ap-
proach where the trial partition function is computed
by dividing the system only in blocks of one and two
spins. This ends up in a reduction of the degree of cor-
relation and consequently in a change of the exponent
value. Certainly, a more precise estimative of the parti-
tion function, and consequently of the magnetization and
TC , can be achieved by considering the system as formed
by higher order blocks (four, six, eight spins, etc) [24].
Even though such a calculation is tractable, it turns out
heavy and very time consuming. This fact constitutes
the main limitation of the variational model.
On the other hand, differences respect to the ν exponent
of the pure 3D Ising model can be attributed to the di-
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FIG. 10: Iron and manganese contributions to the total mag-
netization per site for Fe0.5Mn0.1Al0.4 nanoparticles with di-
ameter D=10. Inset shows a zoom of the low temperature
behavior.

luted character of our system in addition to the disorder
involved in the distribution of exchange integrals, which
is consistent with Harris’s criterion [46, 47], whereas the
difference with respect to the ν exponent of the same sys-
tem with periodic boundary conditions is consistent with
Fisher’s theory [40].
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FIG. 11: Log-log plot of the particle diameter dependence
of the maxima values of the logarithmic derivatives of the
magnetization to determine the ν exponent.
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IV. CONCLUSIONS

The critical behavior of ferromagnetic pure and ran-
dom diluted nanoparticles with competing interactions
has been addressed. In both cases we have employed the
free energy variational principle based on the Bogoliubov
inequality and an Ising model. In the case of random
diluted nanoparticles, for which we have considered
the Fe0.5Mn0.1Al0.4 system as a case of study, we have
used, additionally, standard Monte Carlo simulation. In
order to validate the use of the variational approach in
nanoparticles, which is carried out for the first time, the
model was applied to account for the critical behavior
of pure ferromagnetic nanoparticles on the basis of an
average nearest neighbors coordination number obtained
via numerical simulation. Our results allow to conclude
that the variational model is successful in reproducing
features of the particle size dependence of the Curie
temperature for both pure and random diluted parti-
cles. Comparisons with other theoretical models and
experimental results for Ni nanostructures were carried
out in order to evaluate the reliability of the model. A
better agreement with experimental data was obtained
if a particle size dependence of the nearest neighbors
exchange integral is considered consistent with previous
works where lattice contraction of metallic nanoparticles
has been observed.

For random diluted nanoparticles, low temperature
magnetization reduction was consistent with the same
type of RSG behavior observed in the bulk counterparts
in accordance with the Almeida-Thouless line at low
fields. Such a RSG behavior is attributed to the presence
of competing interactions, randomness and the aluminum
dilution effect. A linear dependence of the freezing tem-
perature with the reciprocal of the particle diameter was
also obtained indicating that the corresponding region in
the magnetic phase diagram becomes smaller as the par-
ticle size diminishes. Concerning critical behavior, data
obtained by using the variational method were fitted with
the relationship for critical temperature derived from fi-
nite size scaling theory and the best estimate for the
correlation length critical exponent was ν=0.926±0.004.
Differently from this, a value ν=0.71±0.04 was obtained
via Monte Carlo. Differences are attributed to the so-
called pairs-approximation in the variational approach.
From both approaches, differences in the ν exponent of
Fe0.5Mn0.1Al0.4 nanoparticles with respect to that of the
pure Ising model agree with Harris and Fisher arguments.
Finally, we want to stress that, even though thermody-
namical models can be indeed used in the study of nanos-
tructures [56] and they can reproduce experimental fea-
tures, special attention must be paid regarding critical
behavior depending on the approximations of the model.
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