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Nuclear spin pumping and electron spin susceptibilities
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In this work we present a straightforward formalism to evaluate the nuclear spin dynamics driven
by hyperfine interaction with non-equilibrium electron spins. To describe the dynamics up to second
order in the hyperfine coupling, it suffices to evaluate the susceptibility and fluctuations of the
electron spin. Our approach does not rely on a separation of electronic energy scales or the specific
choice of electronic basis states, thereby overcoming practical problems which may arise when using
a more traditional formalism based on rate equations.

INTRODUCTION

In recent years, considerable theoretical and experi-
mental work is aimed at the controlled manipulation of
electron spins in nanoscale solid state devices [1]. This
research is motivated by actual applications, such as in
digital information storage and read-out [2, 3], but also
by the possibility of using the spin of electrons as com-
putational units (qubits) in a quantum computer [4].

One of the mechanisms influencing the electron spin
dynamics in these nano-devices is the hyperfine inter-
action between the electron spin and the nuclear spins
of the device’s constituent material. For spin qubits
hosted in semiconductor quantum dots [5], hyperfine in-
teraction has been identified as the main source of deco-
herence, causing the spin coherence time to be in the
ns range [6–8]. Much recent experimental and theo-
retical work is aimed at suppressing this hyperfine in-
duced decoherence [9, 10]. In other semiconductor nano-
structures [11, 12] — possibly also metallic structures [13]
— hyperfine interaction can even dominate the electronic
transport properties and spin dynamics. Understand-
ing the role of hyperfine interaction in spintronic devices
therefore is crucial in the development of the field.

Traditionally, the interplay between electronic and nu-
clear spins is treated in the convenient framework of rate
equations [14, 15]. The rates of hyperfine transitions flip-
ping nuclear spins ‘up’ and ‘down’ are separately cal-
culated using Fermi’s golden rule, and the balancing of
these rate yields the net nuclear spin pumping in the
system. Although this approach works very well in many
cases [16, 17], it can become cumbersome when the elec-
tron spin dynamics are more complicated. Strong dy-
namical nuclear spin effects have been observed in GaAs
double quantum dots in the spin blockade regime un-
der conditions of electron spin resonance [18]. Nuclear
spin flips in this setup are due to second order processes,
and some of the transitions have a vanishingly small en-
ergy difference between initial and virtual state, which
cannot be dealt with in a standard Fermi golden rule
approach [19]. The situation is even worse for systems
with strong spin-orbit coupling. In InAs nanowire double

quantum dots in the spin blockade regime, signatures of
strong dynamic polarization have been observed too [20].
In this case, the presence of too many comparable energy
scales makes it impossible to choose a unique set of ba-
sis states to describe the electron dynamics in [21]. It
is clear that a basis-independent description of the cou-
pled electron-nuclear spin dynamics, not involving any
separate transition rates, is highly desirable.
In this work we present an alternative way to evaluate

the spin dynamics of electrons and nuclei coupled to each
other by hyperfine interaction. We show that, in order
to describe the nuclear spin dynamics up to second or-
der in the hyperfine coupling, it suffices to evaluate the
fluctuations and susceptibility of the electron spins in the
system, which can be done using linear response theory.
Our approach does not rely on the calculation of sepa-
rate transition rates with Fermi’s golden rule, nor on the
choice of electronic basis states to work in. As a result,
the formalism is applicable in cases where Fermi’s golden
rule cannot be used, and is thus better and more general.
Since a Fermi’s golden rule (FGR) calculation often

has to be adapted to specific circumstances [14–17], it is
difficult to pick a single implementation of it and make
a good comparison to our approach. Therefore we will
illustrate our ideas with two example systems: (i) We will
show how in a simplest toy system our formalism and a
smart implementation of FGR produce identical results.
(ii) We will investigate a more complicated system, which
cannot be dealt with in an FGR approach, and show how
our formalism straightforwardly produces an equation for
the hyperfine driven nuclear spin dynamics.

MAIN RESULT

Let us start with presenting the main result of our
work: an equation for the hyperfine driven dynamics of
the expectation value of a nuclear spin coupled to (many)
electronic spins. Under conditions which we will specify
below, this equation takes the closed form

d〈K̂a〉

dt
= εabcSb〈K̂c〉 −

1

2
Qab〈K̂b〉+

1

3
P a, (1)
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where {a, b, c} ∈ {x, y, z}, and we use the convention
that over repeated indices still has to be summed. The
operator K̂ is the nuclear spin operator for the nucleus
under consideration, and εabc is the permutation tensor.
The vectors S and P, and the matrix Q are defined as

Sa = Av0〈Ŝ
a(rn, t)〉

Qab = (Av0)
2(δabRcc −Rba)

P a = (Av0)
2K(K + 1)εabcχbc,

(2)

A being the material-specific hyperfine coupling energy,
1/v0 the density of nuclei,K the total nuclear spin, rn the

position of the nucleus, and Ŝ the electron spin density
operator, Ŝ(r, t) = ψ̂†

α(r, t)σαβψ̂β(r, t). Note that we
have set for transparency h̄ = 1, or, in other words, we
express all energies in terms of corresponding frequencies.
The symbols χ and R represent correlation functions of
the local electronic spin density,

Rab =

∫ t

〈[Ŝa(rn, t), Ŝ
b(rn, t

′)]+〉cdt
′

χab = −i

∫ t

〈[Ŝa(rn, t), Ŝ
b(rn, t

′)]−〉cdt
′,

(3)

where the square brackets denote the (anti)commutator
of two operators, i.e., [Â, B̂]± = ÂB̂ ± B̂Â, and the sub-
script c means that we have to use the ‘connected’ part
of the expectation value, i.e., remove the contribution
of the averages 〈AB〉c = 〈AB〉 − 〈A〉〈B〉. Note that,
since hyperfine interaction works two-way, the electronic
correlation functions, and thereby S, Q and P, are in
turn also affected by the state of the nuclear spins in the
system. This creates a feedback mechanism in Eq. (1),
which makes the equation non-linear. In all practical im-
plementations, one can make use of the large difference in
time scales of the electronic and nuclear spin dynamics.
This allows to treat the nuclear spins as a static ‘classical’
magnetic field when evaluating the electronic correlators.
The first term in Eq. (1) is first order in the hyperfine

coupling A and gives rise to a precession of the nuclear
spin around the direction of the time-averaged local elec-
tron spin polarization. The precession frequency depends
on the magnitude of this polarization |v0〈Ŝ(rn, t)〉|, as
well as on the strength A of the hyperfine coupling.
The other two terms are second order in A, and in-

volve the exchange of angular momentum between elec-
trons and the nucleus. The correlation functions Rab in
the matrix Q contain the ‘classical’ noise in the coordi-
nates Ŝ(rn, t) and, as dictated by the Onsager relations,
lead to a relaxation of the nuclear spin coupled to these
coordinates. The correlators χab in the vector P corre-
spond to the susceptibility in the same coordinates, and
can give rise to nuclear spin pumping in the system. One
can understand this by interpreting the χab as the ‘quan-
tum’ noise in the electron spin density: the part of the
fluctuations in Ŝ(rn, t) which solely exists due to the non-
commutativity of the spin operators. By their quantum

nature these fluctuations violate the Onsager relations,
and can thus indeed drive the system out of equilibrium.
In order to find an explicit expression for d〈K̂〉/dt as

given by Eq. (1), one needs to find the elements of S, Q
and P. The first step is to find the steady-state electron
spin density 〈Ŝ(rn)〉, which immediately yields the vec-
tor S. The elements of Q and P correspond to the local
fluctuations and susceptibility of this electron spin den-
sity, and can be evaluated using linear response theory,
as we will illustrate below. Let us emphasize here that
none of the steps in such a calculation involves the eval-
uation of any separate transition rate between different
electronic-nuclear levels or depends on the specific choice
of electronic basis states.

DERIVATION

We will now show how to derive Eq. (1) from a stan-
dard second order perturbation theory in the hyper-
fine interaction. We start from the second order time-
evolution equation for the density matrix ρ̂ of the whole
coupled electron-nuclear spin system

dρ̂

dt
= −i

[

Ĥhf(t), ρ̂
]

−

∫ t [

Ĥhf(t),
[

Ĥhf(t
′), ρ̂

]]

dt′, (4)

Ĥhf being the hyperfine Hamiltonian coupling all nuclear
spins in the system to the local electron spin density. As-
suming that the electrons of interest have s-type orbitals,
we can write for the hyperfine Hamiltonian

Ĥhf(t) = Av0
∑

n

Ŝ(rn, t) · K̂n(t). (5)

Making use of the large difference in time scales of the
electronic and nuclear spin dynamics, we separate the
two parts of the density matrix, ρ̂ = ρ̂e ⊗ ρ̂k. We trace
over the rapidly changing electronic degrees of freedom,
assuming the nuclear part of the density matrix to be
static on these time scales. This allows us to extract
from Eq. (4) a separate time-evolution equation for ρ̂k,
and thus derive equations of motion for the expectation
values of the nuclear spin operators.

A single nucleus, K = 1/2

Let us first focus on the transparent case of one single
nucleus with nuclear spin K = 1/2, interacting with a
local electron spin density. Up to first order, i.e., using
only the first term in (4), we find

d〈K̂a〉

dt

(1)

= Tr

{

K̂a dρ̂
(1)
k

dt

}

= εabcSb〈K̂c〉, (6)

describing a precession of the nuclear spin around the
local electron spin density.
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The exchange of angular momentum between electrons
and the nucleus is to leading order described by the sec-
ond term in (4), i.e., second order perturbation theory
in Ĥhf. Applying the commutation relations for nu-
clear spin operators, and using that for spin- 12 operators

[K̂a, K̂b]+ = 1
2δ

ab, a somewhat lengthy but straightfor-

ward calculation gives for the three elements d〈K̂a〉/dt
the second order expression

d〈K̂a〉

dt

(2)

=
(Av0)

2

2

{

Rba〈K̂b〉−Rbb〈K̂a〉+εabc 12χ
bc
}

, (7)

which is, combined with Eq. (6), identical to the expres-
sion given in Eq. (1).

Many nuclei, K > 1/2

When following the same derivation for the case of
many nuclei and spin higher than K = 1/2, it is gen-
erally not possible to derive a closed set of equations for
d〈K̂n〉/dt. The first order equations do not change and
are still given by Eq. (6). The second order correction
however does change, and becomes

d〈K̂a
n〉

dt

(2)

=
(Av0)

2

2

{

Rba〈K̂b
n〉 −Rbb〈K̂a

n〉

+ εabcχbd
nn〈[K̂

d
n, K̂

c
n]+〉 (8)

+ 2
∑

m 6=n

εabcχbd
nm〈K̂d

mK̂
c
n〉
}

,

where the correlator χ has acquired two more indices,

χab
nm = −i

∫ t

〈[Ŝa(rn, t), Ŝ
b(rm, t

′)]−〉cdt
′. (9)

This correlation function now describes the non-local sus-
ceptibility of the electron spin density, i.e., the linear re-
sponse in the coordinate Ŝa at the position rn due to a
perturbation along Ŝb at another position rm.

We notice two problems which prevent us from deriving
a closed set of equations from Eq. (8): First of all, for
K > 1/2 we cannot make the convenient simplification
[K̂d

n, K̂
c
n]+ ∝ δcd, and secondly also correlations 〈K̂d

mK̂
c
n〉

between different nuclei apparently play a role.

Let us first address the issue concerning the av-
erages of the form 〈K̂d

mK̂
c
n〉. We start by splitting

these correlators in a connected and an unconnected
part, 〈K̂d

mK̂
c
n〉 = 〈K̂d

mK̂
c
n〉c + 〈K̂d

m〉〈K̂c
n〉. The uncon-

nected part of these correlators results in a contribu-
tion (Av0)

2
∑

m εabcχbd
nm〈K̂d

m〉〈K̂c
n〉, which actually is a

correction to the first-order equation (6). The effec-

tive field around which 〈K̂n〉 precesses is changed S
a →

Sa+(Av0)
2
∑

m χab
nm〈K̂b

m〉, i.e., it gains a term due to the
electron spin mediated nuclear spin-spin coupling. We
will focus on leading order effects only and disregard this
correction, which means that we can interpret all brack-
ets 〈. . . 〉 in (8) as indicating connected correlators [22].

We now investigate the dynamics of those correlators in
more detail. We can derive for 〈K̂a

l K̂
b
m〉 similar equations

of motion as for the average 〈K̂a
n〉. Up to second order

in Av0 we find the two equations

d〈K̂a
l K̂

b
m〉(1)

dt
= Av0

{

〈Ŝc(rl, t)〉ε
dac〈K̂d

l K̂
b
m〉+ 〈Ŝc(rm, t)〉ε

dbc〈K̂a
l K̂

d
m〉

}

d〈K̂a
l K̂

b
m〉(2)

dt
=

(Av0)
2

2

{

(Rcd
ml +Rdc

lm)εadfεbce〈K̂f
l K̂

e
m〉+Rcd

ll ε
aceεedf 〈K̂f

l K̂
b
m〉+Rcd

mmε
bceεedf 〈K̂a

l K̂
f
m〉

+
∑

n

(

χcd
lnε

ace〈K̂d
nK̂

e
l K̂

b
m + K̂e

l K̂
b
mK̂

d
n〉+ χcd

mnε
bce〈K̂d

nK̂
a
l K̂

e
m + K̂a

l K̂
e
mK̂

d
n〉
)}

,

(10)

where again all brackets indicate connected correlators.
We see that hyperfine interaction does not create corre-
lations between the different nuclear spins. The correla-
tions will only start evolving when they already exist. We
can thus make the practical assumption that the nuclear
spins are initially in an uncorrelated thermal equilibrium
state, which allows us to neglect the correlators of differ-
ent nuclei, i.e., the last term in Eq. (8).

This assumption also solves the issue that the term
〈[K̂d

n, K̂
c
n]+〉 formally cannot be simplified further. Due

to the small nuclear Zeeman energy, the thermal equi-
librium state of the nuclear spin system is in all realistic
cases in the high-temperature limit. If we further restrict

ourselves to the build-up of small polarizations, we can
approximate the nuclear spin density matrix to be nearly
isotropic, resulting in 〈K̂c

nK̂
d
n〉 ≈ 1

3δ
cdK(K + 1), where

K is the total nuclear spin. We see that in that case Eq.
(8) reduces to our main result, Eq. (1).

IMPLEMENTATION

With the formalism presented in Eqs (1)–(3), we are
able to express the hyperfine driven nuclear spin dy-
namics in terms of the susceptibility and fluctuations of
the electron spin density. Let us now explain how one



4

could calculate the necessary electronic correlation func-
tions using linear response theory. For a given setup,
we write down the full set of Bloch equations describing
the evolution of the electronic density matrix, and solve
for the steady state solution ρ̂(0). The elements Sa are
then simply found as the equilibrium expectation val-
ues Sa = Av0〈Ŝ

a(rn)〉ρ̂(0) = Tr{Ŝa(rn)ρ̂
(0)}. Next, we

add to the set of Bloch equations the first-order effect of
a perturbation Ĥ ′ = Λ · Ŝ(rn), i.e., we add the terms
i[ρ̂(0), Ĥ ′]−, and solve for the new steady state density
matrix ρ̂(1). The spin susceptibility χab needed in Eq. (1)
is then found as the part of 〈Ŝa(rn)〉ρ̂(1) = Tr{Ŝa(rn)ρ̂

(1)}

which is linear in Λb. The fluctuations Rab are found in a
similar way, the terms to add to the Bloch equations then
read [ρ̂(0), Ĥ ′]+−2Tr{Ĥ ′ρ̂(0)}ρ̂(0), where the last term re-
moves the connected part of the electron spin correlators.
We will illustrate the procedure below.

From this short outline, it is already clear that this
approach has several advantages over a traditional FGR
calculation: (i) For an FGR calculation, there should be
an obvious basis to calculate all occupation probabilities
in; here we can choose any basis which is most conve-
nient for evaluating the steady state electronic density
matrix. (ii) When calculating separate FGR transition
rates, it should a priori be clear which quantization axis
to choose for the nuclear spins; in our formalism, as soon
as ρ̂(1) is found for the two types of perturbations, all
elements of χ and R can be read off immediately, yield-
ing the dynamics for the full vector 〈K̂n〉, not just the
polarization along a single axis. (iii) For FGR to work,
all levels involved in the hyperfine transitions (including
possible virtual states in higher order processes) should
be well separated in energy, i.e., the splittings should be
larger than all decay rates and other possible incoherent
processes present; in our method all incoherent processes
are accounted for in the set of Bloch equations, we do
not have to compare them with the other energy scales.

EXAMPLE APPLICATIONS

We will now illustrate the above with a calculation of
the nuclear spin pumping in two example systems. First,
we will consider nuclear spin pumping in a trivial toy
model concerning a single quantum dot coupled to two
leads. We will show how a smart implementation of FGR
can produce an identical result in this case. Then we will
investigate a more complicated setup, involving a double
quantum dot, which cannot be dealt with in an FGR
approach. We will show however how our formalism can
be applied straightforwardly, yielding a general equation
for the nuclear spin pumping in this setup.

nuclei

FIG. 1. Energy diagram for a trivial single quantum dot setup
in which nuclear spin pumping is to be expected. The dot is
coupled to two leads with different chemical potentials. One
single-electron level lies within the bias window, which is split
into two sublevels by the Zeeman energy (we assumed a nega-
tive g-factor). The tunnel rate from the left lead into the dot,
Γin is large and equal for both spin directions. The outward
tunnel rates Γ↑,↓ are different for spin up and down.

Single dot: Fermi’s golden rule with modifications

We consider a single quantum dot connected to two
leads, as illustrated in Fig. 1. Due to the strong Coulomb
repulsion, only one excess electron can occupy the dot.
If we apply an external magnetic field Bext = Bextẑ, the
energy levels for spin up and down in the dot are split by
the electronic Zeeman energy. We take the tunnel rate
into the dot Γin to be very fast and equal for both spin
directions. The outward tunnel rates Γ↑,↓ are different
for the two spin directions (to provide a physical picture
with this assumption: one could assume the right lead
to be ferromagnetic). Since the electron occupying the
dot will thus have on average a non-zero spin polariza-
tion along the z-direction, hyperfine interaction with the
nuclear spins is expected to produce a non-zero nuclear
spin polarization along this axis.
One usually assumes for simplicity that the electron

spin is coupled equally strongly to all N ∼ 104–106 nu-
clear spins. This then allows to rewrite the hyperfine
Hamiltonian as Ĥhf(t) =

∑

nAnŜ(t) · K̂n(t), with the

constant coefficients An = A/N and Ŝ being simply the
electron spin operator (instead of spin density).
Let us calculate the nuclear spin pumping rate along

the z-direction, d〈K̂z
n〉/dt, for this system. Since all nu-

clear spins are coupled to Ŝ with the same coefficient,
〈K̂z

n〉 for the n-th nucleus equals the ensemble averaged
nuclear spin 〈K̂z〉. We only take into account a finite
polarization in the z-direction, so we use the equation

d〈K̂z〉

dt
=

1

3
P z −

1

2
Qzz〈K̂z〉, (11)

with the functions P z = A2
nK(K + 1)(χxy − χyx) and

Qzz = A2
n(R

xx + Ryy). Note that χ and R contain now
correlators of the electron spin, not electron spin density.
A finite nuclear polarization in the z-direction behaves

on the time scale of the electronic dynamics as a static
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contribution to the magnetic field experienced by the
electrons. We incorporate this contribution into an ef-
fective field Beff = Bext − A〈K̂z〉 (we assume a negative
g-factor and a positive hyperfine coupling constant, as is
the case in GaAs). The coherent time-evolution of the
electronic 2 × 2 density matrix of this simple system is
then given by ∂tρ̂ = i[BeffŜ

z, ρ̂]−, where we express Beff

in terms of a frequency. To this we add the incoherent
tunnel rates, yielding the set of equations

∂tρ↑ = −Γ↑ρ↑ +
1
2 (Γ↓ρ↓ + Γ↑ρ↑)

∂tρ↓ = −Γ↓ρ↓ +
1
2 (Γ↓ρ↓ + Γ↑ρ↑)

∂tρ↑↓ = iBeffρ↑↓ −
1
2Γρ↑↓

∂tρ↓↑ = −iBeffρ↓↑ −
1
2Γρ↓↑,

(12)

where Γ ≡ Γ↑+Γ↓. These equations can be solved for the

stationary situation ∂tρ̂
(0) = 0, yielding ρ

(0)
↑(↓) = Γ↓(↑)/Γ

and ρ
(0)
↑↓ = ρ

(0)
↓↑ = 0. We only need the response functions

χxy and χyx, so we add the terms i[ρ̂(0),ΛxŜx + ΛyŜy]−
to Eq. (12) and solve for the new stationary solution ρ̂(1).
The correlator χxy is then simply given by the term in
Tr{Ŝxρ̂(1)} linear in Λy, and in a similar way we find χyx.
The results are combined to

χxy − χyx =
Γ↓ − Γ↑

2B2
eff + 1

2Γ
2
. (13)

Now we evaluate Rxx and Ryy. To this end, we add the
terms [ρ̂(0),ΛxŜx+ΛyŜy]+−2Tr{(ΛxŜx+ΛyŜy)ρ̂

(0)}ρ̂(0)

to Eq. (12), and then look for the linear responses in Ŝx

and Ŝy, yielding

Rxx +Ryy =
Γ

2B2
eff + 1

2Γ
2
. (14)

Combining all together using Eq. (11), we thus find

d〈K̂z〉

dt
= A2

n

Γ↓(
1
2 − 〈K̂z〉)− Γ↑(

1
2 + 〈K̂z〉)

4(Bext −A〈K̂z〉)2 + Γ2
, (15)

where for simplicity we assumed K = 1/2.
Let us compare the result (15) with the pumping rate

we get using an FGR approach. We focus on transi-
tions between the two states |↑⇓n〉 and |↓⇑n〉, where the
double arrow indicates the nuclear spin along the z-axis.
Neglecting the nuclear Zeeman energy, the two states are
separated by the energy h̄Beff, and both are broadened
by their respective electronic decay rate Γ↑(↓). Hyper-
fine induced transitions from |↑⇓n〉 to |↓⇑n〉 contribute
positively to d〈K̂z

n〉/dt, and their rate is given by

Γ+ = 2π| 〈↓⇑n | 12AnŜ
−K̂+

n | ↑⇓n〉 |
2piD, (16)

the square of the relevant matrix element, multiplied by
the chance pi of finding the system initially in |↑⇓n〉 and
the effective ‘density of states’ for this transition D.

FIG. 2. Energy diagram of a more complicated setup. Two
quantum dots are coupled to each other and to two leads with
different chemical potentials. The two dots have different ef-
fective g-factors, so that the application of an external mag-
netic field yields different Zeeman energies in the dots. The
double dot is tuned to the (0, 0) → (1, 0) → (0, 1) → (0, 0)
transport regime. The outward tunneling rates Γ are equal
and much smaller than the inward rate Γin.

For the occupation probability pi, we take pi = (12 −

〈K̂z〉)×ρ
(0)
↑ . In this simple case, it is possible to incorpo-

rate all incoherent dynamics (the two decay rates) into a
smartly chosen D: We take the sum of the level broad-
enings of the two electronic levels |↑〉 and |↓〉. Assuming
a Lorentzian shape for these broadenings, we thus use

D =
1

π

1
2Γ

B2
eff + 1

4Γ
2
, (17)

so that we can write

Γ+ = A2
n

Γ↓(
1
2 − 〈K̂z〉)

4B2
eff + Γ2

. (18)

We derive similarly an equation for Γ− and then combine
the two to write for the net nuclear spin pumping rate

d〈K̂z〉

dt
= A2

n

Γ↓(
1
2 − 〈K̂z〉)− Γ↑(

1
2 + 〈K̂z〉)

4(Bext −A〈K̂z〉)2 + Γ2
. (19)

We see that this result coincides with Eq. (15). The fact
that the FGR approach in this case also works for small
energy splittings, i.e., in the regime Beff

<
∼ Γ, is due to

the fact that all incoherent effects in this model can be
incorporated relatively simply into D.

Double dot: Beyond Fermi’s golden rule

Let us now illustrate what can happen when the setup
becomes more complicated. We consider a double quan-
tum dot connected to two leads with different chemical
potentials, as depicted in Fig. 2. The dots are tuned such
that an electronic transport cycle involves the charge
states (0, 0) → (1, 0) → (0, 1) → (0, 0), where (n,m) de-
notes a state with n(m) excess electrons on the left(right)
dot. The electronic levels in the two dots are both split
by a Zeeman energy in a spin up and spin down level. We
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assume that the splitting in the left dot is larger than in
the right dot (e.g. due to a size-related difference in ef-
fective g-factors), and that the (1, 0) spin down level has
a too high energy to play a role. The (1, 0) and (0, 1)
spin up levels are detuned by an energy d and coupled
to each other with a tunnel coupling t. We again assume
the outward tunneling rates to be much slower than the
inward, Γ ≪ Γin, so that the system effectively will never
occupy the (0, 0) charge state.
We will focus on nuclear spin pumping in the right dot.

A non-zero nuclear spin pumping rate is expected along
the direction of the magnetic field since the average local
electron spin polarization along this direction is finite.
Denoting the level in the left dot by |L〉 and the two
levels in the right dot by |↑〉 and |↓〉, the Hamiltonian for
the three-level system reads

Ĥ3 = d |L〉 〈L|+Beff |↓〉 〈↓|+ t |L〉 〈↓|+ t |↓〉 〈L| , (20)

where the feedback of the nuclear spins on the electron
spin dynamics again is incorporated into the effective
magnetic field Beff = Bext −A〈K̂z〉. Using this Hamilto-
nian and adding the effect of the incoherent decay rate
Γ, we can write down the equations of motion for ρ̂, and
solve for ρ̂(0), yielding

ρ
(0)
L =

4d2 + 4t2 + Γ2

4d2 + 8t2 + Γ2
, ρ

(0)
↑ =

4t2

4d2 + 8t2 + Γ2
,

ρ
(0)
L↑ = (ρ

(0)
↑L)

∗ =
4dt+ 2itΓ

4d2 + 8t2 + Γ2
,

(21)

and zero for the other five elements. We then proceed
as we did above, and add consecutively the perturba-
tions i[ρ̂(0), Ĥ ′]− and [ρ̂(0), Ĥ ′]+−2Tr{Ĥ ′ρ̂(0)}ρ̂(0) to the
equations of motion. We solve in both cases for the new
steady-state solution ρ̂(1) and extract the linear responses
needed. Combining all together, we find

d〈K̂z〉

dt
=

4A2
nt

2Γ(B2
eff + 2t2 + Γ2)(12 − 〈K̂z〉)

(4d2 + 8t2 + Γ2)[4(Beffd−B2
eff + t2)2 + (5B2

eff − 8Beffd+ 4d2 + 4t2)Γ2 + Γ4]
, (22)

where Beff = Bext −A〈K̂z〉. This equation gives the nuclear spin pumping in the right dot along the z-axis, without
any restriction imposed on the relative magnitude of the parameters Beff, d, t, and Γ.
Let us now try to evaluate the same pumping using an FGR approach. The most transparent electronic basis to use

is {|L〉 , |↑〉 , |↓〉} since in this basis we have well-defined incoherent in- and outward tunneling rates. We see however
that the stationary density matrix in this basis (21) has off-diagonal elements. In order to proceed, we have to make
several assumptions. Let us consider the limit of Γ ≫ t. In this case the off-diagonal elements of ρ̂(0) can be neglected,
and we can approximate ρ̂(0) ≈ |L〉 〈L|. We further assume that we have three well-separated levels, i.e., Beff, d≫ Γ.
In this limit the nuclear spin pumping is resulting from a second order transition: (i) tunneling from the initial state
|L ⇑n〉 to the virtual state |↓⇑n〉, and then (ii) an electron-nuclear spin flip-flop from |↓⇑n〉 to the final state |↑⇓n〉.
We use a standard second order Fermi golden rule to write for the pumping rate

d〈K̂z〉

dt
= 2π

| 〈↓⇑n | 12AnŜ
−K̂+

n | ↑⇓n〉 〈↑⇓n |ĤT |L ⇓n〉 |
2

(E↓⇑n
− EL⇑n

)2
pL⇑n

D, (23)

where ĤT = t |L〉 〈↓| + t |↓〉 〈L| is the tunneling part of
the Hamiltonian Ĥ3. The occupation probability of the
initial state is pL⇑n

= 1
2 −〈K̂z〉. The ‘density’ D for this

transition is mainly set by the level broadening of the
final state, so D = 2

π
Γ/[4(Beff − d)2 + Γ2]. This yields

d〈K̂z〉

dt
=

A2
nt

2Γ(12 − 〈K̂z〉)

d2[4(Beff − d)2 + Γ2]
, (24)

which coincides with (22) in the limit Beff, d ≫ Γ ≫ t.
(Note that Beff − d≫ Γ is not a necessary condition.)
There are other limits in which considering the right

rates to calculate, combined with a good approximation
for ρ̂(0) and a smart choice for D, can result in the right
pumping rate. In general however, it is not trivial to un-
derstand how to incorporate all incoherent dynamics into
D. Even if one would simply diagonalize the stationary

density matrix ρ̂(0) and try to evaluate all hyperfine tran-
sitions in the new basis, one would have to transform the
incoherent processes in correct effective densities of state.
In the approach using the electron spin susceptibility and
fluctuations, this is all done on the fly and its validity is
not restricted to certain limits of the parameter space.

Let us emphasize here that the fact that a correctly
adapted FGR approach did work in our single dot ex-
ample but not in the double dot example, is only due to
the complexity of the coherent and incoherent electron
spin dynamics in the two cases. The success of the FGR
approach is not inherently connected to the number of
quantum dots in a setup: Also for more complicated sin-
gle dot systems, the FGR approach might break down.

The two examples given above both consider localized
electron spins. Our approach however, works in princi-
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ple equally well for systems with delocalized electrons.
In this case, as explained above, the susceptibility and
fluctuations needed are correlators of electron spin den-

sity instead of simply electron spin. This however does
not change the complexity of the formalism: One only
has to find the right set of (Bloch) equations to describe
the electron spin density.

CONCLUSIONS

To conclude, we presented a straightforward approach
to evaluate the nuclear spin dynamics driven by hyper-
fine interaction with non-equilibrium electron spins. To
describe the dynamics up to second order in the hyper-
fine coupling, it suffices to evaluate the susceptibility and
fluctuations of the electron spin. This approach does not
rely on a separation of electronic energy scales or the spe-
cific choice of electronic basis states, thereby overcoming
practical problems which may arise when using a more
traditional formalism based on rate equations.
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